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ABSTRACT

Machine unlearning offers effective solutions for revoking the influence of specific
training data on pre-trained model parameters. While existing approaches address
unlearning for classification and generative models, they overlook an important
category of machine learning models: contrastive learning (CL) methods. This
paper addresses this gap by introducing the Machine Unlearning for Contrastive
Learning (MUC) framework and adapting existing methods. We identify limi-
tations in current approaches, noting that several methods perform inadequately
as unlearners and that existing auditing tools insufficiently validate unlearning
effects in contrastive learning. To address these issues, we propose Alignment
Calibration (AC), a novel method that explicitly considers contrastive learning
properties and optimizes towards new auditing metrics for easy verification of
unlearning. Through empirical comparisons with baseline methods on SimCLR,
MoCo, and CLIP, we demonstrate that AC: (1) achieves state-of-the-art perfor-
mance, approximating exact unlearning (retraining); (2) enables data owners to
clearly visualize unlearning effects through black-box auditing.

1 INTRODUCTION

The success of modern machine learning models largely relies on training with a large corpus of data.
However, carefully annotated data are expensive and difficult to obtain, thus urging the utilization of
the vast amount of unlabeled data in the wild. The recent self-supervised learning methods, especially
contrastive learning methods (Chen et al., 2020; 2021; He et al., 2020), provide viable solutions to
learning general representations for various downstream tasks. For example, unimodal contrastive
learning models employ the InfoNCE loss to maximize the feature similarity between positive pairs
(e.g., different data augmentations of the same image) while minimizing that between the negative
ones (e.g., different images). This training scheme also applies to multi-modal training (e.g., CLIP
(Radford et al., 2021)), and the learned encoders are widely applied in various tasks, e.g., GPT-based
models (Achiam et al., 2023) and latent diffusion models (Rombach et al., 2022).

To amass large-scale datasets for training contrastive learning models, practitioners often resort to
web crawling (e.g., using Common Crawl!). However, such data collection methods may disregard
data owners’ privacy concerns, potentially retrieving their data without consent. Moreover, acquired
training data may include copyrighted material or even inappropriate content, such as sexual abuse
(e.g., in recent reports2 against content in LAION-5B (Schuhmann et al., 2022)). In these scenarios,
data owners or authorities may rightfully request the removal of misused training data (i.e., unlearning
dataset) 3, necessitating adjustments to the trained model parameters. While retraining the model from
scratch without the unlearning dataset is a straightforward solution, it incurs substantial computational
costs for large models and datasets.

To eliminate the effect of the unlearning dataset on the model with minimum effort, machine
unlearning methods (Cao & Yang, 2015; Bourtoule et al., 2021; Ginart et al., 2019; Guo et al., 2019;
Neel et al., 2021; Ullah et al., 2021; Sekhari et al., 2021; Izzo et al., 2021; Chen et al., 2023; Zhang

'nttps://commoncrawl.org/

https://purl.stanford.edu/kh752sm9123

3In accordance with policies such as the European Union’s General Data Protection Regulation (GDPR), the
California Consumer Privacy Act (CCPA), and Canada’s proposed Consumer Privacy Protection Act (CPPA).
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Figure 1: An overview of the unlearning pipeline for contrastive learning. Given a training set D51,
contains an unlearn subset Dy,1¢.rn, and a pretrained encoder g, model owners (Column 1) aim to
find an optimal unlearning algorithm by comparing with exact unlearning (retraining with the retain
dataset Dy rain\Dunlearn) to obtain an unlearned encoder §. Data owners (Column 2), who only
have black-box access to the model outputs, then audit the unlearning outcome by comparing the
output features before/after unlearning.

et al., 2024a; Fan et al., 2024; Shen et al., 2024) provide recipes for supervised learning methods on
group removal and for generative models on sample or concept removal. However, the study of an
efficient solution for contrastive learning models is under-explored. In this paper, we establish the
foundation of Machine Unlearning for Contrastive Learning models (MUC). MUC adapts various
existing methods to contrastive learning and introduces the notion of data owners who request
unlearning and model owners who execute unlearning. Given candidate unlearning algorithms, the
model owners first perform white-box evaluation to select the best method and generate an optimal
unlearned model. The data owners then perform black-box auditing to validate the effect of the
unlearning procedure. We argue that unlearning success is achieved only if the unlearned model
meets the criteria on both sides. We summarize this unlearning pipeline in Figure 1.

Unfortunately, direct adaptations of existing unlearning approaches are unsatisfactory on both consid-
erations. Firstly, from the model owners’ perspective, such algorithms are suboptimal approximations
of exact unlearning (training from scratch) under different white-box evaluations and there lack
of a good candidate method. Secondly, from the data owner’s perspective, even given an optimal
unlearned model, it is difficult to discern the unlearning effect under existing black-box auditing tools,
rendering it hard to determine the success of unlearning.

Motivated by the above state of affairs, we introduce a novel unlearning method called Alignment
Calibration (AC) that is specifically tailored for contrastive learning. AC optimizes a novel loss
function that involves three terms: (1) a positive alignment calibration term that removes the footprint
of the unlearn set on the representation; (2) a negative alignment calibration term that leaves explicit
unlearning traces for auditing; (3) a performance preserving term that maintains uniformity.

Finally, we empirically compare baseline methods with our Alignment Calibration algorithms on
unlearning models pre-trained on SimCLR (Chen et al., 2020) MoCo (He et al., 2020), and CLIP
(Radford et al., 2021). Under various unlearning settings (e.g., the fraction of the unlearning dataset)
and evaluation metrics, AC consistently outperforms the baseline methods, especially under unlearn
auditing, validating the benefits of our method. In summary, we make the following contributions:

* We propose the MUC framework that considers existing methods and various evaluation tools in
contrastive learning, including white-box evaluation and black-box auditing.

* Motivated by insufficiencies of existing unlearning algorithms and auditing tools, we propose the
novel Alignment Calibration method that satisfies both model owners and data owners.

* Our experiments initiate the evaluation of existing machine unlearning methods for contrastive
learning and confirm the superiority of our new methods.
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2 BACKGROUND AND RELATED WORK
We first provide background and related work on contrastive learning and machine unlearning.

Contrastive Learning and Self-supervised Learning Contrastive learning learns general rep-
resentations by contrasting sample pairs (usually without labels), which analytically benefits the
downstream applications (Saunshi et al., 2019; Tosh et al., 2021). Popular contrastive learning meth-
ods such as Contrastive Predictive Coding (CPC) (van den Oord et al., 2018), SimCLR (Chen et al.,
2020), and MoCo (He et al., 2020) employ the InfoNCE loss to enforce the contrast between positive
and negative pairs. Other variants of the InfoNCE-based loss are also widely applied, e.g., f-MICL
(Lu et al., 2023), Alignment and Uniformity (Wang & Isola, 2020), and Pearson x? divergence (Tsai
et al., 2021). This contrastive training scheme is also applied to the context of multimodal learning,
where images and texts are formed as pairs, e.g., in CLIP (Radford et al., 2021). There exist other
self-supervised learning methods that also learn representations (Grill et al., 2020; Chen & He, 2021;
He et al., 2022; Caron et al., 2021). In this paper, we mainly focus on developing unlearning recipes
for contrastive learning methods, especially SimCLR, MoCo, and CLIP.

Specifically, contrastive learning usually applies the InfoNCE loss to learn a representation g. Given a
probability measure p, we define the density of positive pairs sampled from p as p™, i.e., two samples
with similar feature embeddings as the joint distribution; and the density of negative pairs as p™.
Specifically, one minimizes the loss below as the objective:

Lincnce=— K s(g(x),9(y) + E log E exp((s(g(x),9(y))), M
(z,y)~pt Tp o Y~p
where s is the cosine similarity after normalization with a temperature parameter, and g(x), g(y) are
the features extracted by a given encoder g, respectively. The above contrastive learning (pre-training)
scheme learns a general encoder g (image and text encoders for CLIP). Such a (fixed) g can be utilized
with an additional linear head or shallow models for downstream tasks. In this paper, we mainly
consider linear probing, where ¢ is used for the classification of the same dataset with pretraining.
Notably, we consider unlearning during the pretraining phase only.

Machine Unlearning For Supervised Learning: Machine unlearning (MU) (Cao & Yang, 2015)
requires an algorithm to revert to a state that specific data points are never trained on. While exact
unlearning (Bourtoule et al., 2021) (e.g., retraining the model entirely on the retain dataset) provides
a reliable solution, the additional computation requirement is also tremendous. In this paper, we
focus on approximate unlearning (Ginart et al., 2019; Guo et al., 2019; Neel et al., 2021; Ullah
et al., 2021; Sekhari et al., 2021; Izzo et al., 2021; Chen et al., 2023; Zhang et al., 2024a; Fan et al.,
2024; Shen et al., 2024) to efficiently achieve the same goal.

For Generative Models: MU methods are applied to diffusion models to avoid copyright infringement
and inappropriate image generation (Gandikota et al., 2023; Zhang et al., 2023b; Heng & Soh, 2023;
Kumari et al., 2023). For large language models, MU is applied as a model-editing (Yao et al., 2023)
tool to enable forgetting on certain training texts (Mitchell et al., 2022b;a; Jang et al., 2022; Eldan &
Russinovich, 2023; Zhang et al., 2023a; Hu et al., 2024; Jia et al., 2024; Maini et al., 2024; Liu et al.,
2024; Zhang et al., 2024b). In this paper, we focus on MU on self-supervised learning, specifically,
contrastive learning methods, which differs from the above two cases in both unlearning settings and
frameworks, which we specify in the following section.

3  MACHINE UNLEARNING FOR CONTRASTIVE LEARNING (MUC)

In this section, we specify the problem setting of machine unlearning for contrastive learning,
introduce direct adaptations of existing methods, and propose evaluation metrics.

3.1 PROBLEM SETTINGS

Formal Notations: (1) We denote the pretrained encoder as g and the encoder after unlearning
as g. Given an input sample z, the features extracted by the encoders are denoted as g(z) and §(x)
respectively; (2) We denote the original training set as D ,,i, (Which is used to train g), the unlearn
set as Dyniearn and the retain set as Dycrain = Dirain\Duniearn (\ denotes removal here); (3) We
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define two parties involved in unlearning: the model owner € who receives the unlearning request,
and the data owner & who wishes to remove data. In practical scenarios, &% consist of a group of
individuals {&a’ N |, who may not know the existence of each other, but participate in unlearning at

the same time.

Approximate Unlearning: The model owner ¥ aims at choosing an unlearning algorithm that
approximates exact unlearning (training on D, i, from scratch) to obtain §. In the meantime, this
algorithm should be much more efficient than exact unlearning. Given a pool of candidate algorithms,
£ performs white-box evaluations (access t0 Dy ain; Dunicarn, Drest, g and candidates {g}) by
comparing their performances with exact unlearning according to metrics in Section 3.3.

Unlearning Auditing: Assuming the unlearning process is finished and the model owner has
published the final unlearned model §, an individual data owner &’ wishes to examine the unlearning
outcome. We coin this process as unlearning auditing. Specifically, such auditing is black-box as
&' only has access to his/her own unlearning subset D’ _,___ . and the output of the model before
g(D_....) and after unlearning §(D’ ... ). By comparing these outputs, &’ should find explicit
evidence that unlearning has indeed been performed and the output is as desired. Our paper aims to

provide such evidence through the design of a novel unlearning algorithm for contrastive learning.

Note that making unlearning auditable is an important and difficult task for approximate unlearning
algorithms (Thudi et al., 2022). While we provide easy-to-check unlearning traces in the later
sections, such tools are specifically designed for our algorithm in contrastive learning, and may not
be generalized to other unlearning scenarios.

3.2 ADAPTING EXISTING METHODS TO MUC

We first adapt some existing unlearning methods designed for supervised unlearning to contrastive
unlearning. Due to the lack of labels in contrastive learning pre-training, some approaches cannot
be directly applied. For example, random labeling (Golatkar et al., 2020; Fan et al., 2024) relies on
flipping the labels of the unlearn data; boundary unlearning (Chen et al., 2023) expands or shrinks the
decision boundary, which does not exist in our context. In contrast, some other unlearning methods
can be tailored to contrastive learning. Specifically, we adapt the following methods:

* Retraining: (exact unlearning) trains on D, from scratch via minimizing Equation (1);

* Fine-tuning (Golatkar et al., 2020) updates the pre-trained model for several epochs on Dyt 4in;

* Gradient Ascent (Golatkar et al., 2020; Neel et al., 2021; Thudi et al., 2022) reversely maximizes
Equation (1) on the Dypicarn;

NegGrad (Kurmanji et al., 2023) jointly minimizes and maximizes Equation (1) on Dy, and
Diniearn reSpeCtively;

o (1-Sparsity (Jia et al., 2023) regularizes the ¢;-norm of model parameters based on fine-tuning.

The above methods manifest straightforward adaptations of unlearning from supervised learning
to contrastive learning by changing the cross entropy loss to the InfoNCE loss in Equation (1). In
Section 5, we show that approximate unlearning methods are suboptimal approximations of exact
unlearning, namely that there still exists a performance gap compared with retraining. This motivates
us to design new unlearning methods specifically for contrastive learning in Section 4.

3.3 HOW TO CHOOSE AN UNLEARNING ALGORITHM

Suppose the model owner = gathers a pool of unlearning algorithms (e.g., the methods above). Next
we introduce how to compare them, i.e., the evaluation metrics. As contrastive learning returns
a feature extractor, we can either evaluate unlearning on the representations directly or rely on
downstream tasks. Specifically:

* Representation-level metrics. @ Forgetting Score: given a candidate algorithm that updates g to g,
we propose a Forgetting Score (FS) by directly adapting the memorization score in evaluating data
attribution in Wang et al. (2024). F'S measures the quantity of forgetting Dy1c2rn by comparing
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the alignment loss through the features returned by model parameters before and after unlearning:

Fs= E s(g(z),9(y))— E s(g(x),q(y)), @

(z,y)~pT (z,y)~pu™

where p,, is the density of Dy,1carn, recall g and § are models before/after unlearning.

® Membership Inference Attacks (MIA): MIAs are capable of indicating whether certain samples
(e.g., the unlearn set) are included in the training set and are perfect for examining unlearning
efficacy. EncoderMI (Liu et al., 2021) proposed an alignment-based membership inference attack
for self-supervised encoders. It extracts membership information from the embedded features to
distinguish whether input data is included in the encoder training set. Following the implementation
of Jia et al. (2023); Fan et al. (2024), we evaluate the attack success rate (ASR) on the unlearn
dataset Dy,1earn and denote it by encoder membership inference attack (EMIA) efficacy. We
compare EMIA on Dy 1c.rn With retraining. See Appendix A.3 for details of EMIA.

* Downstream-level metrics. Alternatively, representations can be evaluated with downstream
tasks. We perform linear probing, i.e., image classification on the same (labeled) dataset for
unimodal contrastive learning. Given the unlearned encoder § returned by a candidate algorithm,
we train an additional linear head on D,..,:, on top of the fixed § to obtain a classifier. Next
we evaluate: @ Accuracies: we evaluate retain accuracy (RA) on Dy .i,in, test accuracy on
D:est (TA), and unlearn accuracy on Dy,1c.rn (UA). For a good unlearning algorithm, the above
three measurements should be close to those of the retrained model, with a common pattern
of UA = TA < RA; ® Membership Inference Attacks: Similarly to EMIA, we implement a
confidence-based membership inference attack (Jia et al., 2023; Fan et al., 2024; Song & Mittal,
2021) on the entire network (encoder and linear head) and report classifier membership inference
attack (CMIA) efficacy. We compare CMIA with retraining. See Appendix A.3 for details.

3.4 HOW TO AUDIT UNLEARNING

After choosing an optimal unlearning algorithm, the model owner generates the unlearned model §
as a response to the unlearning request made by data owners. However, it is impossible for the data
owners to perform the same white-box evaluations.

For the data owners &% (Unlearning Auditing) : Recall that an individual data owner &

performs black-box auditing due to the limited access to input D¢ ;... and the output of the encoder
before/after unlearning. Specifically, &’ cannot train shadow* models with D? ;... alone to perform
MIAs; and cannot obtain TA or RA to quantify performance. Additionally, there is a lack of the
retrain baseline to compare with. To this end, the only auditing tool is the forgetting score F'S on
Duniearn, Which can be calculated with Equation (2). However, we argue that this auditing is neither
sufficient nor reliable, and we use a simple empirical example to validate this claim:

Exact unlearning on MoCo (He et al., 2020): We perform exact unlearning (i.e., retraining) to forget
4500 training images of CIFAR-10 (randomly chosen) on MoCo (ResNet-18). We calculate the
forgetting score F'S for every unlearn sample and calculate the mean p and the standard deviation o
across the 4500 unlearning images. We obtain p = 0.025, 0 = 0.081.

Here we observe that the large standard deviation o = 0.081 = 3.24 X p makes the current auditing
largely unreliable. For individual data owners, if the unlearn subset size |D%_,__. | is small, its
corresponding sample-wise FS is likely to be biased and the average could fluctuate around O,
suggesting little forgetting. This could lead to the belief that “unlearning hasn’t been performed”
from the data owner’s side, thus rejecting the exact unlearned model, as well as any approximate
unlearning algorithms, given that “matching exact unlearning” is the criteria for selection. This
example reveals the insufficiency of using only F'S as the unlearn auditing tool in contrastive learning.

In summary, under the current MUC framework, existing approximate unlearning algorithms and
auditing tools are insufficient. To address this, we design new unlearning algorithms for the model
owners and advanced auditing tools for data owners in contrastive learning in the next section, which
would benefit both parties in engaging the unlearning procedure.

*Surrogate models to train classifiers for membership inference.
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4 ALIGNMENT CALIBRATION

4.1 TAILORED OBJECTIVE FOR MUC

We first introduce a more effective unlearner for model owners ¥ . Recall that ¥ ’s goal for unlearning
is preserving the model utility on D, 5;, While revoking the effects of training on Dy;p1¢4rn. For
the retain dataset Dyt 14, Wwe minimize the InfoNCE loss in Equation (1) to achieve reasonable
downstream performance after unlearning:

Liccain=— E s(9(z),9(y))+ E log E exp(s(g(z),9(y)), 3)

(z,y)~pi TPy Y~Pa

where p, is the density of Dycr.i, and pq is the density of Dep4ip-

For the unlearn dataset Dy1c41n, revoking the effects of training amounts to achieving the following
goals upon evaluation in Section 3.3:

* (Encoder-level) Enlarging forgetting on Dy, c4rn : recall that in Equation (2) the forgetting score
FS is measured by the difference between feature similarity on Dy, before/after unlearning
with pre-trained model g and unlearned model g. As the first term is fixed (as g is given) during
unlearning, increasing F'S is equal to minimizing the second positive alignment term. For this
purpose, we explicitly perform such minimization in our objective function and call it positive
alignment calibration.

* (Downstream-level) UA ~ TA < RA: enlarging F'S alone may also hurt the overall downstream
performance on the unlearned model g. To obtain reasonable UA and TA, we find it beneficial to
maintain the term for negative pairs in contrastive learning, such that for D, carn, We minimize:

Liuntearn = E 5(.9(17)79(1/))+ E log E exp(s(g(z),g(y))), “4)
(z,y)~py T~ Pu Y~Pa

positive alignment calibration performance preserving

where p,, is the density of Dyn1earn. Wang & Isola (2020) states that alignment and uniformity
are crucial properties of good representations. While we calibrate alignment with the first term,
our performance preserving term implicitly maintains uniformity, which we will demonstrate in
Section 5.5.

4.2 CALIBRATION UNDER UNLEARNING AUDITING

Auditing beyond FS: Recall that in Section 3.3, we show that the forgetting score F'S is not a
sufficient nor reliable evaluation for unlearning success. Here we introduce an additional auditing tool:

given Dyun1earn and the models before unlearning g, data owners &% can easily obtain the feature

|Duntearn|

vectors with two different data augmentations: g(x) = { g(:ci)}gul‘“em‘ and g(y) = {9(y;)};=1
Then an Alignment Matrix : AM(g(x),g(y)) can be easily acquired by calculating the pair-
wise similarity between the two vectors. See Figure 3(a) for some visualizations of AM in the
format of heatmaps. Similarly, %&@® can obtain AM(g(x), §(y)) after unlearning and an additional
Alignment Gap Matrix : AGM = AM(g(x),9(y)) — 2M(§(x),J(y)) - The heatmaps of AM
and AGM provide auditing tools beyond F'S and allow & to visualize the model change through
unlearning by looking at the temperature of the graphs. Notably, the elements on the diagonal of AGM
also visualize sample-wise forgetting scores. We direct readers to visualizations of such graphs in

Figure 2 and Figure 3 in Section 5.

Taking auditing into account for unlearning: The additional auditing tools enable the model
owners to design an algorithm that allows data owners to clearly visualize the effect caused by
unlearning (i.e., through AM or AGM) without sacrificing the goal of unlearning.

We provide a simple solution to improve existing unlearning methods. As we have explicitly calibrated
the alignment of positive pairs of L.n1carn in Equation (4), it suffices to adjust that of negative pairs
(within Dyn1earn) to a larger value to enlarge the model differences in AM. Specifically, we update
the unlearn loss in Equation (4) with negative alignment calibration:

—a- E  s(g(z),9(y)+B8- E s(g(x),g9(y)+y- E log E exp(s(g(z),9(y)),
(z,y)~pl (m,y)~pit Tpy Y~pa

negative alignment calibration positive alignment calibration performance preserving
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where o, (3, v are tunable parameters to adjust the strength of each component, p;* represents negative
pairs within the negative set. We write the complete objective of Alignment Calibration (AC):

‘Cretain +e- Lunlearm (5)

where € = |Duniearn|/|Dretain| varies by the size of the unlearn set. In the next section, we will
show AC not only achieves state-of-the-art performance upon model owners’ evaluations but can also
easily pass data owners’ visual auditing on unlearning.

5 EXPERIMENT

Recall that we made several claims in Section 3 and Section 4: @ Existing methods are suboptimal
unlearners under white-box evaluations and our AC algorithm approaches exact unlearning in this
regard; ® Under MUC, AC introduces alignment matrices AM for visual auditing and exhibits clear
evidence for unlearning. In this section, we evaluate the baseline methods and AC following the
above steps and present white-box evaluation by model owners ¥ and black-box auditing by data

OWNers & .

5.1 EXPERIMENTAL SETUP

Data and models. For unimodal contrastive unlearning, we perform experiments on CIFAR-
10/CIFAR-100 and SimCLR/MoCo algorithms with the ResNet-18 backbone (we provide additional
results on ResNet-50 in Table 9 in Appendix B). We randomly forget 10/50% training data from a
pre-trained encoder. For multimodal contrastive unlearning, we evaluate CLIP (Radford et al., 2021)
on an Image-Text paired dataset called MS-COCO (Lin et al., 2014), which contains ~120K images
and ~600K captions. We perform unlearning on 10% randomly selected image-text pairs.

White-box Evaluation: Following Section 3.3, we use F'S and EMIA for encoder-level evaluation,
and use CMIA, RA, TA, and UA for downstream-level evaluation after performing linear probing for
SimCLR/MoCo experiments. For the evaluation of CLIP, we measure the image-text cosine similarity
of the retain dataset and unlearn dataset due to the lack of suitable downstream tasks. Across all
experiments, we compare each unlearning method with the exact unlearning (retraining) baseline
and report the differences across all metrics. We also report the running time efficiency (RTE) of
unlearning methods to evaluate efficiency.

Black-box Auditing: Recall that due to the limited access of data owners, the above white-box
evaluation can not be directly applied. Instead, we use the Alignment Matrix (AM) and
Alignment Gap Matrix (AGM) introduced in Section 4 for visual auditing on MoCo and
CLIP.

Unlearning Algorithms: We evaluate Retrain, Fine-Tune, Gradient Ascent, NegGrad, and ¢;-
Sparsity as baselines for MUC. Our Alignment Calibration method updates the pre-trained encoder
for the same number of epochs as FineTune, NegGrad, and ¢;-Sparsity. For simplicity, we set
«a =« = 1 if not otherwise stated and we tune S for the best performance. Implementation details of
the above methods are described in Appendix A.2.

5.2 UNLEARNING PERFORMANCE UNDER WHITE-BOX EVALUATION

We first provide empirical evidence for model owners to choose a suitable unlearning method with
superb efficiency and effectiveness. @ Unimodal contrastive learning: We present our evaluation
under EMIA, RA, TA, UA and CMIA in Table 1 and Table 2 for unlearning 10/50% of CIFAR-10
training set and F'S (CIFAR-10, MoCo) for 10/50% separately in Table 5 due to different scales. We
also report the average gap percentage in Appendix B.3. For both SImCLR and MoCo, our proposed
Alignment Calibration (AC) method achieves the lowest average performance gap over EMIA, RA,
TA, UA, and CMIA. In terms of unlearning efficiency, our method only introduces a slight overhead.
Additionally, our method achieves the lowest F'S gap compared to retraining. In Table 3 and Table 7
in Appendix B, we also report the results on CIFAR-100, where our methods consistently achieve the
best performance. ® Multi-modal contrastive learning: in Table 4, we again observe that our method
is the best approximator of exact unlearning when evaluating the image-text cosine similarity.
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Table 1: Unlearning performance of different methods on randomly forgetting 10% of CIFAR-10
training data under various metrics. The performance gaps between retraining and other methods are
shown in the parenthesis. We report the average gap (Avg. Gap) over these 5 metrics. The results are
obtained by averaging over 5 random trials.

Methods EMIA RA TA UA CMIA Avg. Gap (%) | \ RTE (mins) |
MocCo
Retrain 49.72 89.54 87.76 88.42 34.38 - 109.47
Fine-Tune 50.15(0.43) 88.34(1.20) 86.46 (1.30) 87.59(0.83) 29.42 (4.96) 1.74 1.42
Grad. Ascent | 44.95(4.77) 89.92(0.38) 88.28 (0.52) 89.76 (1.34) 28.53 (5.85) 2.57 0.17
NegGrad 48.43(1.29) 89.25(0.29) 87.35(0.40) 88.58 (0.16) 28.89 (5.49) 1.53 1.70
(1-Sparsity | 49.38 (0.34) 88.56(0.98) 86.91(0.84) 88.12(0.30) 29.91 (4.47) 1.39 143
Ours 50.28 (0.56) 89.14 (0.40) 87.24(0.52) 88.20(0.22) 31.50 (2.88) 0.92 1.87
SIMCLR
Retrain 48.11 90.87 88.94 89.68 38.87 - 151.77
Fine-Tune 4772 (0.39) 89.38(1.49) 87.26 (1.68) 88.93(0.75) 30.71 (8.16) 2.49 1.93
Grad. Ascent | 41.48 (6.63) 91.26 (0.40) 89.55(0.61) 91.11(1.43) 29.36 (9.50) 3.71 0.19
NegGrad 49.56 (1.46) 89.10(1.77) 87.23(1.71) 89.07 (0.61) 29.97 (8.89) 2.89 2.34
£1-Sparsity | 48.44 (0.33) 90.59 (0.28) 88.56 (0.38) 90.44 (0.75) 30.61 (8.26) 2.00 1.96
Ours 48.64 (0.53) 90.24 (0.63) 88.06 (0.88) 89.24 (0.44) 33.12(5.75) 1.65 3.00

Table 2: Unlearning performance of various methods on randomly forgetting 50% of CIFAR-10
training data. The results are averaged over 5 random trials.

Methods | EMIA RA TA UA CMIA Avg. Gap (%) | | RTE (mins) |
MoCo
Retrain 55.95 85.98 83.55 83.98 46.66 - 66.71
Fine-Tune 4998 (5.97) 87.89(1.90) 85.66(2.12) 86.65(2.67) 32.35(14.31) 5.39 0.86
Grad. Ascent | 42.90 (13.06) 89.51 (3.53) 87.79 (4.25) 88.99(5.01) 31.85(14.82) 8.13 0.45
NegGrad 57.40 (1.45) 83.04 (2.94) 80.15(3.40) 80.59(3.39) 40.65 (6.02) 3.44 1.66
{1-Sparsity 52.19 (3.76)  81.60(4.38) 80.19(3.36) 80.77 (3.20) 38.43 (8.24) 4.59 0.87
Ours 55.02(0.93) 86.28(0.30) 83.28(0.26) 83.72(0.26)  38.39 (8.27) 2.00 1.84
SIMCLR
Retrain 53.37 87.23 85.16 85.69 49.30 - 89.74
Fine-Tune 4590 (7.47) 87.88(0.65) 85.50(0.34) 87.23(1.54) 35.44(13.85) 4.77 1.17
Grad. Ascent | 42.23 (11.13) 90.52(3.28) 88.61 (3.45) 90.45(4.77) 33.28 (16.02) 7.73 0.59
NegGrad 55.70 (2.33) 83.98(3.25) 82.15(3.01) 83.80(1.89) 33.67(15.62) 522 2.32
{1-Sparsity 46.51 (6.86) 89.84 (2.60) 87.75(2.59) 89.48(3.80) 35.38(13.91) 5.95 1.19
Ours 47.12(6.25) 86.11 (1.13) 83.92(1.24) 85.24(0.45) 37.57(11.72) 4.16 3.07

5.3 BLACK-BOX AUDITING

Motivated by the insufficiency of auditing with the F'S score, we propose to apply the Alignment
Matrix (AM) and Alignment Gap Matrix (AGM) in Section 4. AM and AGM naturally
introduce additional quantification of negative alignment. In Figure 2, we report the negative
alignment value (mean and standard deviation of pairwise similarity on negative samples in AGM) of
4500 unlearn samples and observe that our method AC exhibits a more significant unlearning effect

Table 3: Unlearning performance of various methods on randomly forgetting 10% of CIFAR-100
training data. The results are averaged over 5 random trials.

Methods | EMIA RA TA UA CMIA Avg. Gap (%) | | RTE (mins) |
MoCo
Retrain 56.24 62.23 58.60 58.43 59.53 - 109.47
Fine-Tune | 46.05(10.19) 63.49 (1.27) 58.88(0.29) 59.80(1.37) 48.81 (10.72) 477 1.42
Grad. Ascent | 44.01 (12.23) 62.56 (0.33) 59.00 (0.41) 60.65 (2.22) 53.28 (6.25) 3.96 0.17
NegGrad 53.58 (2.66) 63.70 (1.47) 58.78 (0.19) 58.85(0.42) 48.68 (10.84) 3.12 1.70
,-Sparsity | 45.68 (10.56) 60.89 (1.34) 57.40 (1.20) 58.66 (0.23)  52.48 (7.04) 4.07 1.43
Ours 50.17 (6.07)  63.20 (0.97) 58.56 (0.04) 58.44 (0.00) 54.15 (5.38) 249 1.87
SIMCLR
Retrain 51.20 57.76 56.25 55.86 65.60 - 151.77
Fine-Tune 40.85 (10.35) 57.29(0.48) 54.96 (1.29) 55.85(0.00) 60.61 (4.99) 342 1.93
Grad. Ascent | 34.00 (17.21) 62.12(4.36) 59.58 (3.32) 61.08(5.23) 54.21(11.39) 8.30 0.19
NegGrad | 4639 (4.81) 56.52(1.24) 54.30(1.95) 55.00 (0.86)  60.04 (5.56) 2.89 234
{1-Sparsity | 40.55 (10.66) 57.85(0.09) 55.76 (0.49) 56.68 (0.83)  58.46 (7.15) 3.84 1.96
Ours 4672 (4.48) 57.11(0.65) 54.70(1.55) 55.23(0.63) 59.78 (5.83) 2.63 3.00
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Table 4: Performance of methods on randomly forgetting 10% of MS-COCO data from a pre-trained
CLIP. We report the image-text cosine similarity of the retain dataset and unlearn dataset respectively,
as well as the average absolute gap from Retrain. The results are averaged over 3 random trials.

Dataset | Pre-train | Retrain  Fine-Tune Grad. Ascent NegGrad  /,-Sparsity Ours

Retrain 62.09 62.47 (0) 58.67(3.80) 61.96(0.51) 58.57(3.90) 57.70 (4.76) 60.75 (1.72)

Unlearn 62.08 49.84 (0) 54.75(491) 62.03(12.19) 49.19(0.65) 53.54(3.70) 51.23(1.39)
Avg. Gap (%) | - 0 4.35 6.35 2.28 4.23 1.56

Table 5: Forgetting score (FS) of methods for
CIFAR-10 and MoCo. FS gaps are computed
between Retrain and other methods.

Figure 2: Negative alignment of 4500 unlearn
samples (10%) and MoCo and CIFAR-10. The
error bar is the standard deviation.

10% 50% 0.10
Methods
s Gap | Fs Gap | 0.05 [ Fine-Tune
Retrain 0.0266 - 0.0604 - 0.00- E Grad. Ascent
Fine-Tune | 0.0393 0.0127 | 0.0423 0.0180 3 NegGrad
Grad.Ascent | 0.0005 0.0262 | 0.0007 0.0596 0.05] B 1 Sparsiy
NegGrad | 0.0205 0.0061 | 0.1002 0.0398 | B AC (ours)
¢1-Sparsity | 0.0216  0.0050 | 0.0408 0.0195 010
Ours 0.0259  0.0007 | 0.0672 0.0068 015

under such auditing. For individual data owners &', the size of their subset D% ,__ | may be small.
Therefore, we provide additional qualitative results for visual auditing: we randomly select 8 samples
from Dypniearn to simulate the budget of &’. We construct AM (before/after unlearning with AC)
and AGM for this small set and plot their heatmaps in Figure 3 and observe the apparent effect of
unlearning. We provide additional results for other methods and CLIP unlearning in Figure 6 and
Figure 7 in Appendix B.2, where AC consistently exhibits the best performance under visual auditing.

5.4 ABLATION STUDY

Influence of negative alignment calibration: In Equation (5), the coefficient o controls the
intensity of maximizing the negative alignment on unlearn data. To explore the effect of negative
alignment calibration in the unlearning task, we fix 5 and adjust o while keeping v = « for simplicity.
Figure 4 (orange bars) reports the ratio between the forgetting score F'S of Retrain and AC. When
« increases, the ratio decreases, indicating that the resulting model forgets more information about
the unlearn data. A ratio of 1 denotes that the FS of AC equals that of Retrain. Furthermore, we
consider a more extreme case of o = 0, representing no negative calibration. In Table 6, without
negative calibration, the average gap over metrics is larger than that of the standard AC by 0.33/2.12%
(comparing rows “w/o+w/” with “w/+w/”) for 10/50% forgetting tasks, suggesting this additional
term not only benefits the data owner for unlearn auditing but also improves the unlearn performance.

Influence of positive alignment calibration. In Equation (5), the coefficient 3 controls the intensity
of minimizing the positive alignment on the unlearn data. In Figure 4 (blue columns), we fix
a = v = 1 and vary 8 from O to 16. The forgetting score ratio decreases with increasing 5 and

Gap(Pretrain, AC)

m 0.04 007 -006 -004 -0.05

-0.04 M -0.06 -0.07 -0.09 B
-0.07 -0.06 m -0.05 005 -0.05 -0.06
-0.06 -0.07 -0.05 005 -0.07 -0.09

Pretrain

021 034 031 017 015 9 0.2 026 042 037 022
0.21 020 0.5 | 039 017 0 .25 026026 022 041
K 020026 020 0.19 026“031 025 024 030 024
0.31 0.29 23 037 032
.39 0.20 02402\ 041 025 ozeﬂuﬂ 0.36
7 019 016 02|023 . 2 2 0.23 027032 0.43
023035 23 037 032044 0.

019 025 030 041 0.35M 24 24 032 036 043 0.44 0.

Figure 3: Alignment Matrices and Alignment Gap Matrix on 8 random images in
unlearn dataset of CIFAR-10 (MoCo). The task is forgetting 10% of training data.

Alignment Calibration

020 023

026 039 0.30

.2 X
0.15 026024 0.16 0. .25 .37 022
0.05 -0.05 -0.06 m -0.06
9 -0.05 -0.07 -0.06 -0.08
-0.09 M -0.08 M -0.08

-0.06 -0.06 -0.08

024 028
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Table 6: Ablation study on positive and negative Figure 4: The effect of o and S on the for-
calibration in Equation (5) regarding the aver- getting score ratio between Retrain and AC,
age gap over metrics on CIFAR-10 and MoCo i.e., FS(RT):FS(AC). Here we forget 10% of
with forgetting ratio 10/50%. “w/” denote with CIFAR-10 training data from a MoCo encoder.
and “w/o0” denotes without. For example, “w/o

+ w/” means AC without negative calibration 25
but with positive calibration. _ 8«
g”“ B 20 ¢
Objectives | Forgetting 10%  50% 2 |15 _i'";
w/ + w/ 0.92 2.00 £ 1.0- 3
w/o + w/ 1.25 4.12 @ 10 8
w/ + wlo 1.95 3.75 * =
w/o + w/o 2.70 6.45 0.9 | o5

0 04 08 12 16 0 4 8 12 16
a B
approximately reaches 1.0 in the range of [12,16]. In Table 6, the positive alignment calibration term
enhances the unlearning performance from 1.95/3.75% to 0.92/2% (comparing columns “w/4+w/0”

with “w/+w/”) for the 10/50% forgetting tasks regarding the average gap.

5.5 PRESERVING UNIFORMITY

Finally, we validate the function of the performance preserving term in our loss function, which forces
extracted features to spread uniformly on the hyper-sphere. Following the implementation from Wang
& Isola (2020), we visualize the uniformity of features on CIFAR-10 before and after applying our
AC unlearning algorithm. Specifically, we train a ResNet-18 encoder mapping images to 2D space
using SimCLR and plot the distribution of angles (i.e., arctan2(z, y) for each point (z,y) € S') in
Figure 5. We observe that this term implicitly maintains the uniformity of the representation on both
the test dataset and the unlearn dataset.

Before AC 8=0 =2 8=5 6 =10

] 2 2 0 2 2 ] 2 2 0
Angles Angles Angles Angles

(a) Test dataset

S — i —— ———— E—— ——

0 2 0 ] 2 2 0 2 2 ]
Angles Angles Angles Angles Angles

(b) Unlearn dataset

0
Angles

Figure 5: Angle distributions on test dataset and unlearn dataset before and after AC unlearning
with different 5 values related to positive alignment calibration intensity. Here, the negative alignment
calibration and performance-preserving term intensities are kept at their default values, i.e., « = v =
1. Note that when 8 = 0, only negative alignment calibration and performance-preserving terms take
effect in our AC method. Each chart’s x-axis represents “Angles” and the y-axis represents “Counts”.

6 CONCLUSION

In this paper, we study the problem of machine unlearning for contrastive learning pre-training (MUC).
We establish the foundations on this line of study by adapting existing unlearning methods and setting
up baseline evaluation metrics, including white-box evaluation for model owners to choose an optimal
unlearning strategy, and black-box auditing for data owners to examine the effect of unlearning. After
identifying the suboptimality of existing unlearning methods and the insufficiency of current auditing
tools, we further propose our novel method called Alignment Calibration. Our approach introduces a
novel unlearning objective function to strategically optimize toward the unlearning goal and enable
straightforward visual auditing. Empirically, our method achieves state-of-the-art performance on
unlearning tasks for both unimodal and multimodal contrastive learning. Our paper initializes the
study of machine unlearning in self-supervised learning but only considers contrastive learning. We
plan to extend our exploration of unlearning towards other SSL methods in the future.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium
on Security and Privacy (SP), pp. 141-159. IEEE, 2021. URL https://ieeexplore.ieee.
org/1el17/9519381/9519382/09519428.pdf.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463—480. IEEE, 2015.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9650-9660, 2021.

Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning:
Rapid forgetting of deep networks via shifting the decision boundary. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7766-7775,
2023. URL http://openaccess.thecvf.com/content/CVPR2023/papers/
Chen_Boundary_Unlearning_Rapid_Forgetting_of_Deep_Networks_via_
Shifting_the_ CVPR_2023_paper.pdf.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In /ICML, 2020. URL http://proceedings.
mlr.press/v119/chen20j.html.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750-15758, 2021.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9640-9649, 2021.

Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning in llms. arXiv
preprint arXiv:2310.02238, 2023. URL https://arxiv.org/abs/2310.02238.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=gnOmIhQGNM.

Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
from diffusion models. arXiv preprint arXiv:2303.07345, 2023.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
deletion in machine learning. Advances in neural information processing systems, 32, 2019.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304-9312, 2020. URL https://openaccess.thecvf.
com/content_CVPR_2020/papers/Golatkar_Eternal_Sunshine_of_the_
Spotless_Net_Selective_Forgetting in_ Deep_ CVPR_2020_paper.pdf.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural
Information Processing Systems, 33:21271-21284, 2020.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. arXiv preprint arXiv:1911.03030, 2019.

11


https://ieeexplore.ieee.org/iel7/9519381/9519382/09519428.pdf
https://ieeexplore.ieee.org/iel7/9519381/9519382/09519428.pdf
http://openaccess.thecvf.com/content/CVPR2023/papers/Chen_Boundary_Unlearning_Rapid_Forgetting_of_Deep_Networks_via_Shifting_the_CVPR_2023_paper.pdf
http://openaccess.thecvf.com/content/CVPR2023/papers/Chen_Boundary_Unlearning_Rapid_Forgetting_of_Deep_Networks_via_Shifting_the_CVPR_2023_paper.pdf
http://openaccess.thecvf.com/content/CVPR2023/papers/Chen_Boundary_Unlearning_Rapid_Forgetting_of_Deep_Networks_via_Shifting_the_CVPR_2023_paper.pdf
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://arxiv.org/abs/2310.02238
https://openreview.net/forum?id=gn0mIhQGNM
https://openaccess.thecvf.com/content_CVPR_2020/papers/Golatkar_Eternal_Sunshine_of_the_Spotless_Net_Selective_Forgetting_in_Deep_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Golatkar_Eternal_Sunshine_of_the_Spotless_Net_Selective_Forgetting_in_Deep_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Golatkar_Eternal_Sunshine_of_the_Spotless_Net_Selective_Forgetting_in_Deep_CVPR_2020_paper.pdf

Under review as a conference paper at ICLR 2025

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollér, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000-16009, 2022.

Alvin Heng and Harold Soh. Selective amnesia: A continual learning approach to forgetting in deep
generative models, 2023.

Xinshuo Hu, Dongfang Li, Baotian Hu, Zihao Zheng, Zhenyu Liu, and Min Zhang. Separate the
wheat from the chaff: Model deficiency unlearning via parameter-efficient module operation. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 18252-18260, 2024. URL
https://arxiv.org/abs/2308.08090.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data deletion
from machine learning models. In International Conference on Artificial Intelligence and Statis-
tics, pp- 2008-2016. PMLR, 2021. URL https://proceedings.mlr.press/v130/
izzo2la/izzo2la.pdf.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, and
Minjoon Seo. Knowledge unlearning for mitigating privacy risks in language models. arXiv
preprint arXiv:2210.01504,2022. URL https://arxiv.org/abs/2210.01504.

Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma,
and Sijia Liu. Model sparsity can simplify machine unlearning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
1d=0jZH8831i34.

Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer,
Bhavya Kailkhura, and Sijia Liu. Soul: Unlocking the power of second-order optimization for llm
unlearning. arXiv preprint arXiv:2404.18239, 2024.

Nupur Kumari, Bingliang Zhang, Sheng-Yu Wang, Eli Shechtman, Richard Zhang, and Jun-Yan Zhu.
Ablating concepts in text-to-image diffusion models, 2023.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
machine unlearning. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=0veBaTtUAT.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision—
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740-755. Springer, 2014. URL https://cocodataset.org/.

Hongbin Liu, Jinyuan Jia, Wenjie Qu, and Neil Zhengiang Gong. Encodermi: Membership inference
against pre-trained encoders in contrastive learning. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pp. 2081-2095, 2021. URL https:
//dl.acm.org/doi/pdf/10.1145/3460120.34847409.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Xiaojun Xu,
Yuguang Yao, Hang Li, Kush R Varshney, et al. Rethinking machine unlearning for large language
models. arXiv preprint arXiv:2402.08787, 2024.

Yiwei Lu, Guojun Zhang, Sun Sun, Hongyu Guo, and Yaoliang Yu. f-micl: Understanding and
generalizing infonce-based contrastive learning. Transactions on Machine Learning Research,
2023.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task of
fictitious unlearning for llms. arXiv preprint arXiv:2401.06121, 2024.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast
model editing at scale. In International Conference on Learning Representations, 2022a. URL
https://openreview.net/forum?id=0DcZxeWfOPt.

12


https://arxiv.org/abs/2308.08090
https://proceedings.mlr.press/v130/izzo21a/izzo21a.pdf
https://proceedings.mlr.press/v130/izzo21a/izzo21a.pdf
https://arxiv.org/abs/2210.01504
https://openreview.net/forum?id=0jZH883i34
https://openreview.net/forum?id=0jZH883i34
https://openreview.net/forum?id=OveBaTtUAT
https://cocodataset.org/
https://dl.acm.org/doi/pdf/10.1145/3460120.3484749
https://dl.acm.org/doi/pdf/10.1145/3460120.3484749
https://openreview.net/forum?id=0DcZxeWfOPt

Under review as a conference paper at ICLR 2025

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
based model editing at scale. In International Conference on Machine Learning, pp. 15817-15831.
PMLR, 2022b. URL https://arxiv.org/abs/2206.06520.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
for machine unlearning. In Algorithmic Learning Theory, pp. 931-962. PMLR, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khandeparkar.
A theoretical analysis of contrastive unsupervised representation learning. In ICML, 2019. URL
http://proceedings.mlr.press/v97/saunshil9a.html.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278-25294,2022. URL https://arxiv.org/abs/
2210.08402.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember
what you want to forget: Algorithms for machine unlearning. Advances in Neural Information
Processing Systems, 34:18075-18086, 2021.

Shaofei Shen, Chenhao Zhang, Yawen Zhao, Alina Bialkowski, Weitong Tony Chen, and Miao
Xu. Label-agnostic forgetting: A supervision-free unlearning in deep models. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=SIZWiya7FE.

Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks of machine learning models.
In 30th USENIX Security Symposium (USENIX Security 21), pp. 2615-2632, 2021. URL https:
//www.usenix.org/system/files/sec2lfall-song.pdf.

Anvith Thudi, Hengrui Jia, Ilia Shumailov, and Nicolas Papernot. On the necessity of auditable
algorithmic definitions for machine unlearning. In 31st USENIX Security Symposium (USENIX
Security 22), pp. 40074022, 2022. URL https://www.usenix.org/system/files/
sec22-thudi.pdf.

Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive learning, multi-view redun-
dancy, and linear models. In Algorithmic Learning Theory. PMLR, 2021.

Yao-Hung Hubert Tsai, Martin Q Ma, Mugiao Yang, Han Zhao, Louis-Philippe Morency, and Ruslan
Salakhutdinov. Self-supervised representation learning with relative predictive coding. In /CLR,
2021.

Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Raman Arora. Machine unlearning via
algorithmic stability. In Conference on Learning Theory, pp. 4126-4142. PMLR, 2021.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In ICML. PMLR, 2020.

Wenhao Wang, Muhammad Ahmad Kaleem, Adam Dziedzic, Michael Backes, Nicolas Papernot, and
Franziska Boenisch. Memorization in self-supervised learning improves downstream generalization.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=KSjPaXtxPS8.

13


https://arxiv.org/abs/2206.06520
http://proceedings.mlr.press/v97/saunshi19a.html
https://arxiv.org/abs/2210.08402
https://arxiv.org/abs/2210.08402
https://openreview.net/forum?id=SIZWiya7FE
https://openreview.net/forum?id=SIZWiya7FE
https://www.usenix.org/system/files/sec21fall-song.pdf
https://www.usenix.org/system/files/sec21fall-song.pdf
https://www.usenix.org/system/files/sec22-thudi.pdf
https://www.usenix.org/system/files/sec22-thudi.pdf
https://openreview.net/forum?id=KSjPaXtxP8
https://openreview.net/forum?id=KSjPaXtxP8

Under review as a conference paper at ICLR 2025

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities.
In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023. URL
https://openreview.net/forum?id=NZZB3UGcd8.

Dawen Zhang, Pamela Finckenberg-Broman, Thong Hoang, Shidong Pan, Zhenchang Xing, Mark
Staples, and Xiwei Xu. Right to be forgotten in the era of large language models: Implications,
challenges, and solutions. arXiv preprint arXiv:2307.03941, 2023a. URL https://arxiv.
org/abs/2307.03941.

Eric Zhang, Kai Wang, Xingqgian Xu, Zhangyang Wang, and Humphrey Shi. Forget-me-not: Learning
to forget in text-to-image diffusion models. arXiv preprint arXiv:2303.17591, 2023b.

Qiuchen Zhang, Carl Yang, Jian Lou, Li Xiong, et al. Contrastive unlearning: A contrastive approach
to machine unlearning. arXiv preprint arXiv:2401.10458, 2024a. URL https://arxiv.org/
html/2401.10458v1.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic
collapse to effective unlearning. arXiv preprint arXiv:2404.05868, 2024b.

14


https://openreview.net/forum?id=NZZB3UGcd8
https://arxiv.org/abs/2307.03941
https://arxiv.org/abs/2307.03941
https://arxiv.org/html/2401.10458v1
https://arxiv.org/html/2401.10458v1

Under review as a conference paper at ICLR 2025

A EXPERIMENT DETAILS

A.1 DATASETS

CIFAR-10/100. Both datasets consist of 50K training images and 10K test images. All the images
are 32x32 colored. CIFAR-100 has 100 categories and CIFAR-10 has 10 categories. In unimodal
contrastive learning, the augmentations for training encoders include random resizing and cropping,
random grayscale, random color jitter, and horizontal flipping. We split the S0K training images into
a validation set of 5K images and a training set of 45K images. For example, when the unlearning
task is to forget 10% of training data, the unlearn dataset D, 1c4rn has 4.5K images and the retain
dataset Dyt i has 4.05K images.

MS-COCO. COCO is a large-scale object detection, segmentation, and captioning dataset. Its
training set contains 118,287 images and 591,753 captions. Each image has several objects and
corresponds to at least 5 captions. Different from unimodal contrastive learning which uses strong
augmentations, CLIP employs only resizing, center cropping and horizontal flipping to make images
of 224x224 pixels.

A.2 CONTRASTIVE LEARNING AND UNLEARNING METHODS

MoCo and SimCLR: For the pre-trained (clean) models, we train the encoder for 800 epochs using
an SGD optimizer with cosine-scheduled learning rate initialized at 0.06, momentum of 0.9, and
weight decay of 0.0005. For unlearning methods: Retrain applies the same training strategy as pre-
training; Fine-tuning and NegGrad updates the pre-trained encoder for 10 epochs with a learning rate
searched in [0.003, 0.03]; Gradient Ascent updates the pre-trained encoder using reversed stochastic
gradient descent for 5 epochs with a learning rate searched in [1076, 10~%; ¢, -Sparsity applies the
learning rate as 0.006 and implements ¢; regularization with a coefficient searched in [10~%, 10~3].
For our Alignment Calibration method, we update the pre-trained encoder for 10 epochs and search
the learning rate in [0.003, 0.03] and the tunable parameter /3 in [0, 20] for different unlearning tasks.
If not otherwise stated, we adopt « = v = 1. For simplicity, in our reported results on CIFAR-10/100,
we use a learning rate of 0.006 for 10% forgetting, and 0.02 for 50% forgetting. The linear probing
stage trains a linear classifier head for 100 epochs using an SGD optimizer with a cosine-scheduled
learning rate initialized at 1.0, and a momentum of 0.9. The batch size is set as 512 for both encoder
and linear head training.

CLIP: For the pre-trained (clean) CLIP, we train the model for 35 epochs on 2 NVIDIA RTX 4090
GPUs using an AdamW optimizer with a warm-up cosine-scheduled learning rate initialized at Se-4
and momentum of 0.9. The total batch size is 256 (128 on each GPU). For unlearning algorithms:
Retrain again applies the same training strategy as pre-training; Fine-tuning update the pre-trained
model for 8 epochs with a fixed learning rate searched in [Se-5,5e-4]; NegGrad updates the pre-trained
model for 8 epochs with a fixed learning rate searched in [10~°, 10~*]; Gradient Ascent updates the
pre-trained model for 4 epochs with a fixed learning rate searched in [Se-6, Se-4]; {1 -Sparsity updates
the pre-trained model for 8 epochs with a learning rate of 0.0005 and a regularization coefficient
searched in [10~2, 10~*]. For our Alignment Calibration method, we update the pre-trained model
for 8 epochs with a fixed learning rate of 0.0002. We search « = -y in [0.5, 1] and 5 in [0, 1].

A.3 UNLEARNING EVALUATION

CMIA efficacy. Given an unlearned encoder g, we execute linear probing on it and denote the
whole classifier by f. Following the implementation of Jia et al. (2023); Fan et al. (2024), we evaluate
the attack successful rate (ASR) on the unlearn dataset D1 5., Of a confidence-based membership
inference attack (Song & Mittal, 2021) to f. The formal definition of CMIA efficacy is given by:

TN,
CMIA-Efficacy i= — 12
|Dunlearn|

(6)

where T'Ncy1a is the number of true negatives predicted by the CMIA attack.
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EMIA efficacy. We implement the alignment-based EncoderMI-T attack (Liu et al., 2021) in an
adapted white-box setting. Given an unlearned encoder ¢ with its retain dataset D, .. .;, and test
dataset Dicst, we denote Dy on-memper = Driest sample a subset Dyerper Of Dretain Such that
|Dron-member| = |Pnemper |- For each data in Dyon-_pemper a0d Dyenper, We first augment it 10 times
and compute features of these 10 views via g. Then, we compute the cosine similarity between
each pair of features, i.e., 45 pairs, and take the average of these similarity values. Now we get a
membership feature dataset and a non-membership feature dataset whose data points are just scalar
values. The EncoderMI-T attack then searches for an optimal threshold to classify membership
features and non-membership features. Similar to MIA efficacy, the formal definition of EMIA
efficacy is given by:

TN,
EMIA-Efficacy i= —2
|Dunlearn|

where T Nzyra is the number of true negatives predicted by the EncoderMI attack.

N

B ADDITIONAL EXPERIMENTS

B.1 UNLEARNING PERFORMANCE FOR MORE TASKS

We present experiment results on CIFAR-100 in Tables 3 and 7. Across these different tasks, our
proposed Alignment Calibration method achieves the lowest average gap compared to the Retrain
method.

Table 7: Performance of methods on randomly forgetting 50% of CIFAR-100 training data. EMIA is
evaluated on the unlearned encoder, while RA, TA, UA, and MIA are evaluated after linear probing.
We report the average gap (Avg. Gap) over these 5 metrics between methods and Retrain. The results
are averaged over 5 random trials.

Methods | EMIA RA TA UA CMIA Avg. Gap | RTE
MoCo
Retrain 60.40 57.72 52.58 52.32 67.30 - 66.71
Fine-Tune 53.58 (6.81) 61.9 (4.18) 56.07 (3.48) 56.87 (4.55) 52.27(15.03) 6.81 0.86
Grad. Ascent | 43.76 (16.63) 6091 (3.19) 56.2(3.62) 57.48(5.16) 55.64 (11.66) 8.05 0.45
NegGrad | 38.95 (21.44) 60.94 (3.22) 57.01 (4.43) 5821 (5.89) 57.64 (9.66) 8.93 1.66
{1-Sparsity 49.97 (10.43) 58.89 (1.17) 53.07 (0.49) 53.66 (1.33) 56.27 (11.03) 4.89 0.87
Ours 56.22 (4.18) 59.53(1.81) 53.37(0.79) 53.69 (1.37) 52.27 (15.03) 4.63 1.84
SIMCLR
Retrain 56.00 50.40 48.46 47.68 69.47 - 89.74
Fine-Tune | 53.89 (2.12) 52.82(2.42) 49.87(1.41) 51.04(3.36) 60.06 (9.41) 3.74 1.17
Grad. Ascent | 40.28 (15.72) 56.32(5.92) 54.12(5.66) 55.22(7.54) 61.43 (8.04) 8.58 0.59
NegGrad 46.83 (9.17)  50.60 (0.20) 48.20 (0.26) 49.29 (1.62) 58.01 (11.47) 4.54 2.32
{1-Sparsity | 45.12(10.89) 52.62(2.22) 50.09 (1.62) 50.98 (3.30) 65.25 (4.22) 4.45 1.19
Ours 5498 (1.02) 4928 (1.12) 46.8 (1.66) 47.00 (0.68) 5778 (11.69)  3.24 3.07

B.2 MORE VISUAL AUDITING RESULTS

In Figure 6, we report the AGM of Retrain, Fine-Tune, Gradient Ascent, NegGrad, ¢;-Sparisty on
CIFAR-10, as a complement to Figure 3. For the unlearning task on CLIP, we check the ASM of our
AC and other baseline methods in Figure 7.

B.3 COMPARISON USING AVERAGE GAP PERCENTAGE STANDARD

In previous experiments, we compare our AC and baseline methods using the average gap across
multiple metrics. To comprehensively illustrate the advantage of our method, we introduce a different
standard for comparison, i.e., average gap percentage (AGP), which averages the percentage of GAP
over Retrain across multiple metrics. In Table 8, we perform unlearning tasks of forgetting 10%/50%
of CIFAR-10 data from ResNet-18 SimCLR/MoCo encoders and our proposed AC method still
outperforms baseline methods concerning the AGP standard.

16



Under review as a conference paper at ICLR 2025

Gap(Pretrain, Retrain)
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Gap(Pretrain, NegGrad)

Gap(Pretrain, Sparsity)

Gap(Pretrain, AC)

Figure 6: Alignment Gap Matrices of 8 unlearn images for Retrain, Fine-Tune, Gradient
Ascent, NegGrad, ¢1-Sparsity, and our Alignment Calibration. The unlearning task is to forget 10%
of CIFAR-10 training data from a MoCo encoder.
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Figure 7: Alignment Gap Matrices of 6 unlearn image-text pairs for Retrain, Fine-Tune (FT),
Gradient Ascent (GA), NegGrad (NG), ¢;-Sparsity, and Alignment Calibration (AC). The unlearning
task is to forget 10% of MS-COCO training data from a CLIP encoder.

Table 8: Comparison in average gap
percentage (AGP, %) with other base-
line methods. AGP averages the per-
centages of Gap over Retrain, i.e.,

Gap(PT, FT)
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Table 9: Unlearning performance of randomly forgetting
10 % of CIFAR-10 training data from ResNet-50 MoCo
encoders. We compare AC with baseline methods in
Average Gap (AG, %) and the Average Gap Percentage

ap
MEAN({—22_1). (AGP, %)
CIEARAD 10% 50% EMIA RA TA UA CMIA | AG AGP
MoCo SimCIR MoCo SimCLR Retain 5356 92.10 90.10 90.98 3544 | - R
FineTune 381 523 985 901 Fine-Tune ~ 49.85 0174 89.64 91.04 2394 | 268 807
Grad. Ascent 583 819 1405 1335 Grad. Ascent 3936 9236 9071 92.32 2535 | 443 1149
NegGrad 391 609 540  9.10 NegGrad ~ 52.62 91.85 8978 90.64 2488 | 207 6.51
(i-Sparsity 322 470 746 1031 (1-Sparsity 4761 9054 8867 90.19 27.04 | 363 7.79
AC (ours) 216 361 407 175 AC (ours) 5348 9175 8932 89.82 30.56 | 145 329

Table 10: Performance of methods on randomly forgetting 10% of SVHN training data from a
pre-trained MoCo encoder. The results are averaged over 5 random trials.

Methods | EMIA RA TA UA CMIA  Avg Gap | RTE

Retrain 51.24 91.17 92.02 90.59 20.46 - 114.13
Fine-Tune | 50.69 (0.54) 90.19 (0.98) 90.63 (1.39) 89.75(0.84) 17.03(3.43)  1.44 1.41
Grad. Ascent | 46.45 (4.79) 9123 (0.06) 92.25(0.22) 90.94 (0.35) 18.44(2.02)  1.49 0.17
NegGrad | 50.99 (0.24) 90.67 (0.50) 91.14 (0.88) 90.08 (0.50) 17.42 (3.03) 1.03 1.74
,-Sparsity | 50.56 (0.67) 89.20 (1.97) 89.72 (2.31) 88.89(1.70) 20.52(0.06)  1.34 1.45
Ours 51.50 (0.26)  90.19 (0.98) 90.76 (1.27) 89.23 (1.36) 19.99 (0.46)  0.87 1.98
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Table 11: Standard deviation for Tables 1 to 3. Appendix B.6 shows the detailed settings for random
trials.

EMIA RA TA UA CMIA EMIA RA TA UA CMIA
CIFAR-10, 10%, MoCo CIFAR-10, 50%, MoCo
Retrain 49.724558  89.54+0.07 87.76+0.25 88.42+0.66 34.38+0.83 | 55.95£158 85984025 83.55£0.27 83.98+0.21 46.66+0.73
Fine-Tune 50.15+7.99  88.34+0.27 86.46+0.13 87.59+0.18 29.42+1.37 | 49.98+2.92  87.89+0.55 85.66+0.43 86.65£0.29 32.35+0.90
Grad. Ascent | 44.95£6.61  89.92+0.16 88.28+0.23 89.76+0.46 28.53+0.76 | 42.90+546  89.51+0.30 87.79+0.24 88.99+0.17 31.85+0.61
NegGrad 48.43+5.42  89.25+0.24 87.35+£0.23 88.58+0.49 28.89+0.86 | 57.40£13.24 83.04+0.47 80.15+0.71 80.59+0.56 40.65+3.02
£, -Sparsity 49.38+7.15  88.56+0.32 86.91+£0.40 88.12+0.39 29.91+0.92 | 52.19+16.71 81.60+0.76  80.19+0.91 80.77+0.81 38.43+6.48
Ours 50.28+5.86  89.14+0.19 87.24+0.25 88.20£0.50 31.50+1.17 | 55.02+5.14  86.28+0.35 83.28+0.37 83.72+0.26 38.39+1.27
CIFAR-10, 10%, SimCLR CIFAR-10, 50%, SimCLR

Retrain 48.11+£3.70  90.87+0.08 88.94+0.16 89.68+0.33 38.87£1.33 | 53.37#2.21 87.23#0.25 85.16+0.34 85.69+0.17 49.30+0.65
Fine-Tune 47.72#438  89.38+0.51 87.26+0.65 88.93+x0.56 30.71+1.61 | 45.90£825 87.88+0.34 85.50+0.34 87.23£0.30 35.44+1.50
Grad. Ascent | 41.48+1.51 91.26+0.13 89.55+0.37 91.11£0.36 29.36+0.99 | 42.23+4.50 90.52+0.28 88.61+0.15 90.45+0.16 33.28+2.47
NegGrad 49.56+13.95 89.10+0.32 87.23+045 89.07+0.43 29.97+1.13 | 55.70£13.70 83.984£0.90 82.15+0.68 83.80+0.55 33.67+5.75
£1-Sparsity 48.44+6.70  90.59+0.23 88.56+0.30 90.44+0.28 30.61+1.01 | 46.51+3.85 89.84+0.12 87.75£0.28 89.48+0.22 35.38+1.52

Ours 48.64+9.47  90.24+0.11  88.06+0.23 89.24+0.30 33.12+1.54 | 47.12+5.84 86.11+0.31 83.92+0.30 85.24+0.60 37.57+1.16
CIFAR-100, 10%, MoCo CIFAR-100, 10%, SimCLR
Retrain 56244277  62.23+0.27 58.60+0.28 58.43+0.64 59.53£1.57 | 51.20£2.07 57.76+0.30 56.25+0.31 55.86+0.78 65.60+1.70

Fine-Tune 46.05+4.96  63.49+0.56 58.88+0.44 59.80+0.91 48.81+1.21 | 40.85+3.81 57.29+0.13 54.96+043 55.85%1.04 60.61+3.70
Grad. Ascent | 44.01£2.70  62.56x0.11 59.00£0.06  60.65£0.64 53.28+2.12 | 34.00+3.81  62.12+0.25 59.58+0.22 61.08+0.61 54.21£1.91
NegGrad 53.58+4.82  63.70+0.25 58.78+0.27 58.85+0.53 48.68+2.02 | 46.39£5.10  56.52+0.52 54.30+0.67 55.00£1.08 60.04+3.13
{,-Sparsity 45.68+7.30  60.89+0.41 57.40£0.59 58.66+0.78 52.48+3.21 | 40.55+3.43  57.85+0.24 55.76+0.34 56.68+0.64 58.46+5.10
Ours 50.17£3.42  63.20£0.37 58.56+0.59 58.44+0.42 54.15%1.66 | 46.72+550 57.11+0.38 54.70£0.36 5523091 59.78+5.46

B.4 MODEL ARCHITECTURE

In Table 9, we perform an unlearning task of forgetting 10% of CIFAR-10 data from a ResNet-50
MoCo encoder. Our AC method outperforms baseline methods concerning both average gap and
average gap percentage standards.

B.5 SVHN RESULTS

In Table 10, we report the unlearning results on the SVHN dataset. Our Alignment Calibration
method achieves the least average gap to Retraining compared to the other 4 baseline methods while
showing comparable efficiency in the unlearning process.

B.6  RANDOM TRIAL SETTINGS

Recall that our results in Tables 1 to 3 are averaged results over five random trials for each unlearning
setting. Specifically, we use random seeds 0, 1, 2, 3, and 4. Each random seed determines both
the selection of unlearning samples and the corresponding pre-trained and retrained encoders. For
instance, with a specific random seed, our AC method and other baseline methods start from the same
pre-trained encoder to forget the same samples and aim to approximate the same retrained encoder.
The metrics are computed in each random trial. We report the standard derivation for Tables 1 to 3 in
Table 11.
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