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ABSTRACT

Machine unlearning offers effective solutions for revoking the influence of specific
training data on pre-trained model parameters. While existing approaches address
unlearning for classification and generative models, they overlook an important
category of machine learning models: contrastive learning (CL) methods. This
paper addresses this gap by introducing the Machine Unlearning for Contrastive
Learning (MUC) framework and adapting existing methods. We identify limi-
tations in current approaches, noting that several methods perform inadequately
as unlearners and that existing auditing tools insufficiently validate unlearning
effects in contrastive learning. To address these issues, we propose Alignment
Calibration (AC), a novel method that explicitly considers contrastive learning
properties and optimizes towards new auditing metrics for easy verification of
unlearning. Through empirical comparisons with baseline methods on SimCLR,
MoCo, and CLIP, we demonstrate that AC: (1) achieves state-of-the-art perfor-
mance, approximating exact unlearning (retraining); (2) enables data owners to
clearly visualize unlearning effects through black-box auditing.

1 INTRODUCTION

The success of modern machine learning models largely relies on training with a large corpus of data.
However, carefully annotated data are expensive and difficult to obtain, thus urging the utilization of
the vast amount of unlabeled data in the wild. The recent self-supervised learning methods, especially
contrastive learning methods (Chen et al., 2020; 2021; He et al., 2020), provide viable solutions to
learning general representations for various downstream tasks. For example, unimodal contrastive
learning models employ the InfoNCE loss to maximize the feature similarity between positive pairs
(e.g., different data augmentations of the same image) while minimizing that between the negative
ones (e.g., different images). This training scheme also applies to multi-modal training (e.g., CLIP
(Radford et al., 2021)), and the learned encoders are widely applied in various tasks, e.g., GPT-based
models (Achiam et al., 2023) and latent diffusion models (Rombach et al., 2022).

To amass large-scale datasets for training contrastive learning models, practitioners often resort to
web crawling (e.g., using Common Crawl1). However, such data collection methods may disregard
data owners’ privacy concerns, potentially retrieving their data without consent. Moreover, acquired
training data may include copyrighted material or even inappropriate content, such as sexual abuse
(e.g., in recent reports2 against content in LAION-5B (Schuhmann et al., 2022)). In these scenarios,
data owners or authorities may rightfully request the removal of misused training data (i.e., unlearning
dataset) 3, necessitating adjustments to the trained model parameters. While retraining the model from
scratch without the unlearning dataset is a straightforward solution, it incurs substantial computational
costs for large models and datasets.

To eliminate the effect of the unlearning dataset on the model with minimum effort, machine
unlearning methods (Cao & Yang, 2015; Bourtoule et al., 2021; Ginart et al., 2019; Guo et al., 2019;
Neel et al., 2021; Ullah et al., 2021; Sekhari et al., 2021; Izzo et al., 2021; Chen et al., 2023; Zhang

1https://commoncrawl.org/
2https://purl.stanford.edu/kh752sm9123
3In accordance with policies such as the European Union’s General Data Protection Regulation (GDPR), the

California Consumer Privacy Act (CCPA), and Canada’s proposed Consumer Privacy Protection Act (CPPA).
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Figure 1: An overview of the unlearning pipeline for contrastive learning. Given a training set Dtrain

contains an unlearn subset Dunlearn, and a pretrained encoder g, model owners (Column 1) aim to
find an optimal unlearning algorithm by comparing with exact unlearning (retraining with the retain
dataset Dtrain\Dunlearn) to obtain an unlearned encoder ĝ. Data owners (Column 2), who only
have black-box access to the model outputs, then audit the unlearning outcome by comparing the
output features before/after unlearning.

et al., 2024a; Fan et al., 2024; Shen et al., 2024) provide recipes for supervised learning methods on
group removal and for generative models on sample or concept removal. However, the study of an
efficient solution for contrastive learning models is under-explored. In this paper, we establish the
foundation of Machine Unlearning for Contrastive Learning models (MUC). MUC adapts various
existing methods to contrastive learning and introduces the notion of data owners who request
unlearning and model owners who execute unlearning. Given candidate unlearning algorithms, the
model owners first perform white-box evaluation to select the best method and generate an optimal
unlearned model. The data owners then perform black-box auditing to validate the effect of the
unlearning procedure. We argue that unlearning success is achieved only if the unlearned model
meets the criteria on both sides. We summarize this unlearning pipeline in Figure 1.

Unfortunately, direct adaptations of existing unlearning approaches are unsatisfactory on both consid-
erations. Firstly, from the model owners’ perspective, such algorithms are suboptimal approximations
of exact unlearning (training from scratch) under different white-box evaluations and there lack
of a good candidate method. Secondly, from the data owner’s perspective, even given an optimal
unlearned model, it is difficult to discern the unlearning effect under existing black-box auditing tools,
rendering it hard to determine the success of unlearning.

Motivated by the above state of affairs, we introduce a novel unlearning method called Alignment
Calibration (AC) that is specifically tailored for contrastive learning. AC optimizes a novel loss
function that involves three terms: (1) a positive alignment calibration term that removes the footprint
of the unlearn set on the representation; (2) a negative alignment calibration term that leaves explicit
unlearning traces for auditing; (3) a performance preserving term that maintains uniformity.

Finally, we empirically compare baseline methods with our Alignment Calibration algorithms on
unlearning models pre-trained on SimCLR (Chen et al., 2020) MoCo (He et al., 2020), and CLIP
(Radford et al., 2021). Under various unlearning settings (e.g., the fraction of the unlearning dataset)
and evaluation metrics, AC consistently outperforms the baseline methods, especially under unlearn
auditing, validating the benefits of our method. In summary, we make the following contributions:

• We propose the MUC framework that considers existing methods and various evaluation tools in
contrastive learning, including white-box evaluation and black-box auditing.

• Motivated by insufficiencies of existing unlearning algorithms and auditing tools, we propose the
novel Alignment Calibration method that satisfies both model owners and data owners.

• Our experiments initiate the evaluation of existing machine unlearning methods for contrastive
learning and confirm the superiority of our new methods.
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2 BACKGROUND AND RELATED WORK

We first provide background and related work on contrastive learning and machine unlearning.

Contrastive Learning and Self-supervised Learning Contrastive learning learns general rep-
resentations by contrasting sample pairs (usually without labels), which analytically benefits the
downstream applications (Saunshi et al., 2019; Tosh et al., 2021). Popular contrastive learning meth-
ods such as Contrastive Predictive Coding (CPC) (van den Oord et al., 2018), SimCLR (Chen et al.,
2020), and MoCo (He et al., 2020) employ the InfoNCE loss to enforce the contrast between positive
and negative pairs. Other variants of the InfoNCE-based loss are also widely applied, e.g., f -MICL
(Lu et al., 2023), Alignment and Uniformity (Wang & Isola, 2020), and Pearson χ2 divergence (Tsai
et al., 2021). This contrastive training scheme is also applied to the context of multimodal learning,
where images and texts are formed as pairs, e.g., in CLIP (Radford et al., 2021). There exist other
self-supervised learning methods that also learn representations (Grill et al., 2020; Chen & He, 2021;
He et al., 2022; Caron et al., 2021). In this paper, we mainly focus on developing unlearning recipes
for contrastive learning methods, especially SimCLR, MoCo, and CLIP.

Specifically, contrastive learning usually applies the InfoNCE loss to learn a representation g. Given a
probability measure p, we define the density of positive pairs sampled from p as p+, i.e., two samples
with similar feature embeddings as the joint distribution; and the density of negative pairs as p×.
Specifically, one minimizes the loss below as the objective:

LInfoNCE = − E
(x,y)∼p+

s(g(x), g(y)) + E
x∼p

log E
y∼p

exp
(
(s(g(x), g(y))

)
, (1)

where s is the cosine similarity after normalization with a temperature parameter, and g(x), g(y) are
the features extracted by a given encoder g, respectively. The above contrastive learning (pre-training)
scheme learns a general encoder g (image and text encoders for CLIP). Such a (fixed) g can be utilized
with an additional linear head or shallow models for downstream tasks. In this paper, we mainly
consider linear probing, where g is used for the classification of the same dataset with pretraining.
Notably, we consider unlearning during the pretraining phase only.

Machine Unlearning For Supervised Learning: Machine unlearning (MU) (Cao & Yang, 2015)
requires an algorithm to revert to a state that specific data points are never trained on. While exact
unlearning (Bourtoule et al., 2021) (e.g., retraining the model entirely on the retain dataset) provides
a reliable solution, the additional computation requirement is also tremendous. In this paper, we
focus on approximate unlearning (Ginart et al., 2019; Guo et al., 2019; Neel et al., 2021; Ullah
et al., 2021; Sekhari et al., 2021; Izzo et al., 2021; Chen et al., 2023; Zhang et al., 2024a; Fan et al.,
2024; Shen et al., 2024) to efficiently achieve the same goal.

For Generative Models: MU methods are applied to diffusion models to avoid copyright infringement
and inappropriate image generation (Gandikota et al., 2023; Zhang et al., 2023b; Heng & Soh, 2023;
Kumari et al., 2023). For large language models, MU is applied as a model-editing (Yao et al., 2023)
tool to enable forgetting on certain training texts (Mitchell et al., 2022b;a; Jang et al., 2022; Eldan &
Russinovich, 2023; Zhang et al., 2023a; Hu et al., 2024; Jia et al., 2024; Maini et al., 2024; Liu et al.,
2024; Zhang et al., 2024b). In this paper, we focus on MU on self-supervised learning, specifically,
contrastive learning methods, which differs from the above two cases in both unlearning settings and
frameworks, which we specify in the following section.

3 MACHINE UNLEARNING FOR CONTRASTIVE LEARNING (MUC)

In this section, we specify the problem setting of machine unlearning for contrastive learning,
introduce direct adaptations of existing methods, and propose evaluation metrics.

3.1 PROBLEM SETTINGS

Formal Notations: (1) We denote the pretrained encoder as g and the encoder after unlearning
as ĝ. Given an input sample x, the features extracted by the encoders are denoted as g(x) and ĝ(x)
respectively; (2) We denote the original training set as Dtrain (which is used to train g), the unlearn
set as Dunlearn and the retain set as Dretain = Dtrain\Dunlearn (\ denotes removal here); (3) We

3
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define two parties involved in unlearning: the model owner . who receives the unlearning request,
and the data owner   who wishes to remove data. In practical scenarios, ² consist of a group of
individuals { i}Ni=1, who may not know the existence of each other, but participate in unlearning at
the same time.

Approximate Unlearning: The model owner . aims at choosing an unlearning algorithm that
approximates exact unlearning (training on Dretain from scratch) to obtain ĝ. In the meantime, this
algorithm should be much more efficient than exact unlearning. Given a pool of candidate algorithms,
. performs white-box evaluations (access to Dtrain,Dunlearn,Dtest, g and candidates {ĝ}) by
comparing their performances with exact unlearning according to metrics in Section 3.3.

Unlearning Auditing: Assuming the unlearning process is finished and the model owner has
published the final unlearned model ĝ, an individual data owner  i wishes to examine the unlearning
outcome. We coin this process as unlearning auditing. Specifically, such auditing is black-box as
 i only has access to his/her own unlearning subset Di

unlearn, and the output of the model before
g(Di

unlearn) and after unlearning ĝ(Di
unlearn). By comparing these outputs,  i should find explicit

evidence that unlearning has indeed been performed and the output is as desired. Our paper aims to
provide such evidence through the design of a novel unlearning algorithm for contrastive learning.

Note that making unlearning auditable is an important and difficult task for approximate unlearning
algorithms (Thudi et al., 2022). While we provide easy-to-check unlearning traces in the later
sections, such tools are specifically designed for our algorithm in contrastive learning, and may not
be generalized to other unlearning scenarios.

3.2 ADAPTING EXISTING METHODS TO MUC

We first adapt some existing unlearning methods designed for supervised unlearning to contrastive
unlearning. Due to the lack of labels in contrastive learning pre-training, some approaches cannot
be directly applied. For example, random labeling (Golatkar et al., 2020; Fan et al., 2024) relies on
flipping the labels of the unlearn data; boundary unlearning (Chen et al., 2023) expands or shrinks the
decision boundary, which does not exist in our context. In contrast, some other unlearning methods
can be tailored to contrastive learning. Specifically, we adapt the following methods:

• Retraining: (exact unlearning) trains on Dretain from scratch via minimizing Equation (1);

• Fine-tuning (Golatkar et al., 2020) updates the pre-trained model for several epochs on Dretain;

• Gradient Ascent (Golatkar et al., 2020; Neel et al., 2021; Thudi et al., 2022) reversely maximizes
Equation (1) on the Dunlearn;

• NegGrad (Kurmanji et al., 2023) jointly minimizes and maximizes Equation (1) on Dretain and
Dunlearn respectively;

• ℓ1-Sparsity (Jia et al., 2023) regularizes the ℓ1-norm of model parameters based on fine-tuning.

The above methods manifest straightforward adaptations of unlearning from supervised learning
to contrastive learning by changing the cross entropy loss to the InfoNCE loss in Equation (1). In
Section 5, we show that approximate unlearning methods are suboptimal approximations of exact
unlearning, namely that there still exists a performance gap compared with retraining. This motivates
us to design new unlearning methods specifically for contrastive learning in Section 4.

3.3 HOW TO CHOOSE AN UNLEARNING ALGORITHM

Suppose the model owner . gathers a pool of unlearning algorithms (e.g., the methods above). Next
we introduce how to compare them, i.e., the evaluation metrics. As contrastive learning returns
a feature extractor, we can either evaluate unlearning on the representations directly or rely on
downstream tasks. Specifically:

• Representation-level metrics. ❶ Forgetting Score: given a candidate algorithm that updates g to ĝ,
we propose a Forgetting Score (FS) by directly adapting the memorization score in evaluating data
attribution in Wang et al. (2024). FS measures the quantity of forgetting Dunlearn by comparing

4
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the alignment loss through the features returned by model parameters before and after unlearning:

FS := E
(x,y)∼p+

u

s(g(x), g(y))− E
(x,y)∼pu+

s(ĝ(x), ĝ(y)), (2)

where pu is the density of Dunlearn, recall g and ĝ are models before/after unlearning.
❷ Membership Inference Attacks (MIA): MIAs are capable of indicating whether certain samples
(e.g., the unlearn set) are included in the training set and are perfect for examining unlearning
efficacy. EncoderMI (Liu et al., 2021) proposed an alignment-based membership inference attack
for self-supervised encoders. It extracts membership information from the embedded features to
distinguish whether input data is included in the encoder training set. Following the implementation
of Jia et al. (2023); Fan et al. (2024), we evaluate the attack success rate (ASR) on the unlearn
dataset Dunlearn and denote it by encoder membership inference attack (EMIA) efficacy. We
compare EMIA on Dunlearn with retraining. See Appendix A.3 for details of EMIA.

• Downstream-level metrics. Alternatively, representations can be evaluated with downstream
tasks. We perform linear probing, i.e., image classification on the same (labeled) dataset for
unimodal contrastive learning. Given the unlearned encoder ĝ returned by a candidate algorithm,
we train an additional linear head on Dretain on top of the fixed ĝ to obtain a classifier. Next
we evaluate: ❶ Accuracies: we evaluate retain accuracy (RA) on Dretain, test accuracy on
Dtest (TA), and unlearn accuracy on Dunlearn (UA). For a good unlearning algorithm, the above
three measurements should be close to those of the retrained model, with a common pattern
of UA ≈ TA < RA; ❷ Membership Inference Attacks: Similarly to EMIA, we implement a
confidence-based membership inference attack (Jia et al., 2023; Fan et al., 2024; Song & Mittal,
2021) on the entire network (encoder and linear head) and report classifier membership inference
attack (CMIA) efficacy. We compare CMIA with retraining. See Appendix A.3 for details.

3.4 HOW TO AUDIT UNLEARNING

After choosing an optimal unlearning algorithm, the model owner generates the unlearned model ĝ
as a response to the unlearning request made by data owners. However, it is impossible for the data
owners to perform the same white-box evaluations.

For the data owners ² (Unlearning Auditing) : Recall that an individual data owner  i

performs black-box auditing due to the limited access to input Di
unlearn and the output of the encoder

before/after unlearning. Specifically,  i cannot train shadow4 models with Di
unlearn alone to perform

MIAs; and cannot obtain TA or RA to quantify performance. Additionally, there is a lack of the
retrain baseline to compare with. To this end, the only auditing tool is the forgetting score FS on
Dunlearn, which can be calculated with Equation (2). However, we argue that this auditing is neither
sufficient nor reliable, and we use a simple empirical example to validate this claim:

Exact unlearning on MoCo (He et al., 2020): We perform exact unlearning (i.e., retraining) to forget
4500 training images of CIFAR-10 (randomly chosen) on MoCo (ResNet-18). We calculate the
forgetting score FS for every unlearn sample and calculate the mean µ and the standard deviation σ
across the 4500 unlearning images. We obtain µ = 0.025, σ = 0.081.

Here we observe that the large standard deviation σ = 0.081 = 3.24× µ makes the current auditing
largely unreliable. For individual data owners, if the unlearn subset size |Di

unlearn| is small, its
corresponding sample-wise FS is likely to be biased and the average could fluctuate around 0,
suggesting little forgetting. This could lead to the belief that “unlearning hasn’t been performed”
from the data owner’s side, thus rejecting the exact unlearned model, as well as any approximate
unlearning algorithms, given that “matching exact unlearning” is the criteria for selection. This
example reveals the insufficiency of using only FS as the unlearn auditing tool in contrastive learning.

In summary, under the current MUC framework, existing approximate unlearning algorithms and
auditing tools are insufficient. To address this, we design new unlearning algorithms for the model
owners and advanced auditing tools for data owners in contrastive learning in the next section, which
would benefit both parties in engaging the unlearning procedure.

4Surrogate models to train classifiers for membership inference.
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4 ALIGNMENT CALIBRATION

4.1 TAILORED OBJECTIVE FOR MUC

We first introduce a more effective unlearner for model owners . . Recall that . ’s goal for unlearning
is preserving the model utility on Dretain while revoking the effects of training on Dunlearn. For
the retain dataset Dretain, we minimize the InfoNCE loss in Equation (1) to achieve reasonable
downstream performance after unlearning:

Lretain =− E
(x,y)∼p+

r

s(g(x), g(y)) + E
x∼pr

log E
y∼pd

exp(s(g(x), g(y)), (3)

where pr is the density of Dretain and pd is the density of Dtrain.

For the unlearn dataset Dunlearn, revoking the effects of training amounts to achieving the following
goals upon evaluation in Section 3.3:

• (Encoder-level) Enlarging forgetting on Dunlearn : recall that in Equation (2) the forgetting score
FS is measured by the difference between feature similarity on Dunlearn before/after unlearning
with pre-trained model g and unlearned model ĝ. As the first term is fixed (as g is given) during
unlearning, increasing FS is equal to minimizing the second positive alignment term. For this
purpose, we explicitly perform such minimization in our objective function and call it positive
alignment calibration.

• (Downstream-level) UA ≈ TA < RA: enlarging FS alone may also hurt the overall downstream
performance on the unlearned model ĝ. To obtain reasonable UA and TA, we find it beneficial to
maintain the term for negative pairs in contrastive learning, such that for Dunlearn, we minimize:

Lunlearn = E
(x,y)∼p+

u

s(g(x), g(y))︸ ︷︷ ︸
positive alignment calibration

+ E
x∼pu

log E
y∼pd

exp(s(g(x), g(y)))︸ ︷︷ ︸
performance preserving

, (4)

where pu is the density of Dunlearn. Wang & Isola (2020) states that alignment and uniformity
are crucial properties of good representations. While we calibrate alignment with the first term,
our performance preserving term implicitly maintains uniformity, which we will demonstrate in
Section 5.5.

4.2 CALIBRATION UNDER UNLEARNING AUDITING

Auditing beyond FS: Recall that in Section 3.3, we show that the forgetting score FS is not a
sufficient nor reliable evaluation for unlearning success. Here we introduce an additional auditing tool:
given Dunlearn and the models before unlearning g, data owners ² can easily obtain the feature
vectors with two different data augmentations: g(x) = {g(xi)}|Dunlearn|

i=1 and g(y) = {g(yj)}|Dunlearn|
j=1 .

Then an Alignment Matrix : AM(g(x), g(y)) can be easily acquired by calculating the pair-
wise similarity between the two vectors. See Figure 3(a) for some visualizations of AM in the
format of heatmaps. Similarly, ² can obtain AM(ĝ(x), ĝ(y)) after unlearning and an additional
Alignment Gap Matrix : AGM = AM(g(x), g(y)) − AM(ĝ(x), ĝ(y)) . The heatmaps of AM
and AGM provide auditing tools beyond FS and allow ² to visualize the model change through
unlearning by looking at the temperature of the graphs. Notably, the elements on the diagonal of AGM
also visualize sample-wise forgetting scores. We direct readers to visualizations of such graphs in
Figure 2 and Figure 3 in Section 5.

Taking auditing into account for unlearning: The additional auditing tools enable the model
owners to design an algorithm that allows data owners to clearly visualize the effect caused by
unlearning (i.e., through AM or AGM) without sacrificing the goal of unlearning.

We provide a simple solution to improve existing unlearning methods. As we have explicitly calibrated
the alignment of positive pairs of Lunlearn in Equation (4), it suffices to adjust that of negative pairs
(within Dunlearn) to a larger value to enlarge the model differences in AM. Specifically, we update
the unlearn loss in Equation (4) with negative alignment calibration:

− α · E
(x,y)∼p×

u

s(g(x), g(y))︸ ︷︷ ︸
negative alignment calibration

+β · E
(x,y)∼p+

u

s(g(x), g(y))︸ ︷︷ ︸
positive alignment calibration

+γ · E
x∼pu

log E
y∼pd

exp(s(g(x), g(y))︸ ︷︷ ︸
performance preserving

,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where α, β, γ are tunable parameters to adjust the strength of each component, p×u represents negative
pairs within the negative set. We write the complete objective of Alignment Calibration (AC):

Lretain + ε · Lunlearn, (5)

where ε = |Dunlearn|/|Dretain| varies by the size of the unlearn set. In the next section, we will
show AC not only achieves state-of-the-art performance upon model owners’ evaluations but can also
easily pass data owners’ visual auditing on unlearning.

5 EXPERIMENT

Recall that we made several claims in Section 3 and Section 4: ❶ Existing methods are suboptimal
unlearners under white-box evaluations and our AC algorithm approaches exact unlearning in this
regard; ❷ Under MUC, AC introduces alignment matrices AM for visual auditing and exhibits clear
evidence for unlearning. In this section, we evaluate the baseline methods and AC following the
above steps and present white-box evaluation by model owners . and black-box auditing by data
owners ² .

5.1 EXPERIMENTAL SETUP

Data and models. For unimodal contrastive unlearning, we perform experiments on CIFAR-
10/CIFAR-100 and SimCLR/MoCo algorithms with the ResNet-18 backbone (we provide additional
results on ResNet-50 in Table 9 in Appendix B). We randomly forget 10/50% training data from a
pre-trained encoder. For multimodal contrastive unlearning, we evaluate CLIP (Radford et al., 2021)
on an Image-Text paired dataset called MS-COCO (Lin et al., 2014), which contains ∼120K images
and ∼600K captions. We perform unlearning on 10% randomly selected image-text pairs.

White-box Evaluation: Following Section 3.3, we use FS and EMIA for encoder-level evaluation,
and use CMIA, RA, TA, and UA for downstream-level evaluation after performing linear probing for
SimCLR/MoCo experiments. For the evaluation of CLIP, we measure the image-text cosine similarity
of the retain dataset and unlearn dataset due to the lack of suitable downstream tasks. Across all
experiments, we compare each unlearning method with the exact unlearning (retraining) baseline
and report the differences across all metrics. We also report the running time efficiency (RTE) of
unlearning methods to evaluate efficiency.

Black-box Auditing: Recall that due to the limited access of data owners, the above white-box
evaluation can not be directly applied. Instead, we use the Alignment Matrix (AM) and
Alignment Gap Matrix (AGM) introduced in Section 4 for visual auditing on MoCo and
CLIP.

Unlearning Algorithms: We evaluate Retrain, Fine-Tune, Gradient Ascent, NegGrad, and ℓ1-
Sparsity as baselines for MUC. Our Alignment Calibration method updates the pre-trained encoder
for the same number of epochs as FineTune, NegGrad, and ℓ1-Sparsity. For simplicity, we set
α = γ = 1 if not otherwise stated and we tune β for the best performance. Implementation details of
the above methods are described in Appendix A.2.

5.2 UNLEARNING PERFORMANCE UNDER WHITE-BOX EVALUATION

We first provide empirical evidence for model owners to choose a suitable unlearning method with
superb efficiency and effectiveness. ❶ Unimodal contrastive learning: We present our evaluation
under EMIA, RA, TA, UA and CMIA in Table 1 and Table 2 for unlearning 10/50% of CIFAR-10
training set and FS (CIFAR-10, MoCo) for 10/50% separately in Table 5 due to different scales. We
also report the average gap percentage in Appendix B.3. For both SimCLR and MoCo, our proposed
Alignment Calibration (AC) method achieves the lowest average performance gap over EMIA, RA,
TA, UA, and CMIA. In terms of unlearning efficiency, our method only introduces a slight overhead.
Additionally, our method achieves the lowest FS gap compared to retraining. In Table 3 and Table 7
in Appendix B, we also report the results on CIFAR-100, where our methods consistently achieve the
best performance. ❷ Multi-modal contrastive learning: in Table 4, we again observe that our method
is the best approximator of exact unlearning when evaluating the image-text cosine similarity.

7
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Table 1: Unlearning performance of different methods on randomly forgetting 10% of CIFAR-10
training data under various metrics. The performance gaps between retraining and other methods are
shown in the parenthesis. We report the average gap (Avg. Gap) over these 5 metrics. The results are
obtained by averaging over 5 random trials.

Methods EMIA RA TA UA CMIA Avg. Gap (%) ↓ RTE (mins) ↓
MOCO

Retrain 49.72 89.54 87.76 88.42 34.38 - 109.47
Fine-Tune 50.15 (0.43) 88.34 (1.20) 86.46 (1.30) 87.59 (0.83) 29.42 (4.96) 1.74 1.42

Grad. Ascent 44.95 (4.77) 89.92 (0.38) 88.28 (0.52) 89.76 (1.34) 28.53 (5.85) 2.57 0.17
NegGrad 48.43 (1.29) 89.25 (0.29) 87.35 (0.40) 88.58 (0.16) 28.89 (5.49) 1.53 1.70
ℓ1-Sparsity 49.38 (0.34) 88.56 (0.98) 86.91 (0.84) 88.12 (0.30) 29.91 (4.47) 1.39 1.43

Ours 50.28 (0.56) 89.14 (0.40) 87.24 (0.52) 88.20 (0.22) 31.50 (2.88) 0.92 1.87
SIMCLR

Retrain 48.11 90.87 88.94 89.68 38.87 - 151.77
Fine-Tune 47.72 (0.39) 89.38 (1.49) 87.26 (1.68) 88.93 (0.75) 30.71 (8.16) 2.49 1.93

Grad. Ascent 41.48 (6.63) 91.26 (0.40) 89.55 (0.61) 91.11 (1.43) 29.36 (9.50) 3.71 0.19
NegGrad 49.56 (1.46) 89.10 (1.77) 87.23 (1.71) 89.07 (0.61) 29.97 (8.89) 2.89 2.34
ℓ1-Sparsity 48.44 (0.33) 90.59 (0.28) 88.56 (0.38) 90.44 (0.75) 30.61 (8.26) 2.00 1.96

Ours 48.64 (0.53) 90.24 (0.63) 88.06 (0.88) 89.24 (0.44) 33.12 (5.75) 1.65 3.00

Table 2: Unlearning performance of various methods on randomly forgetting 50% of CIFAR-10
training data. The results are averaged over 5 random trials.

Methods EMIA RA TA UA CMIA Avg. Gap (%) ↓ RTE (mins) ↓
MOCO

Retrain 55.95 85.98 83.55 83.98 46.66 - 66.71
Fine-Tune 49.98 (5.97) 87.89 (1.90) 85.66 (2.12) 86.65 (2.67) 32.35 (14.31) 5.39 0.86

Grad. Ascent 42.90 (13.06) 89.51 (3.53) 87.79 (4.25) 88.99 (5.01) 31.85 (14.82) 8.13 0.45
NegGrad 57.40 (1.45) 83.04 (2.94) 80.15 (3.40) 80.59 (3.39) 40.65 (6.02) 3.44 1.66
ℓ1-Sparsity 52.19 (3.76) 81.60 (4.38) 80.19 (3.36) 80.77 (3.20) 38.43 (8.24) 4.59 0.87

Ours 55.02 (0.93) 86.28 (0.30) 83.28 (0.26) 83.72 (0.26) 38.39 (8.27) 2.00 1.84
SIMCLR

Retrain 53.37 87.23 85.16 85.69 49.30 - 89.74
Fine-Tune 45.90 (7.47) 87.88 (0.65) 85.50 (0.34) 87.23 (1.54) 35.44 (13.85) 4.77 1.17

Grad. Ascent 42.23 (11.13) 90.52 (3.28) 88.61 (3.45) 90.45 (4.77) 33.28 (16.02) 7.73 0.59
NegGrad 55.70 (2.33) 83.98 (3.25) 82.15 (3.01) 83.80 (1.89) 33.67 (15.62) 5.22 2.32
ℓ1-Sparsity 46.51 (6.86) 89.84 (2.60) 87.75 (2.59) 89.48 (3.80) 35.38 (13.91) 5.95 1.19

Ours 47.12 (6.25) 86.11 (1.13) 83.92 (1.24) 85.24 (0.45) 37.57 (11.72) 4.16 3.07

5.3 BLACK-BOX AUDITING

Motivated by the insufficiency of auditing with the FS score, we propose to apply the Alignment
Matrix (AM) and Alignment Gap Matrix (AGM) in Section 4. AM and AGM naturally
introduce additional quantification of negative alignment. In Figure 2, we report the negative
alignment value (mean and standard deviation of pairwise similarity on negative samples in AGM) of
4500 unlearn samples and observe that our method AC exhibits a more significant unlearning effect

Table 3: Unlearning performance of various methods on randomly forgetting 10% of CIFAR-100
training data. The results are averaged over 5 random trials.

Methods EMIA RA TA UA CMIA Avg. Gap (%) ↓ RTE (mins) ↓
MOCO

Retrain 56.24 62.23 58.60 58.43 59.53 - 109.47
Fine-Tune 46.05 (10.19) 63.49 (1.27) 58.88 (0.29) 59.80 (1.37) 48.81 (10.72) 4.77 1.42

Grad. Ascent 44.01 (12.23) 62.56 (0.33) 59.00 (0.41) 60.65 (2.22) 53.28 (6.25) 3.96 0.17
NegGrad 53.58 (2.66) 63.70 (1.47) 58.78 (0.19) 58.85 (0.42) 48.68 (10.84) 3.12 1.70
ℓ1-Sparsity 45.68 (10.56) 60.89 (1.34) 57.40 (1.20) 58.66 (0.23) 52.48 (7.04) 4.07 1.43

Ours 50.17 (6.07) 63.20 (0.97) 58.56 (0.04) 58.44 (0.00) 54.15 (5.38) 2.49 1.87
SIMCLR

Retrain 51.20 57.76 56.25 55.86 65.60 - 151.77
Fine-Tune 40.85 (10.35) 57.29 (0.48) 54.96 (1.29) 55.85 (0.00) 60.61 (4.99) 3.42 1.93

Grad. Ascent 34.00 (17.21) 62.12 (4.36) 59.58 (3.32) 61.08 (5.23) 54.21 (11.39) 8.30 0.19
NegGrad 46.39 (4.81) 56.52 (1.24) 54.30 (1.95) 55.00 (0.86) 60.04 (5.56) 2.89 2.34
ℓ1-Sparsity 40.55 (10.66) 57.85 (0.09) 55.76 (0.49) 56.68 (0.83) 58.46 (7.15) 3.84 1.96

Ours 46.72 (4.48) 57.11 (0.65) 54.70 (1.55) 55.23 (0.63) 59.78 (5.83) 2.63 3.00
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Table 4: Performance of methods on randomly forgetting 10% of MS-COCO data from a pre-trained
CLIP. We report the image-text cosine similarity of the retain dataset and unlearn dataset respectively,
as well as the average absolute gap from Retrain. The results are averaged over 3 random trials.

Dataset Pre-train Retrain Fine-Tune Grad. Ascent NegGrad ℓ1-Sparsity Ours
Retrain 62.09 62.47 (0) 58.67 (3.80) 61.96 (0.51) 58.57 (3.90) 57.70 (4.76) 60.75 (1.72)
Unlearn 62.08 49.84 (0) 54.75 (4.91) 62.03 (12.19) 49.19 (0.65) 53.54 (3.70) 51.23 (1.39)

Avg. Gap (%) ↓ - 0 4.35 6.35 2.28 4.23 1.56

Table 5: Forgetting score (FS) of methods for
CIFAR-10 and MoCo. FS gaps are computed
between Retrain and other methods.

Methods 10% 50%
FS Gap ↓ FS Gap ↓

Retrain 0.0266 - 0.0604 -
Fine-Tune 0.0393 0.0127 0.0423 0.0180

Grad.Ascent 0.0005 0.0262 0.0007 0.0596
NegGrad 0.0205 0.0061 0.1002 0.0398
ℓ1-Sparsity 0.0216 0.0050 0.0408 0.0195

Ours 0.0259 0.0007 0.0672 0.0068

Figure 2: Negative alignment of 4500 unlearn
samples (10%) and MoCo and CIFAR-10. The
error bar is the standard deviation.
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under such auditing. For individual data owners  i, the size of their subset |Di
unlearn| may be small.

Therefore, we provide additional qualitative results for visual auditing: we randomly select 8 samples
from Dunlearn to simulate the budget of  i. We construct AM (before/after unlearning with AC)
and AGM for this small set and plot their heatmaps in Figure 3 and observe the apparent effect of
unlearning. We provide additional results for other methods and CLIP unlearning in Figure 6 and
Figure 7 in Appendix B.2, where AC consistently exhibits the best performance under visual auditing.

5.4 ABLATION STUDY

Influence of negative alignment calibration: In Equation (5), the coefficient α controls the
intensity of maximizing the negative alignment on unlearn data. To explore the effect of negative
alignment calibration in the unlearning task, we fix β and adjust α while keeping γ = α for simplicity.
Figure 4 (orange bars) reports the ratio between the forgetting score FS of Retrain and AC. When
α increases, the ratio decreases, indicating that the resulting model forgets more information about
the unlearn data. A ratio of 1 denotes that the FS of AC equals that of Retrain. Furthermore, we
consider a more extreme case of α = 0, representing no negative calibration. In Table 6, without
negative calibration, the average gap over metrics is larger than that of the standard AC by 0.33/2.12%
(comparing rows “w/o+w/” with “w/+w/”) for 10/50% forgetting tasks, suggesting this additional
term not only benefits the data owner for unlearn auditing but also improves the unlearn performance.

Influence of positive alignment calibration. In Equation (5), the coefficient β controls the intensity
of minimizing the positive alignment on the unlearn data. In Figure 4 (blue columns), we fix
α = γ = 1 and vary β from 0 to 16. The forgetting score ratio decreases with increasing β and
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Figure 3: Alignment Matrices and Alignment Gap Matrix on 8 random images in
unlearn dataset of CIFAR-10 (MoCo). The task is forgetting 10% of training data.
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Table 6: Ablation study on positive and negative
calibration in Equation (5) regarding the aver-
age gap over metrics on CIFAR-10 and MoCo
with forgetting ratio 10/50%. “w/” denote with
and “w/o” denotes without. For example, “w/o
+ w/” means AC without negative calibration
but with positive calibration.

Objectives Forgetting 10% 50%
w/ + w/ 0.92 2.00

w/o + w/ 1.25 4.12
w/ + w/o 1.95 3.75
w/o + w/o 2.70 6.45

Figure 4: The effect of α and β on the for-
getting score ratio between Retrain and AC,
i.e., FS(RT):FS(AC). Here we forget 10% of
CIFAR-10 training data from a MoCo encoder.
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approximately reaches 1.0 in the range of [12,16]. In Table 6, the positive alignment calibration term
enhances the unlearning performance from 1.95/3.75% to 0.92/2% (comparing columns “w/+w/o”
with “w/+w/”) for the 10/50% forgetting tasks regarding the average gap.

5.5 PRESERVING UNIFORMITY

Finally, we validate the function of the performance preserving term in our loss function, which forces
extracted features to spread uniformly on the hyper-sphere. Following the implementation from Wang
& Isola (2020), we visualize the uniformity of features on CIFAR-10 before and after applying our
AC unlearning algorithm. Specifically, we train a ResNet-18 encoder mapping images to 2D space
using SimCLR and plot the distribution of angles (i.e., arctan2(x, y) for each point (x, y) ∈ S1) in
Figure 5. We observe that this term implicitly maintains the uniformity of the representation on both
the test dataset and the unlearn dataset.
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Figure 5: Angle distributions on test dataset and unlearn dataset before and after AC unlearning
with different β values related to positive alignment calibration intensity. Here, the negative alignment
calibration and performance-preserving term intensities are kept at their default values, i.e., α = γ =
1. Note that when β = 0, only negative alignment calibration and performance-preserving terms take
effect in our AC method. Each chart’s x-axis represents “Angles” and the y-axis represents “Counts”.

6 CONCLUSION

In this paper, we study the problem of machine unlearning for contrastive learning pre-training (MUC).
We establish the foundations on this line of study by adapting existing unlearning methods and setting
up baseline evaluation metrics, including white-box evaluation for model owners to choose an optimal
unlearning strategy, and black-box auditing for data owners to examine the effect of unlearning. After
identifying the suboptimality of existing unlearning methods and the insufficiency of current auditing
tools, we further propose our novel method called Alignment Calibration. Our approach introduces a
novel unlearning objective function to strategically optimize toward the unlearning goal and enable
straightforward visual auditing. Empirically, our method achieves state-of-the-art performance on
unlearning tasks for both unimodal and multimodal contrastive learning. Our paper initializes the
study of machine unlearning in self-supervised learning but only considers contrastive learning. We
plan to extend our exploration of unlearning towards other SSL methods in the future.
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A EXPERIMENT DETAILS

A.1 DATASETS

CIFAR-10/100. Both datasets consist of 50K training images and 10K test images. All the images
are 32x32 colored. CIFAR-100 has 100 categories and CIFAR-10 has 10 categories. In unimodal
contrastive learning, the augmentations for training encoders include random resizing and cropping,
random grayscale, random color jitter, and horizontal flipping. We split the 50K training images into
a validation set of 5K images and a training set of 45K images. For example, when the unlearning
task is to forget 10% of training data, the unlearn dataset Dunlearn has 4.5K images and the retain
dataset Dretain has 4.05K images.

MS-COCO. COCO is a large-scale object detection, segmentation, and captioning dataset. Its
training set contains 118,287 images and 591,753 captions. Each image has several objects and
corresponds to at least 5 captions. Different from unimodal contrastive learning which uses strong
augmentations, CLIP employs only resizing, center cropping and horizontal flipping to make images
of 224x224 pixels.

A.2 CONTRASTIVE LEARNING AND UNLEARNING METHODS

MoCo and SimCLR: For the pre-trained (clean) models, we train the encoder for 800 epochs using
an SGD optimizer with cosine-scheduled learning rate initialized at 0.06, momentum of 0.9, and
weight decay of 0.0005. For unlearning methods: Retrain applies the same training strategy as pre-
training; Fine-tuning and NegGrad updates the pre-trained encoder for 10 epochs with a learning rate
searched in [0.003, 0.03]; Gradient Ascent updates the pre-trained encoder using reversed stochastic
gradient descent for 5 epochs with a learning rate searched in [10−6, 10−4; ℓ1-Sparsity applies the
learning rate as 0.006 and implements ℓ1 regularization with a coefficient searched in [10−6, 10−3].
For our Alignment Calibration method, we update the pre-trained encoder for 10 epochs and search
the learning rate in [0.003, 0.03] and the tunable parameter β in [0, 20] for different unlearning tasks.
If not otherwise stated, we adopt α = γ = 1. For simplicity, in our reported results on CIFAR-10/100,
we use a learning rate of 0.006 for 10% forgetting, and 0.02 for 50% forgetting. The linear probing
stage trains a linear classifier head for 100 epochs using an SGD optimizer with a cosine-scheduled
learning rate initialized at 1.0, and a momentum of 0.9. The batch size is set as 512 for both encoder
and linear head training.

CLIP: For the pre-trained (clean) CLIP, we train the model for 35 epochs on 2 NVIDIA RTX 4090
GPUs using an AdamW optimizer with a warm-up cosine-scheduled learning rate initialized at 5e-4
and momentum of 0.9. The total batch size is 256 (128 on each GPU). For unlearning algorithms:
Retrain again applies the same training strategy as pre-training; Fine-tuning update the pre-trained
model for 8 epochs with a fixed learning rate searched in [5e-5,5e-4]; NegGrad updates the pre-trained
model for 8 epochs with a fixed learning rate searched in [10−5, 10−4]; Gradient Ascent updates the
pre-trained model for 4 epochs with a fixed learning rate searched in [5e-6, 5e-4]; ℓ1-Sparsity updates
the pre-trained model for 8 epochs with a learning rate of 0.0005 and a regularization coefficient
searched in [10−9, 10−4]. For our Alignment Calibration method, we update the pre-trained model
for 8 epochs with a fixed learning rate of 0.0002. We search α = γ in [0.5, 1] and β in [0, 1].

A.3 UNLEARNING EVALUATION

CMIA efficacy. Given an unlearned encoder ĝ, we execute linear probing on it and denote the
whole classifier by f . Following the implementation of Jia et al. (2023); Fan et al. (2024), we evaluate
the attack successful rate (ASR) on the unlearn dataset Dunlearn of a confidence-based membership
inference attack (Song & Mittal, 2021) to f . The formal definition of CMIA efficacy is given by:

CMIA-Efficacy :=
TNCMIA

|Dunlearn|
, (6)

where TNCMIA is the number of true negatives predicted by the CMIA attack.
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EMIA efficacy. We implement the alignment-based EncoderMI-T attack (Liu et al., 2021) in an
adapted white-box setting. Given an unlearned encoder ĝ with its retain dataset Dretain and test
dataset Dtest, we denote Dnon-member := Dtest sample a subset Dmember of Dretain such that
|Dnon-member| = |Dmember|. For each data in Dnon-member and Dmember, we first augment it 10 times
and compute features of these 10 views via ĝ. Then, we compute the cosine similarity between
each pair of features, i.e., 45 pairs, and take the average of these similarity values. Now we get a
membership feature dataset and a non-membership feature dataset whose data points are just scalar
values. The EncoderMI-T attack then searches for an optimal threshold to classify membership
features and non-membership features. Similar to MIA efficacy, the formal definition of EMIA
efficacy is given by:

EMIA-Efficacy :=
TNEMIA

|Dunlearn|
, (7)

where TNEMIA is the number of true negatives predicted by the EncoderMI attack.

B ADDITIONAL EXPERIMENTS

B.1 UNLEARNING PERFORMANCE FOR MORE TASKS

We present experiment results on CIFAR-100 in Tables 3 and 7. Across these different tasks, our
proposed Alignment Calibration method achieves the lowest average gap compared to the Retrain
method.

Table 7: Performance of methods on randomly forgetting 50% of CIFAR-100 training data. EMIA is
evaluated on the unlearned encoder, while RA, TA, UA, and MIA are evaluated after linear probing.
We report the average gap (Avg. Gap) over these 5 metrics between methods and Retrain. The results
are averaged over 5 random trials.

Methods EMIA RA TA UA CMIA Avg. Gap RTE
MOCO

Retrain 60.40 57.72 52.58 52.32 67.30 - 66.71
Fine-Tune 53.58 (6.81) 61.9 (4.18) 56.07 (3.48) 56.87 (4.55) 52.27 (15.03) 6.81 0.86

Grad. Ascent 43.76 (16.63) 60.91 (3.19) 56.2 (3.62) 57.48 (5.16) 55.64 (11.66) 8.05 0.45
NegGrad 38.95 (21.44) 60.94 (3.22) 57.01 (4.43) 58.21 (5.89) 57.64 (9.66) 8.93 1.66
ℓ1-Sparsity 49.97 (10.43) 58.89 (1.17) 53.07 (0.49) 53.66 (1.33) 56.27 (11.03) 4.89 0.87

Ours 56.22 (4.18) 59.53 (1.81) 53.37 (0.79) 53.69 (1.37) 52.27 (15.03) 4.63 1.84
SIMCLR

Retrain 56.00 50.40 48.46 47.68 69.47 - 89.74
Fine-Tune 53.89 (2.12) 52.82 (2.42) 49.87 (1.41) 51.04 (3.36) 60.06 (9.41) 3.74 1.17

Grad. Ascent 40.28 (15.72) 56.32 (5.92) 54.12 (5.66) 55.22 (7.54) 61.43 (8.04) 8.58 0.59
NegGrad 46.83 (9.17) 50.60 (0.20) 48.20 (0.26) 49.29 (1.62) 58.01 (11.47) 4.54 2.32
ℓ1-Sparsity 45.12 (10.89) 52.62 (2.22) 50.09 (1.62) 50.98 (3.30) 65.25 (4.22) 4.45 1.19

Ours 54.98 (1.02) 49.28 (1.12) 46.8 (1.66) 47.00 (0.68) 57.78 (11.69) 3.24 3.07

B.2 MORE VISUAL AUDITING RESULTS

In Figure 6, we report the AGM of Retrain, Fine-Tune, Gradient Ascent, NegGrad, ℓ1-Sparisty on
CIFAR-10, as a complement to Figure 3. For the unlearning task on CLIP, we check the ASM of our
AC and other baseline methods in Figure 7.

B.3 COMPARISON USING AVERAGE GAP PERCENTAGE STANDARD

In previous experiments, we compare our AC and baseline methods using the average gap across
multiple metrics. To comprehensively illustrate the advantage of our method, we introduce a different
standard for comparison, i.e., average gap percentage (AGP), which averages the percentage of GAP
over Retrain across multiple metrics. In Table 8, we perform unlearning tasks of forgetting 10%/50%
of CIFAR-10 data from ResNet-18 SimCLR/MoCo encoders and our proposed AC method still
outperforms baseline methods concerning the AGP standard.
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Figure 6: Alignment Gap Matrices of 8 unlearn images for Retrain, Fine-Tune, Gradient
Ascent, NegGrad, ℓ1-Sparsity, and our Alignment Calibration. The unlearning task is to forget 10%
of CIFAR-10 training data from a MoCo encoder.
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Figure 7: Alignment Gap Matrices of 6 unlearn image-text pairs for Retrain, Fine-Tune (FT),
Gradient Ascent (GA), NegGrad (NG), ℓ1-Sparsity, and Alignment Calibration (AC). The unlearning
task is to forget 10% of MS-COCO training data from a CLIP encoder.

Table 8: Comparison in average gap
percentage (AGP, %) with other base-
line methods. AGP averages the per-
centages of Gap over Retrain, i.e.,
MEAN({ gap

retrain}).

CIFAR-10 10% 50%
MoCo SimCLR MoCo SimCLR

Fine-Tune 3.81 5.23 9.85 9.01
Grad. Ascent 5.83 8.19 14.05 13.35

NegGrad 3.91 6.09 5.40 9.10
ℓ1-Sparsity 3.22 4.70 7.46 10.31
AC (ours) 2.16 3.61 4.07 7.75

Table 9: Unlearning performance of randomly forgetting
10 % of CIFAR-10 training data from ResNet-50 MoCo
encoders. We compare AC with baseline methods in
Average Gap (AG, %) and the Average Gap Percentage
(AGP, %)

EMIA RA TA UA CMIA AG AGP

Retrain 53.56 92.10 90.10 90.98 35.44 - -
Fine-Tune 49.85 91.74 89.64 91.04 23.94 2.68 8.07

Grad. Ascent 39.36 92.36 90.71 92.32 25.35 4.43 11.49
NegGrad 52.62 91.85 89.78 90.64 24.88 2.07 6.51
ℓ1-Sparsity 47.61 90.54 88.67 90.19 27.04 3.63 7.79
AC (ours) 53.48 91.75 89.32 89.82 30.56 1.45 3.29

Table 10: Performance of methods on randomly forgetting 10% of SVHN training data from a
pre-trained MoCo encoder. The results are averaged over 5 random trials.

Methods EMIA RA TA UA CMIA Avg. Gap RTE
Retrain 51.24 91.17 92.02 90.59 20.46 - 114.13

Fine-Tune 50.69 (0.54) 90.19 (0.98) 90.63 (1.39) 89.75 (0.84) 17.03 (3.43) 1.44 1.41
Grad. Ascent 46.45 (4.79) 91.23 (0.06) 92.25 (0.22) 90.94 (0.35) 18.44 (2.02) 1.49 0.17

NegGrad 50.99 (0.24) 90.67 (0.50) 91.14 (0.88) 90.08 (0.50) 17.42 (3.03) 1.03 1.74
ℓ1-Sparsity 50.56 (0.67) 89.20 (1.97) 89.72 (2.31) 88.89 (1.70) 20.52 (0.06) 1.34 1.45

Ours 51.50 (0.26) 90.19 (0.98) 90.76 (1.27) 89.23 (1.36) 19.99 (0.46) 0.87 1.98
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Table 11: Standard deviation for Tables 1 to 3. Appendix B.6 shows the detailed settings for random
trials.

EMIA RA TA UA CMIA EMIA RA TA UA CMIA
CIFAR-10, 10%, MoCo CIFAR-10, 50%, MoCo

Retrain 49.72±5.58 89.54±0.07 87.76±0.25 88.42±0.66 34.38±0.83 55.95±1.58 85.98±0.25 83.55±0.27 83.98±0.21 46.66±0.73
Fine-Tune 50.15±7.99 88.34±0.27 86.46±0.13 87.59±0.18 29.42±1.37 49.98±2.92 87.89±0.55 85.66±0.43 86.65±0.29 32.35±0.90

Grad. Ascent 44.95±6.61 89.92±0.16 88.28±0.23 89.76±0.46 28.53±0.76 42.90±5.46 89.51±0.30 87.79±0.24 88.99±0.17 31.85±0.61
NegGrad 48.43±5.42 89.25±0.24 87.35±0.23 88.58±0.49 28.89±0.86 57.40±13.24 83.04±0.47 80.15±0.71 80.59±0.56 40.65±3.02
ℓ1-Sparsity 49.38±7.15 88.56±0.32 86.91±0.40 88.12±0.39 29.91±0.92 52.19±16.71 81.60±0.76 80.19±0.91 80.77±0.81 38.43±6.48

Ours 50.28±5.86 89.14±0.19 87.24±0.25 88.20±0.50 31.50±1.17 55.02±5.14 86.28±0.35 83.28±0.37 83.72±0.26 38.39±1.27
CIFAR-10, 10%, SimCLR CIFAR-10, 50%, SimCLR

Retrain 48.11±3.70 90.87±0.08 88.94±0.16 89.68±0.33 38.87±1.33 53.37±2.21 87.23±0.25 85.16±0.34 85.69±0.17 49.30±0.65
Fine-Tune 47.72±4.38 89.38±0.51 87.26±0.65 88.93±0.56 30.71±1.61 45.90±8.25 87.88±0.34 85.50±0.34 87.23±0.30 35.44±1.50

Grad. Ascent 41.48±1.51 91.26±0.13 89.55±0.37 91.11±0.36 29.36±0.99 42.23±4.50 90.52±0.28 88.61±0.15 90.45±0.16 33.28±2.47
NegGrad 49.56±13.95 89.10±0.32 87.23±0.45 89.07±0.43 29.97±1.13 55.70±13.70 83.98±0.90 82.15±0.68 83.80±0.55 33.67±5.75
ℓ1-Sparsity 48.44±6.70 90.59±0.23 88.56±0.30 90.44±0.28 30.61±1.01 46.51±3.85 89.84±0.12 87.75±0.28 89.48±0.22 35.38±1.52

Ours 48.64±9.47 90.24±0.11 88.06±0.23 89.24±0.30 33.12±1.54 47.12±5.84 86.11±0.31 83.92±0.30 85.24±0.60 37.57±1.16
CIFAR-100, 10%, MoCo CIFAR-100, 10%, SimCLR

Retrain 56.24±2.77 62.23±0.27 58.60±0.28 58.43±0.64 59.53±1.57 51.20±2.07 57.76±0.30 56.25±0.31 55.86±0.78 65.60±1.70
Fine-Tune 46.05±4.96 63.49±0.56 58.88±0.44 59.80±0.91 48.81±1.21 40.85±3.81 57.29±0.13 54.96±0.43 55.85±1.04 60.61±3.70

Grad. Ascent 44.01±2.70 62.56±0.11 59.00±0.06 60.65±0.64 53.28±2.12 34.00±3.81 62.12±0.25 59.58±0.22 61.08±0.61 54.21±1.91
NegGrad 53.58±4.82 63.70±0.25 58.78±0.27 58.85±0.53 48.68±2.02 46.39±5.10 56.52±0.52 54.30±0.67 55.00±1.08 60.04±3.13
ℓ1-Sparsity 45.68±7.30 60.89±0.41 57.40±0.59 58.66±0.78 52.48±3.21 40.55±3.43 57.85±0.24 55.76±0.34 56.68±0.64 58.46±5.10

Ours 50.17±3.42 63.20±0.37 58.56±0.59 58.44±0.42 54.15±1.66 46.72±5.50 57.11±0.38 54.70±0.36 55.23±0.91 59.78±5.46

B.4 MODEL ARCHITECTURE

In Table 9, we perform an unlearning task of forgetting 10% of CIFAR-10 data from a ResNet-50
MoCo encoder. Our AC method outperforms baseline methods concerning both average gap and
average gap percentage standards.

B.5 SVHN RESULTS

In Table 10, we report the unlearning results on the SVHN dataset. Our Alignment Calibration
method achieves the least average gap to Retraining compared to the other 4 baseline methods while
showing comparable efficiency in the unlearning process.

B.6 RANDOM TRIAL SETTINGS

Recall that our results in Tables 1 to 3 are averaged results over five random trials for each unlearning
setting. Specifically, we use random seeds 0, 1, 2, 3, and 4. Each random seed determines both
the selection of unlearning samples and the corresponding pre-trained and retrained encoders. For
instance, with a specific random seed, our AC method and other baseline methods start from the same
pre-trained encoder to forget the same samples and aim to approximate the same retrained encoder.
The metrics are computed in each random trial. We report the standard derivation for Tables 1 to 3 in
Table 11.
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