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ABSTRACT

We consider the Principal Component Analysis (PCA) problem for tensors T ∈
(Rn)⊗k of large dimension n and of arbitrary order k ≥ 3. It consists in recov-
ering a spike v⊗k0 (related to a signal vector v0 ∈ Rn) corrupted by a Gaussian
noise tensor Z ∈ (Rn)⊗k such that T = βv⊗k0 + Z where β is the signal-to-noise
ratio. In this paper, we propose a new framework based on tools developed by the
theoretical physics community to address this important problem. They consist
in trace invariants of tensors built by judicious contractions (extension of matrix
product) of the indices of the tensor T. Inspired by these tools, we introduce a
new process that builds for each invariant a matrix whose top eigenvector is cor-
related to the signal for β sufficiently large. Then, we give examples of classes
of invariants for which we demonstrate that this correlation happens above the
best algorithmic threshold (β ≥ nk/4) known so far. This method has many al-
gorithmic advantages: (i) it provides a detection algorithm linear in time and with
only O(1) memory requirements (ii) the algorithms are very suitable for parallel
architectures and have a lot of potential of optimization given the simplicity of the
mathematical tools involved (iii) experimental results show an improvement of the
state of the art for the symmetric tensor PCA. We provide experimental results to
these different cases that match well with our theoretical findings.

1 INTRODUCTION

Powerful computers and acquisition devices have made it possible to capture and store real-world
multidimensional data. For practical applications (Kolda & Bader (2009)), analyzing and organizing
these high dimensional arrays (formally called tensors) lead to the well known curse of dimension-
ality (Gao et al. (2017),Suzuki (2019)). Thus, dimensionality reduction is frequently employed to
transform a high-dimensional data set by projecting it into a lower dimensional space while retaining
most of the information and underlying structure. One of these techniques is Principal Component
Analysis (PCA), which has made remarkable progress in a large number of areas thanks to its sim-
plicity and adaptability (Jolliffe & Cadima (2016); Seddik et al. (2019)).

In the Tensor PCA, as introduced by Richard & Montanari (2014), we consider a model where we
attempt to detect and retrieve an unknown unit vector v0 from noise-corrupted multi-linear measure-
ments put in the form of a tensor T. Using the notations found below, our model consists in:

T = βv⊗k0 + Z, (1)

with Z a pure Gaussian noise tensor of order k and dimension n with identically independent dis-
tributed (iid) standard Gaussian entries: Zi1,i2,...,ik ∼ N (0, 1) and β the signal-to-noise ratio.

To solve this important problem, many methods have been proposed. However, practical applica-
tions require optimizable and parallelizable algorithms that are able to avoid the high computation-
ally cost due to an unsatisfactory scalability of some of these methods. A summary of the time and
space requirement of some existent methods can be found in Anandkumar et al. (2017).

One way to achieve this parallelizable algorithm is through methods based on tensor contractions
(Kim et al. (2018)) which are extensions of the matrix product. These last years, tools based on ten-
sor contractions have been developed by theoretical physicists where random tensors have emerged
as a generalization of random matrices. In this paper, we investigate the algorithmic threshold of
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tensor PCA and some of its variants using the theoretical physics approach and we show that it leads
to new insights and knowledge in tensor PCA.

Tensor PCA and tensor decomposition (the recovery of multiple spikes) is motivated by the increas-
ing number of problems in which it is crucial to exploit the tensorial structure (Sidiropoulos et al.
(2017)). Recently it was successfully used to address important problems in unsupervised learning
(learning latent variable models, in particular latent Dirichlet allocation Anandkumar et al. (2014),
Anandkumar et al. (2015)), supervised learning (training of two-layer neural networks, Janzamin
et al. (2015)) and reinforcement learning (Azizzadenesheli et al. (2016)).

Related work Tensor PCA was introduced by Richard & Montanari (2014) where the authors
suggested and analyzed different methods to recover the signal vector like matrix unfolding and
power iteration. Since then, various other methods were proposed. Hopkins et al. (2015) introduced
algorithms based on the sum of squares hierarchy with the first proven algorithmic threshold of nk/4.
However this class of algorithm generally requires high computing resources and relies on complex
mathematical tools (which makes its algorithmic optimization difficult). Other studied methods
have been inspired by different perspectives like homotopy in Anandkumar et al. (2017), statistical
physics (Arous et al. (2020), Ros et al. (2019), Wein et al. (2019) and Biroli et al. (2020)), quantum
computing (Hastings (2020)) as well as statistical query (Dudeja & Hsu (2020)).

Recently, a fundamentally different set of mathematical tools that have been developed for tensors
in the context of high energy physics have been used to approach the problem. They consist in trace
invariants of degree d ∈ N, obtained by contracting pair of indices of d copies of the tensor T. They
have been used in Evnin (2020) to study the highest eigenvalue of a real symmetric Gaussian tensor.
Subsequently, Gurau (2020) provided a theoretical study on a function based on an infinite sum of
these invariants. Their results suggest a transition phase for the highest eigenvalue of a tensor for β
around n1/2 in a similar way to the BBP transition in the matrix case (Baik et al. (2005)). Thus, this
function allows the detection of a spike. However evaluating it involves computing an integral over
a n-dimensional space, which may not be possible in a polynomial time.

The contribution of this paper is the use of these invariant tools to build tractable algorithms with
polynomial complexity. In contrast to Gurau (2020), instead of using a sum of an infinite number of
invariants, we select one trace invariant with convenient properties to build our algorithms. It lets us
detect the presence of the signal linearly in time and with a space requirement in O(1). Moreover,
in order to recover the signal vector besides simply detecting it, we introduce new tools in the form
of matrices associated to this specific invariant. Within this framework, we show as particular cases,
that the two simpler graphs (of degree two) are similar to the tensor unfolding and the homotopy
algorithms (which is equivalent to average gradient descent). These two algorithms are the main
practical ones known from the point of view of space and time requirement (Anandkumar et al.
(2017) provides a table comparison).

Notations We use bold characters T,M ,v for tensors, matrices and vectors and Tijk,Mij , vi for
their components. [p] denotes the set {1, . . . , n}. A real k−th order tensor is of order k if it is
a member of the tensor product of Rni , i ∈ [k]: T ∈

⊗k
i=1 Rni . It is symmetric if Ti1...ik =

Tτ(i1)...τ(ik) ∀τ ∈ Sk where Sk is the symmetric group (more details are provided in Appendix
??). For a vector v ∈ Rn, we use v⊗p ≡ v⊗ v⊗ · · · ⊗ v ∈

⊗pRn to denote its p-th tensor power.
〈v,w〉 denotes the scalar product of v and w.

Let’s define the operator norm, which is equivalent to the highest eigenvalue of a tensor of any
order: ‖X‖op ≡ max {Xi1,...,ik(w1)i1 . . . (wk)ik ,∀i ∈ {1, . . . , n}, ‖wi‖ ≤ 1} The trace of A is
denoted Tr(A). We denote the expectation of a variable X by E(X) and its variance by σ(X).
We say that a function f is negligible compared to a positive function g and we write f = o(g) if
limn→∞ f/g → 0.

Einstein summation convention It is important to keep in mind throughout the paper that we will
follow the Einstein summation convention: when an index variable appears twice in a single term
and is not otherwise defined, it implies summation of that term over all the values of the index. For
example: TijkTijk ≡

∑
ijk TijkTijk. It is a common convention when addressing tensor problems

that helps to make the equations more comprehensible.
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2 GENERAL FRAMEWORK FOR SIGNAL DETECTION AND RECOVERY

2.1 WHAT DO WE USE TO STUDY THE SIGNAL?

An important concept in problems involving matrices is the spectral theory. It refers to the study
of eigenvalues and eigenvectors of a matrix. It is of fundamental importance in many areas. In
machine learning, the matrix PCA computes the eigenvectors and eigenvalues of the covariance
matrix of the features to perform a dimensional reduction while ensuring most of the key information
is maintained. In this case, the eigenvalues is a very efficient tool to describe data variability. In the
case of signal processing, eigenvalue can contain information about the intensity of the signal, while
the eigenvector points out to its direction. Lastly, a more theoretical example involves quantum
physics where the spectrum of the matrix operator is used to calculate the energy levels and the state
associated.

In all of these examples, an important property of the eigenvalues of a n-dimensional matrix M is
its invariance under orthogonal transformations {M → OMO−1,O ∈ O(n)} where O(n) is the
n-dimensional orthogonal group (i.e. the group of real matrices that satisfies OO> = In, which
should not be confused with the computational complexity O(n)). Since these transformations es-
sentially just rotate the basis to define the coordinate system, they must not affect intrinsic informa-
tion like data variability, signal intensity or the energy of a system. The eigenvalues are able to cap-
ture some of these inherent information, but recovering the complete general information requires
computing their respective eigenvectors (for example to find the principal component, the direction
of the signal or the physical state). There are more such invariants than eigenvalues. Another impor-
tant set worth mentioning are the traces of the n first matrix powers Tr(A),Tr

(
A2
)
, . . . ,Tr(An).

Obtaining them uses slightly different methods than eigenvalues, but they contain the same informa-
tion since each set can be inferred from the other through some basic algebraic operations.

On the basis of the matrix case, we expect that for a tensor T ∈
⊗k

i=1 Rni , tensor quantities that
are invariant under orthogonal transformations (Ta1j ...akj → O

(1)

a1jb
1
j
. . . O

(k)

akj b
k
j

Tb1j ...bkj for O(i) ∈
O(ni) ∀i ∈ [k]) should capture similar intrinsic information like the intensity of the signal, and
conceivably, there should be other objects related to these quantities that are able to indicate the
direction of the signal. However, the concept of eigenvalue and eigenvector is ill defined in the
tensor case and not practical giving that the number of eigenvalues is exponential with the dimension
n (Qi (2005), Cartwright & Sturmfels (2013)) and computing them is very complicated. In contrast,
we have a very convenient generalization of the traces of the power matrices for the tensors that we
call trace invariants. They have been extensively studied during the last years in the context of high
energy physics and many important properties have been proven (Gurau (2017)).

We first give a more formal definition of trace invariants. Let T be a tensor whose entries are Ti1,...,ik .
Let’s define a contraction of a pair of indices as setting them equal to each other and summing over
them, as in calculating the trace of a matrix (Aij →

∑n
i=1 Aii). The trace invariants of the tensor

T correspond to the different way to contract pairs of indices in a product of an even number of
copies of T. The degree of the trace invariants consists in the number of copies of T contracted.
For example,

∑
i1,i2,i3

Ti1i2i3Ti1i2i3 and
∑
i1,i2,i3

Ti1i2i2Ti1i3i3 are trace invariants of degree 2. In
the remainder of this paper, we will use the Einstein summation convention defined in the notation
subsection.

A trace invariant of degree d of a tensor T of order k admits a practical graphical representation as
an edge colored graph G obtained by following two steps: we first draw d vertices representing the d
different copies of T. The indices of each copy is represented by k half-edges with a different color
for each index position as shown in Figure 1a. Then, when two different indices are contracted in the
tensor invariant, we connect their corresponding half-edges in G. Reciprocally, to obtain the tensor
invariant associated to a graph G with d vertices, we take d copies of T (one for each vertex), we
associate a color for each index position, and we contract the indices of the d copies of T following
the coloring of the edges connecting the vertices. We denote this invariant IG(T). Three important
examples of trace invariants are: the melon diagram (Figure 1b) and the tadpole (1c). Avohou et al.
(2020) provides a thorough study about the number of trace invariants for a given degree d. A very
useful asset of these invariants is that we are able to compute their expectation for tensors whose
components are Gaussian using simple combinatorial analysis (Gurau (2017)).
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(a) Tijk (b) TijkTijk
(c) TijjTikk

Figure 1: Example of graphs and their associated invariants

2.2 WHAT DO WE USE TO RECOVER THE SIGNAL?

As previously mentioned in Section 2.1, an invariant should be able to detect a signal. But if our goal
is to recover it, we should find mathematical objects that are able to provide a vector. To this effect,
we introduce in this paper a new set of tools in the form of matrices. We denote by MG,e the matrix
obtained by cutting an edge e of a graph G in two half edges (see Figure 2 for an example). Indeed,
this cut amounts to not summing over the two indices i1 and i2 associated to these two half-edges
and using them to index the matrix instead. We will drop the index G, e of the matrix when the
context is clear.

edge e

IG(T) = TijkTijk

i1 i2

MG,e ≡ (Ti1jkTi2jk)i1,i2∈[n]

Cut the edge e

Figure 2: Obtaining a matrix by cutting the edge of a trace invariant graph G

2.3 PHASE TRANSITION WITHIN THIS FRAMEWORK

We can represent the tensor from which we hope to extract the signal represented graphically as:

Tij1...jk−1
= β vivj1 . . . vjk−1 + Zij1...jk−1

Figure 3: Graphical decomposition of the tensor T

This decomposition leads us naturally to decompose in a similar way a tensor trace invariant IG(T)
into two parts, separating a first contribution I(N)

G (T) associated to the pure noise tensor contribution

and a second part I(S)G (T) enclosing all the other contributions, which are resulting from the addition
of the signal.

IG(T) = I
(N)
G (T) + I

(S)
G (T). (2)

An identical decomposition can be carried out for the matrix. Let’s consider a tensor T, a graph G
and its associated trace invariant IG(T). Let’s denote I ′G(T) the invariant associated to the subgraph
obtained by removing from G the edge e and its two vertices. We can distinguish three kind of
contributions to the matrix MG,e that we denote M

(N)
G,e ,M

(D)
G,e and M

(R)
G,e , illustrated in Figure 4

(where we denoted the invariant I ′G(T) by I ′ and dropped the index G, e for simplicity).

Lemma 1. E(M (N)) =
E(I(N)
G )

n In.

Using the lemma 1, we identify three possible phases depending on which matrix operator norm is
much larger than the others:

• No detection and no recovery: If
∥∥M (N) − E(M (N))

∥∥
op �

∥∥M (D)
∥∥

op,
∥∥M (R)

∥∥
op

then no recovery and no detection is possible we can’t distinguish if there is a signal. It is
for example the phase for β → 0.
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+
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Figure 4: Decomposition of a matrix graph and the melon example

• Detection but no recovery: If
∥∥M (D)

∥∥
op �

∥∥M (N) − E(M (N))
∥∥

op,
∥∥M (R)

∥∥
op then

detection but no recovery. We can detect the presence of the signal (thanks to the high-
est eigenvalue) but we can’t recover the signal vector since the leading eigenvector is not
correlated to the signal vector.

• Detection and recovery:
∥∥M (R)

∥∥
op �

∥∥M (N) − E(M (N))
∥∥

op,
∥∥M (D)

∥∥
op. We recover

the signal vector. It is for example the phase for β →∞.

2.4 ALGORITHMIC THRESHOLD FOR A GENERAL GRAPH

We can now state the important algorithms that will be essential for this paper. It is important to
keep in mind that the following claims concern the large n limit. Empirically, the approximation of
large n limit seems valid for n > 25.

Algorithm 1: Algorithm associated to the graph G and edge e

Input: The tensor T = βv⊗k + Z
Goal: Detection of v
Result: Gives the probability of the presence of a spike

The first algorithm gives a criteria for distinguishing a pure noise tensor from a tensor with a spike.
Denoting E(IG(B)) the expectation and σ(IG(B)) the variance of the trace invariant associated to
a graph G for (B)), where the components of B are Gaussian random. The algorithm consists
simply in calculating the trace invariant of the tensor and comparing its distance from E(IG(B))
with σ(IG(B)). It is straightforward to see that calculating a trace invariant (which is a scalar) like
TijkTijk only needs O(1) memory.

Theorem 2. Let G be a graph of degree d, ∃ βdet > 0 so that Algorithm 1 detects the presence of
a signal for β ≥ βdet.

The second algorithm is able to recover the spike in a tensor T through the construction of the matrix
of size n× nMG,e(T) associated to a given graph G and edge e.

Algorithm 2: Recovery algorithm associated to the graph G and edge e

Input: The tensor T = βv⊗k0 + Z
Goal: Estimate v0

Result: Obtaining an estimated vector v
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Theorem 3. Let G be a graph of degree d, ∃ βrec > 0 so that Algorithm 2 gives an estimator v so
that v is strongly correlated to v0 ( 〈v,v0〉 > 0.9) for β ≥ βrec.

Since the algorithms 2 and 1 consists in algebraic operations on the tensors entries, they are very
suitable for a parallel architecture. The Theorem 4 gives a lower bound to the threshold above which
we can detect and recover a spike using a single graph. Interestingly, this threshold which appears
naturally in our framework, matches the threshold below which there is no known algorithm that
is able to recover the spike in polynomial time. We call the Gaussian variance of a graph G, the
variance of the invariant IG(B) where Bijk are Gaussian random.

Theorem 4. Let k ≥ 3. It is impossible to detect or recover the signal using a single graph below
the threshold β ≤ nk/4 which is the minimal Gaussian variance of any graph G.

3 SOME APPLICATIONS OF THIS FRAMEWORK

Using these algorithms, we are now able to investigate the performance of our framework in various
theoretical settings. In the first two subsections, we study the algorithms associated to two trace
invariants of degree 2. They consist of the melonic diagram, which gives a very practical detection
algorithm, and whose recovery algorithm is a variant of the unfolding algorithm, and the tadpole
diagram whose recovery algorithm is similar to the homotopy algorithm. The last two sections are
an illustration of the versatility of this framework. We study the case the dimensions ni of the tensor
T (T ∈

⊗k
i=1 Rni ) are not necessarily equal, which is important for practical applications where the

dimensions are naturally asymmetric. Our methods allows us to derive a new algorithmic threshold
for this case.

3.1 THE MELON GRAPH SIMILAR TO TENSOR UNFOLDING

Let’s consider the invariant Ti1...inTi1...in (illustrated by the graph in Figure 1b when k = 3). Its
recovery algorithm (with the matrix obtained by cutting any of the edges) is similar to the tensor
unfolding method presented in Richard & Montanari (2014). The difference is that the melonic
algorithm uses only a matrix n×n instead of a matrix nk/2×nk/2 for the tensor unfolding. However,
the main contribution of this framework for this graph is that it allows the detection in a linear time
(nk operations for a input (tensor) of size n3 ) in a constant memory space (it just calculates a
scalar). This provides it a potential usefulness as a first step for detecting the signal before deciding
to use more computationally costly methods to recover it. Also, to the best of our knowledge, this
framework is the first to theoretically prove a conjuncture that the unfolding algorithm works also
for the symmetric case.

Theorem 5. The algorithms 1 and 2 work for the melon graph with βdet = βrec = O(nk/4) in
linear time and respectively O(n2) and O(1) memory requirement.

3.2 THE TADPOLE GRAPH

Figure 1c has a special characteristic: we can obtain two disconnected parts by cutting only one
line. Therefore, the matrix obtained by cutting that edge is of rank one (in the form of vvT ).
Thus, the vector v has a weak correlation with the signal v0, which allow the tensor power iteration
(vi ← Tijkvjvk) to empirically recover it (formal proofs require to consider some more sophisti-
cated variants of power iteration like in Anandkumar et al. (2017) and Biroli et al. (2020)). This
algorithm is a variant of the already existent homotopy algorithm.

Theorem 6. The tadpole graph allows to recover the signal vector for k ≥ 3 and β = O(nk/4) by
using local algorithms to enhance the signal contribution of the vector Tijj .

4 NUMERICAL EXPERIMENTS

In this section we will investigate the empirical results of the previously mentioned applications
in order to see if they match with our theoretical results. We restrict to the dimension k = 3 for
simplicity. More details about the experiments settings could be found in the Appendix.
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4.1 COMPARISON OF RECOVERY METHODS

This distinction is easily visible, for n = 100 and β = 100 in Figure 5a where we plotted the
histograms of the melonic invariant (in blue without signal and in orange with signal) for 500 in-
dependent instances of Gaussian random tensors Z. Thus, to measure the accuracy of the detection
of the signal, we use the quantity: 1 - cardinal of the Intersection over the cardinal of the Union
(1-IoU). Figure ?? suggests that a high probability detection requires β ≥ 3n3/4.
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(TijkTijk)/n3
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300
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ity T = Z

T = Z + v 3

(a) Distribution of the melon invariant without (blue)
and with (orange) signal.

Figure 5: Detection using the melonic graph.

For the recovery algorithm, we focus in the symmetric case (the most studied case and the most con-
sistent with a symmetric spike) and, as in Richard & Montanari (2014), for every algorithm we use
two variants: the simple algorithm outputting v and an algorithm where we apply 100 power itera-
tions on v: vi ← Tijkvjvk, distinguishable by a prefix ”p-”. In Figure ??, we run 200 experiments
for each value of β and plot the 95% confidence interval of the correlation of the vector recovered
with the signal vector. We will compare our method to two type of results:

• Other algorithmic methods: the melonic (tensor unfolding) and the homotopy. To the best
of our knowledge, they give the state of art respectively for the symmetric and asymmet-
ric tensor (Biroli et al. (2020)). Other methods exist but are either too computationally
expensive (sum of squares) or are variants of these algorithms.

• Information-theoretical results: In (Richard & Montanari (2014)), it was proven that com-
puting the global minimum v of the function v 7→ Tijkvivjvk recovers the signal vector v0

above a theoretical threshold βth = 2.87
√
n but with exponential time, and that no other ap-

proach can do significantly better than that. Thus, we plot in red dashed line denoted ”perf”
the deep minimum that is closest to v0, by using gradient method with an initialization in
v0.

5 CONCLUSION

In this paper we introduced a novel framework for the tensor PCA based on trace invariants. Within
this framework, we provide different algorithms to detect a signal vector or recover it. These al-
gorithms use tensor contractions that has a high potential of parallelization and computing opti-
mization. We illustrate the practical pertinence of our framework by presenting some examples of
algorithms and prove their ability to detect and recover a signal vector linearly in time for β above
the optimal algorithmic threshold. Note that, one of the proposed detection algorithms requires
only O(1) memory requirement which could be advantageous in some applications. Moreover, we
also show that two well known algorithms (Homotopy and Tensor Unfolding) can be mapped to
our framework and result to simpler graph (e.g. the melonic graph). Important directions of future
research is to apply these new methods to real data.
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