
Oversampling Tabular Data with Deep Generative
Models: Is it worth the effort?

Ramiro D. Camino, Radu State
SnT, University of Luxembourg, Luxembourg

ramiro.camino,radu.state@uni.lu

Christian A. Hammerschmidt
Delft University of Technology, Netherlands

c.a.hammerschmidt@tudelft.nl

Abstract

In practice, machine learning experts are often confronted with imbalanced data.
Without accounting for the imbalance, common classifiers perform poorly, and
standard evaluation metrics mislead the practitioners on the model’s performance.
A standard method to treat imbalanced datasets is under- and oversampling. In this
process, samples are removed from the majority class, or synthetic samples are
added to the minority class. In this paper, we follow up on recent developments
in deep learning. We take proposals of deep generative models and study these
approaches’ ability to provide realistic samples that improve performance on
imbalanced classification tasks via oversampling. Across 160K+ experiments,
we show that the improvements in terms of performance metric, while shown to
be significant when ranking the methods like in the literature, often are minor in
absolute terms, especially compared to the required effort. Furthermore, we notice
that a large part of the improvement is due to undersampling, not oversampling.

1 Introduction

With recent advances in the field of generative adversarial networks (GANs) [13], such as learning to
transfer properties [19], advances in practical aspects [14], or advances in understanding theoretical
aspects [27], it is tempting to apply GANs as tools to problems in data science tasks. Data available
in real-world settings often have quality issues, like class imbalances and the lack of ground truth.
Generative methods learning the distribution of the data using deep learning, such as GANs and
variational autoencoders (VAEs) [20], can help to build solutions. While deep generative models
(DGM) work well on continuous-domain problems such as images and video, they struggle generating
samples in the form of discrete sequences or mixed distributions. This situation occurs partly due to
the inherent difficulty of training networks with discrete outputs: sampling from discrete distributions
is a non-differentiable operation, making it impossible to train the network using backpropagation.
To use DGMs for imputation, simulation, feature extraction, transfer learning, or sampling artificial
data points, these limitations need to be addressed.

In the context of data science and business-oriented applications, data is often tabular, i.e., contains
multiple categorical and numerical variables. Discrete variables are also crucial in natural language
modeling problems and reinforcement learning tasks. While initial proposals focused on continuous
variables, following proposals addressed generating multivariate binary samples [6] or sequential
samples from a single categorical variable [21, 37, 18, 14, 2, 3].

Based on these methods, several papers addressed the issue of generating samples over distributions
of discrete or tabular data, including generating airline data [30] or medical time series [7] as

1st I Can’t Believe It’s Not Better Workshop (ICBINB@NeurIPS 2020), Vancouver, Canada.

well as frameworks to solve tasks such as oversampling [9] or multiple dependent tasks such as
HexaGAN [15]. Nevertheless, comparing the performance of different architectures on a single
task is difficult: Besides using different datasets and multiple setups for hyperparameter search, the
protocols to solve tasks, such as the under- and oversampling ratios, vary from proposal to proposal.

In the following sections, we present related work (Section 2), our protocol and comparision approach
(Section 3), the experiments (Section 4) and our conclusions (Section 5).

2 Related Work

Unsupervised learning from datasets is of interest in many fields, serving different purposes. Examples
include (Bayesian) inference tasks as in [25], where the authors learn Bayesian models using non-
parametric priors over multivariate tabular data, as well as unsupervised feature discovery, extraction,
and transfer [19, 34, 16], and synthetic data for privacy aware applications [6]. In the context of
imbalanced datasets, SMOTE [4] is a well-known method for generating synthetic samples which
combined with an over- and undersampling protocol, can improve classifier performance. Several
variants of SMOTE were proposed [29], each addressing different shortcomings or extending the
applicability of the method to other types of datasets and variable distributions.

On continuous data, GANs [13] have proven to be good at learning data distributions in an unsuper-
vised fashion. By feeding in additional information (such as labels), conditional GANs [28] can learn
to generate samples for specific inputs. On discrete data (e.g., text sequences, categorical data), GANs
face problems leading to comparatively worse performance. Several approaches exist to deal with
discrete data. The Gumbel-Softmax [17] and the Concrete-Distribution [24] were simultaneously
proposed to tackle this problem in the domain of variational autoencoders (VAE) [20]. Later, [21]
adapted the technique to GANs for discrete sequences.

Addressing the same problem, a reinforcement learning approach called SeqGAN [37] interprets
the generator as a stochastic policy and performs gradient policy updates to avoid the problem of
backpropagation with discrete sequences. The discriminator outputs the reinforcement learning
reward for a full sequence, and several simulations generated with a Monte Carlo search are executed
to complete the missing steps.

Adversarially Regularized Autoencoders (ARAE) [18] transform sequences from a discrete vocabu-
lary into a continuous latent space while simultaneously training both a generator (to output samples
from the same latent distribution) and a discriminator (to distinguish between real and fake latent
codes). The approach relies on Wasserstein GAN (WGAN) [1] to improve training stability and
obtain a loss more correlated with sample quality. The main two changes in WGAN consist of
replacing the discriminator with a critic and limiting the critic parameters’ size by a constant.

MedGAN [6], while architecturally similar, is used to synthesize realistic health care patient records.
The method pre-trains an autoencoder, and then the generator returns latent codes as in the previous
case, but they pass that output to the decoder before sending it to the discriminator; therefore, the
discriminator receives either fake or real samples directly instead of latent codes. They propose using
shortcut connections in the generator. Additionally, the authors present the mini-batch averaging
technique to evaluate better the generation of a whole batch instead of individual isolated samples.
Before feeding a batch into the discriminator, mini-batch averaging appends the batch’s average value
per dimension to the batch itself.

An improved version for WGAN is presented in [14] to address the difficulty of training GANs by
adding a gradient penalty to the critic loss (WGAN-GP) and removing the size limitation of the critic
parameters. The authors present a use case for the generation of word sequences, where they claim
that during training, discrete samples can be generated just by sending the outputs of softmax layers
from the generator to the discriminator without sampling from those outputs.

3 Comparison

3.1 Datasets

Datasets like MNIST, ImageNet, and CIFAR are very well known in the domain of computer vision.
Thanks to this, countless studies could compare their findings against others using widely accepted

2

benchmarks. On the other side, when applying deep learning to tabular data, no framework is well
defined. Several papers opted to work with datasets from the UCI Repository [10] on tasks related
to this domain: tabular data imputation [36, 31, 12, 26], imbalanced classification using a latent
space [32], oversampling from deep generative models [9, 35] or all the previous tasks at the same
time [15]. Nevertheless, we want to point out several interesting aspects of the datasets selected across
these studies. First of all, the datasets are usually presented with short names or aliases, leading to
confusion. For example, one dataset referred to as “breast” or “breast-cancer” presents four versions
online with different features, and sometimes it is not very clear which one the study is referring to.
Second, some datasets contain less than a thousand samples or just a few features. While this can be
reasonable for other machine learning models, deep learning models may not reach their full potential
when training with datasets of such dimensions. Finally, most of the classification tasks associated
with imbalanced UCI datasets can be easily solved with state-of-the-art machine learning algorithms
like XGBoost [5] without much need of any additional treatment. For example, one study [32]
showed that 14 datasets from the UCI Repository could be classified with ROCAUC > 0.9 (and
for most of the cases very close to 1) with a simple Random Forest [23]. Before starting this study,
we used XGBoost to classify the ten most used datasets from the UCI repository among the related
work. Some of them are multi-class problems, so we transformed them into several one-vs-all binary
classification problems and several one-vs-one binary classification problems by pairing two classes
at a time. We found only two cases where the test f1 score was less than 0.95: “Adult”1 and “Default
of Credit Card Clients”2.

3.2 Deep Generative Models

In this study, we compare two well known deep generative architectures: GAN [13] and VAE [20].
We include as well two variants of GAN that involve autoencoders, ARAE [18] and MedGAN [6],
adapting the reconstruction loss by separating the features per variable (e.g., all the features from a
one-hot-encoded categorical variable). Each separated reconstruction loss depends on the variable
type: cross-entropy for categorical variables, binary cross-entropy for binary variables, and mean
squared error for numerical variables. This approach is based on previous work using GAN only
with categorical variables [2], and a more complex version can be found in HI-VAE [31]. We
further include Multi-Variable [2, 3] (MV) versions of the previous models. We selected gumbel-
softmax [17, 24] for the categorical activations. For all the Multi-Variable versions of GAN, we use
WGAN [1] instead, and we also add an alternative with WGAN-GP [14].

3.3 Sampling from Deep Generative Models

Among the literature, we found two alternatives to generate synthetic samples with deep generative
models for later use in imbalanced classification tasks. The authors in [11] train a GAN only using the
minority class samples in order to improve the detection of credit card frauds. We call this technique
“minority”. The second method [9] uses a GAN with a condition (the label) as an additional input
for the generator and discriminator. We will refer to this alternative as “conditional”. We propose
an additional technique that we call “rejection”, that consists of training any deep generative model
attaching the label to the rest of the features as an additional variable. Afterward, all the samples
that do not belong to the desired class are discarded during the synthetic generation. For conditional
and rejection, the discriminator received the label as an input. The difference is that when using the
conditional strategy, the label is only a generator input, but when using the rejection strategy, the
label is only a generator output. Additionally, iterative draws are necessary for obtaining a synthetic
sample of a specific size with the rejection strategy, and the procedure could never end. Therefore, a
limit on the number of draws or execution time is needed.

4 Experiments

In this section, we provide the details and the analysis of our experiments. The goal is to provide
an empirical comparison of how different undersampling and oversampling techniques affect the

1http://archive.ics.uci.edu/ml/datasets/adult
2https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

3

classification of imbalanced datasets. The code for classification, undersampling, oversampling, and
all the tasks related to deep generative models can be found online 3.

Table 1: Classification experiments for the “Credit card fraud” dataset.

Part I: Classifier
IR Train f1 Test f1

0.001 0.904± 0.005 0.814± 0.046

Part II: Undersampling→ Classifier
USR Train f1 Test f1
0.007 0.861± 0.009 0.813± 0.057

Part III: Undersampling→ SMOTE Oversampling→ Classifier
Oversampling USR OSR Train f1 Test f1
BorderlineSMOTE 0.004 0.005 0.877± 0.010 0.811± 0.055
RandomOverSampler 0.002 0.007 0.895± 0.006 0.822± 0.052
SMOTE 0.002 0.007 0.891± 0.006 0.831± 0.043
SVMSMOTE 0.002 0.003 0.899± 0.006 0.816± 0.062

Part IV: Undersampling→ DGM Oversampling→ Classifier
DGM Sampling USR OSR Train f1 Test f1
vae Minority 0.002 0.009 0.905± 0.006 0.820± 0.039
arae Minority 0.004 0.005 0.873± 0.014 0.814± 0.052
medgan Minority 0.002 0.010 0.896± 0.006 0.822± 0.042
gan Minority 0.006 0.008 0.860± 0.013 0.820± 0.069
vae Conditional 0.006 0.009 0.871± 0.008 0.817± 0.062
arae Conditional 0.002 0.007 0.902± 0.004 0.816± 0.048
medgan Conditional 0.003 0.007 0.886± 0.007 0.810± 0.056
gan Conditional 0.004 0.010 0.877± 0.011 0.815± 0.051
vae Rejection Timeout
arae Rejection Timeout
medgan Rejection Timeout
gan Rejection Timeout

4.1 Datasets

We select two datasets from the UCI Repository [10]: “Adult” and “Default of credit card clients”.
We also include the “Credit card fraud” dataset presented in [8], which we obtained from the Kaggle
repositories4. This dataset only contains numerical features (most of them from coming from a PCA
transformation) and is highly imbalanced (< 0.001% of the cases are labeled as frauds). In all three
cases, we apply the same preprocessing procedure. We use one-hot-encoding for all the categorical
variables, but we represent binary variables with one binary feature. Additionally, all the numerical
variables are scaled to fit inside the range [0; 1]. We generate metadata indicating for each variable the
type (categorical, binary, or numerical) and the size (number of features). This information is used by
the SMOTE-NC method, the autoencoder reconstruction loss, and the multi-variable architectures.
The code for the preprocessing is available online 5.

4.2 Classification Protocol

All of our experiments involve binary classification tasks implemented with XGBoost [5]. We
compute the mean and standard deviation of the f1 score for the train and test sets over ten equally
sized and disjoint folds. For each dataset, we further separate 25% of the train set as a validation set,
and we run a grid search over several XGBoost hyperparameters (e.g., the max depth and number of
estimators). In the Part I of Tables 1, 2 and 3 we indicate the IR for each dataset along with the best
results. The selected XGBoost hyperparameters are fixed for the experiments in the following parts.

3https://github.com/rcamino/deep-generative-models
4https://www.kaggle.com/mlg-ulb/creditcardfraud
5https://github.com/rcamino/dataset-pre-processing

4

Table 2: Classification experiments for the “Adult” dataset.
Part I: Classifier

IR Train f1 Test f1
0.33 0.743± 0.002 0.716± 0.005

Part II: Undersampling→ Classifier
USR Train f1 Test f1
0.50 0.756± 0.002 0.731± 0.010

Part III: Undersampling→ SMOTE Oversampling→ Classifier
Oversampling USR OSR Train f1 Test f1
ADASYN 0.4 0.6 0.749± 0.001 0.727± 0.010
BorderlineSMOTE 0.5 0.6 0.751± 0.001 0.730± 0.008
KMeansSMOTE 0.5 0.6 0.752± 0.002 0.731± 0.009
RandomOverSampler 0.5 0.6 0.756± 0.002 0.732± 0.007
SMOTE 0.5 0.6 0.752± 0.002 0.732± 0.008
SMOTENC 0.6 0.7 0.662± 0.001 0.642± 0.010
SVMSMOTE 0.5 0.6 0.750± 0.001 0.730± 0.009

Part IV: Undersampling→ DGM Oversampling→ Classifier
DGM Sampling USR OSR Train f1 Test f1
vae Minority 0.5 1.0 0.756± 0.001 0.732± 0.010
mv-vae Minority 0.5 1.0 0.755± 0.002 0.733± 0.010
arae Minority 0.5 1.0 0.755± 0.001 0.733± 0.010
mv-arae Minority 0.5 1.0 0.752± 0.001 0.732± 0.009
medgan Minority 0.5 0.6 0.755± 0.002 0.732± 0.007
mv-medgan Minority 0.6 0.8 0.752± 0.001 0.733± 0.010
gan Minority 0.6 0.7 0.754± 0.001 0.734± 0.010
mv-wgan Minority 0.5 1.0 0.752± 0.002 0.734± 0.008
mv-wgan-gp Minority 0.6 0.7 0.754± 0.001 0.731± 0.009
vae Conditional 0.6 1.0 0.754± 0.002 0.732± 0.008
mv-vae Conditional 0.5 0.6 0.755± 0.001 0.733± 0.007
arae Conditional 0.5 0.9 0.755± 0.002 0.734± 0.009
mv-arae Conditional 0.6 0.9 0.752± 0.002 0.732± 0.010
medgan Conditional 0.5 1.0 0.754± 0.002 0.733± 0.008
mv-medgan Conditional 0.5 0.8 0.753± 0.002 0.732± 0.008
gan Conditional 0.6 0.8 0.755± 0.002 0.733± 0.011
mv-wgan Conditional 0.5 0.6 0.752± 0.002 0.733± 0.005
mv-wgan-gp Conditional 0.6 0.8 0.752± 0.003 0.733± 0.008
vae Rejection 0.5 1.0 0.756± 0.002 0.732± 0.008
mv-vae Rejection 0.7 1.0 0.751± 0.002 0.732± 0.009
arae Rejection 0.5 1.0 0.755± 0.002 0.733± 0.007
mv-arae Rejection 0.6 0.9 0.753± 0.002 0.732± 0.011
medgan Rejection 0.6 0.9 0.753± 0.002 0.733± 0.010
mv-medgan Rejection 0.5 1.0 0.753± 0.001 0.732± 0.008
gan Rejection Timeout
mv-wgan Rejection 0.5 0.7 0.754± 0.002 0.732± 0.007
mv-wgan-gp Rejection 0.5 0.9 0.754± 0.001 0.732± 0.008

4.3 Undersampling and Oversampling

All the under- and oversampling algorithms presented in the experiments that do not involve deep
generative models are taken from the imbalanced-learn library [22]. Both datasets in the experiments
are imbalanced, which means that the imbalance ratio (IR) is less than one, where IR is defined as:

IR =
|{minority class samples}|
|{majority class samples}|

5

Table 3: Classification experiments for the “Default of credit card clients” dataset.
Part I: Classifier

IR Train f1 Test f1
0.28 0.479± 0.006 0.457± 0.036

Part II: Undersampling→ Classifier
USR Train f1 Test f1
0.80 0.552± 0.004 0.534± 0.031

Part III: Undersampling→ SMOTE Oversampling→ Classifier
Oversampling USR OSR Train f1 Test f1
ADASYN 0.8 1.0 0.552± 0.004 0.537± 0.028
BorderlineSMOTE 0.6 0.7 0.550± 0.003 0.535± 0.027
KMeansSMOTE 0.7 1.0 0.549± 0.004 0.537± 0.029
RandomOverSampler 0.8 0.9 0.553± 0.005 0.538± 0.031
SMOTE 0.6 0.8 0.550± 0.004 0.535± 0.031
SMOTENC 0.9 1.0 0.488± 0.003 0.467± 0.029
SVMSMOTE 0.8 0.9 0.549± 0.004 0.534± 0.029

Part IV: Undersampling→ DGM Oversampling→ Classifier
DGM Sampling USR OSR Train f1 Test f1
vae Minority 0.8 0.9 0.550± 0.004 0.535± 0.030
mv-vae Minority 0.8 0.9 0.550± 0.004 0.533± 0.031
arae Minority 0.7 0.8 0.546± 0.004 0.533± 0.030
mv-arae Minority 0.8 0.9 0.548± 0.005 0.535± 0.030
medgan Minority 0.8 0.9 0.546± 0.005 0.534± 0.032
mv-medgan Minority 0.7 0.8 0.543± 0.003 0.534± 0.032
gan Minority 0.8 0.9 0.549± 0.004 0.535± 0.029
mv-wgan Minority 0.8 0.9 0.545± 0.004 0.534± 0.030
mv-wgan-gp Minority 0.8 0.9 0.548± 0.004 0.534± 0.031
vae Conditional 0.7 0.9 0.539± 0.004 0.531± 0.030
mv-vae Conditional 0.7 0.8 0.546± 0.005 0.532± 0.032
arae Conditional 0.8 0.9 0.549± 0.006 0.535± 0.030
mv-arae Conditional 0.8 0.9 0.547± 0.004 0.533± 0.030
medgan Conditional 0.8 0.9 0.548± 0.003 0.535± 0.030
mv-medgan Conditional 0.8 0.9 0.546± 0.004 0.535± 0.032
gan Conditional 0.8 0.9 0.550± 0.003 0.535± 0.029
mv-wgan Conditional 0.8 0.9 0.546± 0.004 0.536± 0.032
mv-wgan-gp Conditional 0.9 1.0 0.545± 0.006 0.534± 0.028
vae Rejection 0.7 0.8 0.543± 0.004 0.532± 0.031
mv-vae Rejection 0.7 0.8 0.545± 0.004 0.534± 0.031
arae Rejection 0.9 1.0 0.546± 0.004 0.532± 0.032
mv-arae Rejection 0.8 0.9 0.547± 0.003 0.534± 0.032
medgan Rejection Timeout
mv-medgan Rejection Timeout
gan Rejection Timeout
mv-wgan Rejection 0.8 0.9 0.547± 0.004 0.535± 0.032
mv-wgan-gp Rejection 0.9 1.0 0.547± 0.004 0.535± 0.033

We undersample the majority class on the train set, applying a random under sampler, removing
samples from the majority class with a uniform probability until reaching the desired sample size
(smaller than the original). The result contains a larger IR that we call the “undersampling ratio”
(USR). Afterward, we train and evaluate the classification model and compute the respective metrics.
In the Part II of Tables 1, 2 and 3 we present the USR that provide the best mean test f1 score for
each dataset. Furthermore, we oversample the minority class on the original train set and also on
each train set that was previously undersampled. The result contains a larger IR that we call the
“oversampling ratio” (OSR). We repeat the process for incrementally larger values for the OSR and
different oversampling algorithms. Note that the OSR can reach values greater than 1 when we grow
the minority class to be bigger than the majority class, but we will not change the classes’ names for

6

clarity. In the Part III of Tables 1, 2 and 3 we present the USR-OSR combination that provide the
best mean test f1 score for each algorithm on each dataset.

4.4 Oversampling with Deep Generative Models

For the final experiments, we combine nine deep generative models (DGM) with three different ways
of sampling from them (presented in Section 3). All the models are implemented with PyTorch [33].
The models’ training is done based on the training set. Additionally, the validation set is also used to
evaluate the reconstruction’s quality when an autoencoder is present in the architecture. After the
model training, the undersampling is applied to the training set, and afterward, the trained model
generates synthetic samples that are appended to the training set based on the OSR. In the Part IV of
Tables 1, 2 and 3 we present the USR-OSR combination that provide the best mean test f1 score for
each dataset. Note that the rejection sampling can “timeout” if it fails to obtain the desired number of
samples after 10,000 iterations.

4.5 Results

We start analyzing the results shown in Table 1 for the dataset “Credit card fraud”. Given that the
dataset contains no categorical or binary features, we do not implement the multi-variable models
for this scenario. The class imbalance is very high, and our experiments involving considerable
changes to the imbalance ratio after under- and oversampling resulted in a significant deterioration
of the classification scores. Small changes on the imbalance ratio after undersampling do not offer
classification improvements either, but oversampling a bit appears to be useful in some cases. In
our experiments with this dataset, SMOTE presents the best classification score, while most of the
deep generative models offer a slight improvement over the classification without oversampling.
Experiments with SMOTE and “minority” GAN were carried out with the same dataset in [11],
where both models presented very close results. Besides the scores for SMOTE, our results are
comparable to this study. We believe that the small discrepancies are related to the stochastic nature
of the experiments. Additionally, we can see by the differences between the train and test metrics
that the classification tends to overfit every case, which is expected considering the small number of
positive samples. Finally, all the models implementing rejection sampling reached a timeout, which is
expected given that the probability of drawing a sample that belongs to the minority class is very low.

Now we compare all the results from Table 2 and Table 3. Regarding the classification baseline
without oversampling or undersampling, we can see that both problems are quite challenging since
the mean test f1 score is considerably far from 1. Furthermore, adding only random undersampling
to the pipeline shows some improvement in Table 2 but presents a considerable improvement in
Table 3. Nevertheless, most of the oversampling techniques (both with and without deep generative
models) only show a slight improvement on the third decimal of the mean test f1 score on top of the
undersampling. The only oversampling algorithm that seems to worsen the classification quality is
SMOTE-NC. Note also that in Table 3 the RandomOverSampler –which is the most straightforward
oversampling technique– performs slightly better than the rest.

5 Discussion and Conclusion

Our experiments show several trends that persist across different generative methods and datasets:
First, undersampling the majority class without any oversampling improves the classifier. Adding
oversampling via a simple baseline such as SMOTE only leads to marginal improvements. Second, all
generative models provide very close results to the SMOTE baselines. Finally, the sampling strategy
does not substantially impact the results’ quality, but rejection sampling is the slowest approach.

It is noteworthy that generative models require different under- and oversampling settings to archive
the best performance. However, regardless of the method used, the absolute improvement on the
classification metric (F1 score) is often minimal. This phenomenon occurs despite results showing
that in a ranking of methods, deep generative methods’ improvement is statistically significantly
better [9]. Even if the f1 score is widely used in this domain, it could be argued that it is not fair to
compare results with this metric between experiments that have different imbalance ratios. We also
computed the area under the Precision-Recall curve for all the experiments, obtaining similar results.
There is not a clear alternative in the literature, which implies a possible research opportunity.

7

It seems that the performance gain given by deep generative models for oversampling has to be seen
in context. They possess a considerably more complicated setup and longer training time than the
best-performing baseline, a simple random under- and oversampling approach.

Regarding the sampling strategies, it is reasonable to expect a lousy sample quality when training deep
learning models with a small amount of data from the minority class. This situation directly affects
the minority and the rejection strategies, but it is even worse for the latter because many draws are
needed to obtain the desired output. On the other side, for the conditional strategy, it is not very clear
if learning the majority class’s distribution would help define better the distribution of the minority
class. Finally, besides the samples’ quality, it is not very clear either if powerful and complex machine
learning algorithms like XGBoost can be benefited by injecting synthetic samples to the minority
class. There might be a combination of simpler models and oversampling methods that could achieve
better results, but following the evidence from this study, finding a useful combination might require
many experiments. Brute forcing through combinations of tools, models, or techniques should not be
the way of practicing science, but there is a lack of general understanding about what these generative
models produce. In the meantime, more modifications to existing ideas keep emerging, claiming
that they perform better than previous ideas by measuring convenient aspects of the experiments or
presenting unfair comparisons. The lack of novelty or the not-so-exciting results is usually frowned
upon by reviewers of top-conferences. Consequently, hours of work are never reported, forcing the
scientific community to venture the same fruitless experiences repeatedly.

References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv preprint

arXiv:1701.07875, 2017.

[2] Ramiro Camino, Christian Hammerschmidt, and Radu State. Generating multi-categorical
samples with generative adversarial networks. arXiv preprint arXiv:1807.01202, 2018.

[3] Ramiro D Camino, Christian A Hammerschmidt, and Radu State. Improving missing data
imputation with deep generative models. arXiv preprint arXiv:1902.10666, 2019.

[4] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE:
synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–
357, 2002.

[5] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pages 785–794, New York, NY, USA, 2016. ACM.

[6] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F. Stewart, and Jimeng
Sun. Generating Multi-label Discrete Patient Records using Generative Adversarial Networks.
arXiv:1703.06490 [cs], March 2017. arXiv: 1703.06490.

[7] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Jimeng Sun.
Generating multi-label discrete patient records using generative adversarial networks. arXiv
preprint arXiv:1703.06490, 2017.

[8] Andrea Dal Pozzolo, Olivier Caelen, Reid A Johnson, and Gianluca Bontempi. Calibrating
probability with undersampling for unbalanced classification. In 2015 IEEE Symposium Series
on Computational Intelligence, pages 159–166. IEEE, 2015.

[9] Georgios Douzas and Fernando Bacao. Effective data generation for imbalanced learning using
conditional generative adversarial networks. Expert Systems with applications, 91:464–471,
2018.

[10] D. Dua and E. Karra Taniskidou. UCI Machine Learning Repository. 2017.

[11] Ugo Fiore, Alfredo De Santis, Francesca Perla, Paolo Zanetti, and Francesco Palmieri. Using
generative adversarial networks for improving classification effectiveness in credit card fraud
detection. Information Sciences, 479:448–455, 2019.

8

[12] Lovedeep Gondara and Ke Wang. Mida: Multiple imputation using denoising autoencoders. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 260–272. Springer,
2018.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages 2672–2680. Curran Associates, Inc., 2014.

[14] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C. Courville.
Improved training of wasserstein gans. In Advances in Neural Information Processing Systems,
pages 5769–5779, 2017.

[15] Uiwon Hwang, Dahuin Jung, and Sungroh Yoon. Hexagan: Generative adversarial nets for real
world classification. arXiv preprint arXiv:1902.09913, 2019.

[16] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-Image Translation
with Conditional Adversarial Networks. arXiv:1611.07004 [cs], November 2016. arXiv:
1611.07004.

[17] Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax.
arXiv:1611.01144 [cs, stat], November 2016. arXiv: 1611.01144.

[18] Junbo, Zhao, Yoon Kim, Kelly Zhang, Alexander M. Rush, and Yann LeCun. Adversarially
Regularized Autoencoders. arXiv:1706.04223 [cs], June 2017. arXiv: 1706.04223.

[19] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learning to
Discover Cross-Domain Relations with Generative Adversarial Networks. arXiv:1703.05192
[cs], March 2017. arXiv: 1703.05192.

[20] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs,
stat], December 2013. arXiv: 1312.6114.

[21] Matt J. Kusner and José Miguel Hernández-Lobato. GANS for Sequences of Discrete Elements
with the Gumbel-softmax Distribution. arXiv:1611.04051 [cs, stat], November 2016. arXiv:
1611.04051.

[22] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine
Learning Research, 18(17):1–5, 2017.

[23] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R news,
2(3):18–22, 2002.

[24] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A Continuous
Relaxation of Discrete Random Variables. arXiv:1611.00712 [cs, stat], November 2016. arXiv:
1611.00712.

[25] Vikash Mansinghka, Richard Tibbetts, Jay Baxter, Pat Shafto, and Baxter Eaves. BayesDB:
A probabilistic programming system for querying the probable implications of data.
arXiv:1512.05006 [cs], December 2015. arXiv: 1512.05006.

[26] Pierre-Alexandre Mattei and Jes Frellsen. Miwae: Deep generative modelling and imputation
of incomplete data. arXiv preprint arXiv:1812.02633, 2018.

[27] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which Training Methods for GANs
do actually Converge? arXiv:1801.04406 [cs], January 2018. arXiv: 1801.04406.

[28] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets. arXiv:1411.1784
[cs, stat], November 2014. arXiv: 1411.1784.

[29] Ajinkya More. Survey of resampling techniques for improving classification performance in
unbalanced datasets. arXiv:1608.06048 [cs, stat], August 2016. arXiv: 1608.06048.

9

[30] Alejandro Mottini, Alix Lheritier, and Rodrigo Acuna-Agost. Airline passenger name record
generation using generative adversarial networks. arXiv preprint arXiv:1807.06657, 2018.

[31] Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera. Handling incomplete
heterogeneous data using vaes. arXiv preprint arXiv:1807.03653, 2018.

[32] Wing WY Ng, Guangjun Zeng, Jiangjun Zhang, Daniel S Yeung, and Witold Pedrycz. Dual
autoencoders features for imbalance classification problem. Pattern Recognition, 60:875–889,
2016.

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. 2017.

[34] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks. arXiv:1511.06434 [cs], November 2015.
arXiv: 1511.06434.

[35] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling
tabular data using conditional gan. In Advances in Neural Information Processing Systems,
pages 7333–7343, 2019.

[36] Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Gain: Missing data imputation using
generative adversarial nets. arXiv preprint arXiv:1806.02920, 2018.

[37] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. SeqGAN: Sequence Generative Adversarial
Nets with Policy Gradient. In AAAI, pages 2852–2858, 2017.

10

	Introduction
	Related Work
	Comparison
	Datasets
	Deep Generative Models
	Sampling from Deep Generative Models

	Experiments
	Datasets
	Classification Protocol
	Undersampling and Oversampling
	Oversampling with Deep Generative Models
	Results

	Discussion and Conclusion

