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ABSTRACT

Choosing the optimizer is considered to be among the most crucial design deci-
sions in deep learning, and it is not an easy one. The growing literature now lists
hundreds of optimization methods. In the absence of clear theoretical guidance
and conclusive empirical evidence, the decision is often made based on anecdotes.
In this work, we aim to replace these anecdotes, if not with a conclusive ranking,
then at least with evidence-backed heuristics. To do so, we perform an extensive,
standardized benchmark of more than a dozen particularly popular deep learning
optimizers while giving a concise overview of the wide range of possible choices.
Analyzing almost 35,000 individual runs, we contribute the following three points:
(i) Optimizer performance varies greatly across tasks. (ii) We observe that eval-
uating multiple optimizers with default parameters works approximately as well
as tuning the hyperparameters of a single, fixed optimizer. (iii) While we can
not discern an optimization method clearly dominating across all tested tasks, we
identify a significantly reduced subset of specific algorithms and parameter choices
that generally lead to competitive results in our experiments. This subset includes
popular favorites and some lesser-known contenders. We have open-sourced all our
experimental results, making them directly available as challenging and well-tuned
baselines.1 This allows for more meaningful comparisons when evaluating novel
optimization methods without requiring any further computational efforts.

1 INTRODUCTION

Large-scale stochastic optimization drives a wide variety of machine learning tasks. Because choosing
the right optimization algorithm and effectively tuning its hyperparameters heavily influences the
training speed and final performance of the learned model, doing so is an important, every-day
challenge to practitioners. Hence, stochastic optimization methods have been a focal point of research
(cf. Figure 1), engendering an ever-growing list of algorithms, many of them specifically targeted
towards deep learning. The hypothetical machine learning practitioner who is able to keep up with
the literature now has the choice among hundreds of methods (cf. Table 2 in the appendix)—each
with their own set of tunable hyperparameters—when deciding how to train their model.

There is limited theoretical analysis that would clearly favor one of these choices over the others.
Some authors have offered empirical comparisons on comparably small sets of popular methods
(e.g. Wilson et al., 2017; Choi et al., 2019; Sivaprasad et al., 2020); but for most algorithms, the
only formal empirical evaluation is offered by the original work introducing the method. Many
practitioners and researchers, meanwhile, rely on personal and anecdotal experience, and informal
discussion on social media or with colleagues. The result is an often unclear, perennially changing
“state of the art” occasionally driven by hype. The key obstacle for an objective benchmark is the
combinatorial cost of such an endeavor posed by comparing a large number of methods on a large
number of problems, with the high resource and time cost of tuning each method’s parameters and
repeating each (stochastic) experiment repeatedly for fidelity.

Offering our best attempt to construct such a comparison, we conduct a large-scale benchmark of
optimizers to further the debate about deep learning optimizers, and to help understand how the
choice of optimization method and hyperparameters influences the training performance. Specifically,

1https://github.com/AnonSubmitter3/Submission543
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Figure 1: Number of times ArXiv titles and abstracts mention each optimizer per year. All non-
selected optimizers from Table 2 in the appendix are grouped into Other.

we examine whether recently proposed methods show an improved performance compared to more
established methods such as SGD or ADAM. Additionally, we are interested in assessing whether
optimization methods with well-working default hyperparameters exist that are able to keep up with
tuned optimization methods. To this end, we evaluate more than a dozen optimization algorithms,
largely selected for their perceived popularity, on a range of representative deep learning problems
(see Figure 4) drawing conclusions from tens of thousands of individual training runs.

Right up front, we want to state clearly that it is impossible to include all optimizers (cf. Table 2 in the
appendix), and to satisfy any and all expectations readers may have on tuning and initialization proce-
dures, or the choice of benchmark problems—not least because everyone has different expectations
in this regard. In our personal opinion, what is needed is an empirical comparison by a third party
not involved in the original works. As a model reader of our work, we assume a careful practitioner
who does not have access to near-limitless resources, nor to a broad range of personal experiences.
As such, the core contributions (in order of appearance, not importance) of our work are:

A concise summary of optimization algorithms and schedules A partly automated, mostly man-
ual literature review provides a compact but extensive list of recent advances in stochastic optimization.
We identify more than a hundred optimization algorithms (cf. Table 2 in the appendix) and more than
20 families of hyperparameter schedules (cf. Table 3 in the appendix) published at least as pre-prints.

An extensive optimizer benchmark on deep learning tasks We conduct a large-scale optimizer
benchmark, specifically focusing on optimization problems arising in deep learning. We evaluate
14 optimizers on eight deep learning problems using four different schedules, tuning over dozens of
hyperparameter settings, to our knowledge, this is the most comprehensive empirical evaluation of
deep learning optimizers to date (cf. Section 1.1 on related work).

An analysis of thousands of optimization runs Our empirical experiments indicate that an opti-
mizer’s performance highly depends on the test problem (see Figure 4). But some high-level trends
emerge, too: (1) Evaluating multiple optimizers with default hyperparameters works approximately
as well as tuning the hyperparameters for a fixed optimizer. (2) Using an additional untuned learning
rate schedule helps on average, but its effect varies greatly depending on the optimizer and the test
problem. (3) While there is no optimizer that clearly dominates across all tested workloads, some
of the algorithms we tested exhibited highly variable performance. Others demonstrated decent
performance consistently. We deliberately refrain from recommending a single one among them,
because we could not find a clear winner with statistical confidence.

An open-source baseline for future optimizer benchmarks Our results are accessible online in
an open and easily accessible form (see footnote on Page 1). These results can thus be used as
competitive and well-tuned baselines for future benchmarks of new algorithms, drastically reducing
the amount of computational budget required for a meaningful optimizer comparison. Our baselines
can easily be expanded, and we encourage others to contribute to this collection.

The high-level result of our benchmark is, perhaps expectedly, not a clear winner. Instead, our
comparison shows that, while some optimizers are frequently decent, they also generally perform
similarly, switching their relative positions in the ranking which can partially be explained by the
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No Free Lunch Theorem (Wolpert & Macready, 1997). A key insight of our comparison is that a
practitioner with a new deep learning task can expect to do about equally well by taking almost
any method from our benchmark and tuning it, as they would by investing the same computational
resources into running a set of optimizers with their default settings and picking the winner.

Possibly the most important takeaway from our comparison is that “there are now enough optimizers.”
Methods research in stochastic optimization should focus on significant (conceptual, functional,
performance) improvements—such as methods specifically suited for certain problem types, inner-
loop parameter tuning or structurally novel methods. We make this claim not to discourage research
but, quite on the contrary, to offer a motivation for more meaningful, non-incremental research.

1.1 RELATED WORK

Following the rapid increase in publications on optimizers, benchmarking these methods for the
application in deep learning has only recently attracted significant interest. Schneider et al. (2019)
introduced a benchmarking framework called DEEPOBS, which includes a wide range of realistic
deep learning test problems together with standardized procedures for evaluating optimizers. Metz
et al. (2020) presented TASKSET, another collection of optimization problems focusing on smaller but
many more test problems. For the empirical analysis presented here, we use DEEPOBS as it provides
optimization problems closer to real-world deep learning tasks. In contrast to our evaluation of existing
methods, TASKSET and its analysis focuses on meta-learning new algorithms or hyperparameters.

Both Choi et al. (2019) and Sivaprasad et al. (2020) analyzed specific aspects of benchmarking
process. Sivaprasad et al. (2020) used DEEPOBS to illustrate that the relative performance of an
optimizer depends significantly on the used hyperparameter tuning budget. The analysis by Choi
et al. (2019) supports this point, stating that “the hyperparameter search space may be the single
most important factor explaining the rankings.” They further stress a hierarchy among optimizers,
demonstrating that, given sufficient hyperparameter tuning, more general optimizers can never be
outperformed by special cases. In their study, however, they manually chose a hyperparameter search
space per optimizer and test problem basing it either on prior published results, prior experiences,
or pre-tuning trials. Here we instead aim to identify well-performing optimizers in the case of a
less extensive tuning budget and especially when there is no prior knowledge about well-working
hyperparameter values for each specific test problem. We further elaborate on the influence of our
chosen hyperparameter search strategy in Section 4 discussing the limitations of our empirical study.

Our work is also related to empirical generalization studies of adaptive methods, such as that of
Wilson et al. (2017) which sparked an extensive discussion whether adaptive methods (e.g. ADAM)
tend to generalize worse than standard first-order methods (i.e. SGD).

2 BENCHMARKING PROCESS

Any benchmarking effort requires tricky decisions on the experimental setup that influence the
result. Evaluating on a specific task or picking a certain tuning budget, for example, may favor or
disadvantage certain algorithms (Sivaprasad et al., 2020). It is impossible to avoid these decisions or
to cover all possible choices. Aiming for generality, we evaluate the performance on eight diverse
real-world deep learning problems from different disciplines (Section 2.1). From a collection of more
than a hundred deep learning optimizers (Table 2 in the appendix) we select 14 of the most popular
and most promising choices (cf. Figure 1) for this benchmark (Section 2.2). For each test problem
and optimizer we evaluate all possible combinations of three different tuning budgets (Section 2.3)
and four selected learning rate schedules (Section 2.4), thus covering the following combinatorial
space:

Problem
P1
P2
. . .

P8


8

×

Optimizer
AMSBound
AMSGrad
. . .

SGD


14

×

Tuning
one-shot
small budget
large budget


3

×

Schedule
constant
cosine decay
cosine warm restarts
trapezoidal


4

.

Combining those options results in 1,344 possible configurations and roughly 35,000 individual runs.
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Table 1: Summary of test problems used in our experiments. The exact model configurations can be
found in the work of Schneider et al. (2019).

Data set Model Task Metric Batch Budget
size in epochs

P1 Artificial data set Noisy quadratic Minimization Loss 128 100
P2 MNIST VAE Generative Loss 64 50
P3 Fashion-MNIST Simple CNN: 2c2d Classification Accuracy 128 100
P4 CIFAR-10 Simple CNN: 3c3d Classification Accuracy 128 100

P5 Fashion-MNIST VAE Generative Loss 64 100
P6 CIFAR-100 All-CNN-C Classification Accuracy 256 350
P7 SVHN Wide ResNet 16-4 Classification Accuracy 128 160
P8 War and Peace RNN NLP Accuracy 50 200

2.1 TEST PROBLEMS

We consider the eight optimization tasks summarized in Table 1, available as the “small” (P1–P4)
and “large” (P5–P8) problem sets, respectively, together forming the default collection of DEEPOBS.
A detailed description of these problems, including architectures, training parameters, etc. can be
found in the work of Schneider et al. (2019).2 DEEPOBS’ test problems provide several performance
metrics, including the training and test loss, the validation accuracy, etc. While these are all relevant,
any comparative evaluation of optimizers requires picking only a few, if not just one particular
performance metric. For our analysis (Section 3), we focus on the final test accuracy (or the final test
loss, if no accuracy is defined for this problem). This metric captures, for example, the optimizer’s
ability to generalize and is thus highly relevant for practical use. Our publicly released results include
all metrics for completeness. An example of training loss performance is shown in Figure 16 in the
appendix. Accordingly, the tuning (Section 2.3) is done with respect to the validation metric. We
discuss possible limitations resulting from these choices in Section 4.

2.2 OPTIMIZER SELECTION

In Table 2 in the appendix we collect over a hundred optimizers introduced for, suggested for, or used
in deep learning. This list was manually and incrementally collected by multiple researchers trying
to keep up with the field over recent years. It is thus necessarily incomplete, although it may well
represent one of the most exhaustive of such collections. Even this incomplete list, though, contains
too many entries for a meaningful benchmark with the degrees of freedom collected above. This is a
serious problem for research: Even an author of a new optimizer, let alone a practitioner, could not
possibly be expected to compare their work with every possible competing method.

We thus selected a subset of 14 optimizers, which we consider to be currently the most popular
choices in the community (see Table 4 in the appendix). These do not necessarily reflect the “best”
algorithms, but are either commonly used by practitioners and researchers, or have recently generated
enough attention to garner interest. Our selection is focused on first-order optimization methods, both
due to their prevalence for non-convex continuous optimization problems in deep learning as well as
to simplify the comparison. Whether there is a significant difference between these optimizers or if
they are inherently redundant is one of the questions this work investigates.

With our list, we tried to focus on optimization algorithms over techniques, although we acknowledge,
the line being very blurry. Techniques such as averaging weights (Izmailov et al., 2018, e.g.) or
ensemble methods (Garipov et al., 2018, e.g.) have been shown to be simple but effective at improving
the optimization performance. Those methods, however, can be applied to all methods in our lists,
similar to regularization techniques, learning rate schedules, or tuning methods and we have, therefore,
decided to omit them from Table 2.

2All experiments were performed using version 1.2.0-beta of DEEPOBS and TensorFlow version 1.15
Abadi et al. (2015).
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2.3 TUNING

Budget Optimization methods for deep learning regularly expose hyperparameters to the user.
The user sets them either by relying on the default suggestion; using experience from previous
experiments; or using additional tuning runs to find the best-performing setting. All optimizers in our
benchmark have tunable hyperparameters, and we consider three different tuning budgets.

The first budget consists of just a single run. This one-shot budget uses the default values proposed
by the original authors, where available (Table 4 in the appendix lists the default parameters). If an
optimizer performs well in this setting, this has great practical value, as it drastically reduces the
computational resources required for training. The other budgets consist of 25 and 50 tuning runs for
what we call the small and large budget settings, respectively.

We only use a single seed for tuning, then repeat the best setting 10 times using different seeds.
This allows us to report standard deviations in addition to means, assessing stability. Progressing
in this way has the “feature” that our tuning process can sometimes pick “lucky” seeds, which do
not perform as well when averaging over multiple runs. This is arguably a good reflection of reality.
Stable optimizers should be preferred in practice, which is thus reflected in our benchmark. See
Appendix C for further analysis. By contrast, using all 10 random seeds for tuning as well would
drastically increase cost, not only for this benchmark, rendering it practically infeasible, but also as
an approach for the practical user. Appendix D explores this aspect further: If anything, re-tuning
would further broaden the distribution of results.

Tuning method We tune parameters by random search, for both the small and the large budget.
Random search is a common choice in practice due to its efficiency advantage over grid search
(Bergstra & Bengio, 2012) and its ease of implementation and parallelization compared to Bayesian
optimization (see also Section 4). A minor complication of random search is that the sampling
distribution affects the optimizer’s performance. One can think of the sampling distribution as a
prior over good parameter settings, and bad priors consequently ruin performance. We followed the
mathematical bounds and intuition provided by the optimizers’ authors for relevant hyperparameters.
The resulting sampling distributions can be found in Table 4 in the appendix. In case there is no prior
knowledge provided in the cited work we chose similar distributions for similar hyperparameters
across different optimizers. Even though a hyperparameter might have a similar naming throughout
different optimization algorithms (e.g. learning rate α), its appropriate search space can differ across
optimizers. Without grounded heuristics on how the hyperparameters differ between optimizers, the
most straightforward approach for any user is to use the same search space.

What should be considered a hyperparameter? There’s a fuzzy boundary between (tunable)
hyperparameters and (fixed) design parameters. A recently contentious example is the ε in adaptive
learning rate methods like ADAM. It was originally introduced as a safeguard against division by
zero, but has recently been re-interpreted as a problem-dependent hyperparameter choice (see Choi
et al. (2019) for a discussion). Under this view, one can actually consider several separate optimizers
called ADAM: From an easy-to-tune but potentially limited ADAMα, only tuning the learning rate,
to the tricky-to-tune but all-powerful ADAMα,β1,β2,ε, which subsumes SGD as a corner case in its
hyperparameter space. In our benchmark, we include ADAMα,β1,β2 as a popular choice. While they
share the same update rule, we consider them to be different optimizers.

2.4 SCHEDULES

The literature on learning rate schedules is now nearly as extensive as that on optimizers (cf. Table 3
in the appendix). In theory, schedules can be applied to all hyperparameters of an optimization
algorithm but to keep our configuration space feasible, we only apply schedules to the learning rate,
by far the most popular practical choice (Goodfellow et al., 2016; Zhang et al., 2020). We choose
four different learning rate schedules, trying to cover all major types of schedules (see Appendix E):

• A constant learning rate schedule;
• A cosine decay (Loshchilov & Hutter, 2017) as an example of a smooth decay;
• A cosine with warm restarts schedule (Loshchilov & Hutter, 2017) as a cyclical schedule;
• A trapezoidal schedule (Xing et al., 2018) from the warm-up schedules (Goyal et al., 2017).
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3 RESULTS

How well do optimizers work out-of-the-box? By comparing each optimizer’s one-shot results
against the tuned versions of all 14 optimizers, we can construct a 14× 14 matrix of performance
gains. Figure 2 illustrates this on five test problems showing improvements by a positive sign and a
green cell. Detailed plots for all problems are in Figures 9 and 10 in the appendix. For example, the
bottom left cell of the largest matrix in Figure 2 shows that AMSBOUND (1) tuned using a small
budget performs 2.5% better than SGD (14) with default parameters on this specific problem.
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Figure 2: The absolute test set performance improvement after switching from any untuned optimizer
(y-axis, one-shot) to any tuned optimizer (x-axis, small budget) as an average over 10 random seeds
for the constant schedule. We discuss the unintuitive occurrence of negative diagonal entries in
Appendix F. The colormap is capped at ±3 to improve presentation, although larger values occur.

A green row in Figure 2 indicates that an optimizer’s default setting is performing badly, since it
can be beaten by any well-tuned competitor. We can observe badly-performing default settings for
MOMENTUM, NAG and SGD, advocating the intuition that non-adaptive optimization methods
require more tuning, but also for AMSGRAD and ADADELTA. This is just a statement about
the default parameters suggested by the authors or the popular frameworks, well-working default
parameters might well exist for those methods. Conversely, a white & red row signals a well-
performing default setting, since even tuned optimizers cannot significantly outperform this algorithm.
ADAM, NADAM and RADAM, as well as AMSBOUND and ADABOUND all have white or red rows
on several (but not all!) test problems, supporting the rule of thumb that adaptive methods have
well-working default parameters. Conversely, green (or red) columns highlight optimizers that,
when tuned, perform better (or worse) than all untuned optimization methods. We do not observe
such columns consistently across tasks. This supports the conclusion that an optimizer’s performance
is heavily problem-dependent and that there is no single best optimizer across workloads.

Figures 9 to 12 in the appendix and our conclusions from them suggest an interesting alternative
approach for machine learning practitioners: Instead of picking a single optimizer and tuning its
hyperparameters, trying out multiple default setting optimizers and picking the best one should yield
competitive results with less computational and tuning choice efforts. The similarity of those two
approaches might be due to the fact that optimizers have implicit learning rate schedules and trying
out different optimizers is similar to trying out different (well-tested) schedules (Agarwal et al., 2020).

How much do tuning and schedules help? We consider the final performance achieved by varying
budgets and schedules to quantify the usefulness of tuning and applying parameter-free schedules
(Figure 3). While there is no clear trend for any individual setting (gray lines), in the median we
observe that increasing the budget improves performance, albeit with diminishing returns. For
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example, using the large budget without any schedule leads to a median relative improvement of the
performance of roughly 3.4 % compared to the default parameters (without schedule).

Similarly, applying a parameter-free (i.e. untuned) schedule improves median performance. For
example, the large tuning budget coupled with a trapezoidal learning rate schedule leads to a median
relative improvement of roughly 5.3 % compared to the default parameters. However, while these
trends hold in the median, their individual effect varies wildly among optimizers and test problems,
as is apparent from the noisy structure of the individual lines shown in Figure 3.
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Figure 3: Lines in gray (—, smoothed by cubic splines for visual guidance only) show the relative
improvement for a certain tuning and schedule (compared to the one-shot tuning without schedule)
for all 14 optimizers on all eight test problems. The median over all lines is plotted in orange (—)
with the shaded area (z) indicating the area between the 25th and 75th percentile.

Which optimizers work well after tuning? Figure 4 compares the optimizers’ performance across
the test problems. There is no single optimizer that dominates its competitors across all tasks. Never-
theless, some optimizers generally perform well, while others vary wildly in their behavior. Further
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Figure 4: Mean test set performance over 10 random seeds of all tested optimizers on all eight
optimization problems using the large budget for tuning and no learning rate schedule. One standard
deviation for the tuned ADAM optimizer is shown with a red error bar (I; error bars for other methods
omitted for legibility). The performance of untuned ADAM (t) and ADABOUND (s) are marked for
reference. The upper bound of each axis represents the best performance achieved in the benchmark,
while the lower bound is chosen in relation to the performance of ADAM with default parameters.

supporting the hypothesis of previous sections, we note that taking the best out of a small set of un-
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tuned optimizers — for example, ADAM and ADABOUND— frequently results in competitive overall
performance, even compared to well-tuned optimizers. Combining these runs with a tuned version
of ADAM (or variants thereof) generally yields competitive results in our benchmark. Nevertheless,
achieving (or getting close to) the absolute best performance still requires testing multiple optimizers.
Which optimizer wins in the end, though, is problem-dependent: optimizers that achieve top scores on
one problem can perform rather badly on other tasks. We note in passing that the individual optimizer
rankings can change when considering e.g. a smaller budget or an additional learning rate schedule
(see Figures 13 to 15 in the appendix). However, the overall trends described here are consistent.

4 LIMITATIONS

Any empirical benchmark has constraints and limitations. Here we highlight some of them and
characterize the context within which our results should be considered.

Generalization of the results By using the test problems from DEEPOBS, which span models
and data sets of varying complexity, size, and different domains, we aim for generalization. Our
results are, despite our best efforts, reflective of not just these setups, but also to the chosen training
parameters, the software framework, and further unavoidable choices. The design of our comparisons
aims to be close to what an informed practitioners would encounter in practice. It goes without
saying that even a carefully curated range of test problems cannot cover all challenges of machine
learning or even just deep learning. In particular, our conclusions may not generalize to other types
of workloads such as GANs, reinforcement learning, or applications where e.g. memory usage is
crucial. Similarly, our benchmark does not cover more large-scale problems such as ImageNet (Deng
et al., 2009) or transformer models (Vaswani et al., 2017) for machine translation. Studying, whether
there are systematic differences between these types of optimization problems presents an interesting
avenue for further research.

We don’t consider this study the definitive work on benchmark deep learning optimizers, but rather
an important step in the right direction. While our comparison includes many “dimensions” of
deep learning optimization, e.g. by considering different problems, tuning budgets, and learning
rate schedules, there are many more. To keep the benchmark feasible, we chose to use the fixed
L2-regularization and batch size that DEEPOBS suggests for each problem. We also did not include
optimization techniques such as weight averaging or ensemble methods as they can be combined
with all evaluated optimizers. Future works could study how these techniques interact with different
optimization methods. However, to keep our benchmark feasible, we have selected what we believe
to be the most important aspects affecting an optimizer comparison. We hope, that our study lays the
groundwork so that other works can build on it and analyze these questions.

Influence of the hyperparameter search strategy As noted by, e.g., Choi et al. (2019) and
Sivaprasad et al. (2020), the hyperparameter tuning method, its budget, and its search domain,
can significantly affect performance. By reporting results from three different hyperparameter
optimization budgets (including the tuning-free one-shot setting) we try to quantify the effect of
tuning. We argue that our random search process presents a realistic setting for many but certainly
not all deep learning practitioners. One may criticize our approach as simplistic, but note that
more elaborate schemes, in particular Bayesian optimization, would multiply the number of design
decisions (kernels, search utilities, priors, and scales) and thus significantly complicate the analysis.

The individual hyperparameter sampling distributions significantly affect the relative rankings of the
optimizers. A badly chosen search space can make tuning next to impossible. Note, though, that this
problem is inherited by practitioners. It is arguably an implicit flaw of an optimizer to not come with
well-identified search spaces for its hyperparameters and should thus be reflected in a benchmark.

5 CONCLUSION

Faced with an avalanche of research to develop new stochastic optimization methods, practitioners are
left with the near-impossible task of not just picking a method from this ever-growing list, but also to
guess or tune hyperparameters for them, even to continuously tune them during optimization. Despite
efforts by the community, there is currently no method that clearly dominates the competition.

8
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We have provided an extensive empirical benchmark of optimization methods for deep learning. It
reveals structure in the crowded field of optimization for deep learning: First, although many methods
perform competitively, a subset of methods tends to come up near the top across the spectrum of
problems. Secondly, tuning helps about as much as trying other optimizers. Our open data set allows
many, more technical observations, e.g., that the stability to re-runs is an often overlooked challenge.

Perhaps the most important takeaway from our study is hidden in plain sight: the field is in danger of
being drowned by noise. Different optimizers exhibit a surprisingly similar performance distribution
compared to a single method that is re-tuned or simply re-run with different random seeds. It is
thus questionable how much insight the development of new methods yields, at least if they are
conceptually and functionally close to the existing population. We hope that benchmarks like ours can
help the community to rise beyond inventing yet another optimizer and to focus on key challenges,
such as automatic, inner-loop tuning for truly robust and efficient optimization. We are releasing our
data to allow future authors to ensure that their method contributes to such ends.

9
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A LIST OF OPTIMIZERS AND SCHEDULES CONSIDERED
Table 2: List of optimizers we considered for our benchmark. Note, that this is still far from being
a complete list of all existing optimization methods applicable to deep learning, but only a subset,
comprising of some of the most popular choices.

Name Ref. Name Ref.

ACClip (Zhang et al., 2020) LARS (You et al., 2017)
ADAHESSIAN (Yao et al., 2020) LookAhead (Zhang et al., 2019)
ALI-G (Berrada et al., 2020) M-SVAG (Balles & Hennig, 2018)
AMSBound (Luo et al., 2019) MTAdam (Malkiel & Wolf, 2020)
AMSGrad (Reddi et al., 2018) Nesterov (Nesterov, 1983)
ARSG (Chen et al., 2019b) Polyak (Polyak, 1964)
AcceleGrad (Levy et al., 2018) MVRC-1 (Chen & Zhou, 2020)
AdaAlter (Xie et al., 2019) MVRC-2 (Chen & Zhou, 2020)
AdaBatch (Devarakonda et al., 2017) NAMSB (Chen et al., 2019b)
AdaBayes (Aitchison, 2020) NAMSG (Chen et al., 2019b)
AdaBayes-SS (Aitchison, 2020) ND-Adam (Zhang et al., 2017)
AdaBlock (Yun et al., 2019) Nadam (Dozat, 2016)
AdaBound (Luo et al., 2019) Noisy Adam (Zhang et al., 2018)
AdaComp (Chen et al., 2018) Noisy K-FAC (Zhang et al., 2018)
AdaFTRL (Orabona & Pál, 2015) NosAdam (Huang et al., 2019)
AdaFix (Bae et al., 2019) Novograd (Ginsburg et al., 2019)
AdaFom (Chen et al., 2019a) PAGE (Li et al., 2020b)
AdaLoss (Teixeira et al., 2019) PAL (Mutschler & Zell, 2020)
AdaMax (Kingma & Ba, 2015) Padam (Chen et al., 2020)
AdaMod (Ding et al., 2019) PolyAdam (Orvieto et al., 2019)
AdaScale (Johnson et al., 2020) PowerSGD (Vogels et al., 2019)
AdaSGD (Wang & Wiens, 2020) PowerSGDM (Vogels et al., 2019)
AdaShift (Zhou et al., 2019) ProbLS (Mahsereci, 2018)
AdaSqrt (Hu et al., 2019) PStorm (Xu, 2020)
AdaX (Li et al., 2020a) QHAdam (Ma & Yarats, 2019)
AdaX-W (Li et al., 2020a) QHM (Ma & Yarats, 2019)
Adadelta (Zeiler, 2012) RAdam (Liu et al., 2020)
Adagrad (Duchi et al., 2011) RMSProp (Tieleman & Hinton, 2012)
Adam (Kingma & Ba, 2015) RMSterov (Choi et al., 2019)
AdamAL (Tao et al., 2019) Ranger (Wright, 2020b)
AdamNC (Reddi et al., 2018) RangerLars (Grankin, 2020)
AdamP (Heo et al., 2020) SAMSGrad (Tong et al., 2019)
AdamT (Zhou et al., 2020) SAdam (Wang et al., 2020b)
AdamW (Loshchilov & Hutter, 2019) SC-Adagrad (Mukkamala & Hein, 2017)
AdamX (Tran & Phong, 2019) SC-RMSProp (Mukkamala & Hein, 2017)
Adathm (Sun et al., 2019) SDProp (Ida et al., 2017)
ArmijoLS (Vaswani et al., 2019) SGD (Robbins & Monro, 1951)
AvaGrad (Savarese et al., 2019) SGD-BB (Tan et al., 2016)
BAdam (Salas et al., 2018) SGD-G2 (Ayadi & Turinici, 2020)
BGAdam (Bai & Zhang, 2019) SGDM (Liu & Luo, 2020)
BRMSProp (Aitchison, 2020) SGDP (Heo et al., 2020)
BSGD (Hu et al., 2020) SGDR (Loshchilov & Hutter, 2017)
C-ADAM (Tutunov et al., 2020) SHAdagrad (Huang et al., 2020)
CProp (Preechakul & Kijsirikul, 2019) SKQN (Yang et al., 2020)
Cool Momentum (Borysenko & Byshkin, 2020) S4QN (Yang et al., 2020)
Compositional ADAM (Tutunov et al., 2020) SNGM (Zhao et al., 2020)
Curveball (Henriques et al., 2019) SRSGD (Wang et al., 2020a)
Dadam (Nazari et al., 2019) SWATS (Keskar & Socher, 2017)
DeepMemory (Wright, 2020a) SWNTS (Chen et al., 2019c)
DiffGrad (Dubey et al., 2020) SADAM (Tong et al., 2019)
Eve (Longhi, 2017) Shampoo (Anil et al., 2020; Gupta et al., 2018)
Gadam (Zhang & Gouza, 2018) SignAdam++ (Wang et al., 2019a)
GOLS-I (Kafka & Wilke, 2019) SignSGD (Bernstein et al., 2018)
Gravilon (Kelterborn et al., 2020) SoftAdam (Fetterman et al., 2019)
HAdam (Jiang et al., 2019) S-SGD (Sung et al., 2020)
HyperAdam (Wang et al., 2019b) TAdam (Ilboudo et al., 2020)
K-BFGS (Goldfarb et al., 2020) VAdam (Khan et al., 2018)
K-BFGS(L) (Goldfarb et al., 2020) VR-SGD (Shang et al., 2020)
KFAC (Martens & Grosse, 2015) WNGrad (Wu et al., 2018)
KFLR (Botev et al., 2017) YellowFin (Zhang & Mitliagkas, 2019)
KFRA (Botev et al., 2017) Yogi (Zaheer et al., 2018)
L4Adam (Rolínek & Martius, 2018) vSGD-b (Schaul et al., 2013)
L4Momentum (Rolínek & Martius, 2018) vSGD-fd (Schaul & LeCun, 2013)
LAMB (You et al., 2020) vSGD-g (Schaul et al., 2013)
LaProp (Ziyin et al., 2020) vSGD-l (Schaul et al., 2013)
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Table 3: Overview of commonly used parameter schedules. Note, while we list the schedules
parameters, it isn’t clearly defined what aspects of a schedule are (tunable) parameters and what is
a-priori fixed. In this column, α0 denotes the initial learning rate, αlo and αup the lower and upper
bound, ∆t indicates an epoch count at which to switch decay styles, k denotes a decaying factor.

Name Ref. Illustration Parameters

Constant α0

Step Decay constant factor α0, ∆t1, . . . , k

multi-step α0,∆t1, . . . ,
k1, . . .

Smooth Decay linear decay e.g. (Goodfellow et al., 2016) α0, (∆t, αlo)

polynomial decay α0, k, (αlo)

exponential decay α0, k, (αlo)

inverse time decay e.g. (Bottou, 2012) α0, k, (αlo)

cosine decay (Loshchilov & Hutter, 2017) α0, (αlo)

linear cosine decay (Bello et al., 2017) α0, (αlo)

Cyclical triangular (Smith, 2017) αlo, αup,∆t

triangular
+ decay

(Smith, 2017) αlo, αup,∆t, k

triangular
+ exponential decay

(Smith, 2017) αlo, αup,∆t

cosine
+ warm restarts

(Loshchilov & Hutter, 2017) αup,∆t, (αlo)

cosine
+ warm restarts
+ decay

(Loshchilov & Hutter, 2017) αup,∆t, k, (αlo)

Warmup constant warmup e.g. (He et al., 2016) αlo, α0,∆t

gradual warmup (Goyal et al., 2017) α0,∆t, (αlo)

gradual warmup
+ multi-step decay

(Goyal et al., 2017) α0,∆t,∆tsteps, k1, . . . , (αlo)

gradual warmup
+ step number decay

(Vaswani et al., 2017) α0,∆t, (αlo)

slanted triangular (Howard & Ruder, 2018) α0,∆t, (αlo)

long trapezoid (Xing et al., 2018) α0,∆tup,∆tdown, (αlo)

Super-Convergence 1cycle (Smith & Topin, 2017) αup,∆t,∆tcutoff, (αlo)
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B LIST OF OPTIMIZERS SELECTED

Table 4: Selected optimizers for our benchmarking process with their respective color, hyperparame-
ters, default values, tuning distributions and scheduled hyperparameters. Here, LU(·, ·) denotes the
log-uniform distribution while U{·, ·} denotes the discrete uniform distribution.

Optimizer Ref. Parameters Default Tuning
Distribution

Scheduled

AMSBound (Luo et al., 2019) α 10−3 LU(10−4, 1) 3

αl 0.1 LU(10−3, 0.5)

β1 0.9 LU(0.5, 0.999)

β2 0.999 LU(0.8, 0.999)

γ 10−3 LU(10−4, 10−1)

ε 10−8 7

AMSGrad (Reddi et al., 2018) α 10−2 LU(10−4, 1) 3

β1 0.9 LU(0.5, 0.999)

β2 0.999 LU(0.8, 0.999)

ε 10−8 7

AdaBound (Luo et al., 2019) α 10−3 LU(10−4, 1) 3

αl 0.1 LU(10−3, 0.5)

β1 0.9 LU(0.5, 0.999)

β2 0.999 LU(0.8, 0.999)

γ 10−3 LU(10−4, 10−1)

Adadelta (Zeiler, 2012) α 10−3 LU(10−4, 1) 3

ε 10−8 7

1− ρ 0.95 LU(10−4, 1)

Adagrad (Duchi et al., 2011) α 10−2 LU(10−4, 1) 3

ε 10−7 7

Adam (Kingma & Ba, 2015) α 10−3 LU(10−4, 1) 3

β1 0.9 LU(0.5, 0.999)

β2 0.999 LU(0.8, 0.999)

ε 10−8 7

Lookahead (Zhang et al., 2019) α 0.5 LU(10−4, 1)

Momentum αf 10−2 LU(10−4, 1) 3

abbr. LA(Mom.) k 5 U{1, 20}
1− ρ 0.99 LU(10−4, 1)

Lookahead (Zhang et al., 2019) α 0.5 LU(10−4, 1)

RAdam αf 10−3 LU(1e− 4, 1) 3

abbr. LA(RAdam) β1 0.9 LU(0.5, 0.999)

β2 0.999 LU(0.8, 0.999)

ε 10−7 7

k 5 U{1, 20}

Momentum (Polyak, 1964) α 10−2 LU(10−4, 1) 3

1− ρ 0.99 LU(10−4, 1)

NAG (Nesterov, 1983) α 10−2 LU(10−4, 1) 3

1− ρ 0.99 LU(10−4, 1)

NAdam (Dozat, 2016) α 10−3 LU(10−4, 1) 3

β1 0.9 LU(0.5, 0.999)

β2 0.999 LU(0.8, 0.999)

ε 10−7 7

RAdam (Liu et al., 2020) α 10−3 LU(10−4, 1) 3

β1 0.9 LU(0.5, 0.999)

β2 0.999 LU(0.8, 0.999)

ε 10−7 7

RMSProp (Tieleman & Hinton, 2012) α 10−3 LU(10−4, 1) 3

ε 10−10 7

1− ρ 0.9 LU(10−4, 1)

SGD (Robbins & Monro, 1951) α 10−2 LU(10−4, 1) 3

14



Under review as a conference paper at ICLR 2021

C ROBUSTNESS TO RANDOM SEEDS

Data subsampling, random weight initialization, dropout and other aspects of deep learning introduce
stochasticity to the training process. As such, judging the performance of an optimizer on a single
run may be misleading due to random fluctuations. In our benchmark we use 10 different seeds
of the final setting for each budget in order to judge the stability of the optimizer and the results.
However, to keep the magnitude of this benchmark feasible, we only use a single seed while tuning,
analogously to how a single user would progress. This means that our tuning process can sometimes
choose hyperparameter settings which might not even converge for seeds other than the one used for
tuning.

Figure 5 illustrates this behavior on an example problem where we used 10 seeds throughout a
tuning process using grid search. The figure shows that in the beginning performance increases when
increasing the learning rate, followed by an area were it sometimes works but other times diverges.
Picking hyperparameters from this “danger zone” can lead to unstable results. In this case, where
we only consider the learning rate, it is clear that decreasing the learning rate a bit to get away from
this “danger zone” would lead to a more stable, but equally well-performing algorithm. In more
complicated cases, however, we are unable to use a simple heuristic such as this. This might be the
case, for example, when tuning multiple hyperparameters or when the effect of the hyperparameter
on the performance is less straight forward. Thus, this is a problem not created by improperly using
the tuning method, but by an unstable optimization method.
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Learning rate
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Figure 5: Performance of SGD on a simple multilayer perceptron. For each learning rate, markers in
orange (6) show the initial seed which would be used for tuning, blue markers (6) illustrate nine
additional seeds with otherwise unchanged settings. The mean over all seeds is plotted as a blue line
(—), showing one standard deviation as a shaded area (z).

In our benchmark, we observe in total 49 divergent seeds for the small budget and 56 for the large
budget, or roughly 1% of the runs in each budget. Most of them occur when using SGD (23 and
18 cases for the small and large budget respectively), MOMENTUM (13 and 17 cases for the small
and large budget respectively) or NAG (7 and 12 cases for the small and large budget respectively),
which might indicate that adaptive methods are less prone to this kind of behavior. For the small
budget tuning, none of these cases occur when using a constant schedule (4 for the large budget),
and most of them occur when using the cosine with warm restarts schedule (27 and 25 cases for the
small and large budget respectively). However, as our data on diverging seeds is very limited, it is not
conclusive enough to draw solid conclusions.
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D RE-TUNING EXPERIMENTS

In order to test the stability of our benchmark and especially the tuning method, we selected two
optimizers in our benchmark and re-tuned them on all test problems a second time. We used
completely independent random seeds for both tuning and the 10 repetitions with the final setting.
Figure 6 and Figure 7 show the distribution of all 10 random seeds for both the original tuning as well
as the re-tuning runs for RMSPROP and ADADELTA. It is evident, that re-tuning results in a shift
of this distribution, since small (stochastic) changes during tuning can result in a different chosen
hyperparameter setting.

These differences also highlight how crucial it is to look at multiple test problems. Individually,
small changes, such as re-doing the tuning with different seeds can lead to optimization methods
changing rankings. However, they tend to average out when looking at an unbiased list of multiple
problems. These results also further supports the statement made in Section 3 that there is no
optimization method clearly domination the competition, as small performance margins might vanish
when re-tuning.
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Figure 6: Mean test set performance of all 10 seeds of RMSPROP (—) on all eight optimization
problems using the small budget for tuning and no learning rate schedule. The mean is shown with a
thicker line. We repeated the full tuning process on all eight test problems using different random
seeds, which is shown in dashed lines blue (- -). The mean performance of all other optimizers is
shown in transparent gray lines.
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Figure 7: Mean test set performance of all 10 seeds of ADADELTA (—) on all eight optimization
problems using the small budget for tuning and no learning rate schedule. The mean is shown with a
thicker line. We repeated the full tuning process on all eight test problems using different random
seeds, which is shown in dashed lines blue (- -). The mean performance of all other optimizers is
shown in transparent gray lines.
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E LIST OF SCHEDULES SELECTED

The schedules selected for our benchmark are illustrated in Figure 8. All learning rate schedules are
multiplied by the initial learning rate found via tuning or picked as the default choice.
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Figure 8: Illustration of the selected learning rate schedules for a training duration of 150 epochs.

We use a cosine decay (Loshchilov & Hutter, 2017) that starts at 1 and decays in the form of a half
period of a cosine to 0. As an example of a cyclical learning rate schedule, we test a cosine with
warm restarts schedule with a cycle length ∆t = 10 which increases by a factor of 2 after each cycle
without any discount factor. Depending on the number of epochs we train our model, it is possible
that training stops shortly after one of those warm restarts. Since performance typically declines
shortly after increasing the learning rate, we don’t report the final performance for this schedule, but
instead the performance achieved after the last complete period (just before the next restart). This
approach is suggested by the original work of Loshchilov & Hutter (2017). However, we still use the
final performance while tuning.

A representation of a schedule including warm-up is the trapezoidal schedule from Xing et al. (2018).
For our benchmark we set a warm-up and cool-down period of 1/10 the training time.
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F IMPROVEMENT AFTER TUNING

When looking at Figure 2, one might realize that few diagonal entries contain negative values. Since
diagonal entries reflect the intra-optimizer performance change when tuning on the respective task, this
might feel quite counterintuitive at first. In theory, this can occur if the respective tuning distributions
is chosen poorly, the tuning randomness simply got “unlucky”, or we observe significantly worse
results for our additional seeds (see Figure 5).

If we compare Figures 9 and 10 to Figures 11 and 12 we can see most negative diagonal entries
vanish or at least diminish in magnitude. For the latter two figures we allow for more tuning runs and
only consider the seed that has been used for this tuning process. The fact that the effect of negative
diagonal entries reduces is an indication that they mostly result from the two latter reasons mentioned.
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Figure 9: The absolute test set performance improvement after switching from any untuned optimizer
(y-axis, one-shot) to any tuned optimizer (x-axis, small budget) as an average over 10 random seeds
for the constant schedule. This is a detailed version of Figure 2 in the main text showing the first four
problems.
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Figure 10: The absolute test set performance improvement after switching from any untuned optimizer
(y-axis, one-shot) to any tuned optimizer (x-axis, small budget) as an average over 10 random seeds
for the constant schedule. This is a detailed version of Figure 2 in the main text showing the last four
problems.
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Figure 11: The absolute test set performance improvement after switching from any untuned optimizer
(y-axis, one-shot) to any tuned optimizer (x-axis, large budget) for the constant schedule. This is
structurally the same plot as Figure 9 but comparing to the large budget and only considering the
seed that has been used for tuning.

21



Under review as a conference paper at ICLR 2021

0.0 0.2 0.4 0.6 0.8 1.0

Large budget

0.0

0.2

0.4

0.6

0.8

1.0

O
ne

-s
ho

t

3

2

1

0

1

2

3

AMSBound
AMSGrad

AdaBound
Adadelta
Adagrad

Adam
LA(Mom.)

LA(RAdam)
Mom.
NAG

Nadam
RAdam

RMSProp
SGD

109.5 109.9 109.5 109.8 109.8 109.9 107.8 108.8 109.1 109.0 110.0 109.8 109.8 109.3

109.5 109.9 109.5 109.8 109.8 109.9 107.8 108.8 109.1 109.0 110.0 109.8 109.8 109.3

109.5 109.9 109.5 109.8 109.8 109.9 107.8 108.8 109.1 109.0 110.0 109.8 109.8 109.3

14.5 14.8 14.5 14.8 14.7 14.9 12.7 13.8 14.1 14.0 14.9 14.8 14.8 14.3

-0.2 0.1 -0.2 0.1 0.0 0.2 -2.0 -0.9 -0.6 -0.7 0.2 0.1 0.1 -0.4

0.5 0.9 0.5 0.8 0.7 0.9 -1.2 -0.2 0.1 -0.0 1.0 0.8 0.8 0.3

109.5 109.9 109.5 109.8 109.8 109.9 107.8 108.8 109.1 109.0 110.0 109.8 109.8 109.3

0.7 1.1 0.7 1.0 1.0 1.2 -1.0 0.0 0.3 0.2 1.2 1.0 1.0 0.5

137.0 137.3 137.0 137.3 137.2 137.4 135.2 136.3 136.6 136.5 137.4 137.3 137.3 136.8

134.7 135.1 134.8 135.0 135.0 135.2 133.0 134.1 134.3 134.2 135.2 135.0 135.0 134.5

0.7 1.0 0.7 1.0 0.9 1.1 -1.1 -0.0 0.3 0.2 1.1 1.0 1.0 0.5

0.3 0.7 0.3 0.6 0.6 0.8 -1.4 -0.4 -0.1 -0.2 0.8 0.6 0.6 0.1

1.5 1.9 1.5 1.8 1.7 1.9 -0.2 0.8 1.1 1.0 2.0 1.8 1.8 1.3

109.5 109.9 109.5 109.8 109.8 109.9 107.8 108.8 109.1 109.0 110.0 109.8 109.8 109.3

F-MNIST VAE
6.4 2.9 4.8 -3.7 5.5 5.3 -12.4 4.9 6.9 8.2 5.4 5.1 0.1 3.9

55.5 52.0 53.8 45.4 54.5 54.3 36.6 53.9 55.9 57.2 54.4 54.2 49.2 53.0

6.7 3.2 5.1 -3.4 5.7 5.5 -12.1 5.2 7.1 8.4 5.6 5.4 0.4 4.2

52.4 48.9 50.8 42.3 51.4 51.2 33.5 50.8 52.8 54.1 51.3 51.1 46.1 49.9

13.7 10.2 12.1 3.6 12.8 12.5 -5.1 12.2 14.1 15.4 12.6 12.4 7.4 11.2

3.8 0.3 2.2 -6.3 2.9 2.7 -15.0 2.3 4.3 5.6 2.8 2.6 -2.4 1.3

-0.2 -3.7 -1.8 -10.3 -1.1 -1.3 -19.0 -1.7 0.3 1.6 -1.3 -1.5 -6.5 -2.7

25.7 22.1 24.0 15.6 24.7 24.5 6.8 24.1 26.1 27.4 24.6 24.4 19.4 23.1

4.1 0.6 2.5 -6.0 3.1 2.9 -14.7 2.6 4.5 5.8 3.0 2.8 -2.2 1.6

-0.4 -3.9 -2.0 -10.5 -1.3 -1.5 -19.2 -1.9 0.1 1.4 -1.4 -1.6 -6.6 -2.9

3.5 0.0 1.9 -6.6 2.6 2.4 -15.3 2.0 3.9 5.3 2.4 2.2 -2.8 1.0

3.3 -0.2 1.7 -6.8 2.4 2.2 -15.5 1.8 3.8 5.1 2.3 2.0 -3.0 0.8

3.1 -0.4 1.5 -7.0 2.1 1.9 -15.8 1.5 3.5 4.8 2.0 1.8 -3.2 0.6

19.2 15.6 17.5 9.1 18.2 18.0 0.3 17.6 19.6 20.9 18.1 17.9 12.9 16.6

CIFAR-100 All-CNN-C
AM

SB
ou

nd
AM

SG
ra

d
Ad

aB
ou

nd
Ad

ad
el

ta
Ad

ag
ra

d
Ad

am
LA

(M
om

.)
LA

(R
Ad

am
)

M
om

.
N

AG
N

ad
am

R
Ad

am
R

M
SP

ro
p

SG
D

AMSBound
AMSGrad

AdaBound
Adadelta
Adagrad

Adam
LA(Mom.)

LA(RAdam)
Mom.
NAG

Nadam
RAdam

RMSProp
SGD

0.5 0.3 0.1 0.1 0.1 0.1 0.7 0.8 0.7 0.9 0.3 0.7 0.3 0.1

4.0 3.9 3.7 3.6 3.6 3.6 4.3 4.3 4.2 4.5 3.9 4.2 3.8 3.7

0.9 0.7 0.6 0.5 0.5 0.5 1.2 1.2 1.1 1.3 0.8 1.1 0.7 0.5

30.2 30.1 29.9 29.8 29.8 29.8 30.5 30.5 30.4 30.7 30.1 30.4 30.0 29.9

0.6 0.4 0.2 0.2 0.2 0.2 0.8 0.9 0.8 1.0 0.4 0.8 0.4 0.2

0.4 0.2 0.1 -0.0 -0.0 -0.0 0.7 0.7 0.6 0.8 0.3 0.6 0.2 0.0

0.4 0.2 0.0 -0.1 -0.1 -0.1 0.6 0.7 0.6 0.8 0.2 0.6 0.2 0.0

1.6 1.4 1.2 1.2 1.2 1.2 1.8 1.9 1.8 2.0 1.4 1.8 1.4 1.2

0.6 0.4 0.2 0.1 0.1 0.1 0.8 0.8 0.8 1.0 0.4 0.8 0.3 0.2

0.2 0.0 -0.1 -0.2 -0.2 -0.2 0.5 0.5 0.4 0.6 0.1 0.4 -0.0 -0.2

0.4 0.2 0.1 -0.0 -0.0 -0.0 0.7 0.7 0.6 0.8 0.3 0.6 0.2 0.0

0.1 -0.1 -0.3 -0.4 -0.4 -0.4 0.3 0.3 0.3 0.5 -0.1 0.3 -0.2 -0.3

0.4 0.3 0.1 -0.0 -0.0 -0.0 0.7 0.7 0.6 0.9 0.3 0.6 0.2 0.1

1.4 1.2 1.0 0.9 0.9 0.9 1.6 1.6 1.6 1.8 1.2 1.6 1.1 1.0

SVHN Wide ResNet 16-4
AM

SB
ou

nd
AM

SG
ra

d
Ad

aB
ou

nd
Ad

ad
el

ta
Ad

ag
ra

d
Ad

am
LA

(M
om

.)
LA

(R
Ad

am
)

M
om

.
N

AG
N

ad
am

R
Ad

am
R

M
SP

ro
p

SG
D

4.1 7.0 4.5 5.0 7.3 7.2 5.4 7.0 7.2 7.1 7.3 7.1 7.5 6.6

0.3 3.1 0.7 1.1 3.4 3.4 1.6 3.1 3.4 3.3 3.5 3.3 3.7 2.8

3.7 6.6 4.1 4.5 6.9 6.8 5.0 6.5 6.8 6.7 6.9 6.7 7.1 6.2

43.3 46.2 43.7 44.2 46.5 46.4 44.6 46.2 46.4 46.3 46.5 46.3 46.7 45.8

10.3 13.1 10.7 11.1 13.4 13.4 11.6 13.1 13.4 13.3 13.5 13.3 13.7 12.8

-2.6 0.3 -2.2 -1.7 0.6 0.5 -1.3 0.3 0.5 0.4 0.6 0.4 0.8 -0.1

0.5 3.4 0.9 1.3 3.7 3.6 1.8 3.3 3.6 3.5 3.7 3.5 3.9 3.0

26.7 29.6 27.1 27.5 29.9 29.8 28.0 29.6 29.8 29.7 29.9 29.7 30.1 29.2

-1.0 1.9 -0.6 -0.2 2.1 2.1 0.3 1.8 2.1 2.0 2.2 2.0 2.4 1.5

-0.8 2.1 -0.4 0.0 2.4 2.3 0.5 2.1 2.3 2.2 2.4 2.2 2.6 1.7

-2.4 0.4 -2.0 -1.6 0.7 0.7 -1.1 0.4 0.7 0.6 0.8 0.6 1.0 0.1

-2.5 0.4 -2.1 -1.6 0.7 0.6 -1.2 0.4 0.6 0.5 0.7 0.5 0.9 0.0

-3.2 -0.4 -2.8 -2.4 -0.1 -0.1 -1.9 -0.4 -0.1 -0.3 -0.0 -0.2 0.2 -0.7

18.6 21.4 19.0 19.4 21.7 21.7 19.9 21.4 21.7 21.6 21.8 21.6 22.0 21.1

Tolstoi Char RNN

Figure 12: The absolute test set performance improvement after switching from any untuned optimizer
(y-axis, one-shot) to any tuned optimizer (x-axis, large budget) for the constant schedule. This is
structurally the same plot as Figure 10 but comparing to the large budget and only considering the
seed that has been used for tuning.
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G OPTIMIZER PERFORMANCE ACROSS TEST PROBLEMS

Similarly to Figure 4, we show the corresponding plots for the small budget with no learning rate
schedule in Figure 13 and the large budget with the cosine and trapezoidal learning rate schedule in
Figures 14 and 15. Additionally, in Figure 16 we show the same setting as Figure 4 but showing the
training loss instead of the test loss/accuracy.
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Figure 13: Mean test set performance over 10 random seeds of all tested optimizers on all eight
optimization problems using the small budget for tuning and no learning rate schedule. One standard
deviation for the tuned ADAM optimizer is shown with a red error bar (I). The performance of the
untuned versions of ADAM (t) and ADABOUND (s) are marked for reference. Note, the upper
bound of each axis represents the best performance achieved in the benchmark, while the lower bound
is chosen in relation to the performance of ADAM with default parameters.

The high-level trends mentioned in Section 3 also hold for the smaller tuning budget in Figure 13.
Namely, taking the winning optimizer for several untuned algorithms (here marked for ADAM and
ADABOUND) will result in a decent performance in most test problems with much less effort. Adding
a tuned version ADAM (or variants thereof) to this selection would result in a very competitive
performance. The absolute top-performance however, is achieved by changing optimizers across
different test problems.

Note, although the large budget is a true superset of the small budget it is not given that it will always
perform better. Our tuning procedure guarantees that the validation performance on the seed that
has been used for tuning is as least as good on the large budget than on the small budget. But due to
averaging over multiple seeds and reporting test performance instead of validation performance, this
hierarchy is no longer guaranteed. We discuss the possible effects of averaging over multiple seeds
further in Appendix C.

The same high-level trends also emerge when considering the cosine or trapezoidal learning rate
schedule in Figures 14 and 15. We can also see that the top performance in general increase when
adding a schedule (cf. Figure 4 and Figure 15).

Comparing Figure 4 and Figure 16 we can assess the generalization performance of the optimization
method not only to an unseen test set, but also to a different performance metric (accuracy instead
of loss). Again, the overall picture of varying performance across different test problems remains
consistent when considering the training loss performance. Similarily to the figures showing test set
performance we cannot identify a clear winner, although ADAM ands its variants, such as RADAM
perform near the top consistently. Note that while Figure 16 shows the training loss, the optimizers
have still be tuned to achieve the best validation performance (i.e. accuracy if available, else the loss).
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Figure 14: Mean test set performance over 10 random seeds of all tested optimizers on all eight
optimization problems using the large budget for tuning and the cosine learning rate schedule. One
standard deviation for the tuned ADAM optimizer is shown with a red error bar (I). The performance
of the untuned versions of ADAM (t) and ADABOUND (s) are marked for reference (this time with
the cosine learning rate schedule). Note, the upper bound of each axis represents the best performance
achieved in the benchmark, while the lower bound is chosen in relation to the performance of ADAM
with default parameters (and no schedule).
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Figure 15: Mean test set performance over 10 random seeds of all tested optimizers on all eight
optimization problems using the large budget for tuning and the trapezoidal learning rate schedule.
One standard deviation for the tuned ADAM optimizer is shown with a red error bar (I). The
performance of the untuned versions of ADAM (t) and ADABOUND (s) are marked for reference
(this time with the trapezoidal learning rate schedule). Note, the upper bound of each axis represents
the best performance achieved in the benchmark, while the lower bound is chosen in relation to the
performance of ADAM with default parameters (and no schedule).
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Figure 16: Mean training loss performance over 10 random seeds of all tested optimizers on all
eight optimization problems using the large budget for tuning and no learning rate schedule. One
standard deviation for the tuned ADAM optimizer is shown with a red error bar (I). The performance
of the untuned versions of ADAM (t) and ADABOUND (s) are marked for reference. Note, the
upper bound of each axis represents the best performance achieved in the benchmark, while the lower
bound is chosen in relation to the performance of ADAM with default parameters (and no schedule).

H TABULAR VERSION

Table 5: Tabular version of Figure 4. Mean test set performance and standard deviation over 10
random seeds of all tested optimizers on all eight optimization problems using the large budget
for tuning and no learning rate schedule. For comprehensability, mean and standard deviation are
rounded.

Optimizer Quadratic
Deep

MNIST
VAE

F-MNIST
2c2d

CIFAR-10
3c3d

F-MNIST
VAE

CIFAR-100 SVHN Tolstoi

AMSBound 91.02 ± 7.9 28.12 ± 0.1 92.09 ± 0.2 83.22 ± 1.0 23.51 ± 0.1 55.54 ± 0.9 95.52 ± 0.2 59.33 ± 0.4
AMSGrad 91.92 ± 6.2 27.86 ± 0.1 92.23 ± 0.1 82.75 ± 0.6 23.12 ± 0.1 52.65 ± 1.2 95.24 ± 0.2 61.58 ± 0.1
AdaBound 95.39 ± 9.1 28.10 ± 0.1 92.11 ± 0.2 83.28 ± 1.0 23.39 ± 0.1 55.78 ± 0.9 95.39 ± 0.2 59.48 ± 0.3
Adadelta 120.7 ± 0.2 27.91 ± 0.0 91.11 ± 0.3 82.55 ± 0.9 23.22 ± 0.1 47.59 ± 0.8 95.13 ± 0.3 59.53 ± 0.2
Adagrad 88.39 ± 5.7 27.94 ± 0.3 92.04 ± 0.2 83.54 ± 1.0 23.18 ± 0.1 27.89 ± 26. 95.12 ± 0.6 62.02 ± 0.1
Adam 88.35 ± 5.7 27.77 ± 0.0 91.70 ± 0.3 83.32 ± 0.9 23.07 ± 0.1 54.92 ± 1.1 94.83 ± 0.3 61.97 ± 0.1
LA(Mom.) 87.16 ± 0.1 55.20 ± 0.9 88.56 ± 1.9 82.34 ± 1.0 25.38 ± 0.3 13.37 ± 15. 95.67 ± 0.1 60.21 ± 0.3
LA(RAdam) 87.88 ± 5.8 34.28 ± 9.4 91.97 ± 0.2 82.92 ± 0.7 23.84 ± 0.2 55.84 ± 1.4 95.74 ± 0.2 61.72 ± 0.1
Momentum 87.03 ± 0.0 35.95 ± 11. 90.15 ± 0.3 83.23 ± 0.5 24.33 ± 1.2 55.86 ± 1.3 95.55 ± 0.3 61.91 ± 0.1
NAG 87.08 ± 0.0 36.21 ± 11. 90.09 ± 0.3 83.40 ± 0.6 23.86 ± 0.1 57.45 ± 0.6 95.55 ± 0.2 62.03 ± 0.1
NAdam 88.19 ± 5.7 27.72 ± 0.1 91.55 ± 0.4 83.91 ± 0.5 23.02 ± 0.1 54.30 ± 1.1 95.03 ± 0.3 61.98 ± 0.1
RAdam 88.18 ± 5.7 27.82 ± 0.1 91.66 ± 0.2 83.41 ± 0.6 23.12 ± 0.1 54.75 ± 1.0 94.92 ± 0.4 61.96 ± 0.1
RMSProp 87.40 ± 0.1 27.83 ± 0.1 88.84 ± 0.6 81.51 ± 0.5 23.18 ± 0.1 49.61 ± 1.4 94.41 ± 0.5 62.22 ± 0.1
SGD 87.98 ± 6.5 36.15 ± 10. 91.69 ± 0.2 82.70 ± 1.3 23.94 ± 0.4 52.69 ± 1.1 95.11 ± 0.4 61.28 ± 0.1
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