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ABSTRACT
Event cameras, offering visual information with microsecond accu-
racy and having strong robustness against motion blur, provide a
new perspective to address motion deblurring. How to effectively
exploit the collaboration of events and images for motion deblurring
is a challenging endeavor. Existing event-based motion deblurring
methods perform cross-modal fusion with modality-specific fea-
tures (complementarity), while ignoring features shared by modal-
ities (correlation), which may lead to insufficient fusion of event
and image, resulting in limited performance. To address the above
issues, following the idea of divide and conquer, we tackle the chal-
lenge in modeling cross-modality fusion with the modality-specific
and modality-shared features decomposition and recomposition.
Therefore, we propose a novel event-image fusion network (EIFNet)
based on modality-aware decomposition and recomposition. Specif-
ically, in the decomposition stage, modality-shared and modality-
specific feature separation clues are inferred in parallel by exploring
the global correlation of common-mode, differential-mode and two
modalities with dual cross-attention. In the recomposition stage, the
divided modality-shared and modality-specific features are merged
with bi-directional supplement information exchanging via long-
range interaction. Extensive experiments demonstrate that our
method outperforms state-of-the-art event-driven and image-only
methods. Project website: https://github.com/wyang-vis/EIFNet.
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Blurry Image DS-Deblur ERDNet

Event EFNet EIFNet (ours)

Figure 1: Visual comparison of deblurring with state-of-
the-art event-based methods DS-Deblur [50], ERDNet [5],
EFNet [37], and our EIFNet.

1 INTRODUCTION
Motion blur often occurs due to the relative motion between the
camera and scene during the image integration time. Motion de-
blurring is one of the critical and challenging topics, which aims
to restore the clean image from its blurry version. It is an ill-posed
inverse problem, due to the existence of many possible solutions.
Conventional methods are mainly based on hand-crafted priors
and assumptions [1, 2, 10, 12, 15, 18, 19, 22, 45], which limit the
model capacity. With the development of deep learning in many
vision tasks, deep neural network (DNN)-based approaches have
been proposed to learn the implicit relation from blurry images
to sharp images under the supervision of a large-scale dataset of
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blurry-sharp image pairs [7, 8, 29, 31, 36, 38, 52, 53]. Although the
abovementioned methods have achieved considerable performance,
they may fail to deal with severe blur due to the significant loss of
motion information.

Event cameras are bio-inspired sensors that can record per-pixel
intensity changes asynchronously with high temporal resolution
and output a stream of events encoding time, location, and polar-
ity of intensity changes [13] if the intensity changes surpass a
threshold. Understandably, with the attractive properties that offer
visual information with microsecond accuracy and have strong
robustness against motion blur, event cameras can be attempted to
address motion deblurring. Naturally, how to design an efficient
cross-modality feature fusionmechanism is the most important step
in event-based motion deblurring. Recently, both model-driven [30]
and data-driven [3, 5, 16, 27, 35, 37] algorithms have been pro-
posed to recover the sharp image from a blurry image with the
aid of events. Generally, different modalities are expected to have
some shared features and also specific features [11]. Despite the
remarkable progress, existing event-based deblurring methods ex-
ploit cross-modal fusion with modality-specific information explo-
ration, while without taking the exploration and exploitation of
modality-shared information into consideration, which may lead
to insufficient fusion between event and image, resulting in limited
performance, even inferior to image-only algorithms.

In this work, following the idea of divide and conquer, we con-
sider decomposing modality-specific and modality-shared features
from the two modalities and then recomposing them to tackle the
challenges in cross-modal fusion. To this end, a novel event-image
fusion network (EIFNet) based on modality-aware decomposition
and recomposition is proposed for motion deblurring. To the best of
our knowledge, this is the first time that joint modality-specific and
modality-shared features are leveraged to event-based image de-
blurring. Specifically, intermediate features of image and event are
first extracted with feature extractor respectively. Then, a modality-
aware decomposition (MAD) module is built to divide modality-
shared and modality-specific features, in which modality-shared
features are separated by exploring the correlation of common-
mode and two modalities features with mutual cross-attention,
while modality-specific features are detached by exploring the cor-
relation of differential-mode and two modalities features with sepa-
rate cross-attention. Next, a modality-aware recomposition (MAR)
module is built to merge the divided modality-shared and modality-
specific features, where different types of features are interacted and
aggregated in a bi-directional propagation manner, which transfers
supplement information from shared-modality to specific-modality
and vice versa by long-range interaction, i.e., shared-induced spe-
cific complement and specific-induced shared complement. Finally,
a reconstruction model is adopted to reconstruct the target image
from the output of the MAR module. Extensive experiments on
both synthetic and real-world datasets demonstrate our method
achieves state-of-the-art performance (some visual comparisons
are shown in Figure 1).

The main contributions of our work are as follows.

• We design a novel modality-aware decomposition and re-
composition based event-image fusion network (EIFNet),

which properly fuses the events and imageswith joint shared-
modality and specific-modality attentions. Extensive exper-
iments show that our model outperforms state-of-the-art
event-driven and image-only methods.

• We propose a novel MAD module to enforce the modality-
shared and modality-specific features decomposition with
dual cross-attention, which parallel infers shared feature
cues with mutual cross-attention between common-mode
and two modalities, and specific feature cues with separate
cross-attention across differential-mode and two modalities.

• Wepropose a newMARmodule to realize the dividedmodality-
shared and modality-specific features recomposition in a bi-
directional supplement manner, which transfers specificity
through shared-induced specific complement and specific-
induced shared complement with long-range interaction.

The remainder of this paper is structured as follows. In Section 2,
we review the related works on motion deblurring. Section 3 de-
scribes the details of the proposed model. Experimental results and
analysis are presented in Section 4. Finally, we conclude this paper
with a discussion in Section 5.

2 RELATEDWORK
In this section, we briefly review the literature related to ourmethod,
including some Image/frame-based and Event-based motion deblur-
ring methods.

2.1 Image Deblurring
Image deblurring is a highly ill-posed problem, which aims to re-
cover a latent sharp image from a blurry image. Conventional image
deblurring approaches are usually based on hand-crafted priors and
assumptions [1, 2, 10, 12, 15, 18, 19, 22, 45], which lead to limited
generality and representing capacity. Recently, many deep neural
network (DNN)-based methods have been proposed and brought
significant changes to image deblurring. They implicitly learn the
relation from blurry images to sharp images. Several novel compo-
nents and techniques have been proposed: 1) Single-Scale Networks.
The single-scale deblurring methods [20, 21, 56] aim to recover
highly-realistic images mainly based on well-developed network
blocks for high-level vision tasks. 2) Multi-Scale Networks. These
methods decompose deblurring task into smaller easier subtasks to
recover clean image in a progressive manner [7, 29, 36, 38, 52, 53].
3) Coarse-to-Fine Strategies. The coarse-to-fine schemes can grad-
ually restore a sharp image with multiple input images on differ-
ent resolutions [8, 31]. 4) Attention mechanism. Spatial attention
modules, and channel attention modules or both have also been
incorporated to selectively attend to relevant information for image
deblurring [24, 32, 36, 39, 42, 44, 51]. Although the abovementioned
methods have achieved considerable performance, image deblur-
ring is a highly ill-posed problem with infinite feasible solutions
that cannot be trivially addressed from only the blur set of input.

2.2 Event-based Deblurring
Event cameras provide visual information with low latency and
with strong robustness against motion blur, which offers great
potential for motion deblurring. Event-based motion deblurring
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(a) Overall architecture of our algorithm.

(b) Modality-aware decomposition (MAD) module. (c) Modality-aware recomposition (MAR) module.

Figure 2: Framework of the proposed modality-aware decomposition and recomposition based event-image fusion network
(EIFNet). (a) Overall architecture of our algorithm. (b) Details of the modality-aware decomposition (MAD) module. (c) Details
of the modality-aware recomposition (MAR) module.

methods can be divided into two categories [47], i.e., model-driven
and data-driven algorithms.

Model-driven methods use the physical event generation princi-
ple to relate events, blurry images and the latent sharp images [30,
34]. Specifically, BHA [30] proposed an Event-based Double Integral
(EDI) algorithm to model the blur-generation process by associat-
ing events to a latent frame. CF [34] proposed a continuous-time
formulation of event-based intensity estimation with complemen-
tary filtering. However, events are essentially with noise both in
temporal and spatial domains [54], which inevitably degrades per-
formance.

Data-driven methods directly learn the relation from blurry im-
ages to sharp images with the aid of events [27]. LEMD [16] pre-
sented a sequential formulation of event-based motion deblurring,
and unfolded its optimization with deep network. eSL-Net [43]
proposed an event-enhanced degeneration model for high-quality
image recovery. D2Net [35] proposed an event-frame fusionmodule,
which can be incorporated into existing image deblurring meth-
ods. MADANET+ [49] predicted the high blur image areas guided
by events for deblurring. EFNet [37] proposed a cross-modal at-
tention module to fuse image and event. ERDNet [5] presented a
residual learning approach to learn event-based motion deblurring.
DS-Deblur [50] proposed a dual-stream based event-image fusion
framework for motion deblurring.

Nevertheless, some of the above methods only achieve slight
performance gains compared to image-only methods, due to the
insufficient cross-modal complementary fusion of events and im-
ages. In this work, a novel event-image fusion network is proposed
for motion deblurring with modality-specific and modality-shared
features decomposition and recomposition.

2.3 Vision Transformer
Transformer is proposed in [41] for machine translation and has
become the most advanced method in natural language processing
(NLP) tasks. Due to the powerful capability for capturing long-range
dependencies in the data by the global self-attention, numerous
researchers try to combine the transformer structure in computer
vision tasks such as object detection [28], segmentation [46]. Moti-
vated by the great success in high-level vision, Transformer mod-
els have also been studied for low-level vision problems such as
denoising [25, 44], deblurring [23, 26, 48]. In this work, we take
the advantage of Transformer in global dependency capturing for
modality-aware decomposition and recomposition.

3 METHOD
Problem formulation: Given a blurry image B and the corre-
sponding event stream ET ≜ {(xi ,yi ,pi , ti )}ti ∈T containing all
asynchronous events triggered during exposure time T , where
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p = ±1 is polarity, which denotes the direction (increase or de-
crease) of the intensity changes at that pixel (x ,y) and time t , the
proposed method is to recover a sharp image I by exploiting both
blurry image B and event stream ET , which can be modeled as
I = дθ ∗ (B,ET ), where дθ ∗ is deep learning model.

3.1 System Overview of EIFNet
We present EIFNet, a modality-aware decomposition and recom-
position based event-image fusion network for event-based image
deblurring. The overview of EIFNet is shown in Figure 2(a). We
first use two parallel backbones, which contain Channel Atten-
tion Blocks (CABs) [55] and down-sampling layers, to extract fea-
tures Fb and Fe from blurry image B and corresponding event ET ,
separately. Next, a decomposition and recomposition strategy is
proposed to divide modality-shared and modality-specific features
via a modality-aware decomposition (MAD) module, and then the
divided modality-shared and modality-specific features are merged
with a modality-aware recomposition (MAR) module, obtaining
Ff . Finally, a reconstruction module, containing Channel Atten-
tion Blocks (CABs) and up-sampling layers, is used to transform
Ff to the final deblurred result I. Below we detail the main part:
modality-aware decomposition and recomposition.

3.2 Modality-aware Decomposition and
Recomposition

Generally, different sensing modalities usually have some shared
features and also have specific features. Following the idea of divide
and conquer, and inspired by differential amplifier circuits in which
the common-mode signals are suppressed and the differential-mode
signals are amplified, we consider decomposing different features
from multi-modalities and then recomposing them.

3.2.1 Modality-aware Decomposition (MAD) Module.
According to the principle of the differential amplifier, common-

mode part Fc and differential-mode part Fd can be represented as
follows:

Fc = Fb + Fe ,

Fd = Fb − Fe .
(1)

Intuitively, for cross-modal fusion, both common-mode and
differential-mode should be selected and enhanced. We can select
the most effective features of image and event by exploring the
relevance of common-mode and differential-mode with image and
event features, and remix them into new enhanced modality-shared
and modality-specific features.

To this end, a new MAD module is proposed to leverage dual
cross-attention between common-mode and differential-mode with
event and image features for correlation calculation to selectmodality-
shared and modality-specific features. Figure 2(b) shows the details
of MAD (the black path is the shared backbone). First, following
the basic idea of transformer, the image features Fb and event fea-
tures Fe are transformed into Key Kb , Value Vb and Key Ke , Value
Ve , respectively. And the common-mode and differential-mode (Fc
and Fd ) are transformed into Query Qc and Qd , respectively. Then,
we can conduct feature separation by communicating the Query
from Fc or Fd and the Key from Fb and Fe .

Modality-specific features extraction (the orange path in Fig-
ure 2(b)). We first estimate specific features clues of image and event
with separate cross-attention, which multiplies the Query from Fd
and the Key from Fb and Fe :

Absp = So f tmax
(
QdK

T
b

)
,

Aesp = So f tmax
(
QdK

T
e

)
,

(2)

where the attention mapsAbsp andAesp contain the specific features
clues of image and event, respectively. Then, we multiply the global
attention maps Absp and Aesp with Value Vb and Ve respectively to
obtain respective modality-specific features of the image and event,
and it is depicted in the following equations:

F
sp
b = AbspVb , F

sp
e = AespVe , (3)

where F spb and F
sp
e are the modality-specific features of the image

and event, respectively. In the end, sum the F spb and F
sp
e to get the

remixed total modality-specific features Fsp :

Fsp =
(
F
sp
b + F

sp
e

)
+ FFN

(
F
sp
b + F

sp
e

)
, (4)

where FFN denotes the two fully-connected layers with a non-
linearity activation function GELU.

Modality-shared features extraction (the green path in Fig-
ure 2(b)). Similar to modality-specific features extraction, shared
features clues of image and event are first computed by multiplying
the Query from Fc and the Key from Fb and Fe :

Absh = So f tmax
(
QcK

T
b

)
,

Aesh = So f tmax
(
QcK

T
e

)
,

(5)

where the attention maps Absh and Aesh contain the shared features
clues of image and event, respectively. Then, different from specific
feature extraction using respective attention, the modality-shared
features are extracted using mutual attention, which is formulated
as:

Amsh = AbshA
e
sh , (6)

where the mutual attention maps Amsh contain the common global
clues of shared features for both image and event. Next, we multi-
ply Amsh to Value Vb and Ve to acquire respective modality-shared
features F shb and F she of the image and event. Finally, sum the F shb
and F she to get the remixed total modality-shared features Fsh . This
procedure can be formulated as:

F shb = AmshVb , F
sh
e = AmshVe ,

Fsh =
(
F shb + F

sh
e

)
+ FFN

(
F shb + F

sh
e

)
.

(7)

3.2.2 Modality-aware Recomposition (MAR) Module.
After obtaining the modality-specific features Fsp and modality-

shared features Fsh , we build the MAR module to recompose them
a bi-directional supplement manner, which transfers supplement
information from shared-modality to specific-modality and vice
versa by conducting long-range interaction between shared and
specific features. Figure 2(c) shows the details of MAR.
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To be specific, given the Fsp and Fsh , we first transform Fsp into
Query Qsp , Key Ksp , Value Vsp , and Fsh into Query Qsh , Key Ksh ,
Value Vsh . We first estimate the information exchange attention
through a bidirectional cross-attention between vectorized features
from the Fsp and Fsh via:

Asp = So f tmax
(
QshK

T
sp

)
,

Ash = So f tmax
(
QspK

T
sh

)
,

(8)

where Asp denotes the supplement information clues from Fsp for
Fsh , and Ash denotes the supplement information clues from Fsh
for Fsp .

Then, sufficient information supplement is implemented by mul-
tiplying the Asp and Ash with Key Ksp and Ksh respectively:

Fsp =
(
Fsp +A

shVsh

)
+ FFN

(
Fsp +A

shVsh

)
,

Fsh =
(
Fsh +A

spVsp
)
+ FFN

(
Fsh +A

spVsp
)
,

(9)

where the Fsp and Fsh denote the features that have been comple-
mented by each other after bi-directional information supplement.

Moreover, the features Fsp and Fsh are attentivelymerged through
three fusion strategies, including element-wise summation F+ =

Fsp + Fsh , element-wise product F× = Fsp × Fsh and element-wise
maximization Fm = max

(
Fsp , Fsh

)
. Finally, a convolutional layer

is added to learn the contribution weight of the concatenated three
fusions for the final fusion Ff :

Ff = Conv
(
Cat

(
F+, F×, Fm

) )
. (10)

3.3 Loss Function
In this paper, we use the Charbonnier loss [4] to train our network
in an end-to-end fashion:

Lchar =
1

CHW

√
∥I −G∥2 + ε2, (11)

where I and G is deblurred out and ground truth, respectively, C ,
H ,W are dimensions of image, and constant ε is empirically set to
10−3 as in [52] for all the experiments.

4 EXPERIMENTS
4.1 Experimental Settings

Datasets. Our EIFNet is evaluated on two datasets: 1) GoPro. Go-
Pro dataset [29] is widely adopted for image-only and event-based
deblurring, which contains synthetic blurring images and sharp
clear ground-truth images, as well as synthetic events generated by
simulation algorithm ESIM [33]. The blurry image is offered by av-
eraging nearby (the number varies from 7 to 13) images. We follow
the suggested training-testing split, 22 videos in GoPro dataset [29]
are utilized for training and 11 for testing. 2) REB. For evaluation in
real-world events, the REB dataset is a real event dataset captured by
us with the DAVIS346 event camera. The REB dataset captures both
real-world events and clear ground-truth images with slow camera
motion in relatively stationary scenes or with a stationary camera
in slow-motion scenes under various conditions both indoors and
outdoors, that are well-exposed and minimally motion-blurred. The

blurring images are generated by using the same strategy as the
GoPro dataset. There are 60 videos of REB, 40 of which are used
for training and 20 for testing. In addition, several sequences are
collected under fast camera movement or fast moving scenes for
qualitative comparison, without ground truth.

Implementation details. Our network is implemented using Py-
torch. For training, we use the Adam optimizer [17] with standard
settings, batch size is 8, patch size is 256× 256 and learning rate
is 2 × 10−4 decreased by the cosine learning rate strategy with a
minimum learning rate of 10−6. For data augmentation, each patch
is horizontally flipped with the probability of 0.5. The training ends
after 200k iterations for GoPro dataset and 100k iterations for REB
dataset. The Peak Signal-to-Noise Ratio (PSNR) and the Structural
Similarity Index (SSIM) are adopted as the evaluation metrics.

4.2 Comparison with State-of-the-Art Methods
We compare our EIFNet with state-of-the-art image-only deblur-
ring methods, including DMCNN [29], MTRNN [31], DMPHN [53],
DSD [14],MPRNet [52],MIMO-UNet++ [8], HINNet [7],MAXIM [40],
Restormer [51], U-former [44], MPRNet-Local [9], NAFNet [6], and
event-based deblurring methods, including RED [47], eSL-Net [43],
D2Nets [35], LEMD [16], DS-Deblur [50], MADANET+ [49], ERD-
Net [5], EFNet [37], on GoPro and REB.

GoPro dataset: Table 1 reports the quantitative results on syn-
thetic GoPro dataset. Compared to the best existing image-only
deblurring methods, our method achieves outstanding performance
improvements (2.3 dB improvement in PSNR), demonstrating the
advantages of event-assisted deblurring than purely relying on
image-only. Despite utilizing an extra modality, some event-based
methods such as D2Nets [35], LEMD [16], eSL-Net [43] and DS-
Deblur [50] do not improve significantly upon image-only methods,
indicating that they do not effectively conduct cross-modal comple-
mentary fusion. Our EIFNet achieves the best performance against
other event-based deblurring methods (by a margin of 0.53dB),
showing the superiority of our decomposition-and-recomposition
based fusion. We show in Figure 3 a visual comparison between
our method and several state-of-the-art methods. The proposed
method recovers the sharpest details, while the results restored
by other methods still suffer from motion blur, losing sharp edge
information.

REB dataset: For evaluation in real-world events, we report
quantitative results on REB dataset in Table 2. Note that for a fair
comparison, we retrain several image-only methods and event-
guided methods using the publicly available code provided by the
authors. It is clear from Table 2 that our method significantly out-
performs all other state-of-the-art competitors. Besides, one of the
main drawbacks of state-of-the-art methods is the lack of general-
ization to real blur. Figure 4 shows the qualitative comparisons on
the synthetic blur set in REB dataset and Figure 5 shows qualitative
comparisons on the real blur set in REB dataset. The image-only
methods do not perform well on these severe cases of real-world
motion blur and event-based methods are more robust to such ad-
verse conditions with the aid of events. Remarkably, compared to
existing event-based methods, our method achieves the most visu-
ally plausible deblurring results with sharper textures while others
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Table 1: Quantitative comparison with state-of-the-art methods on GoPro dataset. * denotes event-based methods.

Method RED* [47] DMCNN [29] eSL-Net* [43] MTRNN [31] DMPHN [53] DSD [14] D2Nets* [35]
PSNR 28.98 29.08 30.23 31.15 31.20 31.58 31.76
SSIM 0.8499 0.9135 0.8703 0.9450 0.9453 0.9478 0.9430

Method LEMD* [16] MPRNet [52] MIMO-UNet++ [8] HINNet [7] MAXIM [40] Restormer [51] U-former [44]
PSNR 31.79 32.66 32.68 32.71 32.86 32.92 33.06
SSIM 0.9490 0.9590 0.9590 0.9590 0.9610 0.9610 0.9670

Method DS-Deblur* [50] MPRNet-Local [9] NAFNet [6] MADANET+* [49] ERDNet* [5] EFNet* [37] EIFNet*
PSNR 33.13 33.31 33.69 33.84 34.25 35.46 35.99
SSIM 0.9465 0.9640 0.9670 0.9640 0.9534 0.9720 0.9785

Blurry D2Nets* [35] MPRNet [52] DS-Deblur* [50] Restormer [51]

Blurry Image Ground-truth NAFNet [6] ERDNet* [5] EFNet [37] * EIFNet*

Blurry D2Nets* [35] MPRNet [52] DS-Deblur* [50] Restormer [51]

Blurry Image Ground-truth NAFNet [6] ERDNet* [5] EFNet [37] * EIFNet*

Figure 3: Visual comparisons on the GoPro datatset. * denotes event-based methods. Best viewed on a screen and zoomed in.

Table 2: Quantitative comparison with state-of-the-art methods on REB dataset. * denotes event-based methods.

Method DMCNN [29] DMPHN [53] MPRNet [52] MIMO-UNet++ [8] MPRNet-local [9] Restormer [51] U-former [44]
PSNR 29.46 30.02 31.72 31.85 31.96 32.21 32.33
SSIM 0.9216 0.9273 0.9447 0.9500 0.9470 0.9505 0.9527

Method D2Nets* [35] NAFNet [6] DS-Deblur* [50] ERDNet* [5] eSL-Net* [43] EFNet* [37] EIFNet*
PSNR 32.47 32.75 32.84 34.02 34.55 34.91 35.26
SSIM 0.9585 0.9570 0.9583 0.9663 0.9710 0.9720 0.9737

produce results with more artifacts and cannot remove severe blur
effectively.

4.3 Complexity Comparison
We calculate the parameters and average runtime for complexity
analysis. All experiments are conducted on NVIDIA GeForce GTX
1080 with image size of 1280 × 720 ×3. Results of average runtime
and parameters are presented in Table 3. It is obvious that our
method has comparable parameters and runtime with considera-
tion of acceptable calculation consumption to achieve promising
deblurring performance.

4.4 Ablation Study
To evaluate the effectiveness of the key components (MAD and
MAR) in our model, we conduct ablation studies on GoPro dataset
and REB dataset. Before that, a Baseline version is set to include only
the feature extractor and reconstruction modules, which simply
concatenates the intermediate features Fb and Fe along the channel-
level. First row of Table 4 shows the performance of Baseline.

Effectiveness of MAD module. To demonstrate the overall
effectiveness of MAD module, we append it to Baseline to decom-
pose the modality-specific features Fsp and modality-shared fea-
tures Fsh from Fb and Fe , but the decomposed features Fsp and
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Blurry MPRNet [52] Restormer [51] NAFNet [6]

Blurry Image Ground-truth eSL-Net* [43] EFNet* [37] EIFNet*

Blurry MPRNet [52] Restormer [51] NAFNet [6]

Blurry Image Ground-truth eSL-Net* [43] EFNet* [37] EIFNet*

Figure 4: Visual comparison on the synthetic blur set in REB dataset. * denotes event-based methods. Best viewed on a screen
and zoomed in.

Table 3: Complexity comparison with other methods. * denotes event-based methods.

Method eSL-Net* [43] MTRNN [31] DSD [14] D2Nets* [35] MPRNet [52] MIMO-UNet++ [8]
Params (M) 0.19 2.64 6.64 32.63 20.10 16.10
Runtime (s) 0.015 0.915 1.311 1.340 0.117 0.025
PSNR(dB) 30.23 31.15 31.58 31.76 32.66 32.68

Method HINNet [7] Restormer [51] DS-Deblur* [50] NAFNet [6] ERDNet* [5] EIFNet*
Params (M) 88.79 26.09 15.60 67.78 18.08 10.82
Runtime (s) 0.508 1.1546 0.292 0.003 0.020 0.025
PSNR(dB) 32.71 32.92 33.13 33.69 34.25 35.99

Fsh are fused by the concatenation. There is a great performance
gap in the first two rows of Table 4, which shows that different
processing of different features is helpful and MAD can be compe-
tent for the decomposition task. To further verify the validity of
MAD, we compared the performance of modality-specific/shared
features (Fsp /Fsh ), common/differential-mode (Fc /Fd ) and original
image/event features (Fb /Fe ). All three types of features are sim-
ply concatenated for reconstruction, and the comparison results
are shown in Table 5. Table 5 shows the effectiveness of modality-
shared/specific features extracted by MAD compared to the direct
use of common-differential mode and original image/event features.

Effectiveness of MAR module. To demonstrate the overall
effectiveness of MAR module, we append it to Baseline to fuse

the intermediate features Fb and Fe , and the results are shown in
the first and third rows in Table 4. Apparently, MAR can improve
deblurring performance significantly. Accordingly, MAR can be con-
sidered as an effective and universal method of cross-modal fusion.
Further, we validate the effectiveness of bi-directional supplement
manner in MAR, i.e., fusing modality-shared to modality-specific
features and fusing modality-specific to modality-shared features.
Table 6 shows the results of different type of fusion, proving the
validity of bi-directional supplement.

Finally,most importantly, when bothMAD andMAR are embed-
ded in our method, we achieve even higher deblurring performance
than inserting only one module.
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Blurry MPRNet [52] Restormer [51] NAFNet [6]

Blurry Image Event eSL-Net* [43] EFNet* [37] EIFNet*

Blurry MPRNet [52] Restormer [51] NAFNet [6]

Blurry Image Event eSL-Net* [43] EFNet* [37] EIFNet*

Figure 5: Visual comparison on the real blur set in REB dataset. * denotes event-based methods. Best viewed on a screen and
zoomed in.

Table 4: Ablation study on individual components of EIFNet.

MAD MAR Gropo REB
PSNR SSIM PSNR SSIM

✗ ✗ 33.16 0.9571 33.04 0.9609
✓ ✗ 34.30 0.9686 34.10 0.9677
✗ ✓ 35.01 0.9734 34.42 0.9701
✓ ✓ 35.99 0.9785 35.26 0.9737

Table 5: Detailed ablation study of MAD.

Feature Type Gropo REB
PSNR SSIM PSNR SSIM

Fb ,Fe 33.16 0.9571 33.04 0.9609
Fc ,Fd 33.72 0.9652 33.64 0.9650
Fsh ,Fsp 34.30 0.9686 34.10 0.9677

5 CONCLUSION
In this work, we propose a novel event-image fusion network
(EIFNet) based on modality-aware decomposition and recompo-
sition for motion deblurring, which explores the fusion of events
and images with joint shared-modality and specific-modality at-
tentions. We first design a modality-aware decomposition (MAD)

Table 6: Detailed ablation study of MAR.

Supplement Type Gropo REB
PSNR SSIM PSNR SSIM

specific to shared 35.51 0.9761 34.94 0.9718
shared to specific 35.61 0.9765 34.92 0.9717
bi-directional 35.99 0.9785 35.26 0.9737

module to divide themodality-shared andmodality-specific features
in parallel by exploring the global correlation of common-mode,
differential-mode and twomodalities with dual cross-attention. And
then, the divided modality-shared and modality-specific features
are merged with a modality-aware recomposition (MAR) module, in
which information supplement is conducted in a bi-directional man-
ner, i.e., shared-induced specific complement and specific-induced
shared complement. Extensive evaluations show that our method
achieves state-of-the-art performance on both synthetic and real-
world datasets.
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