
Under review as a conference paper at ICLR 2021

MODEL-FREE ENERGY DISTANCE FOR PRUNING
DNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel method for compressing Deep Neural Networks (DNNs)
with competitive performance to state-of-the-art methods. We measure a new
model-free information between the feature maps and the output of the network.
Model-freeness of our information measure guarantees that no parametric as-
sumptions on the feature distribution are required. The new model-free infor-
mation is subsequently used to prune a collection of redundant layers in the net-
works with skip-connections. Numerical experiments on CIFAR-10/100, SVHN,
Tiny ImageNet, and ImageNet data sets show the efficacy of the proposed ap-
proach in compressing deep models. For instance, in classifying CIFAR-10
images our method achieves respectively 64.50% and 60.31% reduction in the
number of parameters and FLOPs for a full DenseNet model with 0.77 million
parameters while dropping only 1% in the test accuracy. Our code is available at
https://github.com/suuyawu/PEDmodelcompression.

1 INTRODUCTION

Modern deep convolutional neural networks (CNNs) with competitive performance in image un-
derstanding competitions (e.g. ImageNet Deng et al. (2009) and COCO Lin et al. (2014)) are over-
parameterized with millions of parameters. As some examples, Caffe models of AlexNet (Krizhevsky
et al., 2012) and VGG-16 of Simonyan & Zisserman (2014) need over 200MB, and 500MB memory
space, respectively. In addition, pre-trained ResNet152 in PyTroch requires 228MB memory, and has
more than 58 million parameters 1. Hence, using deep neural models in devices with limited hardware
is a challenge, due to both memory requirements and the large number of floating point operations
per second (FLOPs). Recently, the aforementioned issues have fueled research activity in developing
computationally efficient deep neural models. As mentioned, most remarkable performance of
deep models have been achieved by very large models both in depth and width. Also, empirical
observations demonstrate that the test accuracy of these models will not be affected drastically by
distorting their trained weights (Cheng et al., 2017; Huang et al., 2018). These observations may be
interpreted as the existence of a lot of redundancy in a trained deep neural model. This motivates
network compression algorithms where the goal is to maintain the performance quality while reducing
the computation and memory requirements by removing redundant parameters of the network.

Our Contributions: In this paper, we focus on pruning networks with skip-connections by quanti-
fying how informative of the units within the skip-connections about the output of the model. To this
end, we first introduce a new model-free measure of distance between a set of layers referred to here
as skip-units and the output of the network. This measure enjoys some of the properties of popular
Shannon’s mutual information, but has computational advantages and is model-free. Next based on
the model-free measure, we propose a pruning algorithm for architectures with skip-connections e.g.,
ReseNet (He et al., 2016) and DenseNet (Huang et al., 2017) to remove iteratively less important units
from the graph of the network. In other words, our proposed pruning method is a structured technique
that aims to prune a network by removing redundant units instead of individual weights. This gives
competitive compression ratio with the existing methods. We provide extensive experimental results
on the classification tasks of CIFAR-10, CIFAR-100, SVHN, Tiny ImageNet, and ImageNet data sets,
demonstrating the efficacy of the proposed technique.

1Typically, the largest portion of memory utilization stems from the dense layers while most computational
load is dominated by convolutional layers.

1

https://github.com/suuyawu/PEDmodelcompression

Under review as a conference paper at ICLR 2021

2 PRIOR ART

Due to the lack of space, here we review the most relevant pruning techniques to ours, and defer
review of the other compression methods to the appendix. Among the existing approaches in the
network compression, pruning techniques (Courbariaux et al., 2015; Gong et al., 2014; Han et al.,
2016; He et al., 2017; Hou et al., 2017; Li et al., 2017; Liu et al., 2017; Merolla et al., 2016;
Rastegari et al., 2016; Wen et al., 2016; Singh et al., 2019; Ding et al., 2018; He et al., 2018;
Molchanov et al., 2017; Guo et al., 2016; Li et al., 2019; Luo et al., 2018; Dai et al., 2018; He
et al., 2019; Ye et al., 2018; Bellec et al., 2018; Xiao et al., 2019; Liu et al., 2019; Frankle & Carbin,
2019; Zhuang et al., 2018; Lin et al., 2018; Malach et al., 2020; Lin et al., 2020) are quite popular.
These methods reduce the network complexity through weights/kernels removal. These are in turn
motivated by experimental observations that DNNs are robust to various types of weight distortion
including quantization, additive and multiplicative noise injection, projection, etc (Merolla et al.,
2016). Additionally, the well-known drop-out technique (Srivastava et al., 2014) and regularization
technique of drop-block (Ghiasi et al., 2018) in residual networks may provide another intuitive
inspiration for the pruning-based approaches. In general, pruning techniques are divided into two
categories: Structured and Unstructured methods. Unstructured methods directly try to remove
individual weights in a deep model and do not impose any structure in the pruning process. On the
other hand, structured methods apply pruning in the level of filters and layers by imposing some
structure on the topology of weights. While unstructured methods provide the most flexibility for the
model and generally achieve higher compression ratio and accuracy in terms of memory requirement,
they do not typically provide any gain in the FLOPs number (many of unstructured methods do not
report any FLOPs reduction). Furthermore, it is harder to map unstructured methods efficiently to
parallel processors, and the deep learning software packages have typically limited support for these
methods. In contrast, structured methods are much easier to be deployed in parallel processors, and
usually provide a significant reduction in the FLOPs count; hence, speeding up the inference running
time. However, their compression ratio in terms of parameters count may be less than the structured
methods as some of our experiments have illustrated this issue. In summary, there is a trade-off curve
between achievable compression levels for a given model and the level of structure imposed on the
model weights 2. We invite the readers to keep this important difference between the structured and
the unstructured methods in their mind when comparing the pruning results with each other.

The most relevant pruning technique with our approach is the structured method of dynamic path
selection. In this method, a sub-graph or a group of weights with a specific structure is selected from
the original network such that the chosen graph has a comparable inference (test) performance with
the original model (Veit & Belongie, 2017; Hu et al., 2018; Wu et al., 2018; Wang et al., 2018; Huang
et al., 2016; Frankle & Carbin, 2019; Lee et al., 2019; Lin et al., 2020). In particular, approaches
proposed by Wang et al. (2018) and Wu et al. (2018) have mostly focused on the residual networks,
and their goal is to dynamically select a set of layers in the original graph using learning-based
approaches such as policy update in reinforcement learning. While it is an interesting observation,
it seems that it is less effective with deeper neural networks such as deep ResNet families. In this
paper, we propose a novel pruning method, delivering comparable/better performance to those of
state-of-the-art deep compression models/techniques. Our method is a structured method based on
removing a set of feature maps with less “information” about the output of the model, where the
information is defined by a non-parametric energy distance. In addition, we compare our results with
some of the state-of-the-art unstructured pruning methods.

3 BACKGROUND AND PROPOSED METHOD

3.1 DEEP NEURAL MODELS WITH SKIP-CONNECTION

It is well-known that network architectures with skip-connection are more robust to weight distortion
(such as a random drop of the layers) than the feed-forward networks (Veit et al., 2016). In this
paper, we take this phenomena one step further and develop a structured pruning technique based on
removing a collection of redundant layers instead of individual random layers. First, we define a skip-
unit as a set of layers where its output is a function of sequential application of operations in the unit
including Conv, Pooling, ReLU, BN, Dropout, etc and feature maps of previous unit(s). Specifically,

2We refer the readers to an excellent paper by Gale et al. (2019) for more discussion.

2

Under review as a conference paper at ICLR 2021

consider a DNN with L skip-units. We denote the input of lth unit as Ul−1. Let Tl = fl(Ul−1) denote
the output of sequential application of the aforementioned operations in a skip-unit, summarized by
fl. We call Tl as the feature map of the unit l. Hence, each skip-unit is mathematically given by:

Ul = Ψ(Tl, Ul:l−1, αl), l = 2, 3, . . . , L, (1)
where αl ∈ {0, 1} is referred to as policy and Ψ denotes an operation that combines Tl and U1:l−1.
Also, U1:l−1 denotes all the skip-units from unit 1 to the (l − 1)th unit. In ResNet and DenseNet
models, Ψres and Ψden are respectively given by (see the appendix for reviewing these models):

Ul = Ψres(Tl, U1:l−1, αl) = αlTl +Al−1Ul−1, (2)
Ul = Ψdense(Tl, U1:l−1, αl) = Concat(αlTl, U1:l−1), (3)

where Concat is the concatenation operation, and Al−1 is an identity, down-sampling, or some
operation such as convolution operator(s). Furthermore, U0, the input for the first unit is usually given
by a convolution operator (e.g., in ResNet, and DenseNet). In the above expressions, αl indicates that
which skip-unit should be removed or retained from the architecture ; hence, the name policy.

3.2 MODEL-FREE MEASUREMENT OF DEPENDENCY

Our main idea for compression of deep models with skip-units is based on measuring the information
between each skip-unit and the output of the model, and then removing the less important units. A
popular information measure is given by Shannon’s Mutual Information (MI). Computing the mutual
information between the output and the features of a machine learning model has been a research
topic with a long history in unsupervised feature learning (Linsker, 1988), and variable ranking or
screening (Murphy, 2012). In the context of deep learning, MI between the hidden layers and the
output of a network has been investigated by the Information Bottleneck theory (Shamir et al., 2010;
Tishby & Zaslavsky, 2015). While Shannon MI is an appealing mathematical measure, its estimation
may be a difficult task. The estimation of MI for high-dimensional data needs a model assumption for
the underlying probability distribution. The selected model may be statistically unrealistic (even when
a large number of samples are available (Paninski, 2003)). For example, one method for computing
Shannon MI is the histogram method. This becomes more accurate if the histogram bins are not too
coarse, but will be computationally more cumbersome to handle. Another option is to use a more
complex parametric model such as Gaussian mixture models (Kolchinsky & Tracey, 2017) which is
computationally prohibitive for high-dimensional feature maps. The above issues for the computation
of MI motivate new model-free measures with similar properties of MI that are not computationally
intense (Bottou et al., 2018). We introduce a measure that quantifies the dependency between two
random vectors T and Y , network features and output labels, respectively. Our proposed measure is
based on the following Energy Distance (ED) between two continuously-valued random vectors.
Definition 1 (Energy Distance (ED) Székely & Rizzo (2013)). Suppose that the characteristic func-
tions and distribution functions of two continuous-valued random vectors Ti ∈ Rd are respectively
given by φi(·), Fi(·) (i = 1, 2). The ED between F1 and F2 is given by

E(F1, F2) =
1

cd

∫
Rd

|φ1(s)− φ2(s)|2

‖s‖d+1
ds, (4)

where cd = π(1+d)/2/Γ((1 + d)/2) is a constant that only depends on d.

We have the following result due to Székely & Rizzo (2013)3.
Theorem 1. The energy distance in equation 4 can be written as

E(F1, F2) = 2E‖T1 − T2‖ − E‖T1 − T ′1‖ − E‖T2 − T ′2‖, (5)
where T ′1 and T ′2 are i.i.d copies of T1 and T2, respectively, and ‖ · ‖ denotes the Euclidean norm.

Now suppose that we have ni observations of Ti, i = 1, 2, where ti,j denotes the j-th observation of
Ti. Then an unbiased estimator of ED in (5) is given by:

Ê(F1, F2) =
2

n1n2

∑
1≤j1≤n1,1≤j2≤n2

‖t1,j1 − t2,j2‖−

1

n21

∑
1≤j1,j′1≤n1

‖t1,j1 − t1,j′1‖ −
1

n22

∑
1≤j2,j′2≤n2

‖t2,j2 − t2,j′2‖. (6)

3Székely & Rizzo (2013) have shown that energy distance given in equation 5 is always non-negative.

3

Under review as a conference paper at ICLR 2021

Applying the theory of V-statistics (Lee, 2019), it can be proved under mild assumptions that the
above Ê(F1, F2) is a consistent estimator of E(F1, F2), that is Ê(F1, F2)→ E(F1, F2) in probability,
as n = min{n1, n2} → ∞. This implies that with sufficiently large data size, Ê(F1, F2) vanishes for
T1 independent from T2, and is bounded away from zero otherwise, without the need of specifying
any parametric model. Based on the above distance, we define the following quantity of dependency.

Definition 2. Consider random vector/variable T ∈ Rd and Y ∈ Y , where Y has p elements, say
{1, 2, . . . , p} for notational convenience. The energy dependence between T and Y is defined by
D(T, Y) = max1≤i,j≤p E(Fi, Fj), where Fi denotes the distribution of T conditional on Y = i.

Theorem 2. For random vector/variable T ∈ Rd and Y ∈ Y with a finite alphabet Y , D(T, Y) = 0
if T and Y are independent.

Proof. The independence of T and Y is equivalent to FT |Y=j = FT |Y=j′ for any 1 ≤ j, j′ ≤ p.
This is further equivalent to D(T, Y) = 0, according to Definition 2 and Theorem 1.

From its definition, the distance in equation 4 between each pair of conditional distributions T | Y
can be interpreted as a weighted L2 distance between their characteristic functions. The larger the
distance is, the larger is the dissimilarity. As a consequence, the energy dependence in Definition 2
may be interpreted as a quantification of the dependency between T and Y . Based on (6), we define
a consistent estimator of D(T, Y) by D̂(T, Y) = max1≤i,j≤p Ê(Fi, Fj), where Ê(Fi, Fj) is given
by equation 6. We use this to measure the dependency between T and Y . The larger its value is,
the more information T reveals about Y . Similar to the consistency of (6), D̂(T, Y) is a consistent
estimator of D(T, Y) according to the standard theory of V-statistics.

3.3 PROPOSED ALGORITHM

We now present our pruning algorithm using energy dependence. Our pruning method is applicable
to any network with skip-connections. The pseudocode of our algorithm is given in Algorithm 1.

Symbols used in Algorithm 1. We call our algorithm as Pruning with Energy Dependence (PED).N
denotes the number of stages for running PED. We define the cluster vector Kt as a set of candidates
for the number of clusters at stage t. We denote the ith entry of Kt by Kt

i . Also, |A| is the size of a
set A and St is the index set of skip-units which maintains the index of active skip-units at stage t.
Finally, DNNt denotes a trained pruned model with weights initialized from stage t− 1.

Explanation of Algorithm 1. In each stage t, PED determines the units whose feature maps Tl are
more informative about the output of the model for the given input. To quantify the informativeness
of units, PED computes the estimate of energy dependence between Tl and the output of the model,
D̂(Tl, Y)4, l = 1, 2, . . . , L, defined in Definition 2. Next, PED uses D̂(Tl, Y) to select active units
for which αl = 1 by clustering the D̂(Tl, Y) values5. Out of all the number of cluster candidates, the
one with minimum training error is selected (kt∗). After this, PED only keeps kt∗ cluster centroids and
remove all the other units6. In the appendix, we have illustrated the pattern of dropping units across
the different stages for various models and data sets. At the end of stage t, PED re-trains the new
compressed model with weights in the active units and initialized with their values from the previous
stage. This coarse pruning and re-training process continues until the desired size of the compressed
network is met. We now discuss about two important observations in our proposed approach.

Changing the energy of the units across different pruning stages. Figure 1 illustrates what
D̂(Tl, Y)’s represent across different stages through an example, where we have plotted the histogram
of the energy values. Plots (a) and (b) in Figure 1 and also plots (c) and (d) illustrate the frequency of
the energy values (distribution of energy dependence) for the full model (before any pruning) and

4For the notation simplicity, we use D(.) instead of D̂ in the pseudocode.
5Please see the appendix for the pseudocode of the clustering algorithm in which we have used an optimal

k-means algorithm based on dynamic programming (Wang & Song, 2011). Other clustering algorithm can be
used here; however, since the clustering is applied on 1-D data, using the approach by Wang & Song (2011)
guarantees optimality of clustering which is not generally the case for k-means type algorithms.

6Empirically, we have observed that choosing a centroid as the one either with the smallest index, or the
largest index in all the cluster results in less reduction in the training accuracy compared to the training accuracy
of the previous stage. This implies the importance of units closer to the input and the output of the network.

4

Under review as a conference paper at ICLR 2021

(a) (b) (c) (d)

Figure 1: Histogram of the Energy Dependence of skip-units. (a) and (b) denote the histogram of
the Energy Dependence for CIFAR-10 respectively for N = 0 (full model), and for the last stage,
N = 9. (c) and (d) denote the histogram of the Energy Dependence for CIFAR-100 respectively for
N = 0 (full model), and for the last stage (N=9).

after 9 stages pruning for the CIFAR-10 and CIFAR-100 data sets, respectively. These plots reveal
some interesting observations. First, the values of energy dependence (x-axis in the plots) increase
with the number of pruning stages, and the rate of increase is more significant in the CIFAR-100
data set (from the plot (c) to (d)). This is intuitively appealing since as we drop more skip-units, the
information of the remaining units about the output layer is getting more important. The second
observation is that the distribution of energy dependence values has more variation in the later stages
of the algorithm (plots (b) and (d)). The latter observation motivates starting with more aggressive
pruning in the earlier stages (i.e., using the smaller number of clusters), and gradually switch to finer
pruning (by selecting a larger number of clusters) in later stages. In addition, this conclusion can be
used as a rule of thumb for choosing the number of clusters (cluster vector Kt) in each stage. For
selecting the entries of Kt in each stage, while simply trying all the possible values from 1 to |St| − 1
is an acceptable approach (In ResNet or DenseNet, |St| is at most 60, and it decreases after each
stage), we choose entries of Kt based on the observation illustrated in Figure 1: In the early stages,
Kt has a few smaller values than |St| (e.g., |St| − i for 2 ≤ i ≤ 4), while in the later stages, Kt has
only one large value, e.g., Kt = {|St| − 1}.
Superior of the clustering approach versus ranking and random selection. Another important
question here is why not choosing the units with the largest energy values, or selecting them randomly
instead of clustering approach. To answer this question, we first note that model-free measure of
information is a random variable which depends on the data samples. When these values are close to
each other, a test of hypothesis fails to reject if an information value is larger than the other. Thus, we
cluster the values that cannot be distinguished from each other statistically. On the other hand, due to
the fact that the existence of the skip-units violates the Markov Chain property among the layers, the
mutual information between the skip-units and the output does not decrease monotonically according
to the information processing inequality. The latter argument implies that simply selecting units
randomly or with the largest energy values (information) may remove some important skip-units. To
support the preference of clustering over two other schemes, we have compared pruning by clustering
with the two above schemes in plots (a) and (b) of Figure 2 for pruning ResNet56 and CIFAR-10
data set. To be fair in comparison with the clustering scheme used in PED, we have used the same
number of units used in the clustering for removing units randomly and with the smallest energy.
As we can see in plots (a) and (b) of Figure 2, the test accuracy with respect to the percentage
of remaining parameters, and the percentage of remaining FLOPs by pruning through the largest
values and random selection are worse than the clustering approach specifically for the later stages
(corresponding to more pruning). This observation favors the clustering approach rather than simply
dropping the units randomly or with the smallest energy; hence, clustering scheme avoids removing
potentially important units. Please see section A.6.2 in the appendix for the details of experiments
(pruning performance in the intermediate stages) in Figure 2. Finally, we have to mention that our
proposed technique can be combined with the unstructured methods, which remove the less important
individual weights. This means that after we finished pruning a model with PED, we may apply
unstructured state-of-the-art methods such as SNIP (Lee et al., 2019), or GraSP (W. et al., 2020) on
the pruned model to remove individual weights; hence, achieving more compression rate.

4 EXPERIMENTAL RESULTS

In this section, we present the performance of our proposed algorithm, PED on CIFAR-10, CIFAR-
100, SVHN, and ImageNet data sets in terms of the test accuracy, number of parameters, and

5

Under review as a conference paper at ICLR 2021

(a) (b)

Figure 2: Comparison of clustering scheme in PED (N = 10) against pruning using units with the
largest energy values, and random selection. The experiments are based on ResNet56 and CIFAR-10.

Algorithm 1 Pruning with Energy Dependence (PED)
INPUT:

DNN0: Pre-trained Deep Neural Network
S0: The index set of skip-units in DNN0

Tl: Feature maps, l = 1, 2, . . . , |S0|
Kt: Cluster vector, t = 0, 1, . . . , N − 1
N : Number of stages

for t = 0, 1, . . . , N − 1 do
Compute D(T t

l , Y), l = 1, . . . , |St| using DNNt

Construct Dt = [D(T t
1 , Y), D(T t

2 , Y), . . . , D(T t
|St|, Y)]

{ClusterK
t
1

1 , . . . , Cluster
Kt

1

Kt
1
, . . . , Cluster

Kt
|Kt|

1 , . . . , Cluster
Kt

|Kt|
Kt

|Kt|
} = Clustering(Kt,Dt, St)

for k in Kt do
for j = 1, 2, . . . , k do

ac = 1, c = cluster centroid index
au = 0, ∀u ∈ Clusterkj \ c

end for
Compute Trainkerr for given k

end for
Select kt∗ = arg mink∈Kt Trainkerr
Update St by keeping only kt∗ units and remove the rest of units
Update DNNt by re-training the model with kt∗ = |St| units with weights initialized in stage t

end for
Return pruned model with |SN−1| active skip-units

FLOPs of the pruned model7. Among all the existing pruning methods, two structured methods of
SkipNet (Wang et al., 2018) and BlockDrop (Wu et al., 2018) are most relevant ones to PED as they
try to prune dynamically residual units in ResNet families based on reinforcement learning. For
computing FLOPs, we add up the number of multiplications, additions, and ReLu comparisons of the
pruned model. The CIFAR-10 and CIFAR-100 data sets used extensively for image classification
consist of 50000 and 10000 training and testing images with size 32× 32× 3 which are categorized
in 10 and 100 classes, respectively. Moreover, the ImageNet data set is consist of 1000 labels with 1.2
million training images and 50000 validation images. We use the common data-augmentation scheme
at training time (He et al., 2016), and perform a rescaling to 256×256 followed by a 224×224 center
crop at test time before giving the input images to the models. We also use Cutout augmentation
technique (DeVries & Taylor, 2017) for CIFAR data sets in the training of the deep models in each
stage including the original full model. We note that this augmentation technique has only been
applied to the training data sets and not the test ones. Other compression techniques including those
presented in (Huang et al., 2018; Liu et al., 2017) also use data augmentations techniques such as

7Due to the lack of space, we defer the details of experiments and architectures, results of intermediate stages,
and experiments on Tiny ImageNet to the appendix.

6

Under review as a conference paper at ICLR 2021

Models Acc. Par. Red.(%) FLOPs Red.(%)
ResNet32 (SNIP) Lee et al. (2019)U 0.9259 0.19 90.00 - -
ResNet56 (PFEC-B) Li et al. (2017)S 0.9306 0.73 13.70 90.90 27.60
ResNet56 (PP-1) Singh et al. (2019)S 0.9309 - - 39.99 68.40
ResNet56 (NISP) Yu et al. (2018)U 0.9301 - - 67.57 46.60

ResNet56 (AFP-G) Ding et al. (2018)S 0.9294 - - 55.50 60.86
ResNet56 (SFP) He et al. (2018)S 0.9359 - - 59.40 52.60

ResNet56 (CNN-FCF) Li et al. (2019)S 0.9338 - 43.09 72.40 42.78
ResNet56 (FPGM-mix 40%) He et al. (2019)S 0.9359 - - 59.40 52.60

ResNet56 (HRank) Lin et al. (2020)S 0.9317 0.49 42.40 62.72 50.00
ResNet56 (pruned) (ours) 0.9336 0.32 62.96 45.73 63.86

ResNet110 (BlockDrop) Wu et al. (2018)S 0.9360 - - 173.00 65.00
ResNet110 (SkipNet) Wang et al. (2018)S 0.9330 - - 126.00 50.47

ResNet110-pruned (PFEC-B) Li et al. (2017)S 0.9330 1.16 32.40 155.00 38.60
ResNet164-pruned Liu et al. (2017)S 0.9492 1.44 14.90 381.00 23.70

ResNet164-a (pruned) (ours) 0.9519 0.65 61.78 71.06 72.13
ResNet164-b (pruned) (ours) 0.9426 0.48 71.57 48.93 80.81

DenseNet40-pruned Liu et al. (2017)S 0.9481 0.66 35.70 381.00 28.40
IGC-V2*C416 Xie et al. (2018)S 0.9451 0.65 - - -

CondenseNet86 Huang et al. (2018)S 0.9496 0.52 - 65.00 -
DenseNet100-k12-a (pruned) (ours) 0.9432 0.29 61.98 117.73 59.89
DenseNet100-k12-b (pruned) (ours) 0.9425 0.27 64.50 116.51 60.31

Table 1: Classification test accuracy, number of parameters (Par), and FLOPs on CIFAR-10 between
PED and those of the state-of-the-art methods. Par and FLOPs are in million.

zero-padding, random cropping, shifting and mirroring, and with different normalization only to
the training data set. We compare the performance of PED with the state-of-the-art deep neural
compression methods in Table 1 for CIFAR-10, in Table 2 for CIFAR-100, for SVHN in Table 3, and
for ImageNet in, Table 4. The third/forth and fifth/sixth columns labeled ’Red’ in all tables represent
the percentage of reduction in the number of parameters and FLOPs, respectively. Moreover, the
numbers given in columns labeled as ”Par.” (i.e., Parameters) and ”FLOPs” are in million (Only
FLOPs in Table 4 is in Billion) and rounded by two-decimal digits. In all tables, “–” means no
reported value. In general, FLOPs count is not an accurate measure for comparing the performance
of pruning methods as different techniques have used various operations in counting total FLOPs;
hence different reported values8. Also, many structured pruning methods do not provide any FLOPs
reduction. Next we present the result of applying PED on ResNet and DenseNet models. In all the
tables, the superscript “S” and “U” denote the structured or unstructured methods, respectively.

ResNet56: The ResNet56 architecture consists of 56 layers with 27 residual units and the total
number of 0.85 (M) training parameters and 126.54 (M) FLOPs. In order to run PED on ResNet56,
we first train it on CIFAR-10 to achieve 0.9334 test accuracy. The results of applying PED on
ResNet56 with N = 5 stages are shown in Table 1 tagged by ResNet56. As we can see, without
almost any dropping in the test accuracy, we can reduce the number of trainable parameters and
FLOPs by 62.96% and 63.86%, respectively. Also, the effect of pruning in the inference running
time (in mS) on one GPU (GeForce RTX 2080 Ti) of the ResNet56 for stages from 0 to 6 is given
by 67, 45, 32, 32, 26, 22, 21, respectively (we have averaged over batch-test images with size 20).
Please see the appendix for the running time of the other models and data sets.

ResNet164: Next we evaluate the performance of PED on ResNet164 model. We apply our algorithm
to prune ResNet164 for CIFAR-10 (Table 1), CIFAR-100 (Table 2), and SVHN (Table 3). ResNet164
consists of 18 units with total number of 1.70 (M) trainable parameters and 254.94 (M) FLOPs.
Similar to ResNet56, we first train this model on CIFAR-10 and achieve 0.9569 test accuracy. In
Table 1, we have listed two ResNet164 pruned models. The first one, ResNet164-a is a compressed
version of ResNet164 by running PED for N = 6 stages, while ResNet164-b corresponds to N = 9
stages. As we can see, ResNet164-a achieves 0.9519 test accuracy with 0.65 (M) parameters and

8(Wu et al., 2018) has reported 508 million FLOPs for the full ResNet110, while it is given 253 million
by (Wang et al., 2018; Li et al., 2017).

7

Under review as a conference paper at ICLR 2021

Models Acc. Par. Red.(%) FLOPs Red.(%)
ResNet32 (SET) Mocanu et al. (2018)U 0.6966 0.19 90.00 - -

ResNet32 (GraSP) W. et al. (2020)U 0.6924 0.19 90.00 - -
ResNet32 (DSR) Mostafa & Wang (2019)U 0.6963 0.19 90.00 - -
Resnet110 (BlockDrop) Wu et al. (2018)S 0.7370 - - ∼284.00 ∼56.00
ResNet110 (SkipNet) Wang et al. (2018)S 0.7250 - - - 37.00

ResNet164-pruned Liu et al. (2017)S 0.7713 1.46 15.50 333.00 33.30
ResNet164-a (pruned) (ours) 0.7499 0.58 67.70 100.09 60.74
ResNet164-b (pruned) (ours) 0.7402 0.47 72.80 91.01 64.30

DenseNet40-pruned Liu et al. (2017)S 0.7472 0.66 37.50 371.00 30.30
CondenseNet86 Huang et al. (2018)S 0.7636 0.52 - 65.00 -
DenseNet100-k12-a (pruned) (ours) 0.7526 0.51 36.64 239.27 21.32
DenseNet100-k12-b (pruned) (ours) 0.7488 0.47 40.78 221.89 27.04

Table 2: The top-1 test accuracy, number of parameters (Par), and FLOPs on CIFAR-100 between
PED and those of the state-of-the-art methods. Par and FLOPs are in million. “∼” means approximate
value. The accuracy reported in W. et al. (2020) is given by 0.6924± 0.24.

Model (ResNet164) Acc. Par. Red.(%) FLOPs Red.(%)
(40% Pruned) Liu et al. (2017)S 0.9815 1.46 14.50 344.00 31.10
(60% Pruned) Liu et al. (2017)S 0.9819 1.12 34.30 225.00 54.90

PED (pruned) (ours) 0.9815 0.83 51.23 101.84 60.00

Table 3: Classification test accuracy, number of parameters (Par), and FLOPs on SVHN data set
between PED and those of the state-of-the-art methods. Par and FLOPs are in million.

71.06 (M) FLOPs. For the CIFAR-100, a full ResNet164 model has top-1 test accuracy equals to
77.93%. Table 2 presents two compressed models of ResNet164 model, ResNet164-a and ResNet164-
b corresponding to running PED respectively with N = 9 and N = 11 stages on CIFAR-100. Finally,
Table 3 shows the pruning (with N = 2 stages) result of a full ResNet164 model with 98.20% test
accuracy trained for the classification of SVHN data set. No Cutout is used for SVHN experiment.

DenseNet: Next we focus on the DenseNet100-k12 with 100 layers, k = 12 growth-rate (i.e., the
number of output channels in each unit), and 48 skip-units. We apply PED to DenseNet100-k12 by
first training DenseNet100-k12 on both CIFAR-10 with 0.9531 test accuracy, 0.77 (M) number of
parameters, and 293.55 (M) FLOPs (Tabel 1) and CIFAR-100 with 0.7793 as the top-1 test accuracy,
0.80 (M) number of parameters, and 304.10 (M) FLOPs (Table 2). Similar to the ResNet experiments,
we have presented two pruned DenseNet models in Table 1, DenseNet100-k12-a and DenseNet100-
k12 corresponding to running PED with N = 10 and N = 11 stages, respectively. Also we have two
models of DenseNet100-k12-a and DenseNet100-k12 in Table 2 corresponding to running PED with
N = 5 and N = 6 stages, respectively. These experiments suggest that our proposed algorithm is
competitive to the state-of-the-art methods of in one or more criteria of accuracy/parameters/FLOPs.

ResNet50: Finally, we present the experiment on ImagaNet data set using ResNet50 in Table 4.
ResNet50 consists of 4 blocks with 3, 4, 6, and 3 skip-units in each block. This model has 25.56
(M) trainable parameters and 4.11 (B) FLOPs. As we expected, two structured methods of SNIP and
GraSP have better compression ratio, but they have not reported FLOPs. Compared to the structured
methods of ThiNet, SkipNet, SSS, GAL-0.5, and HRank, our method, PED has better performance.

Model (ResNet50) Top1 Acc. Top5 Acc. Par. Red.(%) FLOPs Red.(%)
SNIP Lee et al. (2019)U 0.7395 0.9197 10.22 60.00 - -
GraSP W. et al. (2020)U 0.7402 0.9186 10.22 60.00 - -

ThiNet-50 Luo et al. (2017)S 0.6842 0.8830 8.66 66.04 1.10 73.10
SkipNet Wang et al. (2018)S 0.7200 - - - - 12.00
SSS Huang & Wang (2018)S 0.7182 0.9079 15.60 38.82 2.33 43.32
GAL-0.5 Lin et al. (2019)S 0.7180 0.9082 19.31 24.74 1.84 55.01
HRank Lin et al. (2020)S 0.7198 0.9101 13.77 46.95 1.55 62.10

PED (pruned) (ours) 0.7280 0.9094 12.40 51.49 2.03 50.53

Table 4: The top-1 and top-5 test accuracy, number of parameters (Par), and FLOPs on ImageNet
data set between PED and those of the state-of-the-art methods. FLOPs is in billion.

8

Under review as a conference paper at ICLR 2021

REFERENCES

G. Bellec, D. Kappel, W. Maass, and R. Legenstein. Deep rewiring: Training very sparse deep
networks. In Int. Conf. Learning. Rep., 2018.

L. Bottou, M. Arjovsky, D. Lopez-Paz, and M. Oquab. Geometrical insights for implicit generative
modeling. In Braverman Readings in Machine Learning. Key Ideas from Inception to Current
State, pp. 229–268. Springer, 2018.

Y. Cheng, D. Wang, P. Zhou, and T. Zhang. A survey of model compression and acceleration for
deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

M. Courbariaux, Y. Bengio, and J. David. Binaryconnect: Training deep neural networks with binary
weights during propagations. In Adv. Neural Inf. Process. Sys., pp. 3123–3131, 2015.

B. Dai, C. Zhu, B. Guo, and D. Wipf. Compressing neural networks using the variational information
bottleneck. In Int. Conf. Learning. Rep., 2018.

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In IEEE Conf. Comp. Vision. Patt. Recog., pp. 248–255, 2009.

E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure within
convolutional networks for efficient evaluation. In Adv. Neural Inf. Process. Sys., pp. 1269–1277,
2014.

T. DeVries and G. Taylor. Improved regularization of convolutional neural networks with cutout.
arXiv preprint arXiv:1708.04552, 2017.

X. Ding, G. Ding, J. Han, and S. Tang. Auto-balanced filter pruning for efficient convolutional neural
networks. In AAAI Conf. Artificial Intelligence, 2018.

M. Figurnov, M. Collins, Y. Zhu, L. Zhang, J. Huang, D. Vetrov, and R. Salakhutdinov. Spatially
adaptive computation time for residual networks. In IEEE Conf. Comp. Vision. Patt. Recog., pp.
1039–1048, 2017.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In
Int. Conf. Learning. Rep., 2019.

T. Gale, E. Elsen, and S. Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

G. Ghiasi, T. Lin, and Q. Le. Dropblock: A regularization method for convolutional networks. In
Adv. Neural Inf. Process. Sys., pp. 10727–10737, 2018.

Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing deep convolutional networks using vector
quantization. arXiv preprint arXiv:1412.6115, 2014.

Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for efficient dnns. In Adv. Neural Inf. Process.
Sys., pp. 1379–1387, 2016.

S. Han, H. Mao, and W. Dally. Deep compression: Compressing deep neural networks with pruning,
trained quantization and Huffman coding, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE Conf.
Comp. Vision. Patt. Recog., pp. 770–778, 2016.

Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural networks. In IEEE
Int. Conf. Comp. Vision, pp. 1389–1397, 2017.

Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter pruning for accelerating deep convolutional
neural networks. In Int. Joint Conf. Artificial Intelligence, pp. 2234–2240, 2018.

Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang. Filter pruning via geometric median for deep convolutional
neural networks acceleration. In IEEE Conf. Comp. Vision. Patt. Recog., pp. 4340–4349, 2019.

9

Under review as a conference paper at ICLR 2021

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

L. Hou, Q. Yao, and J. Kwok. Loss-aware binarization of deep networks. Int. Conf. Learning. Rep.,
2017.

A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In IEEE Conf. Comp. Vision. Patt.
Recog., pp. 7132–7141, 2018.

G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger. Deep networks with stochastic depth. In
European Conf. Comp. vision, pp. 646–661, 2016.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Weinberger. Densely connected convolutional networks.
In IEEE Conf. Comp. Vision. Patt. Recog., pp. 4700–4708, 2017.

G. Huang, S. Liu, L. Van der Maaten, and K. Weinberger. Condensenet: An efficient densenet using
learned group convolutions. In IEEE Conf. Comp. Vision. Patt. Recog., pp. 2752–2761, 2018.

Z. Huang and N. Wang. Data-driven sparse structure selection for deep neural networks. In Europ.
Conf. Comp. Vision, pp. 304–320, 2018.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Int. Conf. Machine Learning, pp. 448–456, 2015.

M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with low
rank expansions. In British Machine Vision Confs., 2014.

A. Kolchinsky and B. Tracey. Estimating mixture entropy with pairwise distances. Entropy, 19(7):
361, 2017.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural
networks. In Adv. Neural Inf. Process. Sys., pp. 1097–1105, 2012.

A. Lee. U-statistics: Theory and Practice. Routledge, 2019.

N. Lee, T. Ajanthan, and P. Torr. SNIP: Single shot network pruning based on connection sensitivity.
In Int. Conf. Learning. Rep., 2019.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. Graf. Pruning filters for efficient convnets. In Int.
Conf. Learning. Rep., 2017.

T. Li, B. Wu, Y. Yang, Y. Fan, Y. Zhang, and W. Liu. Compressing convolutional neural networks via
factorized convolutional filters. In IEEE Conf. Comp. Vision. Patt. Recog., pp. 3977–3986, 2019.

M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao. Hrank: Filter pruning using
high-rank feature map. In IEEE Conf. Comp. Vision. Patt. Recog., pp. 1529–1538, 2020.

S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang. Accelerating convolutional networks via global
& dynamic filter pruning. In IJCAI, pp. 2425–2432, 2018.

S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. Doermann. Towards optimal
structured cnn pruning via generative adversarial learning. In IEEE Conf. Comp. Vision. Patt.
Recog., pp. 2790–2799, 2019.

T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. Zitnick. Microsoft
coco: Common objects in context. In European Conf. Comp. vision, pp. 740–755, 2014.

R Linsker. Self-organization in a perceptual network. computer. pp. 105–117, 1988.

J. Liu, S. Tripathi, U. Kurup, and M. Shah. Pruning algorithms to accelerate convolutional neural
networks for edge applications: A survey. arXiv preprint arXiv:2005.04275, 2020.

10

Under review as a conference paper at ICLR 2021

Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning efficient convolutional networks
through network slimming. In IEEE Int. Conf. Comp. Vision, pp. 2736–2744, 2017.

Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of network pruning. In Int.
Conf. Learning. Rep., 2019.

J. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep neural network compression.
In PIEEE Int. Conf. Comp. Vision, pp. 5058–5066, 2017.

J. Luo, H. Zhang, H. Zhou, C. Xie, J. Wu, and W. Lin. Thinet: pruning cnn filters for a thinner net.
IEEE Trans. Patt. Anal. Machine Intell., 41(10):2525–2538, 2018.

E. Malach, G. Yehudai, S. Shalev-Shwartz, and O. Shamir. Proving the lottery ticket hypothesis:
Pruning is all you need. arXiv preprint arXiv:2002.00585, 2020.

P. Merolla, R. Appuswamy, J. Arthur, S. K Esser, and D. Modha. Deep neural networks are robust to
weight binarization and other non-linear distortions. arXiv preprint arXiv:1606.01981, 2016.

D. Mocanu, E. Mocanu, P. Stone, P. Nguyen, M. Gibescu, and A. Liotta. Scalable training of
artificial neural networks with adaptive sparse connectivity inspired by network science. Nature
communications, 9(1):1–12, 2018.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks for
resource efficient inference. Int. Conf. Learning. Rep.., 2017.

H. Mostafa and X. Wang. Parameter efficient training of deep convolutional neural networks by
dynamic sparse reparameterization. In Int. Conf. Machine. Learning., pp. 4646–4655, 2019.

K. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng. Reading digits in natural images with
unsupervised feature learning. In NIPS Workshop on Deep Learn. Unsup. Feature Learn., 2011.

L. Paninski. Estimation of entropy and mutual information. Neural computation, 15(6):1191–1253,
2003.

V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and M. Rastegari. What’s hidden in a
randomly weighted neural network? In Conf. Comp. Vision Patt. Recog., pp. 11893–11902, 2020.

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. In Europ. Conf. Comp. Vision., pp. 525–542. Springer, 2016.

M. Ren, A. Pokrovsky, B. Yang, and R. Urtasun. Sbnet: Sparse blocks network for fast inference. In
IEEE Conf. Comp. Vision. Patt. Recog., pp. 8711–8720, 2018.

A. Romero, N. Ballas, S. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets: Hints for thin deep
nets. arXiv preprint arXiv:1412.6550, 2014.

O. Shamir, S. Sabato, and N. Tishby. Learning and generalization with the information bottleneck.
Theoretical Comp. Science, 411(29-30):2696–2711, 2010.

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. A sparse-group lasso. Journal of Comp. Graph.
Statistics, 22(2):231–245, 2013.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

P. Singh, V. Verma, P. Rai, and V. Namboodiri. Play and prune: adaptive filter pruning for deep model
compression. In Int. Joint Conf. Artificial Intelligence, pp. 3460–3466, 2019.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhuinov. Dropout: a simple way
to prevent neural networks from overfitting. The Journal. Machine Learning Research, 15(1):
1929–1958, 2014.

11

Under review as a conference paper at ICLR 2021

K. Sun, M. Li, D. Liu, and J. Wang. Igcv3: Interleaved low-rank group convolutions for efficient
deep neural networks. arXiv preprint arXiv:1806.00178, 2018.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In IEEE Conf. Comp. Vision. Patt. Recog., pp.
1–9, 2015.

G. Székely and M. Rizzo. Energy statistics: A class of statistics based on distances. Journal of stat.
Plan. Inference, 143(8):1249–1272, 2013.

N. Tishby and N. Zaslavsky. Deep learning and the information bottleneck principle. In IEEE Inf.
Theory. Workshop. (ITW), pp. 1–5, 2015.

A. Veit and S. Belongie. Convolutional networks with adaptive computation graphs. arXiv preprint
arXiv:1711.11503, 2017.

A. Veit, M. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively shallow
networks. In Adv. Neural Inf. Process. Sys., pp. 550–558, 2016.

Chaoqi W., Guodong Z., and Roger G. Picking winning tickets before training by preserving gradient
flow. In Int. Conf. Learning. Rep., 2020.

H. Wang and M. Song. Ckmeans. 1d. dp: Optimal k-means clustering in one dimension by dynamic
programming. volume 3, pp. 29, 2011.

X. Wang, F. Yu, Z. Dou, T. Darrell, and J. Gonzalez. Skipnet: Learning dynamic routing in
convolutional networks. In Europ. Conf. Comp. Vision, pp. 409–424, 2018.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural networks.
In Adv. Neural Inf. Process. Sys., pp. 2074–2082, 2016.

Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. Davis, K. Grauman, and R. Feris. Blockdrop: Dynamic
inference paths in residual networks. In IEEE Conf. Comp. Vision. Patt. Recog., pp. 8817–8826,
2018.

X. Xiao, Z. Wang, and S. Rajasekaran. Autoprune: Automatic network pruning by regularizing
auxiliary parameters. In Adv. Neural Inf. Process. Sys., pp. 13681–13691, 2019.

G. Xie, J. Wang, T. Zhang, J. Lai, R. Hong, and G. Qi. Interleaved structured sparse convolutional
neural networks. In IEEE Conf. Comp. Vision. Patt. Recog., pp. 8847–8856, 2018.

J. Ye, X. Lu, Z. Lin, and J. Wang. Rethinking the smaller-norm-less-informative assumption in
channel pruning of convolution layers. Int. Conf. Learning. Rep., 2018.

R. Yu, A. Li, C. Chen, J. Lai, V. Morariu, X. Han, M. Gao, C.g Lin, and L. Davis. Nisp: Pruning
networks using neuron importance score propagation. In IEEE Conf. Comp. Vision. Patt. Recog.,
pp. 9194–9203, 2018.

X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient convolutional neural
network for mobile devices. In IEEE Conf. Comp. Vision. Patt. Recog., pp. 6848–6856, 2018.

H. Zhou, J. Lan, R. Liu, and J. Yosinski. Deconstructing lottery tickets: Zeros, signs, and the
supermask. In Adv. Neural Inf. Process. Sys., pp. 3597–3607, 2019.

Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and J. Zhu. Discrimination-aware
channel pruning for deep neural networks. In Adv. Neural Inf. Process. Sys., pp. 875–886, 2018.

A APPENDIX

The Appendix is organized as follows. We first present the result of applying PED on Tiny ImageNet
data set. Next, we review other deep neural compression techniques which have been omitted from
Section 2, and then we give some overview about the ResNet and DenseNet architectures. The
pseudocode for the clustering sub-routine used by PED is next presented. We then provide more
examples of inference running time for the other models and data sets. The details of the intermediate
stages of PED for all the experiments are given in the subsequent sections.

12

Under review as a conference paper at ICLR 2021

Model (ResNet32) Acc. (∆) Par. Red(%) FLOPs Red(%)

Deep-R Bellec et al. (2018) 0.5329 (↓ 9.60%) 0.28 85.00 - -
GraSP W. et al. (2020) 0.5725 (↓ 5.64%) 0.28 85.00 - -
SNIP Lee et al. (2019) 0.5633 (↓ 6.56%) 0.28 85.00 - -
PED (pruned) (ours) 0.5564 (↓ 5.92%) 0.48 74.50 278.91 74.15

Table 5: Comparison of classification test accuracy on Tiny-ImageNet data set, number of parameters,
and FLOPs between PED and those of the state-of-the-art unstructured methods. “–” means no
reported value. ∆ and ↓ indicate the change and dropping in percentage of the test accuracy with
respect to the base (full) model, respectively.

A.1 RESNET32 ON TINY IMAGENET

In this section, we present the result of applying our pruning technique, PED on ResNet32 and for
the Tiny-ImageNet data set Deng et al. (2009). This data set is a subset of the full ImageNet data
set with 200 labels. Each class includes 500 and 50 images with size 64× 64× 3 for training and
validation sets, respectively. In general, the Tiny-ImageNet classification task is more difficult than
CIFAR-10/CIFAR-100 data set.

ResNet32 model is a collection of 32 layers and 3 blocks each with 5 residual units. We first train a
ResNet32 model from (W. et al., 2020) with 1885032 parameters and 1078912200 FLOPs. However,
we could not reproduce the test accuracy of full ResNet32 reported in W. et al. (2020) with 62.89%
top-1 test accuracy. Our trained ResNet32 achieves 61.56% top-1 test accuracy and we used this
model as the input for PED. For the purpose of (re)training, we use SGD optimization algorithm with
momentum equals to 0.9. For the values of hyperparameters, we set epoch number to 160 for all
stages, batch size to 128, and learning rate to 0.1 which is reduced by a factor of 0.1 in epochs 80
and 120. No Cutout is used for training of the full model. For retraining the pruned models, we have
used Cutout with parameter 16 for stages from 1 to 8 and 32 for the rest of stages.

Table 5 presents the performance of PED in comparison with some structured pruning methods.
Although the accuracy and the number of pruned parameters for SNIP and GraSP are better than
PED, the SNIP and GraSP algorithms do not report any gain in the FLOPs number. In addition, they
have started pruning a base model with 1.39% higher the test accuracy than the one is used for the
full model in PED. This means that the accuracy of PED would be increased by 1 to 1.5% if the
former base model could be used in the experiment.

Moreover, the experiment presented in Tablel 5 verifies our discussion about the structured and
unstructured pruning methods. In summary, PED provides a competitive performance (or even better
in CIFAR-10 and CIFAR-100 data set) than the structured methods such as GraSP and SNIP in terms
of accuracy and parameter count, and in the same time it significantly reduces the FLOPs count in
the base model (e.g., 74.15% reduction). Finally, Table 6 shows the result of applying PED for 11
pruning stages for classifying the Tiny-ImageNet data set.

A.2 REVIEW OF PRIOR ART

Another recent paper, Lottery Ticket Hypothesis (Frankle & Carbin, 2019) has empirically observed
that various deep neural networks possess sub-networks (referred to as “winning tickets”) such that
if they are trained with the same initialization values used in the training of the original full network,
they potentially achieve comparable performance to that of the full model (Winning the lottery”
means that this goal is achieved). Other subsequent papers (Zhou et al., 2019; Ramanujan et al., 2020;
Malach et al., 2020) tried to give more theoretical intuition about the Lottery Ticket Hypothesis. On
the other hand, pruning through the removal of weights is accomplished by determining and removing
less important weights in the final prediction of the model. However, finding the less important
weights is a prohibitively costly problem due to its combinatorial nature. To get around this issue,
various criteria such as the minimum norm of weights, the activation of the feature maps, information
gain, and etc have been proposed in literate (Molchanov et al., 2017). Another recent paper (Lee et al.,
2019) prunes the weights of a deep network by defining a measure called connection sensitivity and
removes the less sensitive weights. Once the important weights are discovered, the pruned network is

13

Under review as a conference paper at ICLR 2021

Stage No. Test Accuracy Parameters Parameters Red.(%) FLOPs Flops Red.(%)

0 0.6156 1885032 0.0000 1078912200 0.0000
1 0.6345 1866472 0.9846 1003021512 7.0340
2 0.6225 1847912 1.9692 927130824 14.0680
3 0.6170 1829352 2.9538 851240136 21.1020
4 0.6217 1755368 6.8786 775546056 28.1178
5 0.6131 1459944 22.5507 699950280 35.1244
6 0.6118 1441384 23.5353 624059592 42.1584
7 0.5940 1219432 35.3097 581493960 46.1037
8 0.5916 1145448 39.2346 505799880 53.1195
9 0.5920 1071464 43.1594 430105800 60.1352

10 0.5759 776040 58.8315 354510024 67.1419
11 0.5564 480616 74.5036 278914248 74.1486

Table 6: The results of pruning in intermediate stages for ResNet32 and Tiny-ImageNet data set.

retrained. Other network compression techniques are based on quantizing or binarizing the weights
of a deep model which have also shown some promising results in practice; however, these methods
potentially have low accuracy in large networks such as GoogleNet (Szegedy et al., 2015).

Another technique is based on low-rank approximation of the weight matrices/tensors, or sparsifying
the weights (these may be considered as other forms of weight pruning) (Denton et al., 2014;
Figurnov et al., 2017; Huang & Wang, 2018; Jaderberg et al., 2014; Ren et al., 2018; Sun et al., 2018).
However, low-rank approximation of large weight tensors may be computationally expensive. Also,
sparsification based on `1-regularization usually requires a large number of iterations for convergence,
and may not necessarily give a structurally sparse network. To resolve these issues, Wen et al. (2016)
have introduced structured sparsity method similar to group lasso (Simon et al., 2013) on AlexNet.
This is an interesting approach that has been only applied to the convolution layers, where the number
of parameters are typically far less than those of the fully connected layers. In this light, it achieves
3.1% reduction in the number of parameters.

Knowledge Distillation (KD) is another network compression approach, which uses a student-teacher
paradigm, where the knowledge of a teacher model is transferred to the student network by learning
the distribution of output labels resulted by sofmax function (Hinton et al., 2015; Romero et al., 2014).
However, use of KD methods is limited to the classification tasks, and the cross-entropy loss function.

In recent years, a number of other innovative and efficient network architectures such as MobileNet
V1/V2, CondenseNet, and IGC-V2*C416 respectively proposed by Howard et al. (2017), Huang et al.
(2018), and Xie et al. (2018) (CondenseNet and IGC-V2*C416 are also considered as the state-of-
the-art compressed architectures for the classification task) and other architectures given by He et al.
(2016); Huang et al. (2017); Zhang et al. (2018) achieve the high test accuracy while giving even
higher reductions in the number of parameters and FLOPs. For example, architectures in Huang
et al. (2017); Zhang et al. (2018) achieve comparable performance as VGG for classification task on
ImageNet, while reducing the computation load 10× and 25×, respectively. MobileNet v2 (Howard
et al., 2017) can respectively achieve 11.15% test error and 31.1% top-1 error on CIFAR-10 and
CIRAR-100 data sets with 1.4 million parameters. However, PED has far better performance both in
terms of accuracy and parameters count. Please see Cheng et al. (2017); Liu et al. (2020) for recent
comprehensive surveys on the deep compression techniques.

A.3 OVERVIEW OF RESNET AND DENSENET ARCHITECTURES

We next briefly discuss two prominent examples of deep architecture with skip-connection, namely
ResNet and DenseNest.

Residual Networks (ResNet). The idea of incorporating skip-connection (by-pass paths) in the
layers of neural networks has been popularized by ResNet (He et al., 2016) family. This new
architecture idea has achieved remarkable results in image competitions such as ImageNet, COCO
challenge, etc. As discussed in Equation (1), in ResNet, the feature maps from the immediate previous

14

Under review as a conference paper at ICLR 2021

(a) (b)

Figure 3: (a) Illustration of two consecutive skip-units in a ResNet family. (b) Illustration of two
consecutive skip-units in a DenseNet family.

skip-unit (i.e., residual-unit) are added directly to the features in the next unit. Please see plot (a) in
Figure 3. There exists various ResNet architecture, but all of them consist of a number of blocks
consisting of multiple skip-units. Each unit is made by stacking two or three convolutional layers
together with Batch Normalization (BN) (Ioffe & Szegedy, 2015) layers, and a skip-connection
from the output of the previous unit to the output of the current unit. Depending on design, the
skip-connection can either be passed through a convolution operation, or directly connected to the
current unit (identity map).

Densely Connected Networks (DenseNet). Construction of the feature maps of units in ResNet-
based models are based only on the immediate previous layer (as described above). In contrast, in
DenseNet Huang et al. (2017) architecture, the input of each skip-unit is a concatenation of feature
maps from all preceding units (Equation (2)). Similar to the ResNet family, DensNet-based models
consist of multiple dense blocks, each containing multiple skip-units (i.e., dense-unit). Also, the
growth rate of the network, k is defined as the number of output features from each unit. In each unit,
two sequences of Conv-BN-ReLU operations are applied to the input (of that unit). The convolutional
layer in the first sequence (1× 1 filters) reduces the number of channels, while the second one (3× 3
filters) outputs k features which are further concatenated by all the features from the preceding units.
The number of parameters in DenseNet architecture Huang et al. (2017) could be significantly less
than the ResNet families. Please see plot (b) in Figure 3.

A.4 CLUSTERING ALGORITHM

The clustering algorithm in Algorithm 1 is given by Algorithm 2. In this algorithm,
Opt K Means(k,D) refers to the optimal k-means algorithm based on dynamic programming
due to Wang & Song (2011).

Algorithm 2 Clustering(K, D, S)
INPUT:
A = ∅
K: Cluster vector
D = [D(T1, Y), D(T2, Y), . . . , D(T|S|, Y)]
S: The Index set of current active skip-units
Opt K Means(·, ·) Wang & Song (2011)

for k in K do
{Clusterk1 , . . . , Clusterkk} = Opt K Means(k, D)
A = A ∪ {Clusterk1 , . . . , Clusterkk}

end for
Return A

A.5 INFERENCE RUNNING TIME OF THE PRUNED MODELS

In this section, we show the effect of pruning in clock-time (in millisecond (mS)) of ResNet models.
In particular, we report the average clock-time on one GPU (GeForce RTX 2080 Ti) takes to pass
batch test images with size 20 in each stage. We have round the numbers.

15

Under review as a conference paper at ICLR 2021

ResNet56 on CIFAR-10. The clock-time (in mS) for stages from 0 to 6 is respectively given by
67, 45, 32, 32, 26, 22, 21.

ResNet164 on CIFAR-10. The clock-time (in mS) for stages from 0 to 8 is respectively given by
31, 24, 18, 17, 15, 12, 11, 11, 9.

ResNet164 on CIFAR-100. The clock-time (in mS) for stages from 0 to 10 is respectively given
by 32, 28, 25, 21, 19, 18, 17, 17, 16, 16, 15.

ResNet164 on SVHN. The clock-time (in mS) for stages from 0 to 2 is respectively given by 100,
69, 64.

ResNet50 on ImageNet. The clock-time (in mS) for stages from 0 to 7 is respectively given by 27,
26, 23, 21, 20, 18, 17, 16.

A.6 DETAILS OF EXPERIMENTS

For re-training in each stage and for both DenseNet and ResNet architectures (for the experiments on
CIFAR-10, CIFAR-100, and SVHN data setss), we use SGD optimization algorithm with momentum
equals to 0.9. The general setup of hyperparameters is given as follows: The learning rate is set to
0.1 and weight decay to 1e-4. Also, batch size is set to 512 for SVHN and 128 for CIFAR-10 and
CIFAR-100 data sets. The epoch number is set to 100 for CIFAR-10 and CIFAR-100 data sets and
120 for SVHN data set. Cutout() parameter is selected 16 for CIFAR-10 and 8 for CIFAR-100 data
sets. No Cutout is used for SVHN data set. For the learning rate schedulers, we use StepLR PyTorch
scheme for CIFAR-10/CIFAR-100 data sets and MultiStepLR PyTorch scheme for SVHN data set.
To improve the test accuracy of the pruned model in different stages (i.e., re-training part), we have
used different epoch numbers for diminishing (by a factor of 0.1) the learning rate (milestones) in
MultiStepLR scheme from [40, 60] to [50, 80, 100], and we also have set the weight decay in a few
stages to 5e-4.

A.6.1 RESNET56 FOR CIFAR-10 DATA SET

The ResNet56 architecture consists of 56 layers with 27 residual units arranged in 3 blocks, with
one convolutional layer in the input of the network, and a fully connected one in the last layer of the
model (after the 27th unit). Each unit has two convolutional layers with batch normalization. This
model has 853018 training parameters and consists of 126550720 FLOPs.

Pruning of ResNet56 model within 10 stages for the classification of CIFAR-10 data set is given
in Table 7. Furthermore, plots (a) in Figure 4 demonstrates the pattern of dropping of skip-units
in 10 stages in ResNet56 model for CIFAR-10 data sets. In Figure 4, blue, orange, and green bars
respectively correspond to the first, second, and third blocks. The horizontal axis gives the stage
number, and the vertical axis corresponds to the number of active (i.e., the remainder of skip-units)
units in each stage.

A.6.2 PRUNING WITH RANDOM SELECTION OF UNITS AND WITH THE LARGEST ENERGY
VALUES

As we mentioned in section 3.3, choosing units randomly or simply the units with the largest energy
values is not a good strategy for pruning less important units. This is mainly because of the existence
of skip-paths in the ResNet and DenseNet- type architectures, and violating the Markov chain property
existing in the non-residual models such as VGG. As a result, the information between units and
the output will not decrease monotonically according to the information processing inequality. This
implies that by choosing randomly or only by the units with the largest energy values, we may
remove important units; hence, degrading the performance. We have illustrated pruning performance
affecting by the random selection in Table 8 and by selecting using the largest values in Table 9. To
be fair in comparison with the clustering scheme used in PED (illustrated in Table 7), we have used
the same number of units used in the clustering for removing units randomly and with the smallest
energy. That is, in stages from 0 to 10, we have removed 0, 4, 10, 14, 16, 17, 18, 19, 20, 21, 22 units,
respectively. As we can see from tables 7, 8 and 9, the test accuracy, parameters reduction rate, and

16

Under review as a conference paper at ICLR 2021

Stage No. Test Accuracy Parameters Parameters Red.(%) FLOPs Flops Red.(%)

0 0.9334 853018 0.00000 126550720 0.00000
1 0.9439 737242 13.5725 107528896 15.0310
2 0.9424 528922 37.9940 79020736 37.5581
3 0.9386 413146 51.5666 59998912 52.5890
4 0.9363 389914 54.2901 50463424 60.1240
5 0.9336 315930 62.9633 45728448 63.8655
6 0.9323 311258 63.5110 40944320 67.6459
7 0.9284 237274 72.1842 36209344 71.3875
8 0.9304 232602 72.7319 31425216 75.1679
9 0.9252 218650 74.3675 27853504 77.9902
10 0.9100 144666 83.0407 23118528 81.7318

Table 7: The results of pruning in intermediate stages for ResNet56 and CIFAR-10 data set.

Stage No. Test Accuracy Parameters Parameters Red.(%) FLOPs Flops Red.(%)

0 0.93.34 853018 0.00000 126550720 0.00000
1 0.94.69 737242 13.5725 107528896 15.0310
2 0.93.96 528922 37.9940 79020736 37.5581
3 0.93.77 482458 43.4411 59949760 52.6279
4 0.93.47 389914 54.2901 50463424 60.1240
5 0.92.98 385242 54.8378 45679296 63.9044
6 0.93.05 311258 63.5110 40944320 67.6459
7 0.92.65 297306 65.1466 37372608 70.4683
8 0.91.48 241754 71.6590 33817280 73.2777
9 0.90.51 167770 80.3322 29082304 77.0193
10 0.87.32 93786 89.0054 24347328 80.7608

Table 8: The results of pruning using random selection of units in intermediate stages for ResNet56
and CIFAR-10 data set.

Stage No. Test Accuracy Parameters Parameters Red.(%) FLOPs Flops Red.(%)

0 0.9334 853018 0.00000 126550720 0.00000
1 0.9343 792666 7.0751 107512512 15.0439
2 0.9340 709082 16.8737 78938816 37.6228
3 0.9279 570202 33.1548 61080256 51.7346
4 0.9264 491546 42.3757 51561152 59.2565
5 0.9264 486874 42.9234 46777024 63.0369
6 0.9191 472922 44.5590 43205312 65.8593
7 0.9012 454362 46.7348 38453952 69.6138
8 0.9068 380378 55.4080 33718976 73.3554
9 0.9070 375706 55.9557 28934848 77.1358
10 0.8994 301722 64.6289 24199872 80.8773

Table 9: The results of pruning using units with the largest energy values in intermediate stages for
ResNet56 and CIFAR-10 data set.

17

Under review as a conference paper at ICLR 2021

FLOPs reduction rate in pruning using random selection and using the largest values are worse than
the clustering approach, which favors the clustering approach rather than simply dropping the units
randomly or with smallest energy values.

(a) (b)

Figure 4: The pattern of removing skip-units across various pruning stages by PED. (a) ResNet56
model and CIFAR-10 data set. (b) ResNet56 model and SVHN data set.

A.6.3 RESNET164 AND CIFAR-10 DATA SET

ResNet164 is a collection of 164 layers grouped in 3 blocks each with 18 units. This model has
1703258 trainable parameters and 254941706 FLOPs.

Table 10 shows the results of running PED for 9 stages on ResNet164 model for the classification
of CIFAR-10 data set. In each stage, we have reported the number of parameters and FLOPS in
the pruned model together with the rate of reduction. As we can see, with N = 6 stages, we can
achieve 61.78% and 72.13% reduction on these quantities compared to the original ResNet164 model
without any pruning. Running PED for extra 3 stages (i.e., 9 pruning stages) leads to the ResNet164-b
architecture with less number of parameters (484154) and FLOPs (48929290). The test accuracy of
(with N = 9 stages) only drops by 1.4%. Also, we have shown the pattern of redundant skip-units
removal in the 9 stages (Please see Plot (a) of Figure 5).

Stage No. Test Accuracy Parameters Parameters Red.(%) FLOPs FLOPs Red.(%)

0 0.9569 1703258 0.0000000 254941706 0.0000000
1 0.9575 1398554 17.889480 213858826 16.114617
2 0.9578 1155162 32.179271 167918090 34.134712
3 0.9549 942810 44.646671 126433802 50.406780
4 0.9559 911386 46.491606 107805194 57.713787
5 0.9533 879962 48.336541 89176586 65.020793
6 0.9519 650970 61.780893 71064074 72.125363
7 0.9456 628634 63.092262 61807114 75.756374
8 0.9455 624954 63.308319 57956874 77.266617
9 0.9426 484154 71.574829 48929290 80.807656

Table 10: The results of pruning in intermediate stages for ResNet164 and CIFAR-10 data set.

As was discussed before, ResNet164 consists of three blocks each with 18 skip-units (i.e., residual-
units). In Plot (a) of Figure 5, blue, orange, and green bars respectively correspond to the first, second,
and third blocks. The horizontal and the vertical axes represent the stage number, and the the number
of active units (i.e., the remainder of skip-units) in each stage, respectively. The pruning strategy
demonstrates that the units in the second block are first dropped. Towards the end of the process, it
can be seen that the first block is subject to more drops than the third block.

18

Under review as a conference paper at ICLR 2021

(a) (b)

Figure 5: The pattern of removing skip-units across various pruning stages by PED. (a) ResNet164
model and CIFAR-10 data set. (b) DenseNet100-k12 model and CIFAR-10 data set.

Stage No. Test Accuracy Parameters Parameters Red.(%) FLOPs FLOPs Red.(%)

0 0.9531 769162 0.0000000 293546820 0.000000
1 0.9574 688582 10.476337 267992772 8.705272
2 0.9539 582022 24.330375 224525508 23.512880
3 0.9532 515602 32.965747 199341636 32.092047
4 0.9502 440302 42.755622 180976836 38.348221
5 0.9468 395362 48.598345 161959236 44.826779
6 0.9445 364402 52.623505 144605508 50.738520
7 0.9457 353722 54.012029 132501828 54.861774
8 0.9461 333142 56.687668 131124420 55.331003
9 0.9463 308782 59.854751 118679748 59.570419

10 0.9432 292402 61.984341 117731652 59.893399
11 0.9425 273022 64.503967 116512452 60.308733

Table 11: The results of pruning in intermediate stages for DenseNet100-k12 and CIFAR-10 data set.

A.6.4 DENSENET100-K12 FOR CIFAR-10 DATA SET

In this section, we provide the intermediate results in pruning DenseNet100-k12 model for the
classification of CIFAR-10 data set. A full trained DenseNet100-k12 on CIFAR-10 has 769162
trainable parameters, 293546820 FLOPS, and test accuracy of 0.9531. Table 11 gives the results of
running trainable parameters and the number of FLOPs by PED for 11 stages.

DenseNet100-k12 consists of 3 blocks each with 16 skip-units (i.e., dense-units). This model has 48
skip-units grouped in 3 blocks (16 units in each block). In addition, there are two-transition layers
between the blocks. There is also a convolutional layer in the beginning and before the first unit in the
first block, and a fully connected layer at the end of the network after the last unit in the third block.
Each dense unit consists of BN-ReLU-Conv operations that form the Bottleneck architecture. Each
transition-layer between the blocks is a sequence of a batch normalization followed by a convolution
layer. Since the number of output channels in each unit is k = 12, we need to make sure that 12
channels are added to the previous active unit. This is because the input of the transition-layer expects
k × 16 channel for the convolution operation. One possible remedy for the dimension inconsistency
when removing a unit is to pad the output of the previous active unit with k zero channels. We note
that this zero padding does not increase the number of parameters in the pruned model. Also by
implementing sparse convolution, it can be assumed that these zero channels do not increase the
FLOPs operation.

19

Under review as a conference paper at ICLR 2021

Stage No. Test Accuracy Parameters Parameters Red.(%) FLOPs FLOPs Red.(%)

0 0.7799 1726388 0.0000000 254964836 0.0000000
1 0.7629 1509876 12.541329 222966884 12.549947
2 0.7611 1254004 27.362563 190911588 25.122385
3 0.7641 1196084 30.717544 172512356 32.338765
4 0.7549 953460 44.771396 140342372 44.956185
5 0.7516 808116 53.190360 126628964 50.334734
6 0.7480 667316 61.346117 117601380 53.875451
7 0.7477 579124 66.454586 108516452 57.438660
8 0.7462 561332 67.485177 103945316 59.231509
9 0.7499 557652 67.698339 100095076 60.741615

10 0.7480 539860 68.728930 95523940 62.534465
11 0.7402 469460 72.806808 91010148 64.304824

Table 12: The results of pruning in intermediate stages for ResNet164 and CIFAR-100 Data Set.

(a) (b)

Figure 6: The pattern of removing skip-units for various pruning stages by PED. (a) ResNet164
model and CIFAR-100 data set. (b) DenseNet100-k12 model and CIFAR-100 data set.

In Plot (b) of Figure 5, blue, orange, and green bars respectively correspond to the first, second,
and third blocks. The pruning strategy indicates that the units in the second block are first dropped.
However, in latter steps, the third block is subject to slightly more unit droppings than the first block.

A.6.5 RESNET164 AND DENSENET100-K12 FOR CIFAR-100 DATA SET

Table 12 and Plot (a) in Figure 6 respectively demonstrate the intermediate pruning results of
ResNet164 model for the classification of CIFAR-100 data set and intermediate pruning results for 11
stages of the applications of our algorithm.

Finally, Table 13 and Plot (b) in Figure 6 respectively demonstrate the intermediate pruning results
of DenseNet100-k12 model for the classification of CIFAR-100 data set and intermediate pruning
results for 10 stages of the applications of our algorithm.

Figure 6 illustrates an analogous pruning pattern compared to the previous case. The second block
has largest number of dropped skip-units, while blocks 3 and 1 are respectively ranked as the second
and third.

20

Under review as a conference paper at ICLR 2021

Stage No. Test Accuracy Parameters Parameters Red.(%) FLOPs FLOPs Red.(%)

0 0.7793 800032 0.0000000 304104360 0.000000
1 0.7634 665572 16.806828 288290856 5.200025
2 0.7617 585772 26.781429 256985640 15.494260
3 0.7573 548512 31.438742 251710632 17.228864
4 0.7563 539632 32.548698 241413288 20.614986
5 0.7526 506872 36.643534 239268264 21.320344
6 0.7488 473812 40.775869 221888808 27.035309
7 0.7436 444652 44.420723 203843880 32.969103
8 0.7422 429172 46.355646 199945512 34.251021
9 0.7413 418492 47.690592 196919592 35.246048

10 0.7414 412012 48.500560 189030696 37.840189

Table 13: The results of pruning in intermediate stages of execution of our algorithm for DenseNet100-
k12 and CIFAR-100 data set.

Stage No. Test Accuracy Parameters Parameters Red.(%) FLOPs FLOPs Red.(%)

0 0.9821 1704154 0.00000 254176000 0.00000
1 0.9828 1145242 32.7970 166144768 34.6340
2 0.9815 831066 51.2329 101837568 59.9342

Table 14: Comparison of classification test accuracy using ResNet164 on SVHN data set, number of
parameters, and number of FLOPs between the various stages of proposed pruning method and those
of the state-of-the-art deep compression methods.

A.6.6 RESNET164 FOR SVHN DATA SET

Pruning of ResNet164 model within 2 stages for the classification of SVHN data set is given in
Table 14. SVHN data set (Netzer et al., 2011) consists of 32× 32 colored digit images with 73257
original training images, 531131 extra training images (604,388 total training examples), and 26032
test images. The full model ResNet164 has been trained on the SVHN data set to achieve 98.20% test
accuracy. This model has 1704154 parameters and 254176000 FLOPs. There is no usage of Cutout
in the SVHN data set. Finally, plot (b) in Figure 4 illustrates the pattern of dropping units inside of
each block in 2 stages pruning of ResNet56.

A.6.7 RESNET50 FOR IMAGENET DATA SET

We have provided the details of intermediate stages of running PED for pruning ResNet50 and for
classification of ImageNet data set in Table 15. Moreover, the pattern of removing skip-units from
the architecture of ResNet50 has been illustrated in Figure 7. In this Figure, blue, orange, green, and
red bars respectively correspond to the first, second, third, and fourth blocks. The pruning strategy
indicates that in the early stages, intermediate blocks (block 2 and 3) are more subject to be pruned,
while in the later stages first and last block will drop more units.

For running the ImageNet experiment, we have used Cutout with parameter 56 only for the retraining
stages and not for the full model. The batch size is set to 256 for all the stages. The total number
of epochs is set to 150. In addition, we have set the weight decay hyperparameter to 1e-4. Initial
learning rate is set to 0.1 and is decreased by a factor of 0.1 every 35 epochs. Finally, SGD optimizer
with momentum equals to 0.9 is used for all the stages.

21

Under review as a conference paper at ICLR 2021

Stage No. Top-1 Acc. Top-5 Acc. Parameters Red.(%) FLOPs Red.(%)

0 0.7613 92.862 25557032 0.00 4111514624 0.00
1 0.7674 0.9332 24570920 3.86 3840865280 6.58
2 0.7570 0.9263 18711080 26.79 3183660032 22.57
3 0.7525 0.9236 17523496 31.43 3183660032 22.57
4 0.7463 0.9202 16406312 35.81 2743917568 33.26
5 0.7437 0.9174 16348200 36.03 2524949504 38.59
6 0.7280 0.9094 12397608 51.49 2033977344 50.53
7 0.7095 0.8968 11280424 55.86 1815009280 55.86

Table 15: The results of pruning in intermediate stages of execution of our algorithm for ResNet50
and ImageNet data set.

Figure 7: The pattern of removing skip-units for various pruning stages by PED for ResNet50 and
ImageNet data set.

22

	Introduction
	Prior Art
	Background and Proposed Method
	Deep Neural Models with Skip-Connection
	Model-Free Measurement of Dependency
	Proposed Algorithm

	Experimental Results
	Appendix
	ResNet32 on Tiny ImageNet
	Review of Prior Art
	Overview of ResNet and DenseNet Architectures
	Clustering Algorithm
	Inference Running Time of the Pruned Models
	Details of Experiments
	ResNet56 for CIFAR-10 Data Set
	Pruning with Random Selection of Units and With the Largest Energy Values
	ResNet164 and CIFAR-10 Data Set
	DenseNet100-k12 for CIFAR-10 Data Set
	ResNet164 and DenseNet100-k12 for CIFAR-100 Data Set
	ResNet164 for SVHN Data Set
	ResNet50 for ImageNet Data Set

