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ABSTRACT

The emergence of vision-language models (VLMs), such as CLIP, has spurred
a significant research effort towards their application for downstream supervised
learning tasks. Although some previous studies have explored the unsupervised
fine-tuning of CLIP, they often rely on prior knowledge in the form of class names
associated with ground truth labels. In this paper, we delve into a realistic unsu-
pervised fine-tuning scenario by assuming that the unlabeled data might contain
out-of-distribution samples from unknown classes. Furthermore, we emphasize
the importance of simultaneously enhancing out-of-distribution detection capabil-
ities alongside the recognition of instances associated with predefined class labels.
To tackle this problem, we present a simple, efficient, and effective fine-tuning
approach called Universal Entropy Optimization (UEO). UEO leverages sample-
level confidence to approximately minimize the conditional entropy of confi-
dent instances and maximize the marginal entropy of less confident instances.
Apart from optimizing the textual prompts, UEO also incorporates optimization
of channel-wise affine transformations within the visual branch of CLIP. Through
extensive experiments conducted across 15 domains and 4 different types of prior
knowledge, we demonstrate that UEO surpasses baseline methods in terms of both
generalization and out-of-distribution detection.

1 INTRODUCTION

Vision-language models (VLMs) (Radford et al., 2021; Li et al., 2022a; Jia et al., 2021; Li et al.,
2022c) pre-trained on web-scale image-text pairs have exhibited robust zero-shot prediction capa-
bilities, which have recently attracted increasing attention from the research community. As an
example, Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021) leverages a con-
trastive objective to obtain a modality-agnostic embedding space in which the paired images and
texts are pulled closer and unpaired images and texts are pushed apart. Subsequently, CLIP can
perform zero-shot visual prediction by matching the embeddings of test images and prompt-based
textual descriptions (e.g., “a photo of a [CLASS]” and “this is a picture of a [CLASS]”), merely
requiring the names of all the semantic classes in downstream tasks.

Apart from the extensive research dedicated to the pre-training stage, numerous studies (Zhou et al.,
2022b; Zhang et al., 2022b; Bahng et al., 2022) have concentrated on adapting VLMs to specific
downstream tasks by using task-specific labeled data. This fine-tuning paradigm empowers VLMs
to bridge both data and task gaps, leading to improved performance in recognition tasks. In addition
to multi-class classification, these pioneering strategies have also been harnessed in a spectrum of
computer vision tasks, including ordinal regression (Li et al., 2022b), point cloud understanding
(Zhang et al., 2022a), and dense prediction (Rao et al., 2022). When considering fine-tuning setups,
most efforts have primarily revolved around fully supervised and few-shot supervised learning sce-
narios. To pursue annotation efficiency and scalability, several recent studies (Huang et al., 2022;
Shu et al., 2022; Tanwisuth et al., 2023) have delved into the realm of unsupervised fine-tuning for
VLMs, remarkably achieving performance on par with few-shot supervised approaches. However,
they still demand a priori knowledge of class names associated with ground truth labels, limiting
their applicability in diverse real-world scenarios.

To circumvent the limitation, this paper explores a novel fine-tuning setup, termed Unsupervised
Universal Fine-Tuning (U2-FT) with VLMs, wherein the predefined list of class names may partially
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overlap with the ground truth label space of unlabeled training data. To illustrate, as depicted in
Fig. 1, consider an unlabeled data set [C2] comprising samples from three classes (i.e., ‘dog’, ‘cat’,
and ‘panda’). However, the provided predefined list of class names might be imprecise, containing
four classes (i.e., ‘fox’, ‘dog’, ‘cat’, ‘pig’). Generally, U2-FT requires the fine-tuned model to
demonstrate superior performance to the original VLMs in two aspects, namely, recognizing samples
from classes within the predefined list (‘dog’ and ‘cat’), as well as identifying samples from classes
not present in that list (‘panda’), commonly referred to as out-of-distribution (OOD) samples. Given
the potential scarcity of OOD samples [C1], U2-FT evaluates both generalization and OOD detection
through a new test data set encompassing both OOD samples and samples from classes within the
predefined list. Typically, U2-FT poses two primary technical challenges for designing fine-tuning
strategies: (1) fitting the entire data with VLMs will deteriorate the ability to detect OOD samples
due to the potential presence of OOD samples, and (2) matching the label distribution of unlabeled
data with the pre-defined one can be risky due to the potential absence of certain classes.
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Figure 1: The basic setup of Unsupervised Universal Fine-Tuning (U2-FT). During the training
phase, U2-FT fine-tunes the pre-trained VLMs with unlabeled in-the-wild training data according
to an imprecise predefined list of class names (where ‘fox’ may be absent and ‘panda’ may be
included). A new data set in the test phase is employed to evaluate performance across both gener-
alization and OOD detection aspects.

We propose to address the challenges by presenting a parameter-efficient approach termed Uni-
versal Entropy Optimization (UEO). UEO aims to minimize the information entropy of non-OOD
samples while simultaneously maximizing the entropy of OOD samples. Since we do not know
which samples are OOD, UEO readily utilizes the confidence of unlabeled data in VLMs as sample-
level weight. To avoid the potential risks associated with OOD sample exposure through entropy
maximization, UEO employs a reverse weighting strategy to aggregate the predictions first, before
subsequently maximizing the marginal entropy. Besides, UEO takes into account the optimization of
channel-wise affine transformations in the image encoder of CLIP, in addition to the textual prompts,
to ensure parameter efficiency. Overall, UEO is remarkably simple, requiring alterations to only a
few lines of code. Our contributions are summarized as follows: (1). We introduce a new unsu-
pervised fine-tuning setup with VLMs that requires minimal prior knowledge of the label space for
unlabeled data. (2). Alongside achieving enhanced generalization performance, we simultaneously
investigate the efficacy of fine-tuning VLMs for OOD detection. (3). We propose a new parameter-
efficient approach, UEO, which elegantly incorporates the sample-level confidence during entropy
optimization for unlabeled data in the wild. (4). Through extensive experiments, we demonstrate
that UEO consistently outperforms existing methods across 15 diverse downstream domains.

2 RELATED WORK

2.1 PROMPT TUNING OF VLMS

Beyond a variety of investigations on pre-training VLMs (Radford et al., 2021; Jia et al., 2021; Yao
et al., 2022), one line of research explores VLMs with transfer learning to improve their ability to
generalize to specific downstream tasks (Zhang et al., 2023). Prompt tuning (Lester et al., 2021),
initially devised for adapting language models, optimizes the text embedding space while leaving
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the foundational model parameters unchanged. This technique has gained significant interest in fine-
tuning VLMs for vision tasks (Zhou et al., 2022a;b; Zhu et al., 2023) owing to its parameter-efficient
nature. For example, CoOp (Zhou et al., 2022b) employs prompt tuning within the language branch
of CLIP by utilizing a limited amount of labeled data, while VPT (Bahng et al., 2022) introduces
visual prompts by modifying the pixels of images. To offer greater versatility, both UPT (Zang
et al., 2022) and MaPLE (Khattak et al., 2023) propose to optimize prompts within both the vision
and language branches.

Depending on the availability of annotations during the learning process, current fine-tuning se-
tups of VLMs fall within three main categories: fully supervised transfer (Rao et al., 2022; Bahng
et al., 2022; Wortsman et al., 2022), few-shot supervised transfer (Zhou et al., 2022b;a; Zhang et al.,
2022b), and unsupervised transfer (Huang et al., 2022; Shu et al., 2022; Li et al., 2023; Tanwisuth
et al., 2023). Unlike the other two transfer setups that depend on labeled downstream data, unsu-
pervised transfer only harnesses unlabelled downstream data for fine-tuning VLMs. This paradigm
sounds more challenging but also more promising and efficient for adapting VLMs, as it does not
require costly annotation efforts and can better capture the underlying data distribution. This paper
extends the scope of existing unsupervised transfer methods by assuming that not all unlabeled data
belongs to classes within a predefined list.

2.2 OOD DETECTION OF VLMS

Out-of-distribution (OOD) detection (Yang et al., 2021) focuses on identifying instances or exam-
ples unrelated to the in-distribution task, which is critical for the real-world deployment of machine
learning models. However, exploring VLMs for OOD detection remains an interesting but relatively
recent research topic, with only a handful of previous efforts within this field (Fort et al., 2021; Es-
maeilpour et al., 2022; Ming et al., 2022; Wang et al., 2023). Unlike (Fort et al., 2021; Esmaeilpour
et al., 2022), which rely on prior information on OOD samples, MCM (Ming et al., 2022) offers
a training-free OOD detection approach that measures the similarities between visual features with
textual concepts. Besides, a recent study (Liao et al., 2023) fine-tunes VLMs using labeled data
to improve both generalization and outlier detection performance, even incorporating novel words
from WordNet. Two concurrent studies (Ming & Li, 2023; Miyai et al., 2023) further investigate the
performance of fine-tuned CLIP after few-shot in-distribution (ID) classification. In contrast, our
approach enhances the OOD detection performance of VLMs using only unlabeled data, without
any additional information apart from a predefined list of class names.

2.3 UNSUPERVISED MODEL ADAPTATION

Unsupervised model adaptation (a.k.a., source-free domain adaptation) (Liang et al., 2020; Li et al.,
2020; Huang et al., 2021; Kundu et al., 2022) has emerged as a popular research topic in transfer
learning, with the goal of transferring a well-trained model from a labeled source domain to an
unlabeled but related target domain. As classified in a recent survey paper (Liang et al., 2023),
unsupervised model adaptation methods can be broadly categorized into four popular schemes:
pseudo-labeling, consistency training, clustering-based training, and source distribution estimation.
However, these methods typically require a closely related source domain to train the source model,
which may limit their practical applicability in real-world scenarios. Conversely, by employing
VLMs such as CLIP, we can effortlessly acquire a high-quality source model with the help of class
names from the target task.

While most research in unsupervised model adaptation has focused on closed-set scenarios, a few
studies (Liang et al., 2021; Feng et al., 2021; Qu et al., 2023) have also investigated open-set model
adaptation, which deals with target tasks that contain additional classes not present in the source task.
In such cases, these novel classes are treated as a distinct ‘unknown’ category, and their accuracy
is evaluated accordingly. Nonetheless, existing model adaptation techniques are always tailored to
address a single category shift scenario, specifically, open-set transfer (Kundu et al., 2020; Feng
et al., 2021; Liang et al., 2021; Qu et al., 2023) or closed-set transfer (Liang et al., 2020; Li et al.,
2020; Huang et al., 2021; Liang et al., 2022). To the best of our knowledge, DANCE (Saito et al.,
2020) is currently the only domain adaptation method that can handle different types of category
shift scenarios (i.e., closed-set, partial-set, open-set, and open-partial-set) without prior knowledge
of the specific scenario. Building upon the universal domain adaptation concept of DANCE, this
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paper presents the problem of unsupervised universal fine-tuning with VLMs, which adapts CLIP to
unlabeled training data with the presence of an imprecise predefined list of class names. It is worth
noting that we employ OOD detection to distinguish between known classes and OOD classes,
thereby avoiding the need for sensitivity thresholds.

3 UNSUPERVISED UNIVERSAL FINE-TUNING WITH CLIP

3.1 PRELIMINARY

In this paper, we employ CLIP (Radford et al., 2021) as a representative VLM for unsupervised
universal fine-tuning throughout this paper since it is a pioneering work that has led to significant
advancements in various computer vision tasks. For the sake of simplicity, we focus on the image
classification task. Typically, the CLIP model adopts a straightforward dual-stream architecture with
an image encoder, denoted as gI(·), and a text encoder, denoted as gT (·). Each encoder processes
input data from the corresponding modality. During its pre-training phase, CLIP leverages a self-
supervised contrastive objective to learn image-text correspondences from noisy pairs of images and
text sourced from the Internet. As a result, the features of paired images and texts are close to each
other in the shared embedding space.

To facilitate zero-shot prediction in downstream tasks, CLIP generates a prompt (e.g., “a photo of
a [CLASS]”) for each class by replacing the [CLASS] token with the name of the corresponding
class. This technique aims to reduce the gap between the text distribution of the pre-training dataset
and that of the target downstream task. Then, we get the text embedding of each class encoded by
the text encoder {Tc}Cc=1, where C denotes the number of classes in the target task. For making
predictions, we compare the image embedding Ix = gI(x) of an input image x against a set of text
embeddings {Tc}Cc=1 and obtain the probability that x belongs to class c using a softmax operation:

pc(x) = p(y = c|x) = exp(S(Ix,Tc)/τ)∑C
i=1 exp(S(Ix,Ti)/τ)

, (1)

where S(·, ·) denotes the cosine similarity metric between embeddings, and the temperature param-
eter τ is set to 0.01 by default. Note that the accuracy of zero-shot inference is highly dependent on
the quality of the candidate class names {y1, . . . , yC} selected for the prediction task.

In addition to its impressive zero-shot classification capabilities, CLIP has also demonstrated re-
markable performance in zero-shot OOD detection as reported in (Ming et al., 2022; Wang et al.,
2023). For the sake of simplicity, we adopt the maximum softmax probability score as,

S(x) = max
c

pc(x). (2)

Due to the strong zero-shot classification ability, ID samples will be matched to one of the textual
descriptions in the candidate list with a high score, and vice versa. Formally, a standard OOD

detection function can be expressed as: fλ(x) =
{

ID S(x) ≥ λ

OOD S(x) < λ
, where λ is a chosen threshold

so that a high fraction of ID data is above the threshold in real-world applications. For samples that
are categorized as ID, we easily obtain the class prediction through ŷ = argmaxc pc(x).

3.2 PROBLEM SETTING

With a predetermined name list of interested classes, denoted as {y1, . . . , yC}, the objective of Un-
supervised Universal Fine-Tuning (U2-FT) is to facilitate the adaptation of pre-trained VLMs to un-
labeled data Xt in the wild. U2-FT is primarily designed to enhance the performance of VLMs in two
key aspects: (1) accurately classifying samples affiliated with the ‘known’ classes from the afore-
mentioned list (ID generalization) and (2) effectively identifying samples beyond these designated
classes (OOD detection). To better understand the wildness of unlabeled data, we denote the label
space of the predefined list as Lp, and the label space of the unlabeled data as Lu. Prior unsupervised
fine-tuning methods (Huang et al., 2022; Tanwisuth et al., 2023) only consider the closed-set cate-
gory shift scenario (i.e., Lu = Lp). However, three other prevalent category shift scenarios exist:
partial-set (Lu ⊂ Lp), open-set (Lp ⊂ Lu), and open-partial (Lu ∩ Lp ̸= ∅, Lu ̸⊂ Lp, Lp ̸⊂ Lu).
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Due to the unlabeled nature of downstream data, we may not know in advance which of these scenar-
ios will occur. Hence, we adhere to the notion of ‘universal’ as introduced in the pioneering work of
DANCE (Saito et al., 2020), delving into the universal adaptation of VLMs to wild unlabeled data.

Evaluation. Generally, we evaluate the recognition performance after unsupervised fine-tuning
across four distinct category shift scenarios. Unlike DANCE (Saito et al., 2020), which assesses
accuracies using training unlabeled data, we opt for an independent test set comprising both ID and
OOD samples during evaluation. This choice is motivated by the fact that, in scenarios involving
closed-set and partial-set category shifts, the absence of OOD samples in the test set makes it unfea-
sible to assess the performance of OOD detection. Furthermore, DANCE treats all OOD samples as
an extra ‘unknown’ class and subsequently calculates the OS score (Panareda Busto & Gall, 2017;
Saito et al., 2018), which represents the accuracy averaged over all classes. More recently, numerous
open-set domain adaptation methods have embraced the HOS score (Bucci et al., 2020; Fu et al.,
2020), replacing the simple average with the harmonic mean.

Both OS and HOS scores necessitate the accuracy of the ‘unknown’ class, which highly relies on
the selected threshold λ. As an alternative approach, we align with the prevalent practice in the field
of OOD detection (Yang et al., 2021; 2023) and incorporate another widely accepted metric: the
area under the receiver operating characteristic curve (AUC). This metric is complemented by the
assessment of per-class accuracy for ID samples within the test set. In Fig. 2(a-b), we first illustrate
the sensitivity of OS and HOS scores of different methods as the threshold varies. Clearly, the
highest OS score is consistently achieved when no samples are classified as OOD. The variation in
HOS score differs across different methods and is notably affected by the threshold. In addition, as
depicted in Fig. 2(c), the examination reveals a positive linear correlation between the AUC score
and the maximum HOS score, indicating the superiority of the AUC score for open-set evaluation.
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Figure 2: OS and HOS scores of different methods with the change of threshold under open-partial
category shift on the Cl domain of OfficeHome (Venkateswara et al., 2017) are shown in (a-b). The
relationship between AUC and the maximum HOS score is depicted in (c) for different domains.

3.3 UNIVERSAL ENTROPY OPTIMIZATION (UEO)

To adapt CLIP to the unlabeled data, we consider using Shannon entropy as the optimization ob-
jective function. The idea is to minimize the entropy of the model’s prediction for each instance,
making them closer to one of these prototypes in the feature space. However, when the training
data contains OOD samples, entropy minimization may have the unintended effect of weakening
the model’s ability to reject them. Ideally, OOD samples should exhibit dissimilarity to any of the
classes in the predefined list, thereby we can use entropy maximization instead to make the model
produce approximately uniform predictions. Nevertheless, this approach becomes infeasible in un-
supervised fine-tuning scenarios due to the lack of knowledge about which samples are OOD.

Previous studies (Ming et al., 2022; Wang et al., 2023) have shown that using the maximum soft-
max probability score in Eq. (2) for CLIP can achieve impressive performance in OOD detection.
Inspired by this, we treat such scores as sample-level weights w(x) to approximately achieve en-
tropy minimization and maximization at the same time. Formally, the unified objective of entropy
optimization is written as,

L =
∑
x∈Bt

w̃(x)H(p(x))−
∑
x∈Bt

Φ̃(w(x))H(p(x)), (3)

where Bt denotes a mini-batch of Xt, H(p(x)) = −
∑C

c=1 pc(x) log pc(x) denotes the Shannon en-
tropy of p(x), and Φ(·) represents a monotonically decreasing function, such as Φ(w) = 1/w. The
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normalized weight within a mini-batch is defined as w̃(x) = w(x)∑
x w(x) , which emphasizes confident

samples during entropy minimization. In contrast, the normalized weight before entropy maximiza-
tion is denoted as Φ̃(w(x)) = Φ(w(x))∑

x Φ(w(x)) , which places emphasis on potential OOD samples.

The combination of two weighted entropy terms in Eq. (3) may be optimal when the weights within
a mini-batch exhibit significant diversity. If no OOD samples are present in the mini-batch, the
second entropy term would deteriorate the adaptation process by increasing the entropy of a difficult
sample belonging to one of the targeted classes. To mitigate these potential risks, we apply entropy
maximization over the average prediction of all the OOD samples and obtain the following objective,

L =
∑
x∈Bt

w̃(x)H(p(x))−H(p̄), where p̄ =
∑
x∈Bt

Φ̃(w(x))p(x) (4)

is the weighted average of predictions for each sample within the mini-batch Bt. Intuitively, the
objective in Eq. (3) resembles the mutual information maximization loss (Liang et al., 2020), which
can also be decomposed into two entropy terms. When all the samples within a mini-batch share the
same weight, namely, w̃(x) = Φ̃(w(x)) = 1

∥Bt∥ , where ∥Bt∥ denotes the batch size, the objective
exactly degrades to the information maximization loss. This indicates that even if no OOD samples
exist in the unlabeled data, optimizing the second term in Eq. (4) can still be beneficial.

Parameter efficiency. During the unsupervised adaptation process, we employ a parameter-efficient
fine-tuning paradigm (Lialin et al., 2023) for foundation models, wherein only a small number of
parameters instead of the entire model are modified during the fine-tuning process. In particular, we
follow CoOp (Zhou et al., 2022b) by optimizing the text prompts, namely the learnable word vectors
{[Vi]}mi=1 in the textual sentence “[V1], [V2], . . . , [Vm], [CLASS]”, where m denotes the length
of text prompts. Several prior studies (Bahng et al., 2022; Zang et al., 2022; Khattak et al., 2023)
have demonstrated that the integration of visual prompts enhances the few-shot labeled adaptation of
CLIP. However, it is worth noting that these methods are exclusively suitable for transformer-based
visual branches. In this study, we draw inspiration from TENT (Wang et al., 2021) and introduce
an approach to optimize the affine parameters within the normalization layers of the image branch,
complementing the optimization of text prompts.

4 EXPERIMENTS

4.1 SETUP

Datasets. We validate U2-FT methods on four widely used domain adaptation datasets, i.e., Office
(OF) (Saenko et al., 2010) that comprises 3 domains of 31 object categories, OfficeHome (OH)
(Venkateswara et al., 2017) that encompasses 65 categories across 4 domains, VISDA-C (VD) (Peng
et al., 2017) that includes 2 distant domains of 12 classes, and DomainNet (DN) (Peng et al., 2019)
that contains 345 classes distributed in 6 styles.

Protocols & Evaluations. U2-FT assesses both the ID generalization performance of interested
classes from a predefined list and the OOD detection capability towards samples from OOD classes,
as described in Section 3.2. Thus, we split the label space of the downstream task into two folds:
interested classes and outlier classes. It is worth noting that the test set is kept unchanged across
all four different category shift scenarios. To evaluate the performance of UEO under different
category shifts, we determine the label space of the training unlabeled data based on the specific
shift and select all the data from these classes. The detailed data splits for each dataset and specific
shift can be found in Appendix A.2. Concerning the ID generalization performance, we use the
per-class accuracy metric (ACC). On the other hand, to evaluate outlier detection ability, we use
maximum softmax probability as the confidence for all the samples and measure the AUC score.

Baseline methods. We conduct a comparative analysis of UEO against several unsupervised fine-
tuning methods, including UPL (Huang et al., 2022) and POUF (Tanwisuth et al., 2023), as well as
the robust zero-shot inference baseline, CLIP (Radford et al., 2021). Besides, we present the results
of one modified domain adaptation method, DANCE (Saenko et al., 2010), and two model adap-
tation methods (i.e., Entropy Minimization (EntMin) (Wang et al., 2021) and Mutual Information
Maximization (InfoMax) (Liang et al., 2020)). In DANCE, the source loss is omitted, and we set
the trade-off before two target losses as 0.1. Furthermore, we introduce an oracle method, labeled
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as UEO(O), wherein the weight w(x) in Eq. (4) is equal to 1 if it belongs to one of the classes in the
predefined list and 0 otherwise.

Implementation details. For all experiments, we utilize the pre-trained ResNet-50 and ViT-B/16
models provided by the official CLIP repository (Radford et al., 2021). The epoch number is set to
50 for small-size datasets (i.e., Office and OfficeHome) and 5 for large-size datasets (i.e., VISDA-C
and DomainNet), and the learned model in the last epoch is chosen for a fair evaluation. During
training, we use an SGD optimizer with an initial learning rate of 1e-4 for both encoders, except for
EntMin, which uses a learning rate of 1e-5. We also employ a cosine scheduler to gradually decrease
the learning rate. The parameters optimized in all methods include the prompt of the text encoder
and affine parameters in the normalization layers (i.e., BatchNorm in ResNet-50 and LayerNorm in
ViT-B/16) of the visual encoder. The context length of the prompt is fixed at 4 and takes the default
initialization “a photo of a”. We reproduce all methods’ loss functions using the hyperparameters
provided in their respective papers with the experimental results averaged over two different seeds.

4.2 EXPERIMENTAL RESULTS

We evaluate the UEO method for various scenarios of U2-FT, and also reproduce the baseline meth-
ods for comparison. The results under four distinct category shift scenarios (i.e., closed-set, partial-
set, open-set, and open-partial-set) are provided in Table 1, 2, 3, 4, respectively. The results of
optimizing only the textual prompts are provided in Appendix A.3.

Results under closed-set category shift (Table 1). Generally, UEO achieves competitive results
under the closed-set category shift. When carefully comparing the results, we can find that InfoMax
always obtains the best performance in terms of the ACC, and UEO always obtains the best or the
second-best performance in terms of the AUC. Compared with InfoMax, the ACC scores of UEO are
satisfying, indicating that it makes a good balance between ID generalization and OOD detection.

Results under partial-set category shift (Table 2). Our method achieves the highest accuracy on
most tasks among the four benchmarks under partial-set category shift. For the AUC score, UEO
also outperforms most baselines and nearly approaches the maximum of all methods. Notably, on
two large-scale datasets, DomainNet and VISDA-C, UEO simultaneously obtains impressive results
in both classifying ID categories and rejecting OOD categories.

Table 1: Results under the closed-set category shift (ResNet-50). [Best & second best]
Methods DN (Cl) DN (In) DN (Pa) DN (Qu) DN (Re) DN (Sk) DN (Avg.) VD (Avg.) OH (Avg.) OF (Avg.)
Metrics (%) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CLIP (Radford et al., 2021) 54.7 67.4 44.7 64.1 51.8 69.1 6.2 53.2 77.4 79.9 49.1 65.1 47.3 66.5 88.9 81.6 73.2 75.0 73.2 82.8
UPL (Huang et al., 2022) 57.7 68.4 49.8 67.0 54.1 70.5 12.0 51.7 79.6 80.5 52.9 66.7 51.0 67.5 89.0 81.7 76.0 76.5 77.0 83.0
POUF (Tanwisuth et al., 2023) 58.9 68.1 49.7 67.1 55.6 69.1 10.6 50.5 76.6 75.6 51.8 63.7 50.5 65.7 92.3 84.1 76.1 76.4 76.7 83.3
DANCE (Saito et al., 2020) 56.5 66.6 49.4 67.2 52.8 68.1 0.3 49.1 79.2 78.6 50.1 64.7 48.1 65.7 90.2 84.7 75.0 76.1 74.6 83.2
EntMin (Wang et al., 2021) 55.2 67.9 44.2 63.6 52.3 69.5 0.3 50.3 78.4 79.9 49.5 65.4 46.7 66.1 90.3 82.7 73.8 75.6 73.7 82.9
InfoMax (Liang et al., 2020) 58.8 68.3 50.2 66.6 56.5 68.0 12.4 49.9 79.8 79.4 54.1 65.5 52.0 66.3 92.6 81.4 77.0 75.8 79.2 82.5
UEO 58.9 68.3 50.7 67.0 56.5 70.4 12.4 52.7 78.8 78.8 54.2 65.9 51.9 67.2 92.2 84.6 76.8 75.6 78.1 84.1

Table 2: Results of different methods under the partial-set category shift (ResNet-50).
Methods DN (Cl) DN (In) DN (Pa) DN (Qu) DN (Re) DN (Sk) DN (Avg.) VD (Avg.) OH (Avg.) OF (Avg.)
Metrics (%) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CLIP (Radford et al., 2021) 54.7 67.4 44.7 64.1 51.8 69.1 6.2 53.2 77.4 79.9 49.1 65.1 47.3 66.5 88.9 81.6 73.2 75.0 73.2 82.8
UPL (Huang et al., 2022) 57.1 68.4 49.6 66.7 54.2 70.5 11.8 51.9 79.4 80.7 52.3 66.4 50.7 67.4 89.2 81.9 74.2 75.6 74.6 83.4
POUF (Tanwisuth et al., 2023) 57.6 68.0 49.1 66.9 55.4 69.0 10.3 51.1 76.5 76.2 53.1 65.1 50.3 66.1 89.8 80.9 75.8 76.4 75.2 83.2
DANCE (Saito et al., 2020) 57.7 66.7 48.9 66.9 53.0 68.3 0.3 49.1 79.1 78.5 51.9 65.3 48.5 65.8 87.6 79.6 74.3 75.5 73.6 82.7
EntMin (Wang et al., 2021) 55.2 67.8 44.4 63.7 52.2 69.5 0.3 50.3 78.4 79.9 49.6 65.3 46.7 66.1 89.7 81.8 73.7 75.4 73.5 82.8
InfoMax (Liang et al., 2020) 58.5 68.6 50.0 66.2 56.3 68.1 12.2 50.5 79.7 79.4 53.8 65.6 51.7 66.4 88.7 79.4 76.3 75.4 76.7 83.6
UEO 58.6 68.4 50.7 66.9 56.5 70.3 12.3 52.9 78.7 79.1 54.1 65.8 51.8 67.2 90.0 82.9 76.6 76.3 76.4 83.4

Table 3: Results of different methods under the open-set category shift (ResNet-50).
Methods DN (Cl) DN (In) DN (Pa) DN (Qu) DN (Re) DN (Sk) DN (Avg.) VD (Avg.) OH (Avg.) OF (Avg.)
Metrics (%) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CLIP (Radford et al., 2021) 54.7 67.4 44.7 64.1 51.8 69.1 6.2 53.2 77.4 79.9 49.1 65.1 47.3 66.5 88.9 81.6 73.2 75.0 73.2 82.8
UPL (Huang et al., 2022) 57.9 68.3 50.2 67.2 54.1 70.4 12.1 52.0 79.5 80.4 53.3 66.3 51.2 67.4 89.1 81.8 76.0 76.7 76.7 82.3
POUF (Tanwisuth et al., 2023) 58.4 67.3 49.5 67.5 55.2 67.5 10.4 50.2 76.1 75.6 50.8 62.5 50.1 65.1 91.8 78.7 75.8 75.4 77.0 82.8
DANCE (Saito et al., 2020) 57.0 67.1 49.8 67.5 52.6 67.6 0.3 50.1 78.9 77.7 44.5 60.4 47.2 65.1 61.4 55.2 74.5 75.6 74.5 82.7
EntMin (Wang et al., 2021) 55.3 67.9 43.6 63.3 52.1 69.3 0.3 50.2 78.5 79.8 49.4 65.4 46.5 66.0 89.8 81.6 73.8 75.4 73.7 82.8
InfoMax (Liang et al., 2020) 58.8 67.7 50.2 66.3 56.4 67.4 12.3 50.1 79.6 78.3 54.1 65.0 51.9 65.8 92.5 77.5 77.0 74.4 78.8 80.9
UEO 58.8 68.3 51.0 66.9 56.5 70.4 12.5 52.4 79.0 80.2 54.0 66.3 51.9 67.4 92.6 81.2 76.8 75.0 77.9 82.9
UEO(O) 55.4 71.3 50.0 69.9 53.2 75.8 9.3 58.2 76.0 87.8 51.0 71.9 49.1 72.5 93.4 85.4 74.2 82.6 75.0 88.3

Results under open-set category shift (Table 3). UEO demonstrates its effectiveness in scenarios
where the training data contains OOD samples. Although UPL also performs well in rejecting OOD
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Table 4: Results of different methods under the open-partial-set category shift (ResNet-50).
Methods DN (Cl) DN (In) DN (Pa) DN (Qu) DN (Re) DN (Sk) DN (Avg.) VD (Avg.) OH (Avg.) OF (Avg.)
Metrics (%) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CLIP (Radford et al., 2021) 54.7 67.4 44.7 64.1 51.8 69.1 6.2 53.2 77.4 79.9 49.1 65.1 47.3 66.5 88.9 81.6 73.2 75.0 73.2 82.8
UPL (Huang et al., 2022) 57.3 68.4 49.7 67.0 54.4 70.7 11.8 51.9 79.5 80.6 53.2 66.5 51.0 67.5 89.8 82.5 74.9 75.8 75.3 82.5
POUF (Tanwisuth et al., 2023) 58.3 68.0 50.2 67.1 55.0 68.1 10.4 51.2 76.6 75.3 52.3 63.9 50.5 65.6 91.6 74.5 75.6 75.8 75.4 82.4
DANCE (Saito et al., 2020) 57.5 67.4 49.2 67.1 52.7 67.9 0.3 49.2 78.5 77.4 50.9 64.5 48.2 65.6 88.5 74.8 74.6 75.2 73.5 82.5
EntMin (Wang et al., 2021) 55.2 67.8 43.8 63.4 52.0 69.3 0.3 50.2 78.4 79.8 49.6 65.3 46.6 66.0 89.1 80.5 73.7 75.3 73.4 82.7
InfoMax (Liang et al., 2020) 58.7 68.2 50.0 65.8 56.6 68.1 12.3 50.3 79.5 78.1 54.0 65.3 51.9 66.0 90.6 74.6 76.5 73.9 77.2 81.5
UEO 58.7 68.2 50.8 66.8 56.4 70.7 12.7 52.7 78.7 80.2 53.9 66.1 51.9 67.4 92.0 81.2 76.5 75.6 77.2 83.2
UEO(O) 55.5 70.5 50.5 70.1 53.4 75.1 9.9 57.9 76.0 86.9 51.7 70.8 49.5 71.9 89.6 78.5 74.1 81.4 73.3 88.0

samples, it falls short in generalizing to ID categories. In contrast, UEO strikes a good balance
between ID generalization and OOD detection. For instance, on the DomainNet dataset and the
optimization of both text prompt and visual normalization layers, UEO achieves an accuracy of
51.9% and an AUC score of 67.4%.

Results under open-partial-set category shift (Table 4). As the most complicated shift in U2-FT,
the open-partial setting tests the ability of adaptation algorithms to handle both missing and OOD
categories. UEO obtains better results compared to the baseline methods on this category shift. On
the widely used Office dataset, UEO achieves an accuracy of 77.2% and an AUC score of 83.2%,
which is the only method that outperforms zero-shot inference of CLIP.

4.3 ANALYSIS

ViT-based experiments. We further adopt the ViT-B/16 backbone (Radford et al., 2021) as the
pre-trained model and report the results in Table 5. From the results, we observe that UEO achieves
competitive performance on the DomainNet dataset under all four settings. In comparison to Info-
Max and UPL, our method exhibits better ID generalization and OOD detection ability.

Table 5: Results of different methods on DomainNet (ViT-B/16).

Methods closed-set partial-set open-set open-partial Avg.
Metrics (%) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CLIP (Radford et al., 2021) 58.2 72.6 58.2 72.6 58.2 72.6 58.2 72.6 58.2 72.6
UPL (Huang et al., 2022) 61.5 72.8 61.2 73.0 61.7 72.9 61.4 73.0 61.4 72.9
POUF (Tanwisuth et al., 2023) 60.9 71.1 61.4 71.6 61.0 70.8 61.1 70.8 61.1 71.1
DANCE (Saito et al., 2020) 57.9 72.0 57.9 72.0 57.9 71.3 57.8 71.6 57.9 71.7
EntMin (Wang et al., 2021) 56.0 71.6 56.0 71.7 55.7 71.3 55.8 71.4 55.9 71.5
InfoMax (Liang et al., 2020) 62.2 71.0 62.2 70.9 62.3 70.6 62.1 70.5 62.2 70.7
UEO 62.0 72.5 61.9 72.5 62.1 73.0 62.0 72.9 62.0 72.7

Conventional closed-set setting. Following the setting of POUF (Tanwisuth et al., 2023), we evalu-
ate the effectiveness of UEO under a conventional closed-set setting, which considers all categories
as ID. We adopt global-level accuracy as the experimental metric. From Table 6, UEO improves
accuracy on DomainNet from 57.6% to 61.1% and outperforms all baseline methods. As InfoMax
leverages the closed-set setting as prior knowledge, we treat its performance as the oracle results.

Table 6: Results of conventional closed-set setting on DomainNet (ResNet-50 and ViT-B/16).

Backbones ResNet-50 ViT-B/16

Methods Cl In Pa Qu Re Sk Avg. Cl In Pa Qu Re Sk Avg.

CLIP (Radford et al., 2021) 54.8 40.9 54.6 6.0 77.7 49.2 47.2 71.0 47.6 66.2 13.9 83.7 63.5 57.6
UPL (Huang et al., 2022) 58.1 45.8 56.6 11.1 79.6 52.8 50.7 72.4 53.9 66.8 19.9 84.8 65.8 60.6
POUF (Tanwisuth et al., 2023) 58.9 45.8 58.1 9.6 76.6 50.7 50.0 72.3 53.3 69.8 18.0 83.3 65.3 60.3
DANCE (Saito et al., 2020) 57.2 44.7 57.1 0.3 79.1 10.9 41.6 72.9 52.7 67.8 0.3 85.3 66.0 57.5
EntMin (Wang et al., 2021) 55.6 39.9 55.9 0.3 78.7 49.8 46.7 71.3 45.9 67.3 0.3 84.3 63.4 55.4
InfoMax (Liang et al., 2020) 59.4 45.7 59.3 11.7 79.9 53.5 51.6 73.6 53.9 69.7 20.3 85.7 66.2 61.6
UEO 59.7 46.6 59.2 11.8 78.9 53.8 51.7 73.5 54.2 69.2 18.9 84.5 66.4 61.1

Choices of optimization strategies. We investigate the performance of UEO and the baseline
method POUF under different optimization strategies. To validate the stability of the training pro-
cess, we selected 6 combinations of textual prompt (P), BatchNorm (BN), and bias (BIAS) as the
test range, according to (Zaken et al., 2022). The results depicted in Fig. 3 demonstrate that UEO
is stable and outperforms POUF in various cases. The optimization of the vision encoder leads to
better performance, indicating that UEO can benefit from a larger parameter space.
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Figure 3: Results of different optimization designs on two tasks (DN (Sk) and OH (Re), ResNet-50).
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Figure 4: Results of different hyperparameters on task DN (Sk) (ResNet-50).

Hyperparameter sensitivity. Even UEO does not require hyperparameter tuning, we present the
results of UEO under varying trade-offs (0.2, 0.5, 1.0, 2.0, 5.0) in the loss function and batch size (32,
48, 64, 96, 128) during training in Fig. 4. The results demonstrate that UEO remains stable across
changes in the trade-off. Although UEO(O) can achieve better detection ability with a larger trade-
off, its classification accuracy drops significantly. Additionally, UEO is not sensitive to changes in
batch size. In contrast, POUF requires a larger batch size to estimate the distribution and performs
poorly on smaller batches. Therefore, UEO does not suffer from hyperparameter selection.

Different choices of Φ(·) and prompt initialization. Table 7 contains the results of different mono-
tonically decreasing function designs of Φ(·) in Eq. (4) and textual prompt initialization under the
open-partial-set category shift. We find that UEO achieves nearly consistent performance under var-
ious function designs. For prompt initialization, the different designs obtain similar results with the
choice (“a photo of a”), achieving better performance for both ID generalization and OOD detection.

Table 7: Results of different choices of Φ(·) and prompt initialization on DN (Sk) (ResNet-50).
(a) Weight function

Φ(w) ACC AUC

1/w 53.9 66.1√
1/w 54.1 66.4

(1/w)2 53.7 65.9
1− w 53.9 66.4√
1− w 54.2 66.3

(1− w)2 53.9 66.2

(b) Prompt initialization

Prompt initialization ACC (CLIP) AUC (CLIP) ACC (UEO) AUC (UEO)

‘a photo of a’ 49.1 65.1 54.0 66.1
‘a photo of many’ 47.9 65.0 52.9 66.3
‘a sketch of a’ 52.2 65.4 54.5 65.9
‘a painting of a’ 50.3 65.5 54.0 65.7
‘this is a photo of a’ 49.3 64.9 53.2 66.1
‘this is a picture of a’ 49.2 67.4 54.3 65.9

5 CONCLUSION

In this paper, we introduce a novel unsupervised universal fine-tuning (U2-FT) setting for VLMs,
which does not rely on prior knowledge about the unlabeled data in the downstream domain. In
addition to assessing the generalization ability to identify samples from the candidate classes, U2-
FT also considers improving the detection of OOD samples outside the list of candidate classes
after fine-tuning. We propose Universal Entropy Optimization (UEO), which employs sample-level
confidence to approximately minimize the entropy of ID samples and maximize the entropy of OOD
samples. UEO is a simple and parameter-efficient approach that updates only a small number of
parameters and does not require any hyper-parameters in the objective. Extensive results show that
UEO always outperforms existing unsupervised fine-tuning methods across various category shift
scenarios. We believe that the introduced U2-FT setting is an interesting and important contribution
to the field of transfer learning with VLMs and has the potential to attract significant attention.
Limitation. While we have successfully validated the effectiveness of UEO for image classification,
we have not yet studied its application to dense prediction tasks such as segmentation and detection.
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REPRODUCIBILITY STATEMENT

We have included the source code for reproducibility in the supplementary materials.
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A APPENDIX

A.1 PSEUDO CODE

To facilitate a better understanding of our problem setup and proposed method (UEO), we provide
the pseudocode below. Throughout this paper, we utilize two different scores, namely ACC and
AUC, calculated in Line 15 and Line 17, respectively, to evaluate all methods under the U2-FT
framework.
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Algorithm 1 Universal Entropy Optimization (UEO) for Unsupervised Universal Fine-Tuning (U2-
FT)

1: # The training stage
2: Input: The pre-trained CLIP, unlabeled data Xt associated with the label set Lu, the name list

of interested classes Lp = {y1, . . . , yC}.
3: for epoch = 1, 2, . . . do
4: for iteration = 1, 2, . . . do
5: Sample a mini-batch Bt from Xt.
6: Forward Bt to the original CLIP to obtain the weights w(x) = S(x) using Eq. (2).
7: Forward Bt to CLIP to obtain the predictions {p(x)} using Eq. (1).
8: Update the parameters of CLIP through the gradient of L in Eq. (4).
9: end for

10: end for
11: # The testing stage
12: Input: The adapted CLIP, evaluation data Xe associated with the label set Le, the name list of

interested classes Lp = {y1, . . . , yC}.
13: Split Xe into two sets, X 1

e associated with Le ∩ Lp and X 2
e associated with Le \ Lp.

14: Forward Xe to the adapted CLIP to obtain the predictions {p(x)} using Eq. (1).
15: Calculate the per-class accuracy (ACC) over X 1

e based on the argmax operation.
16: Obtain the scores S(x) for both X 1

e and X 2
e using Eq. (2).

17: Calculate the AUC score to measure the ability of outlier detection.

A.2 INFORMATION OF DATA SPLIT FOR DIFFERENT SHIFTS

In this section, we present specific information about Lp (the target class of interest), Lu (the label
set of the training data), and Le (the label set of the evaluation data) for all datasets.

Table 8: Detailed information about four category shifts in the training stage and evaluation stage.

Datasets Category Shifts Lp Le Lu

DomainNet (DN)

closed-set [0, 300) [0, 345) [0, 300)
partial-set [0, 300) [0, 345) [0, 250)
open-set [0, 300) [0, 345) [0, 330)
open-partial-set [0, 300) [0, 345) [0, 250) ∪ [300, 330)

VISDA-C (VD)

closed-set [0, 8) [0, 12) [0, 8)
partial-set [0, 8) [0, 12) [0, 6)
open-set [0, 8) [0, 12) [0, 10)
open-partial-set [0, 8) [0, 12) [0, 6) ∪ [8, 10)

OfficeHome (OH)

closed-set [0, 50) [0, 65) [0, 50)
partial-set [0, 50) [0, 65) [0, 35)
open-set [0, 50) [0, 65) [0, 60)
open-partial-set [0, 50) [0, 65) [0, 35) ∪ [50, 60)

Office (OF)

closed-set [0, 25) [0, 31) [0, 25)
partial-set [0, 25) [0, 31) [0, 15)
open-set [0, 25) [0, 31) [0, 28)
open-partial-set [0, 25) [0, 31) [0, 15) ∪ [25, 28)

A.3 ADDITIONAL RESULTS OF DIFFERENT METHODS UNDER PROMPT TUNING

As for only prompt tuning on the textural branch, the results of different methods under four distinct
category shift scenarios (i.e., closed-set, partial-set, open-set, and open-partial-set) are provided in
Table 9, 10, 11, 12, respectively.
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Table 9: Results of different methods under the closed-set category shift (ResNet-50).
Methods DN (Cl) DN (In) DN (Pa) DN (Qu) DN (Re) DN (Sk) DN (Avg.) VD (Avg.) OH (Avg.) OF (Avg.)
Metrics (%) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CLIP (Radford et al., 2021) 54.7 67.4 44.7 64.1 51.8 69.1 6.2 53.2 77.4 79.9 49.1 65.1 47.3 66.5 88.9 81.6 73.2 75.0 73.2 82.8
UPL (Huang et al., 2022) 56.8 67.9 49.3 66.8 53.2 70.6 9.7 52.2 79.5 80.4 52.1 65.8 50.1 67.3 89.0 81.9 75.6 75.7 76.8 82.4
POUF (Tanwisuth et al., 2023) 58.4 67.9 49.6 67.0 55.1 68.8 8.1 53.5 76.8 76.0 51.7 64.4 49.9 66.3 92.1 83.9 75.4 76.3 76.2 83.0
DANCE (Saito et al., 2020) 57.6 67.2 49.6 67.4 51.2 66.1 0.4 49.8 78.6 78.7 45.9 63.0 47.2 65.4 92.5 82.1 74.5 75.9 74.8 83.2
EntMin (Wang et al., 2021) 54.9 67.4 44.0 63.7 51.9 69.7 0.3 49.5 78.3 80.0 48.9 65.2 46.4 65.9 89.0 81.9 73.2 75.1 73.3 82.8
InfoMax (Liang et al., 2020) 57.9 68.0 49.3 66.4 55.1 68.4 9.0 54.1 79.4 79.4 52.9 65.5 50.6 67.0 91.8 81.2 76.0 75.7 78.6 82.3
UEO 58.4 67.9 50.1 66.8 56.3 71.0 8.3 53.6 78.7 78.9 53.1 65.9 50.8 67.3 91.1 84.4 76.2 74.9 77.6 83.5

Table 10: Results of different methods under the partial-set category shift (ResNet-50).
Methods DN (Cl) DN (In) DN (Pa) DN (Qu) DN (Re) DN (Sk) DN (Avg.) VD (Avg.) OH (Avg.) OF (Avg.)
Metrics (%) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CLIP (Radford et al., 2021) 54.7 67.4 44.7 64.1 51.8 69.1 6.2 53.2 77.4 79.9 49.1 65.1 47.3 66.5 88.9 81.6 73.2 75.0 73.2 82.8
UPL (Huang et al., 2022) 56.2 67.8 49.0 66.5 53.1 70.7 9.5 52.2 79.5 80.8 51.0 65.9 49.7 67.3 89.0 81.7 73.7 74.9 74.3 83.1
POUF (Tanwisuth et al., 2023) 57.1 67.8 49.0 67.1 55.4 69.5 8.0 53.8 77.3 75.8 52.4 64.8 49.9 66.5 88.3 78.3 74.8 76.1 75.1 83.0
DANCE (Saito et al., 2020) 57.9 66.9 49.7 67.3 51.8 67.5 0.3 49.9 79.1 78.8 51.5 65.2 48.4 65.9 86.7 74.1 74.4 76.1 74.0 82.8
EntMin (Wang et al., 2021) 55.0 67.5 44.1 63.8 51.8 69.6 0.3 49.3 78.3 79.9 49.1 65.1 46.4 65.9 89.0 81.8 73.1 75.1 73.3 82.8
InfoMax (Liang et al., 2020) 57.7 68.3 49.1 66.1 55.6 68.6 8.9 54.1 79.4 79.3 52.8 65.5 50.6 67.0 87.8 79.8 75.3 75.5 75.6 83.2
UEO 58.1 67.9 50.2 66.7 56.2 70.9 8.5 53.4 78.6 79.0 53.2 66.0 50.8 67.3 89.0 82.2 75.9 75.9 75.8 82.9

Table 11: Results of different methods under the open-set category shift (ResNet-50).
Methods DN (Cl) DN (In) DN (Pa) DN (Qu) DN (Re) DN (Sk) DN (Avg.) VD (Avg.) OH (Avg.) OF (Avg.)
Metrics (%) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CLIP (Radford et al., 2021) 54.7 67.4 44.7 64.1 51.8 69.1 6.2 53.2 77.4 79.9 49.1 65.1 47.3 66.5 88.9 81.6 73.1 75.0 73.3 82.8
UPL (Huang et al., 2022) 56.9 68.0 49.8 67.1 53.3 70.6 9.7 52.3 79.5 80.3 52.5 66.1 50.3 67.4 89.0 81.8 75.8 75.9 76.5 81.9
POUF (Tanwisuth et al., 2023) 57.7 67.0 49.9 66.7 54.8 68.5 7.8 53.5 77.3 76.4 51.7 64.3 49.9 66.1 91.0 78.4 74.9 75.5 76.5 82.6
DANCE (Saito et al., 2020) 56.8 67.0 49.3 67.7 49.9 64.6 0.3 50.4 78.0 76.7 7.5 41.8 40.3 61.4 89.5 75.6 73.6 75.5 74.8 82.5
EntMin (Wang et al., 2021) 55.0 67.4 43.6 63.5 51.8 69.6 0.3 49.4 78.4 80.0 48.8 65.2 46.3 65.8 88.9 81.6 73.2 75.1 73.3 82.8
InfoMax (Liang et al., 2020) 57.6 67.4 49.0 65.8 55.2 67.5 9.1 53.7 79.3 78.4 52.9 65.1 50.5 66.3 91.2 73.8 75.6 74.6 78.3 80.3
UEO 58.3 68.1 50.1 66.7 56.2 70.9 8.5 53.8 78.9 80.0 52.9 66.3 50.8 67.6 91.3 79.2 76.0 74.7 78.1 82.7

UEO(O) 55.4 71.8 49.2 69.7 53.0 75.1 6.7 59.8 75.6 86.8 49.9 71.3 48.3 72.4 92.9 83.3 72.1 81.8 75.3 88.7

Table 12: Results of different methods under the open-partial-set category shift (ResNet-50).
Methods DN (Cl) DN (In) DN (Pa) DN (Qu) DN (Re) DN (Sk) DN (Avg.) VD (Avg.) OH (Avg.) OF (Avg.)
Metrics (%) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CLIP (Radford et al., 2021) 54.7 67.4 44.7 64.1 51.8 69.1 6.2 53.2 77.4 79.9 49.1 65.1 47.3 66.5 88.9 81.6 73.2 75.0 73.2 82.8
UPL (Huang et al., 2022) 56.5 67.8 49.2 66.8 53.5 70.8 9.6 51.8 79.5 80.8 52.0 65.8 50.0 67.3 89.3 82.0 74.7 75.1 74.7 82.5
POUF (Tanwisuth et al., 2023) 58.1 67.7 49.1 66.4 55.0 69.0 8.2 53.5 77.1 75.5 51.4 64.3 49.8 66.1 90.6 72.2 74.9 76.0 75.3 82.5
DANCE (Saito et al., 2020) 57.8 66.9 49.3 67.5 51.7 65.6 0.3 49.7 78.2 77.2 50.2 64.0 47.9 65.2 85.8 74.1 74.5 75.2 74.2 82.9
EntMin (Wang et al., 2021) 54.9 67.4 43.7 63.6 51.7 69.6 0.3 49.3 78.3 79.9 49.1 65.1 46.3 65.8 88.9 81.4 73.1 75.1 73.2 82.7
InfoMax (Liang et al., 2020) 57.6 67.9 49.0 65.6 55.5 68.1 9.0 54.1 79.4 78.1 53.0 64.8 50.6 66.4 84.4 67.6 75.4 74.5 76.3 81.6
UEO 57.7 68.0 50.0 66.6 56.2 70.7 8.5 53.9 78.7 80.0 53.1 66.0 50.7 67.6 87.5 74.7 75.6 75.4 76.4 83.2
UEO(O) 56.2 70.4 49.8 69.5 52.3 74.7 6.7 59.4 76.1 86.7 50.8 69.7 48.7 71.7 84.8 77.1 72.9 80.4 72.6 87.7
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A.4 ADDITIONAL ANALYSIS ON ANOTHER CATEGORY SHIFT

In addition to the primary task of DN (Sk) analyzed under the open-partial-set category shift in the
main text, we also present the results of DN (Sk) under the closed-set one in Fig. 5 and Fig. 6. Fur-
thermore, the closed-set shift, we list the results of different choices of Φ(·) and prompt initialization
in Table 13.
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(a) ACC on DN (Sk). (b) AUC on DN (Sk). (c) ACC on OH (Re). (d) AUC on OH (Re).

Figure 5: Results of different optimization designs on two tasks (DN (Sk) and OH (Re) (ResNet-50).
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Figure 6: Results of different hyperparameters on task DN (Sk) (ResNet-50, closed-set).

Table 13: Results of different choices of Φ(·) and prompt initialization on DN (Sk) (closed-set).

(a) Weight function

Φ(w) ACC AUC

1/w 54.3 65.9√
1/w 54.2 66.0

(1/w)2 53.6 65.7
1− w 54.2 65.9√
1− w 54.1 66.0

(1− w)2 54.1 66.0

(b) Prompt initialization

Prompt initialization ACC (CLIP) AUC (CLIP) ACC(UEO) AUC (UEO)

‘a photo of a’ 49.1 65.1 54.4 65.9
‘a photo of many’ 47.9 65.0 53.1 66.1
‘a sketch of a’ 52.2 65.4 54.6 65.8
‘a painting of a’ 50.3 65.5 53.9 66.0
‘this is a photo of a’ 49.3 64.9 53.0 65.8
‘this is a picture of a’ 49.2 64.6 54.2 65.9

A.5 DETAILED RESULTS OF DIFFERENT DATASETS (VD, OH, OF) IN THE MAIN TEXT

Rather than presenting the averaged results shown in Table 1 ∼ Table 4, we present the complete
results of all methods on three datasets (VD, OH, OF) in Table 14 ∼ Table 17.

Table 14: Results of different methods under the closed-set category shift (ResNet-50).

Methods VD (T) VD (V) OH (Ar) OH (Cl) OH (Pr) OH (Re) OF (A) OF (D) OF (W)
Metrics (%) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CLIP (Radford et al., 2021) 88.2 81.2 89.5 82.1 70.2 74.9 55.3 64.7 84.2 78.0 83.1 82.5 76.6 84.8 73.6 85.6 69.5 77.9
UPL (Huang et al., 2022) 88.2 81.2 89.8 82.5 71.9 74.9 58.4 63.9 86.3 79.8 85.6 84.2 80.1 79.7 76.7 87.8 73.7 79.6
POUF (Tanwisuth et al., 2023) 93.1 83.4 91.0 84.3 71.2 75.4 59.1 64.8 85.9 80.5 85.4 84.3 78.9 82.0 75.1 87.0 74.6 79.8
DANCE (Saito et al., 2020) 94.7 80.5 90.2 83.8 70.5 74.9 57.1 63.8 86.0 81.5 84.3 83.6 79.8 85.5 74.0 85.9 70.6 78.3
EntMin (Wang et al., 2021) 88.1 81.0 90.0 82.7 70.5 74.8 54.6 65.2 84.5 78.0 83.3 82.5 76.6 84.8 73.5 85.6 69.7 77.9
InfoMax (Liang et al., 2020) 94.5 83.2 89.1 79.3 72.9 73.3 57.7 65.6 87.7 80.9 85.9 82.9 80.4 79.3 76.9 87.4 78.4 80.3
UEO 91.5 84.0 90.8 84.8 73.1 74.0 59.5 64.5 86.8 78.3 85.4 82.8 80.2 82.9 75.4 87.0 77.1 80.7

Prompt Only ⇈, Prompt + Normalization Layers⇊
CLIP (Radford et al., 2021) 88.2 81.2 89.5 82.1 70.1 74.9 55.3 64.7 84.2 78.0 83.1 82.5 76.6 84.8 73.6 85.6 69.5 77.9
UPL (Huang et al., 2022) 88.3 81.1 89.8 82.4 71.6 75.6 60.1 65.9 86.5 79.9 85.7 84.5 80.4 79.5 76.5 88.9 74.0 80.6
POUF (Tanwisuth et al., 2023) 93.9 82.6 90.8 85.6 71.7 75.9 61.6 66.7 85.7 79.5 85.4 83.6 79.7 82.4 75.6 87.4 74.6 80.2
DANCE (Saito et al., 2020) 90.5 84.8 89.8 84.5 70.6 75.1 59.9 65.5 85.1 80.4 84.5 83.4 79.7 85.7 73.6 85.8 70.6 78.1
EntMin (Wang et al., 2021) 90.4 82.4 90.2 83.0 70.6 75.1 56.3 65.8 85.0 78.8 83.4 82.8 77.6 84.9 73.7 85.8 69.7 78.0
InfoMax (Liang et al., 2020) 96.0 84.5 89.2 78.2 73.2 73.5 61.0 65.7 87.9 80.9 85.9 82.9 80.5 78.6 76.8 87.4 80.5 81.5
UEO 93.3 84.7 91.1 84.5 72.3 75.0 61.4 64.9 87.7 79.6 85.7 83.0 80.2 83.2 75.9 87.4 78.2 81.7
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Table 15: Results of different methods under the partial-set category shift (ResNet-50).

Methods VD (T) VD (V) OH (Ar) OH (Cl) OH (Pr) OH (Re) OF (A) OF (D) OF (W)
Metrics (%) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CLIP (Radford et al., 2021) 88.2 81.2 89.5 82.1 70.2 74.9 55.3 64.7 84.2 78.0 83.1 82.5 76.6 84.8 73.6 85.6 69.5 77.9
UPL (Huang et al., 2022) 88.0 80.4 89.9 83.0 70.1 74.9 56.3 63.6 84.9 78.5 83.6 82.6 77.6 85.1 73.7 85.7 71.5 78.5
POUF (Tanwisuth et al., 2023) 86.7 73.1 90.0 83.5 71.1 75.2 57.8 65.2 85.7 80.4 84.6 83.7 79.5 84.1 74.2 86.1 71.7 78.6
DANCE (Saito et al., 2020) 84.9 67.1 88.5 81.1 70.6 74.9 57.4 65.1 85.4 81.2 84.0 83.3 78.3 84.8 73.8 85.7 70.0 78.0
EntMin (Wang et al., 2021) 88.2 81.2 89.8 82.3 70.2 74.8 54.8 65.1 84.3 78.0 83.1 82.5 76.6 84.8 73.6 85.6 69.6 77.9
InfoMax (Liang et al., 2020) 85.2 74.7 90.4 84.9 71.6 74.0 57.4 65.6 87.0 79.2 85.2 83.2 79.5 84.4 74.6 86.1 72.6 79.0
UEO 87.4 79.5 90.6 84.9 72.1 75.1 59.3 65.0 86.3 79.8 85.9 83.8 79.5 83.7 75.0 86.1 72.9 78.9

Prompt Only ⇈, Prompt + Normalization Layers⇊
CLIP (Radford et al., 2021) 88.2 81.2 89.5 82.1 70.1 74.9 55.3 64.7 84.2 78.0 83.1 82.5 76.6 84.8 73.6 85.6 69.5 77.9
UPL (Huang et al., 2022) 88.4 81.1 90.0 82.8 70.1 75.4 58.1 65.6 84.7 78.6 83.8 82.9 77.8 85.0 74.3 86.1 71.7 79.1
POUF (Tanwisuth et al., 2023) 89.9 77.2 89.8 84.6 72.0 75.6 60.7 66.1 85.6 80.2 84.8 83.5 79.3 84.5 74.7 86.0 71.8 79.0
DANCE (Saito et al., 2020) 85.4 75.1 89.8 84.0 70.5 75.0 58.1 65.5 84.6 78.5 84.2 83.1 77.4 84.7 73.8 85.7 69.6 77.8
EntMin (Wang et al., 2021) 89.4 81.2 90.0 82.4 70.4 75.1 56.1 65.5 85.1 78.5 83.2 82.7 77.1 84.8 73.8 85.7 69.5 78.0
InfoMax (Liang et al., 2020) 87.6 74.2 89.7 84.6 72.2 74.7 60.4 64.4 87.4 79.3 85.2 83.4 79.9 84.7 76.0 86.4 74.1 79.7
UEO 89.8 81.3 90.2 84.6 72.4 75.7 61.6 65.1 87.1 80.3 85.5 83.9 79.9 84.2 75.5 86.5 73.6 79.4

Table 16: Results of different methods under the open-set category shift (ResNet-50).

Methods VD (T) VD (V) OH (Ar) OH (Cl) OH (Pr) OH (Re) OF (A) OF (D) OF (W)
Metrics (%) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CLIP (Radford et al., 2021) 88.2 81.2 89.6 82.1 70.1 74.9 55.2 64.7 84.2 78.0 83.1 82.5 76.6 84.8 73.6 85.6 69.6 77.9
UPL (Huang et al., 2022) 88.2 81.2 89.8 82.5 72.1 75.1 59.1 64.6 86.4 79.8 85.6 84.3 80.2 79.4 75.8 87.3 73.6 78.9
POUF (Tanwisuth et al., 2023) 91.7 74.1 90.2 82.7 71.4 75.3 57.8 63.8 85.4 79.5 85.0 83.5 79.2 81.1 75.1 86.7 75.2 79.9
DANCE (Saito et al., 2020) 89.9 72.5 89.1 78.6 70.5 74.8 53.5 63.6 85.4 79.7 85.0 83.9 79.5 83.3 73.8 85.8 71.0 78.3
EntMin (Wang et al., 2021) 87.8 80.3 90.1 82.8 70.4 74.8 54.7 65.1 84.6 78.0 83.4 82.5 76.6 84.8 73.6 85.6 69.8 77.9
InfoMax (Liang et al., 2020) 94.0 70.5 88.3 77.1 71.9 72.0 57.5 64.9 87.4 79.5 85.7 82.0 80.0 79.8 76.5 84.7 78.5 76.4
UEO 92.3 75.5 90.4 82.9 72.7 73.5 59.3 64.7 86.9 78.3 85.1 82.3 80.3 83.7 76.0 85.7 78.1 78.6

UEO(O) 95.9 83.2 89.9 83.4 71.9 77.5 50.7 72.3 83.3 89.4 82.5 88.1 77.8 86.9 74.1 91.3 74.0 88.0

Prompt Only ⇈, Prompt + Normalization Layers⇊
CLIP (Radford et al., 2021) 88.2 81.2 89.5 82.1 70.1 74.9 55.3 64.7 84.2 78.0 83.1 82.5 76.6 84.8 73.6 85.6 69.5 77.9
UPL (Huang et al., 2022) 88.3 81.3 89.8 82.4 71.7 75.7 60.2 66.5 86.5 80.0 85.7 84.5 80.7 79.5 75.8 87.9 73.7 79.5
POUF (Tanwisuth et al., 2023) 93.7 74.7 89.9 82.7 71.7 75.7 61.1 65.8 85.2 78.0 85.4 82.2 80.2 81.7 75.7 86.9 75.1 79.9
DANCE (Saito et al., 2020) 89.5 73.6 33.3 36.7 70.4 75.1 58.2 64.3 84.8 79.8 84.6 83.2 79.9 84.7 73.6 85.6 70.1 77.8
EntMin (Wang et al., 2021) 89.4 80.2 90.3 83.0 70.7 75.0 56.2 65.6 85.0 78.5 83.4 82.6 77.6 84.8 73.8 85.7 69.6 77.9
InfoMax (Liang et al., 2020) 96.0 76.8 89.0 78.1 72.9 72.2 61.1 64.5 88.0 79.3 85.9 81.7 80.3 81.6 76.1 83.9 80.0 77.3
UEO 94.4 79.9 90.7 82.6 72.9 74.2 62.1 64.9 87.0 78.5 85.4 82.6 80.1 84.1 75.2 85.4 78.6 79.1

UEO(O) 96.6 85.5 90.2 85.2 71.8 78.9 54.2 74.8 86.0 88.4 84.7 88.1 77.3 87.6 73.2 90.8 74.3 86.5

Table 17: Results of different methods under the open-partial-set category shift (ResNet-50).

Methods VD (T) VD (V) OH (Ar) OH (Cl) OH (Pr) OH (Re) OF (A) OF (D) OF (W)
Metrics (%) ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

CLIP (Radford et al., 2021) 88.2 81.2 89.5 82.1 70.1 74.9 55.3 64.7 84.2 78.0 83.1 82.5 76.6 84.8 73.6 85.6 69.5 77.9
UPL (Huang et al., 2022) 88.7 81.0 90.0 82.9 71.4 74.9 57.2 63.0 85.5 79.4 84.5 83.1 78.4 84.3 73.7 85.6 72.0 77.7
POUF (Tanwisuth et al., 2023) 91.3 63.8 89.9 80.6 71.1 75.2 58.0 64.4 85.3 80.4 85.2 83.9 79.1 82.5 74.3 86.1 72.5 78.9
DANCE (Saito et al., 2020) 85.4 69.3 86.1 78.8 70.7 74.8 57.4 62.7 85.6 80.1 84.3 83.4 78.7 85.1 73.8 85.6 70.1 78.0
EntMin (Wang et al., 2021) 87.9 80.4 89.9 82.4 70.3 74.8 54.5 65.1 84.3 77.9 83.3 82.5 76.6 84.8 73.6 85.6 69.5 77.9
InfoMax (Liang et al., 2020) 88.3 64.1 80.6 71.2 71.7 71.9 57.8 65.3 87.1 78.7 85.1 81.9 79.9 80.5 74.2 85.5 74.9 78.9
UEO 85.4 68.7 89.6 80.8 71.8 74.3 59.0 64.4 86.1 79.9 85.6 83.2 79.9 84.3 74.6 86.0 74.7 79.3
UEO(O) 86.5 73.4 83.1 80.7 72.1 77.2 52.0 72.0 84.9 86.3 82.8 86.1 75.3 86.7 71.6 90.6 70.9 85.7

Prompt Only ⇈, Prompt + Normalization Layers⇊
CLIP (Radford et al., 2021) 88.2 81.2 89.5 82.1 70.2 74.9 55.3 64.7 84.2 78.0 83.1 82.5 76.6 84.8 73.6 85.6 69.5 77.9
UPL (Huang et al., 2022) 89.6 82.1 90.0 82.8 71.2 75.6 58.4 64.6 85.6 79.8 84.3 83.3 79.2 84.0 74.6 85.7 72.1 77.8
POUF (Tanwisuth et al., 2023) 94.1 67.7 89.1 81.4 71.7 75.5 60.3 65.7 85.4 78.9 85.1 83.3 78.7 82.3 75.1 85.9 72.5 79.0
DANCE (Saito et al., 2020) 86.9 65.7 90.0 83.9 70.3 75.0 59.3 64.7 84.6 78.4 84.3 82.9 77.8 84.4 73.5 85.6 69.4 77.6
EntMin (Wang et al., 2021) 88.2 78.5 90.1 82.5 70.4 74.9 56.1 65.4 85.1 78.2 83.3 82.5 76.9 84.8 73.8 85.6 69.5 77.9
InfoMax (Liang et al., 2020) 94.0 71.1 87.2 78.1 72.5 71.9 60.7 63.0 87.6 78.9 85.4 81.7 80.1 80.3 75.0 85.2 76.4 78.9
UEO 94.0 79.8 89.9 82.5 72.3 75.0 61.2 64.9 86.8 79.1 85.6 83.4 80.2 84.5 74.9 85.8 76.5 79.4
UEO(O) 93.9 75.6 85.4 81.4 71.5 78.4 54.4 74.2 86.0 85.9 84.7 87.1 75.6 87.0 72.1 90.4 72.3 86.6
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