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Abstract
The popularity of federated learning comes from
the possibility of better scalability and the abil-
ity for participants to keep control of their data,
improving data security and sovereignty. Unfortu-
nately, sharing model updates also creates a new
privacy attack surface. In this work, we character-
ize the privacy guarantees of decentralized learn-
ing with random walk algorithms, where a model
is updated by traveling from one node to another
along the edges of a communication graph. Us-
ing a recent variant of differential privacy tailored
to the study of decentralized algorithms, namely
Pairwise Network Differential Privacy, we derive
closed-form expressions for the privacy loss be-
tween each pair of nodes where the impact of
the communication topology is captured by graph
theoretic quantities. Our results further reveal
that random walk algorithms yield better privacy
guarantees than gossip algorithms for nodes close
to each other. We supplement our theoretical re-
sults with empirical evaluation of synthetic and
real-world graphs and datasets.

1. Introduction
Federated learning allows multiple data owners to collabo-
ratively train a model without sharing their data (Kairouz
et al., 2021). Some federated algorithms rely on a cen-
tral server to orchestrate the process and aggregate model
updates (McMahan et al., 2017), with the downsides of cre-
ating a single point of failure and limiting the scalability
in the number of participants (Lian et al., 2017). In this
work, we focus on fully decentralized algorithms that re-
place the central server by peer-to-peer communications
between participants, viewed as nodes in a sparse network
graph (Koloskova et al., 2020; 2021; Lian et al., 2017;
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Le Bars et al., 2023; Nedic et al., 2018; Tang et al., 2018).
In addition to their scalability, these algorithms can exploit
the natural graph structure in some applications, such as
social networks where users are linked to their friends, or
the geographical position of devices that induces faster com-
munications with the closest users.

Keeping data decentralized can reduce communication costs
and latency, and it is also welcomed from a privacy per-
spective when the data contains personal information or
represents a crucial asset for businesses. However, sharing
model parameters can indirectly leak sensitive information
and allow data reconstruction attacks (see e.g. Geiping et al.,
2020; Nasr et al., 2018; Shokri et al., 2017; Zhu et al., 2019).
To mitigate this problem, differential privacy (DP) (Dwork
et al., 2006) has become the de facto standard in machine
learning to provide robust guarantees of privacy. In a nut-
shell, DP compares two learning scenarios that only differ
from the data of a single user and ensures that the output
distribution of the algorithm remains similar. This, in par-
ticular, means that no attacker can learn too much about the
private data of a user by inspecting the outputs, even if they
have access to arbitrary auxiliary information.

Decentralized learning algorithms can be made differen-
tially private by having each node add noise to their model
updates before sharing them with their neighbors in the
graph (Bellet et al., 2018; Cheng et al., 2019; Huang et al.,
2015; Xu et al., 2021; Zhang et al., 2018). An important
challenge is then to bound as tightly as possible the privacy
leakage based on the level of noise and the threat model con-
sidered to achieve the best possible privacy-utility trade-off.
The baseline approach relies on local DP, which assumes
that all information a node sends is observed by all other
nodes. This leads to overly pessimistic privacy guarantees
for decentralized algorithms because nodes only observe the
messages sent by their direct neighbors.

Recent work has shown that it is possible to leverage the
graph topology of decentralized algorithms to develop more
tailored privacy guarantees specific to the relation between
the different nodes based on the notion of pairwise network
differential privacy (PNDP) (Cyffers & Bellet, 2022; Cyf-
fers et al., 2022). PNDP takes into account the fact that
each node only has a local view of the communications, and
allows to reason on the privacy leakage between each pair of
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nodes based on these local views. Intuitively, if two nodes
are farther apart, the privacy leakage should depend on their
relative position in the graph, which matches the natural
setting where edges come with some trust level, such as in
social networks where edges indicate relationships. Cyffers
et al. (2022) showed that this intuition is correct for gossip
algorithms, where all nodes update their current model and
mix it with their neighbors at every step. However, a major
drawback of gossip algorithms is that, even in their more
asynchronous versions, they generate redundant communi-
cations and require all nodes to be largely available (since
any node can be updated at any time). Redundant communi-
cation and availability has been touted as a major obstacle
in distributed private learning (Smith et al., 2017).

Our Contributions. In this work, we study the privacy
guarantees of random walk algorithms (Lopes & Sayed,
2007; Johansson et al., 2010; Mao et al., 2020; Cyffers &
Bellet, 2022; Even, 2023), a popular alternative to gossip in
the fully decentralized setting. In these algorithms, a token
holding the model’s current state is updated by a node at
each time step and then forwarded to a random neighbor.
Random walk algorithms do not require global synchroniza-
tion as the token is sent as soon as the current node finishes
its update. They can also easily cope with temporary un-
availability, and are known to be fast in practice.

We first introduce a private version of decentralized stochas-
tic gradient descent (SGD) based on random walks on ar-
bitrary graphs: in a nutshell, the node holding the model at
a given step updates it with a local SGD step, adds Gaus-
sian noise and forwards it to one of its neighbor chosen
with appropriate probability. Focusing on the strongly con-
vex setting, we then establish a convergence rate for our
algorithm by building upon recent results on SGD under
Markovian sampling (Even, 2023), and show that the result
compares favorably to its gossip SGD counterpart. Our
main contribution lies in precisely characterizing the pri-
vacy loss between all pairs of nodes using a PNDP analysis.
We obtain elegant closed-form expressions that hold for
arbitrary graphs, capturing the effect of a particular choice
of graph through graph-theoretic quantities. We also show
how our general closed-form expression yields explicit and
interpretable results for specific graphs. Finally, we use
synthetic and real graphs and datasets to illustrate our theo-
retical results and show their practical relevance compared
to the gossip algorithms analyzed in previous work.

In summary, our contributions are as follows:

1. We propose a private version of random walk stochastic
gradient descent for arbitrary graphs (Algorithm 1);

2. We establish its convergence rate for strongly convex
loss functions (Theorem 2);

3. We derive closed-form expressions for the privacy loss

between each pair of nodes that capture the effect of the
topology by graph-theoretic quantities (Theorem 3);

4. We theoretically and experimentally compare our guar-
antees to those of gossip algorithms, highlighting the
superiority of our approach in several regimes.

2. Related Work
Random walks for decentralized optimization. Opti-
mizing the sum of local objective functions by having a
token walk on the graph has a long history in the optimiza-
tion community (Johansson et al., 2010; Lopes & Sayed,
2007; Mao et al., 2020). The main difficulty is to handle
the bias introduced by the sampling of the nodes, as a ran-
dom walk locally forces a structure that differs from the
stationary distribution (Sun et al., 2018). One way to avoid
this bias is to restrict the underlying graph structure to be
the complete graph (Cyffers & Bellet, 2022; Cyffers et al.,
2023) or to perform an update only after several steps on
the walk (Hendrikx, 2022), but this comes at a high commu-
nication cost. In this work, we rely on a recent proof that
casts Markov chain updates as a specific case of stochastic
gradient descent with delays in order to get rid of the de-
pendency of the Markov sampling by waiting a sufficient
number of steps for the analysis (Even, 2023).

Private decentralized optimization. A classic line of work
to improve privacy in a decentralized setting aims to prove
that nodes cannot access enough information to reconstruct
exactly the contribution of a given node (Gupta et al., 2018;
Mo & Murray, 2017). However, these approaches do not
provide robust guarantees against approximate reconstruc-
tion attacks or adversaries with auxiliary knowledge. An-
other direction is to rely on local DP (Bellet et al., 2018;
Cheng et al., 2019; Huang et al., 2015; Xu et al., 2021;
Zhang et al., 2018), where each node assumes that every-
thing they share is public, but this comes at a high cost for
utility (Chan et al., 2012; Wang et al., 2018; Zheng et al.,
2017). While it is possible to mitigate this drawback by
using other schemes such as shuffling or secure aggregation
(Bonawitz et al., 2017; Cheu et al., 2019; Feldman et al.,
2020; Liew et al., 2022), it requires additional computation,
communication as well as an overhaul of the system archi-
tecture, making it very difficult to deploy in practice. These
limitations have motivated the development of intermediary
trust models specific to fully decentralized settings.

Network differential privacy. Bellet et al. (2020) were
the first to suggest that decentralization can amplify privacy.
This was made precise by Cyffers & Bellet (2022), who
introduced Network Differential Privacy (NDP) and proved
better privacy guarantees for the complete graph and the ring
graph. For the complete graph, Cyffers et al. (2023) further
used NDP to analyze the privacy guarantees of decentralized
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ADMM. The case of the ring graph was further studied by
Yakimenka et al. (2022b), taking into account the additional
complexity of dealing with straggler nodes that slow down
the computation. In this work, we rely on the pairwise
NDP variant introduced in Cyffers et al. (2022), where the
authors study private gossip algorithms on arbitrary graphs.
We provide both theoretical and empirical comparisons to
these prior results, showing significant advantages in favor
of our random walk algorithm.

3. Preliminaries
Definition 1 (Irreducibility) A Markov chain defined by
transition matrix W ∈ Rn×n is called irreducible if for any
two states i, j, there exists an integer t such that

Pr[Xt = j|X0 = i] > 0.

Definition 2 (Aperiodicity) The period of a state i is defined
as the greatest common divisor of the set of natural numbers,
{t : Pr[Xt = i|X0 = i] > 0}. A state i is called aperiodic
if its period equals 1. A Markov chain is aperiodic if all its
states are aperiodic.

Irreducibility and aperiodicity ensure that, after enough
steps, the probability of transit from any state to any other
state is positive.

Definition 3 (Stationary distribution) For a Markov chain
defined by the transition matrix W ∈ Rn×n, a probability
distribution π is a stationary distribution if Pπ = π.

4. Problem Setting and Background
We consider a set V = {1, . . . , n} of users (nodes), each
user v holding a local dataset Dv. The nodes aim to pri-
vately optimize a separable function over the joint data
D = ∪v∈VDv:

f(x) =

n∑
v=1

πvfv(x), (1)

where x ∈ Rd represents the parameters of the model and
the local function fv depends only on the local dataset of
node v, and πv ≥ 0 is the weight given to fv (in practice,
the vector π will correspond to the stationary distribution of
the random walk as defined below). Below, we introduce
the notions and assumptions related to random walks and
precisely define the privacy threat model we consider.

4.1. Random Walks

We consider that the underlying network is represented by
a connected graph G = (V,E). Two nodes u and v are
neighbors when there is an edge (u, v) ∈ E, which indicates

that u and v can communicate. Our random walk algorithm
will involve a token following a Markov chain on this graph,
where the probability of taking each edge is given by an
n× n transition matrix W : if the token is in u at step t, v
receives the token at time t+ 1 with probability Wuv .

Definition 4 (Transition matrix) A transition matrix W on
graph G = (V,E) is a stochastic matrix, i.e., ∀u ∈ V ,∑

v∈V Wuv = 1, which satisfies (u, v) /∈ E ⇒Wuv = 0.

In particular, the probability for the token to go from node u
to node v in k steps is given by the k-th power of the transi-
tion matrix W k

uv . To derive convergence in optimization, we
need standard assumptions on this transition matrix, which
ensure that the Markov chain behaves similarly to a fixed
distribution after enough iterations.

Assumption 1 The transition matrix is aperiodic and irre-
ducible, that is, there exists a time t0 such that for all t ≥ t0
and any pair of vertices u and v, W t

uv > 0, i.e., the token
can go from u to v in t steps.

Under this assumption, the Markov chain has a stationary
distribution π (belonging to the n-dimensional simplex)
such that π = πW , and the convergence speed is governed
by the mixing time (Levin & Peres, 2017).

Definition 5 (Mixing time) The mixing time τmix(ι) of a
Markov chain of transition matrix W is the time needed for
the walk to be close to a factor ι of its asymptotic behavior:

τmix(ι) = min
(
t : max

v
∥(W t)v − π∥TV ≤ ι

)
, (2)

where ∥P −Q∥TV is the total variation distance between
two probability measures P and Q defined over the same
measurable space (Ω,F): ∥P−Q∥TV = supA∈F |P (A)−
Q(A)|.

We sometimes omit ι and write τmix := τmix(1/4). From
this quantity, it is easy to derive the mixing time for
an arbitrary ι from the following equation: τmix(ι) ≤
⌈log2(1/ι)⌉τmix (Levin & Peres, 2017). The mixing time
depends on the spectral gap of the graph, which is the differ-
ence between the largest eigenvalue of the transition matrix
W (which is always equal to one and associated with π) and
the absolute value of the second-largest eigenvalue. We de-
note this quantity by λW , from which we get the following
bound on the mixing time: τmix ≤ λ−1

W ln(1/minv πv).

A natural choice of the transition matrix is to give the same
importance to every node and to assume symmetry in the
weight of the communications.

Assumption 2 The transition matrix W is bi-stochastic and
symmetric.
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Under this assumption, we have π = 1/n, where 1 is an all-
one vector. As W is symmetric, it can be decomposed using
the spectral theorem, and all the eigenvalues are real. For
any connected graph, it is possible to construct a transition
matrix that satisfies this assumption, for instance by using
the Hamilton weighting on the graph where transitions are
chosen uniformly among the neighbors. Let du denote the
degree of node u. Then

Wuv = P(Xt+1 = i|Xt = j) =
1

max{du, dv}
,

Wuu = 1−
∑
v ̸=u

Wuv.

Remark 1 Our optimization results of Section 5 will only
require Assumption 1 and thus cover (1) with non-uniform
weights. Conversely, our privacy results of Section 6 will
only require Assumption 2.

4.2. Privacy Threat Model

In this paper, we aim to quantify how much information
each node u ∈ V leaks about its local dataset Du to any
other node v during the execution of a decentralized learning
algorithm. We assume nodes to be honest-but-curious (i.e.,
they faithfully follow the protocol) and non-colluding (see
Appendix D for the possibility of collusion and how it can
be seen as a modification of the graph).

We consider the graph G and the transition matrix W to
be known by all nodes. This scenario is quite common;
for instance, in the healthcare domain (where nodes repre-
sent hospitals and collaboration between hospitals is public
knowledge) or in social networks. We will measure the
privacy leakage using Differential Privacy (DP), and more
precisely, a variant known as the Pairwise Network Differen-
tial Privacy (PNDP) (Cyffers & Bellet, 2022; Cyffers et al.,
2022) tailored to the analysis of decentralized algorithms. In
the rest of this section, we introduce the relevant definitions
and tools and formally define what is observed by each node
during the execution of a random walk algorithm.

Differential Privacy. DP (Dwork & Roth, 2014) quantifies
the privacy loss incurred by a randomized algorithm A by
comparing its output distribution on two adjacent datasetsD
and D′. The guarantee depends thus on the granularity cho-
sen for the adjacency relation. In this work, we adopt user-
level DP, where D = ∪v∈VDv and D′ = ∪v∈VD′

v are adja-
cent datasets, denoted byD ∼ D′, if there exists at most one
user v ∈ V such thatDv ̸= D′

v . We further denoteD ∼v D′

if D and D′ differ only in the local dataset of user v.

We use Rényi Differential Privacy (RDP) to measure the
privacy loss, due to its theoretical convenience and better
composition properties than the classical (ϵ, δ)-DP. We re-
call that any (α, ε)-RDP algorithm is also (ε+ln(1/δ)/(α−
1), δ)-DP for any 0 < δ < 1 (Mironov, 2017).

Definition 6 (Rényi Differential Privacy) An algorithm A
satisfies (α, ε)-Rényi Differential Privacy (RDP) for α > 1
and ε > 0 if for all pairs of neighboring datasets D ∼ D′:

Dα (A(D)||A(D′)) ≤ ε , (3)

where Dα(X||Y ) is the Rényi divergence between the ran-
dom variables X and Y :

Dα(X||Y ) =
1

α− 1
ln

∫ (
µX(z)

µY (z)

)α

µY (z)dz .

with µX and µY the respective densities of X and Y .

The Gaussian mechanism ensures RDP by adding Gaussian
noise to the output of a non-private function g, i.e.,A(D) =
g(D) + η with η ∼ N (0, σ2) satisfies (α, α∆2

g/2σ
2)-RDP

for any α > 1, where ∆g = supD∼D′ ∥g(D)− g(D′)∥2 is
the sensitivity of g (Mironov, 2017).

This baseline privacy guarantee can be amplified when the
result is not directly observed but instead used for subse-
quent computations. In particular, when considering the
consecutive applications of non-expansive (i.e. 1-Lipschitz)
operators, we can rely on the so-called privacy amplification
by iteration effect that we will leverage in our analysis.

Theorem 1 (Privacy amplification by iteration, Feld-
man et al., 2018) Let T 1, . . . , TK , T ′1, . . . , T ′K be non-
expansive operators, an initial random state x0 ∈ U , and
(ζk)Kk=1 a sequence of noise distributions. Consider the
noisy iterations xk+1 = T k+1(xk) + ηk+1 and x̄k+1 =
T k+1(x̄k)+η̄k+1 where ηk and η̄k are drawn independently
from distribution ζk+1. Let sk = supx∈U∥T k(x)−T̄ k(x)∥.
Let (ak)Kk=1 be a sequence of real numbers such that

∀k ≤ K,
∑
i≤k

si ≥
∑
i≤k

ai, and
∑
i≤K

si =
∑
i≤K

ai . (4)

Then,

Dα(x
K ||x̄K) ≤

K∑
k=1

sup
x:∥x∥≤ak

Dα(ζk ∗ x∥ζk) , (5)

where ∗ is the convolution of probability distributions and
x denotes the distribution of the random variable that is
always equal to x.

Pairwise Network Differential Privacy. PNDP allows us
to capture the limited view that nodes have in decentralized
algorithms and to model privacy guarantees specific to each
pair of nodes (Cyffers & Bellet, 2022; Cyffers et al., 2022).
Below, the view of a user v is denoted by Ov

(
A(D)

)
.

Definition 7 (Pairwise Network DP) For b : V × V →
R+, an algorithm A satisfies (α, b)-Pairwise Network DP
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(PNDP) if for all pairs of distinct users u, v ∈ V and neigh-
boring datasets D ∼u D′:

Dα(Ov(A(D))||Ov(A(D′))) ≤ b(u, v) . (6)

We denote by εu→v = b(u, v) the privacy loss from u to v
and say that u is (α, εu→v)-PNDP with respect to v when
inequality (6) holds for b(u, v) = εu→v .

For the random walk algorithms we will consider, the com-
plete outputA(D) consists of the trajectory of the token and
its successive values during training. At a given step, the
token of the random walk shares its current value only with
its current location, but the other nodes cannot see this state.
Thus, we define the view of a node v as

Ov

(
A(D)

)
= {(t, xt, w) : the token xt was in v

at time t and then sent to w} .
(7)

In this definition, nodes know to whom they send the
token, but not from whom they receive it. Ensuring
the anonymity of the sender can be achieved by using
mix networks (Sampigethaya & Poovendran, 2006) or
anonymous routing (Dingledine et al., 2004). However,
our results directly extend to the case where the sender’s
anonymity cannot be ensured, see Remark 3 in Section 6.

5. Private SGD with Random Walks
In this section, we introduce a decentralized stochastic gra-
dient descent (SGD) random walk algorithm to privately ap-
proximate the minimizer of (1), and analyze its convergence
in the strongly convex case. This algorithm, presented in
Algorithm 1, generalizes the private random walk algorithm
on the complete graph, introduced and analyzed by Cyffers
& Bellet (2022), to arbitrary graphs. Differential privacy
is achieved by adding Gaussian noise to the local gradient
at each step. The step size is constant over time as com-
monly done in (centralized) differentially private stochastic
gradient descent (DP-SGD) (Bassily et al., 2014).

The non-private version of this algorithm converges in vari-
ous settings under Assumption 1. In this work, we adapt a
recent proof for the non-private version (Even, 2023). For
simplicity, we focus on strongly convex and smooth objec-
tives with bounded gradients at the global optimum.

Assumption 3 (Bounded gradient and strong convexity)
We assume that f is µ-strongly convex and L-smooth. Let
x∗ be its minimizer. We assume that, for ζ∗ ≥ 0, ∀v ∈
V, ∥∇fv(x∗)∥2 ≤ ζ2∗ .

In the case of stochastic gradient descent, stochasticity also
comes from the fact that we sample from the local dataset.
To handle both cases, we define gt as an unbiased estimator
of ∇fvt(xt). We thus require to bound the variance of this
estimator.

Algorithm 1: PRIVATE RANDOM WALK GRADI-
ENT DESCENT (RW DP-SGD)

Input: transition matrix W on a graph G, number
of iterations T , noise variance σ2, starting
node v0, initial token value x0, step size γ,
gradient sensitivity ∆, local loss function fv

1 for t = 0 to T − 1 do
2 Draw η ∼ N (0,∆2σ2)
3 Compute gt s.t. E[gt] = ∇fvt(xt)
4 xt+1 ← xt − γ(gt + η)
5 Draw u ∼Wvt in the set of neighbors of vt
6 Send token to u
7 vt+1 ← u

8 end

Assumption 4 (Bounded local noise) We assume that
the stochastic gradients respect the following condition:
E
[
∥gt −∇fvt (xt)∥2 |xt, vt

]
⩽ σ2

sgd.

Theorem 2 Under Assumptions 1, 3, and 4, for step size

γ = min

(
1
L ,

1
Tµ ln

(
T ∥x0−x⋆∥2

39L
µ2 τmixζ2

⋆

))
the iterates verify:

E(∥xT − x∗∥2) ≤ 2e−
Tµ
L ∥x0 − x∗∥2

+

(
39τmixζ

2
∗L

µ3T
+

(dσ2∆2 + σ2
sgd)L

µ2T

)
ln

Tµ2∥x0 − x∗∥2

39Lτmixζ2∗
.

Proof. We adapt the proof from Even (2023) that keeps
track of the shift due to the Markov sampling of the random
walk thanks to a comparison with delayed gradient. Follow-
ing the same bounding steps and taking expectation over
the noise distribution we obtain a similar inequality on the
iterates than the non-private version up to an additional term
for the noise. Setting the step size to balance the terms leads
to the final equality. See Appendix A for a full proof.

The convergence rate in Theorem 2 has three terms: the ex-
ponential convergence towards the minimizer parameterized
by the condition number L/µ of f , the impact of the stochas-
ticity of the random walk in Õ(τmixζ

2
∗L/µ

3T ) and the ad-
ditional term due to the noise injection in Õ(σ2∆2L/µ2T ).
A similar term would appear when adapting the non-private
convergence proof for other settings such as under the
Polyak-Lojasiewicz condition.

Comparison with private gossip (Cyffers et al., 2022).
In our random walk algorithm, each step involves com-
puting the gradient of a single node and a single mes-
sage, whereas the private gossip SGD algorithm of Cyf-
fers et al. (2022) alternates between the computation of
local gradients at all nodes in parallel and a multi-step gos-
sip communication phase until (approximate) consensus.
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Rephrasing the result of Cyffers et al. (2022) in our notation,
each communication phase in Cyffers et al. (2022) requires
Õ(τmix · ln(ζ2∗/σ2)) steps where all the nodes send updates
synchronously. For the optimization part, the first term is
the same inO(e−

Tµ
L ∥x0−x∗∥2), but there is only one other

term inO(σ2L/nµT ). Hence, we lose a factor of n, but the
reduced communication compensates for this. Our analysis
is tighter in the sense that we can separate the privacy noise
that is independent of the Markov chain, thereby improving
the rate of the spectral gap factor compared to a naive analy-
sis. In contrast, the private gossip analysis casts this noise
as gradient heterogeneity, because it re-uses the non-private
convergence analysis of Koloskova et al. (2020).

Special case of averaging. One can use the above algorithm
to privately compute the average of values at each node. In
this case, we assume that each node has a private value yv (a
float or a vector) and define the local objective function as:

fv(x) = ∥x− yv∥2 . (8)

Note that, in this case, we have L = µ = 2. A natural
approach is to compute the running average of the visited
values with noise injection at each step, which corresponds
to Algorithm 1 with a decreasing step-size γt = 1/t. The
drawback of this approach is that damping the first terms
of the sum (when the Markov chain is not yet well mixed)
requires a lot of steps and results in slow convergence (at
least τmix steps). Adopting a constant step-size instead, as
in Algorithm 1, does not modify the convergence leading
terms that stay in O(1/T ) for an adequate step-size.

One way to completely remove the influence of the first
terms is to have a burn-in phase, when the token walks with-
out performing any update, to come closer to the stationary
distribution. Then, after τmix(ι/2) steps, a running average
of 4δ2/(ι3λW ) is obtained, as proven in Theorem 12.21 of
Levin & Peres (2017).

6. Privacy Analysis
In this section, we derive the privacy guarantees of Algo-
rithm 1 for arbitrary graphs and show how this leads to
improved trade-offs for specific graphs widely used in de-
centralized learning. Our main result is a closed-form ex-
pression for the privacy loss between each pair of nodes,
which holds for arbitrary graphs.

Theorem 3 Consider a graph G with transition matrix W
satisfying Assumption 2. After T iterations, for a level of
noise σ2 ≥ 2α(α−1), the privacy loss of Algorithm 1 from
node u to v is bounded by:

εu→v ≤ O
(
αT ln(T )

σ2n2
− αT

σ2n
ln
(
I −W +

1

n
11⊤

)
uv

)
.

We recall that the logarithm of a matrix corresponds to

the matrix whose eigenvalues are the log of the orig-
inal eigenvalues and the eigenvectors remain identical.
In particular, if λ1, · · · , λn are n-eigenvalues (count-
ing multiplicity) of a bistochastic symmetric matrix M
and x1, · · · , xn are the corresponding eigenvectors, then
log(M) =

∑n
i=1 xix

⊤
i log(λi). Note that Assumption 2

ensures this matrix is well-defined.

Sketch of proof. We give a high-level overview of the proof
here and refer to Appendix B for details. We fix the two
vertices u and v and see how a token visit to u will leak
information to v. By the post-processing property of RDP,
it is sufficient to compute the privacy loss that occurs when
the token reaches for the first time v after the visit in u. For
computing this loss, we use the weak convexity of the Rényi
divergence (Van Erven & Harremos, 2014) to condition over
the number of steps before reaching v. The length of the
walk is parameterized by the power of the transition matrix.
For a given length, we bound the privacy loss by using
privacy amplification by iteration (Theorem 1). Refactoring
the sum leads to the logarithm of the matrix. We finish by
using composition over the O(T/n) times the token visits
u during the walk.

Remark 2 For the complete graph, the second term is equal
to zero as the transition matrix is exactly W = 1

n11
⊤. Thus,

we recover the bound of Cyffers & Bellet (2022). In other
words, Theorem 3 is a generalization of this previous result
to arbitrary graphs.

Remark 3 Theorem 3 holds for the definition of the view
of the node given in (7), where the sender is kept anony-
mous. We provide in Appendix B.1 a similar theorem if
the senders are known. In this case, although the formula
is more complex, the asymptotic is the same as it roughly
shifts the privacy guarantees from one hop.

6.1. Interpretation of the Formula via Communicability

The privacy loss of Theorem 3 has two terms that we can
interpret as follows. The first term is the same as in Cyf-
fers & Bellet (2022) for the complete graph: we have an
O(1/n2) privacy amplification factor compared to local DP,
matching what would be obtained in central DP with n users.
Our analysis reveals that this term also appears for arbitrary
graphs: we can interpret it as a baseline privacy loss that
occurs from the collaboration of all agents.

However, in graphs differing from the complete graph, this
baseline privacy loss is corrected by the second term which
depends on the specific pair (u, v) of the nodes considered.
Note that this second term can be negative for some pairs
as eigenvector components can be of arbitrary signs. This
quantity can be seen as a variant of known graph centrality
metrics and, more precisely, communicability.

6
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Definition 8 (Communicability, Estrada & Hatano, 2008;
Estrada & Knight, 2015) For a transition matrix W and ci
a non-increasing positive series ensuring convergence, the
communicability between two vertices u, v is defined by:

Guv =
∑∞

i=1 ciW
i
uv .

For ci = 1/i!, this corresponds to the original notion of
communicability as presented in (Estrada & Hatano, 2008),
while for ci = αi we recover the Katz centrality (Katz,
1953). Our formula corresponds to the case ci = α

σ2i as
proven in Appendix B, and the convergence of the infinite
sum is ensured by the fact that we remove the graph compo-
nent associated with the eigenvalue 1.

Communicability is used to detect local structures in com-
plex networks, with applications to community detection
and graph clustering, for instance, in physical applications
(Estrada & Knight, 2015). Good communicability is sup-
posed to capture how well connected are the two nodes in
the networks, i.e. how close they are. Hence, having the
second term of the privacy loss proportional to the commu-
nicability of the nodes shows that our formula matches the
intuition that nodes leak more information to closer nodes
than to more distant ones.

6.2. Application to Specific Graphs

We now give closed-form expressions of the privacy loss
(3) for specific graphs. To show the power of our bound,
we note that the results for two network graphs studied in
Cyffers & Bellet (2022), namely the complete graph and the
ring graph, follow as a corollary of our general result. We
illustrate below the possibility to derive closed formulas for
other classes of graphs. Proofs are given in Appendix E.

Star graph. We consider a star graph with a central node in
the first position linked to the n− 1 other nodes. We choose
the transition matrix such that the probability of self-loop
κ > 0 is an arbitrarily small constant, and the distribution
over the non-central nodes is uniform. Then we have the
following privacy guarantees.

Theorem 4 Let u, v ∈ V be two distinct nodes of the star
graph and κ > 0 be an arbitrarily small constant. For a
single contribution of node u in Algorithm 1 on the star
graph, the privacy loss to node v is bounded by:

εu→v ≤

−
α(1−κ)
σ2(n−1) ln

(
1− 1

n−1

)
u ̸= 1 and v ̸= 1

α(1−κ)

2σ2
√
n−1

ln
(√

n−1+1√
n−1−1

)
u = 1 or v = 1

.

Sketch of proof. At a high level, as κ is an arbitrarily small
constant, we can have an upper bound on the entries of all
the powers of the adjacency matrix of the star graph.

In particular, composing over theO(T/n) contributions, we
see that extremal nodes enjoy a privacy amplification factor
of order O(n2) and the central node of order O(n).

Ring graph. We consider a symmetric ring where nodes are
enumerated from 1 to n, which thus slightly differs from the
case studied in Cyffers & Bellet (2022); Yakimenka et al.
(2022a), where the ring is directed and thus deterministic
(up to the possibility of skipping in Yakimenka et al., 2022a).
For this graph, our results shows that the amplification is
parameterized by the distance between the nodes in the ring.

Theorem 5 Let u, v ∈ V be two distinct nodes of the ring
with a = (u + v − 2) mod n and α′ = α1|u−v|=1. For
a single contribution of node u in Algorithm 1 on the ring
graph, the privacy loss to node v, εu→v, is bounded by:

α′ log(T ) cos
(
2πa
n

)
nσ2

+
2α

nσ2

n−1∑
k=1

cos
πak

n
ln

3 csc2(πk/n)

4
,

in the case of equal probability between going left, right, or
self-looping. Furthermore, if the probability of self-looping
is set to κ > 0, then εu→v is bounded by

α′

nσ2
+

α(1− κ)

nσ2

T∑
t=2

n∑
k=1

cost−1 2πk

n
cos

2π(a+ 1)k

n
.

Sketch of proof. At a high level, we use the fact that the
adjacency matrix for a ring graph is a circulant matrix, so
its eigenvectors are the Fourier modes. Therefore, its full
spectral decomposition can be easily computed.

To get an intuition regarding Theorem 5, consider two
nodes that are close to each other. For simplicity of cal-
culation, consider nodes 1 and 2 and the statement of the
theorem. Then a = 0 and cost−1(2πk/n) cos(2π(a +
1)k/n) = cost(2πk/n). Therefore, εu→v ≤ α

σ2n +
α(1−κ)
σ2n

∑n
k=1

cos2(2πk/n)
1−cos(2πk/n) .

7. Experiments
In this section, we illustrate our results numerically on
synthetic and real graphs and datasets and show that our
random walk approach achieves superior privacy-utility
trade-offs compared to gossip as long as the mixing time
of the graph is good enough. The code is available at
https://github.com/totilas/DPrandomwalk

Privacy losses and comparison with the gossip counter-
part. We generate synthetic graphs with n = 2048 nodes
and report the privacy loss averaged over 5 runs for every
pair of nodes of the graphs as a function of the length of
their shortest path in Figure 1. The transition matrix is com-
puted using the Hamilton weighting. To compare with the
private gossip algorithm (Cyffers et al., 2022), we consider

7
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Figure 1. Comparison of privacy loss for random walks in bold
lines and gossip in dashed lines for the same synthetic graphs with
n = 2048. Random walks allow privacy amplification even for
very close nodes, but the decay is slower than for gossip.
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the task of averaging (thus with L = µ = 2) and consider
the same precision level and the same graphs: an exponen-
tial graph, an Erdös-Rényi graph with q = c log(n)/n for
c > 1, a grid and a geometric random graph. Our private
random walk approach incurs a smaller privacy loss for
close enough nodes than the private gossip algorithm. Re-
markably, our approach improves upon the baseline local
DP loss even for very close nodes. Conversely, the privacy
loss of our approach is generally higher for more distant
nodes. Nevertheless, random walks offer uniformly better
privacy guarantees than gossip algorithms for graphs with
good connectivity such as Erdös-Rényi graphs or expanders.

Logistic regression on synthetic graphs. We train a
logistic regression model on a binarized version of the
UCI Housing dataset.1 The objective function corresponds
to fv(x) = 1

|Dv|
∑

(d,y)∈Dv
ln(1 + exp(−yx⊤d)) where

d ∈ Rd and y ∈ {−1, 1}. As in Cyffers & Bellet (2022);
Cyffers et al. (2022) and Yakimenka et al. (2022b), we stan-
dardize the features, normalize each data point, and split the
dataset uniformly at random into a training set (80%) and a
test set (20%). We further split the training set across 2048
users, resulting in local datasets of 8 samples each.

In a first experiment, we compare centralized DP-SGD,
local DP-SGD, and our random walk-based DP-SGD. For
all algorithms, we follow common practice and clip the
updates to control the sensitivity tightly. We set ε = 1
and δ = 10−6. Following Cyffers et al. (2022), we use
the mean privacy loss over all pairs of nodes (computed by
applying Theorem 3) to set the noise level needed for our
random walk-based DP-SGD. Figure 2 reports the objective
function through iterations for complete, hypercube, and
random geometric graphs. Experimentally, the behavior is
the same for all the graphs, meaning that the token walk
is diverse enough in every case to have a behavior similar

1https://www.openml.org/d/823/

Figure 2. Private logistic regression on the Houses dataset where
we compare our RW DP-SGD to with Local and Centralized DP-
SGD as baselines.
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to a uniformly random choice of nodes. The improvement
in the privacy-utility trade-off compared to the local DP is
significant.

We then compare our random walk algorithm to its gos-
sip counterpart (Cyffers et al., 2022) on the same logistic
regression task. For both algorithms, we fix the mean pri-
vacy loss ε̄ across all pairs of nodes to three different levels
(ε̄ ∈ {0.5, 1, 2}) and we report the accuracy reached by each
algorithm on 4 graphs: complete, exponential, geometric
and grid. As shown in Table 1, our random walk algorithm
outperforms gossip in all cases, which can be explained by
a combination of two factors. First, as seen previously in
Figure 1, our algorithm yields a lower mean privacy loss
for graphs with good expansion property, especially when
the degree of the nodes is high (because the privacy guar-
antees of gossip degrade linearly with the degree, while
random walk is insensitive to it). This gain directly leads to
less noise injection when fixing the mean privacy loss, and
thus better utility. The second factor that explains why the
gain in utility is so pronounced (even for the grid) comes
from differences in the SGD version of gossip and random
walk. In both methods, the privacy guarantee degrades as a
function of the number of participations of nodes (linearly
in Rényi DP). In gossip, allowing each node to participate
10 times means that the model will essentially be learned
by applying 10 “global” gradient updates (i.e., aggregated
over the n nodes), because all local gradients are gossiped
until convergence between each gradient computation (see
Algorithm 3 in Cyffers et al., 2022). In our random walk
algorithm, the model is learned by applying 10× n “local”
gradient updates. Even if this represents the same amout
of information about the data, better progress is made with
many noisy steps than with a small number of less noisy
steps, in the same way as mini-batch SGD tends to progress
faster than GD in practice.

Privacy loss on real graphs and communicability. We
consider two real-world graph datasets well-suited for com-
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Figure 3. Link between graph structure and privacy loss. Left: (a) example of Facebook Ego graph communicability and privacy loss,
logarithmic scale. Middle: (b) same on the Southern women graph. Right: (c) the corresponding mean privacy loss and Katz centrality.
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Table 1. Model accuracy at various mean privacy loss levels aver-
aged over 8 runs.

Graph Gossip Random walk

Mean Privacy Loss of 0.5
Complete 0.65± 0.10 0.841± 0.07
Exponential 0.70± 0.10 0.818± 0.09
Geometric 0.60± 0.07 0.795± 0.06
Grid 0.60± 0.07 0.803± 0.10

Mean Privacy Loss of 1
Complete 0.70± 0.10 0.900± 0.04
Exponential 0.77± 0.05 0.883± 0.05
Geometric 0.66± 0.10 0.873± 0.05
Grid 0.73± 0.10 0.848± 0.07

Mean Privacy Loss of 2
Complete 0.83± 0.06 0.940± 0.02
Exponential 0.89± 0.04 0.937± 0.01
Geometric 0.67± 0.04 0.933± 0.02
Grid 0.72± 0.10 0.919± 0.02

munity detection: (i) The Facebook Ego dataset (Leskovec
& Mcauley, 2012) represents subgraphs of the Facebook
network, where users are nodes and edges correspond to
the friendship relation, and each subgraph corresponds to
the set of friends of a unique user that is removed from
the subgraph; (ii) The Davis Southern women social net-
work (Roberts, 2000) is a graph with 32 nodes which cor-
responds to a bipartite graph of social event attendance by
women and has been used in Koloskova et al. (2019) and
Pasquini et al. (2023). We report side-by-side the matrix
of pairwise privacy losses and of the communicability in
Figure 4(a) and Figure 4(b). This confirms the similarity
between the two quantities as discussed in Section 6.1. We
also report the Katz centrality compared to the mean pri-
vacy loss for each node in Figure 4(c), showing that the two
quantities also have similar behavior.

We provide other numerical experiments in Appendix C: we

report the privacy loss on the other Facebook Ego graphs
and study the impact of data heterogeneity.

8. Conclusion
In this work, we analyzed the convergence and privacy guar-
antees of private random walks on arbitrary graphs, extend-
ing the known results for the complete graph and the ring.
Our results show that random walk-based decentralized al-
gorithms provide favorable privacy guarantees compared to
gossip algorithms, and establish a link between the privacy
loss between two nodes and the notion of communicability
in graph analysis. Remarkably, as long as the spectral gap
of the communication graph is large enough, the random
walk approach nearly bridges the gap between the local and
the central models of differential privacy. Our results could
be broadened by showing convergence under more general
hypotheses. Other extensions could include skipping some
nodes in the walk, considering latency, or having several
tokens running in parallel.

Impact Statement
This work contributes to proving formal privacy guaran-
tees in machine learning and thus paves the way for the
larger adoption of privacy-preserving methods, with a better
theoretical understanding. In particular, our work shows
that decentralized algorithms may be useful in designing
efficient privacy-preserving systems with good utility. In
particular, the impact of the choice of a decentralized al-
gorithm on privacy guarantees has not been studied so far.
We believe our work opens interesting directions to see how
one could design decentralized protocols that are private by
design.

A potential risk of misuse of our work is that we rely on
different privacy budgets across different pairs of users, as
done previously in Cyffers et al. (2022). This could some-
times lead to a false sense of security or weaker privacy
guarantees than those provided in other threat models. In
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particular, the question of comparing the privacy guarantees
we provide to those of the central model could be discussed.
Our experiments use the mean privacy loss of nodes to set
the comparison, but it is interesting to note that for the same
mean privacy loss, the distribution of the privacy loss for
gossip and random walk algorithms is not the same. Indeed,
as shown in Figure 1, random walks have a smoother decay
but can enjoy privacy amplification even for closely related
nodes, whereas gossip tends to saturate the closest nodes
then, followed by exponential decay. It is an interesting
question to know how to interpret these privacy loss func-
tions to choose the algorithm whose privacy guarantees best
meet the privacy expectations in a particular use case.
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Differentially Private Decentralized Learning with Random Walks

A. Proof of Theorem 2
We adapt the proof of Theorem 5 of (Even, 2023). Because constants matters in differential privacy, we detail the steps
needed to explicit these constants. We recall here the keys steps and definition and how we adapt the proofs to allow the
addition of Gaussian noise. We keep the same definitions, except that the sequence of token iterates is now defined by

xt+1 = xt − γ(gt + ηt) .

This does not impact Lemma 8, which only relies on the graph properties and the function at the optimum. Up to the
transposition of notation, we have for any T ⩾ 1:

E

∥∥∥∥∥∑
t<T

∇fvt (x⋆)

∥∥∥∥∥
2
 ⩽ Tζ2⋆ + ζ2⋆

∑
t<T

dTV

(
P t
v0,, π

⋆
)
+ 2ζ2⋆

∑
s<t<T

dTV(t− s), (9)

where dTV(r) = sup
{
dTV

(
(P r)v,, , π

⋆
)
, v ∈ V

}
for r ∈ N, so that:

E

∥∥∥∥∥∑
t<T

∇fvt (x
⋆)

∥∥∥∥∥
2
 ⩽ ζ2⋆ (4τmix (1/4) + T (1 + 8τmix (1/4))) . (10)

Next, we can transform Lemma 9 into

Eη(∥xt+1 − yt+1∥2) ≤ (1− γµ)Eη(∥xt − yt∥2) + γL∥yt − x∗∥2 + γ2(dσ2 + σ2
sgd) .

where the sequence of yt and yt+1 satisfies the relation.

yt+1 = yt − γ∇fvt(x∗)

By applying the formula recursively, we obtain:

Eη ∥xT − yT ∥2 ⩽ (1− γµ)T ∥x0 − y0∥2 +
∑
t<T

(1− γµ)T−t
(
γL ∥yt − x⋆∥2 + γ2(dσ2 + σ2

sgd)
)
,

where we use Eη to denote the expected value with respect to the privacy noise.

By instantiating the y sequence as done in the non-private version with the x, we recover nearly the same formula, with
yt = x∗. The first term can be handled as in the non-private case, while the second term has an additional sum:

Eη ∥xT − x⋆∥2 ⩽2(1− γµ)T

E ∥x0 − x⋆∥2 + γ2E

∥∥∥∥∥∑
s<T

∇fvs (x⋆)

∥∥∥∥∥
2


+
∑
t<T

(1− γµ)T−t

γ3LE


∥∥∥∥∥∥
∑

t⩽s<T

∇fvs (x⋆)

∥∥∥∥∥∥
2
+ γ2(dσ2 + σ2

sgd)

 .

As
∑

t<T (1− γµ)T−t < 1
γµ , and the other terms remain identical, we have:

Eη ∥xT − yT ∥2 ⩽ 2(1− γµ)T ∥x0 − x⋆∥2 + 3γL

µ2
Cτmixζ

2
⋆ +

γ(dσ2 + σ2
sgd)

µ
.

with C = 13.

We conclude by plugging back the following γ (as in (Even, 2023)) in the previous formula:

γ = min

(
1

L
,
1

Tµ
ln

(
T
∥x0 − x⋆∥2
39
µ2Cτmixζ2⋆

))
.

Remark 4 As long as σ2 ≤ 39Lτmixζ
2
∗

dµ , the noise due to privacy is smaller than the one due to the randomness of the walk.
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B. Privacy Proofs
Let u, v be two distinct nodes. To prove Theorem 3, we see the privacy loss εu→v as the composition of the privacy loss
induced by each of the contributions of node u. Thus, we first bound the privacy loss for one contribution εsingleu→v . Let
us denote by tc the time step where this contribution is made (i.e., the token is at node u at time tc). For t ≤ tc, there is
no privacy leakage. Let us denote by tl the first t ≥ tc where the token is held by v. By the post-processing property of
differential privacy, the steps after tl will not yield additional leakage for the contribution of time tc. Hence, we only need to
bound the privacy leakage at time tl. This leakage depends on the number of steps between tc and tl. We use the weak
convexity property of the Rényi divergence to decompose our privacy loss.

Lemma 1 (Weak convexity of Rényi divergence) Let µ1, . . . , µn and ν1, . . . , νn be probability distributions over some
domain Z such that for all i ∈ [n],Dα (µi∥νi) ≤ c/(α− 1) for some c ∈ (0, 1]. Let ρ be a probability distribution over [n]
and denote by µρ (respectively, νρ) the probability distribution over Z obtained by sampling i from ρ and then outputting a
random sample from µi (respectively, νi). Then

Dα (µρ∥νρ) ≤ (1 + c) · E
i∼ρ

[Dα (µi∥νi)] . (11)

We can thus partition according to the length of the walk and write the privacy guarantee depending on T the total number
of steps and β(i) a function bounding the privacy loss occurring for seeing the token i steps after the node contribution:

εsingleu→v ≤ (1 + c)

T∑
i=1

P(u→ v after i steps)β(i) . (12)

The probability of the path of t steps between u and v can be easily extracted from the power of the transition matrix W .
We thus obtain the generic formula.

Lemma 2 Let β(i) be a bound on the privacy loss occurring for seeing the token i steps, and T the total number of steps.
Then, the following holds:

εsingleu→v ≤
T∑

i=1

W i
uv2β(i) . (13)

We recognize in this formula the communicability (Definition 8) with ci = 2β(i).

We can now compute the function β by resorting to privacy amplification by iteration (Theorem 1). As we apply the
Gaussian mechanism at each step, we have s1 = α

2σ2 and sj = 0 for 0 < j ≤ i. We thus take all aj = α
2σ2i in Theorem 1.

This gives the bound β(i) = α
2σ2i , which corresponds to setting ci = ασ2i.

We now focus on how to simplify and compute this formula under Assumption 2, i.e., the transition matrix is bistochastic
and symmetric. Since the matrix is symmetric by assumption, we can apply the spectral theorem to write:

W =

n∑
i=1

λiϕiϕ
⊤
i , (14)

Furthermore, since the matrix is bistochastic, λ1 = 1 > λ2 ≥ · · · ≤ λn > −1 and the eigenvector associated to the first
eigenvalue is 1√

n
1. Hence, we can isolate the first term and plug into (13) to get:

εsingleu→v ≤
T∑

t=1

α

σ2t

1

n
+

n∑
i=2

T∑
t=1

α

σ2t
λt
iϕi(u)ϕi(v) . (15)

In these sums, we isolate
∑T

t=1 λ
t
i/t. Noticing that the sum converges for all these eigenvalues, we can rewrite it as∑T

t=1 λ
t
i/t = − ln(1− λi) +O(λT

i ). We use the integral test for convergence to replace the sum by the logarithm.

This gives us the privacy loss for a single contribution. In order to conclude, we compose the privacy loss of each of the Nu

contributions of node u, leading to, for any σ2 ≥ 2α(α− 1) :

εu→v ≤
αNu ln(T )

σ2n
− αNu

σ2
ln(I −W +

1

n
11⊤)uv +O(λT

2 ) . (16)
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As |λ2| < 1, its power decreases exponentially fast with the number of steps and thus is negligible with respect to the other
terms.

The average number of contributions is T/n as the transition matrix is bi-stochastic. We can then upper bound the real
number of contributions with high probability, for example by using Theorem 12.21 of (Levin & Peres, 2017). The small
probability of exceeding the upper bound can be added to δ when converting from RDP to (ε, δ)-differential privacy.

Remark 5 The upper bound on Nu tends to be large for “cryptographically” small δ. An efficient way to avoid this issue in
practical implementations is to force a tighter bound on the maximum number of contributions by each node. After a node
reaches its maximum number of contributions, if the token passes by the node again, the node only adds noise. We use this
trick in numerical experiments.

B.1. Adaptation to the case without sender anonymity

For bounding the privacy loss of a single contribution, we consider above the value of the privacy loss occurring at time tl.
However, this is computed without taking into account the knowledge of where the token comes from, for example, if v
can know which of its neighbors sent him the token. This computation is thus justified only in the specific case where the
anononymity of the sender is ensured, e.g., by resorting to mix networks (Sampigethaya & Poovendran, 2006) or anonymous
routing (Dingledine et al., 2004).

If this is not the case, then we should a priori use the conditional probability towards the position of the token at time tl − 1.
However, there is no close form for this in general for a graph. To fix this issue, we consider that the last step for reaching v
is only a post-processing of the walk reaching one of its neighbors.

For each of the neighbors, the previous formula applies. We obtain different values for the various neighbors, so a worst-case

analysis consists in taking the max over this set. Denoting by ε̃singleuv the privacy loss when a node v knows the neighbors
from which it received the token, we have

ε̃singleuv ⩽ max
w∈Nv

εsingleuw

This approach allows to keep a closed form for the matrix and just add a max step. However, this analysis is not tight and
may lead to a significant cost in some scenarios. A simple example is the special case where the nodes u and v are neighbors.
It effectively assumes that the transition between u and v is always direct, which may not always be the case.

We provide in Figure 4 the equivalent of Figure 1 by taking the max below. As expected, amplification is smaller for close
nodes, but the curves have the same asymptotic.
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Figure 4. Comparison of privacy loss for random walks when nodes know who send them the token in bold lines and gossip in dashed
lines for the same synthetic graphs with n = 2048. Privacy amplification is visible even for close neighbors but the decay is slower than
for gossip.

C. Additional Numerical Experiments
In this section, we include other examples of graphs that illustrate how the privacy loss matches the graph structure.

A classic synthetic graph to exhibit subgroup is the stochastic block model, where each edge follows an independent
Bernoulli random variable. The parameter of the law depends from a matrix encoding the relation between the clusters. As

3
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Privacy loss

6.5 6.0 5.5

Communicability

8 6 4

Figure 5. Stochastic Block Model with 200 nodes in three clusters (75, 75, 50) and probability matrix
[[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]. The privacy loss matrix recovers the different blocks.

for other graphs, the privacy loss is similar to communicability and shows different level of privacy within and outside a
group Figure 5(b), so that a node sees the major part of its privacy loss occurring within its group (Figure 5(a).

We report other examples of privacy loss for a node chosen at random in Facebook Ego graphs. Once again, these results
illustrate that our privacy loss guarantees match the existing clusters of the graph (Figure 6).

Intuitively, compare to gossip algorithms where the updates only slowly flows in the graph, the random walk should mix
quite easily heterogeneous data. while we do not derive mathematical guarantees on heterogeneity, we illustrate this idea
with the following numerical experiment. We generate a synthetic geometric random graph and compare two scenarii
(Figure 7). On the first trial, the data is position-dependent, which generate heterogeneity as close nodes also have close
datapoint. We then shuffle randomly the data to destroy the heterogeneity and compare the convergence of the two in
Figure 8.

D. Collusion
The results of our work assume that nodes are separated entities that do not share information outside the protocols. One
could however claim that a fraction of nodes can collude and share information between them. In this case, if we denote
F ⊂ V the fraction of the colluded nodes, for a given contribution done by u what matters is the first time that one of the
node of F is reached afterwards. More precisely, we can derive the privacy loss as

εsingleu→F ≤
T∑

i=1

(∑
v∈F

W i
uv

)
ασ2i . (17)

where the term between parenthesis corresponds to the probability to reach F in exactly i steps from u. By reorganizing
these terms, we obtain the upper bound:

εu→F ≤
∑
v∈F

εu→v (18)

This term corresponds also to the formula one would obtain from basic composition. Hence, our analysis does not allow to
avoid the degradation of the privacy guarantees to collusion. Note that if all the colluded nodes are far away from u, it is still
possible to derive non trivial guarantees compare to what would give the bound of local differential privacy. In comparison
to gossip where the privacy loss decrease is sharper with distance, the cases where the amplification remains are scarcer.
This is a fundamental limitation of amplification by decentralization, that was already pointed out in (Cyffers & Bellet, 2022;
Cyffers et al., 2022).
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Figure 6. Privacy loss on the 9 other Facebook Ego graphs, following the same methodology as in Figure 4(a).
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Figure 7. Geometric random graph with 200 nodes. On the left, the label is given by the sum of the coordinates, providing heterogeneity
in the graph. On the right the same graph has its label shuffled

0 2 4 6 8
Quantile

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e 

Va
lu

es

0
200
400
600
800
1000
1200
1400

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Av
er

ag
e 

Pr
iv

ac
y

Average Values and Privacy by Quantiles

(a) With original labels
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(b) With shuffled labels

Figure 8. We compute the quantiles of the euclidean distance between node. For each quantile, we report the mean on all the pair of
nodes of the quantiles for the privacy loss and for the distance between the current estimates. We report different time step across the
learning. The privacy loss is identical in both cases. At the beginning of the learning, the homogeneous case has smaller average values
heterogeneity, but the difference reduces with the learning
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E. Refined Privacy Bounds for Specific Graphs
E.1. Useful Auxiliary Results

We first collect some auxiliary results that we use in our bounds.

Proposition 1 For any x ∈ (0, 1), we have∑
p is odd

xp

p
=

1

2
ln

1 + x

1− x
and

∑
p is even

xp

p
= − ln(1− x2) .

Proof. Recall that

ln(1 + x) = x+
x2

2
+

x3

3
+ · · · , and ln(1− x) = −x+

x2

2
− x3

3
+ · · ·

Now ln(1 + x)− ln(1− x) gives the first bound and ln(1− x) + ln(1 + x) gives the second bound. This completes the
proof.

Proposition 2 (Godsil and Royle (Godsil & Royle, 2001)) Let 1 ≤ d ≤ n− 1 be an integer. Then for any d-regular graph
G, the eigenvectors of the Laplacian and those of the adjacency matrix of G coincide.

E.2. Privacy Loss for Specific Graphs

Complete graph. The transition matrix is exactly 1
n11

⊤ and thus we recover exactly the same formula as in (Cyffers
& Bellet, 2022). In particular, there is only one non-zero eigenvalue with magnitude 1 with an all-one vector as the
corresponding eigenvector. In particular,

εu→v ≤
α

σ2

T∑
i=1

W i
uv

1

i
=

α

σ2

T∑
i=1

1

i

 n∑
j=1

λi
jvjv

⊤
j


uv

=
α

nσ2

T∑
i=1

1

i
≤ α log(T )

nσ2

Ring graph. To ensure aperiodic Markov chain as required by Assumption 1, the transition matrix should be in the form
aI + b(J + J⊤), a+ 2b = 1.

The adjacency matrix AR of the ring graph R is a circulant matrix. Therefore, all its eigenvectors are just the Fourier
modes (Horn & Johnson, 2012):

ϕ(ωk) =


1
ωk

ω2
k
...

ωn−1
k

 ,

where ωn
k = 1 is the n-th root of unity, i.e, e2πιk/n for 1 ≤ k ≤ n. This can be seen by noting that multiplication with a

circulant matrix gives a convolution. In the Fourier space, convolutions become multiplication. Hence the product of a
circulant matrix with a Fourier mode yields a multiple of that Fourier mode, which by definition is an eigenvector.

The eigenvalues can be then computed as

ωk + ω−1
k = 2 cos(2πk/n) for 0 ≤ k ≤ n− 1 .

Computing ϕ(ω)ϕ(ω)⊤ is straightforward. The (u, v)-th entry would be just ω(u+v−2) mod n. Recall that

εu→v ≤
α

σ2

T∑
i=1

W i
uv

i
.

For ease of calculation, let us assume that a = b = 1
3 . Then W = AR

3 + I
3 , where AR is a binary matrix with (i, j)-th entry

1 only when |i− j| = 1. Then the eigenvalues of W are given by 2 cos(2πk/n)+1
3 for 0 ≤ k ≤ n− 1. Let a = (u+ v − 2)

mod n. Hence,

7
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ϵu→v ≤
α

nσ2

T∑
t=1

(
e2πιa/n

t
+

n−1∑
k=1

1

t

(
2 cos(2πk/n) + 1

3

)t

e2πιak/n

)

≤ α

nσ2

T∑
t=1

(
e2πιa/n

t
+

n−1∑
k=1

1

t

(
4 cos2(πk/n)− 1

3

)t

e2πιak/n

)

=
α

nσ2

T∑
t=1

1

t
cos (2πa/n) +

α

nσ2

T∑
t=1

n−1∑
k=1

1

t

(
4 cos2(πk/n)− 1

3

)t

cos (2πak/n)

≤ α log(T )

nα2
+

α

nσ2

n−1∑
k=1

∞∑
t=1

1

t

(
4 cos2(πk/n)− 1

3

)t

cos

(
2π(u+ v − 2)k

n

)

=
α log(T )

nσ2
− α

nσ2

n−1∑
k=1

ln

(
1− 4 cos2(πk/n)− 1

3

)
cos

(
2πak

n

)

≤ α log(T )

nσ2
+

2α

nσ2

n−1∑
k=1

cos

(
2πak

n

)
ln

(
3 csc(πk/n)

2

)
,

where csc is the cosecant function. The second equality follows from the fact that W i
u,v is a real number, so the imaginary

part is identically zero.

In the previous bound, we give self-loops the same probability as other edges. The main reason to give self-loop a non-zero
weight is to ensure irreducibility and aperiodicity of the Markov chain. The same effect can be achieved by giving any
non-negligible weight to the self-loops. In particular, we can consider the following adjacency matrix:

ÂR = (1− κ)AR + κI

for some κ > 0. Then, the eigenvalues would be (1− κ)(ωk + ω−1) + κ. The adjacency matrix is still a circulant matrix.
As a result, the eigenvectors still remain the same. Furthermore,

(ωk + ω−1
k )t cos

(
2πak

n

)
= 2 cost

(
2πk

n

)
cos

(
2πak

n

)
= cost−1

(
2πk

n

)
cos

(
2π(a+ 1)k

n

)
.

Let κ = 1
T 2 . Then

Ât
uv ≤ (1− κ)At

uv

for t ≥ 2. Therefore, for a = (u+ v − 2) mod n:

ϵu→v ≤
α(1− κ)

nσ2
Auv +

α(1− κ)

nσ2

T∑
t=2

At
uv

≤ α

nσ2
Auv +

α(1− κ)

nσ2

T∑
t=2

n∑
k=1

(ωk + ω−1
k )t cos

(
2πak

n

)

=
α

nσ2
AR[u, v] +

α(1− κ)

nσ2

T∑
t=2

n∑
k=1

cost−1

(
2πk

n

)
cos

(
2π(a+ 1)k

n

)
.

If |u− v| = 1, then we have

ϵu→v ≤
α

nσ2
+

α(1− κ)

nσ2

T∑
t=2

n∑
k=1

cost−1

(
2πk

n

)
cos

(
2π(a+ 1)k

n

)
.

otherwise, we have

ϵu→v ≤
α(1− κ)

nσ2

T∑
t=2

n∑
k=1

cost−1

(
2πk

n

)
cos

(
2π(a+ 1)k

n

)
.
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Star graph. We set the vertex set of a simple star graph as

V = {1, 2, · · · , n}

with the node 1 being the central node. This gives the edge set

E = {(1, i), 2 ≤ i ≤ n}.

Lemma 3 The eigenvalues of the Laplacian of the star graph are(
0 1 · · · 1 n

)
and the eigenvectors are δi − δi+1 for eigenvalues 1 and 2 ≤ i ≤ n− 1. The eigenvector corresponding to eigenvalue n is
computed in the proof.

Proof. Let 1 denote the all one vector. Then by the definition of Lapalcian, L1 = 0 and eigenvalue 0 corresponds to the
eigenvector 1. Now, the trace of the Laplacian is just the sum of its eigenvalues. Therefore,

Tr(L) = 2n− 2.

Let v be the eigenvector for eigenvalue n. Then we know that

v⊥Span{1, e2 − e3, e3 − e4, · · · , en−1 − en}.

This implies that
n− 1 + v[1] = 0,

or that v =
(
−(n− 1) 1 1 · · · 1

)⊤
.

We can perform the spectral decomposition of the adjacency matrix of a star graph, but noting that the adjacency matrix of a
star graph is

A =


0 1 1 · · · 1
1 0 0 · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0


it is easy to compute the coordinates of any higher power of A. In particular, if p is an even power, then (u, v)-th coordinate
of Ap

S is

Ap
uv =


(n− 1)p/2 u = v = 1

0 u = 1 or v = 1 and u ̸= v

(n− 1)p/2−1 otherwise

If p is an odd power, then (u, v)-th coordinate of Ap is

Ap
uv =

{
(n− 1)(p−1)/2 u = 1 or v = 1

0 otherwise

Since W = A
(n−1) for a normalization constant (n− 1) to make W doubly stochastic, we have

εu→v ≤
T∑

p=1

Ap
uv

α

σ2p(n− 1)p

=
α

σ2

 T∑
p is odd

Ap
uv

p(n− 1)p
+

T∑
p is even

Ap
uv

p(n− 1)p

 .

We now compute the privacy loss for each case. Since we only care about the privacy loss when u ̸= v, we consider the
following two cases:
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1. u = 1 or v = 1 and u ̸= v. In this case, using Proposition 1, we have

εu→v ≤
α

σ2

T∑
p is odd

(
√
n− 1)p−1

p(n− 1)p
≤ α

2σ2
√
n− 1

ln

(√
n− 1 + 1√
n− 1− 1

)
.

2. u ̸= 1 and u ̸= v. In this case, using Proposition 1, we have the following

εu→v ≤
α

σ2

T∑
p is even

(n− 1)p/2−1

p(n− 1)p

=
α

σ2(n− 1)

T∑
p is even

(n− 1)p/2

p(n− 1)p

≤ − α

σ2(n− 1)
ln

(
1− 1

n− 1

)
.

The above calculation is when the graph is simple. To make the Markov chain aperiodic, as before, we add self-loops with a
small weight on the self-loop. For example, we consider the following adjacency matrix:

Â = (1− κ)A+ κI .

We pick κ = 1
T 2 , so that

Âp
uv ≤ (1− κ)Ap

uv

for u ̸= v and p ≤ T . Then if p is an even power, then (u, v)-th coordinate of Âp is

Âp
uv ≤


(1− κ)(n− 1)p/2 u = v = 1

0 u = 1 or v = 1 and u ̸= v

(1− κ)(n− 1)p/2−1 otherwise

If p is an odd power, then (u, v)-th coordinate of Âp is

Âp
uv ≤

{
(1− κ)(n− 1)(p−1)/2 u = 1 or v = 1

0 otherwise

Now again we have

εu→v ≤
T∑

p=1

Âp
uv

α

σ2p(n− 1)p

=
α

σ2

 T∑
p is odd

Âp
uv

p(n− 1)p
+

T∑
p is even

Âp
uv

p(n− 1)p

 .

Using the same calculation as before, we have for all u ̸= v,

ϵu→v ≤


α(1−κ)

2σ2
√
n−1

ln
(√

n−1+1√
n−1−1

)
u = 1 or v = 1 and u ̸= v

− α(1−κ)
σ2(n−1) ln

(
1− 1

n−1

)
u ̸= 1

.

In particular, this means that the privacy loss for the apex node is the most. In contrast, the nodes on the arms have
approximately

√
n more privacy than the apex node, which is what we expect: the apex node is the only one communicating

with every other node in the graph.
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