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ABSTRACT

Recently there has been a surge of interest to deploy confidence set predictions
rather than point predictions. Unfortunately, the effectiveness of such prediction
sets is frequently impaired by distribution shifts in practice, and the challenge
is often compounded by the lack of ground truth labels at test time. Focusing
on a standard set-valued prediction framework called conformal prediction (CP),
this paper studies how to improve its practical performance using only unlabeled
data from the shifted test domain. This is achieved by two new methods called
ECP and EACP, whose main idea is to adjust the score function in CP according to
its base model’s own uncertainty evaluation. Through extensive experiments on a
number of large-scale datasets and neural network architectures, we show that our
methods provide consistent improvement over existing baselines and nearly match
the performance of fully supervised methods.

1 INTRODUCTION

Advances in deep learning are fundamentally changing the autonomous decision making pipeline.
While most works have focused on accurate point predictions, quantifying the uncertainty of the
model is arguably as important. Taking autonomous driving for example: if a detection model
predicts the existence of an obstacle, it would be reasonable to take different maneuvering strategies
depending on the confidence of the prediction. But is that reliable? In a possible failure mode, the
model could report 60% (resp. 99%) confidence, but the probability of an obstacle actually showing
up is 99% (resp. 60%). Such discrepancy between the model’s own uncertainty evaluation and the
ground truth probability (or post-hoc frequency) is actually very common (Guo et al., 2017; Liang
et al., 2023), and can significantly compromise the safety in downstream decision making.

Set-valued prediction provides an effective way to address this problem (Chzhen et al., 2021), with
conformal prediction (CP; Vovk et al., 2005) being its most well-known special case. Given a fixed
black-box machine learning model (called the base model) and a covariate xtest, the goal of CP is
to generate a small prediction set Ctest that contains (or, covers) the unknown ground truth label
ytest with a pre-specified probability. Crucially, CP relies on the assumption that the distribution of
the data stream is exchangeable (a weaker variant of i.i.d.), which allows the fairly straightforward
inference of ytest from xtest and the base model’s performance on a pre-collected calibration dataset.
Note that the ground truth label ytest does not need to be revealed after the set prediction is made:
exchangeability together with a large enough labeled calibration dataset is sufficient to ensure the
desirable coverage probability. This is particularly important for autonomous decision making, where
real-time data annotation is expensive or even infeasible.

However, real-world data streams are usually corrupted by all sorts of distribution shifts, violating
the exchangeability assumption. Even when the data stream itself is exchangeable, we often want to
continually update the base model rather than keeping it fixed, and this can be effectively understood
as a distribution shift in this context. In such cases, simply applying exchangeability-based CP
methods could lead to highly inaccurate prediction sets (Tibshirani et al., 2019; Bhatnagar et al.,
2023a; Kasa and Taylor, 2023). Therefore, making CP compatible with distribution shifts has become
a focal point of recent works.

A number of solutions have been proposed, but the key challenge still remains. For example, Gibbs
and Candes (2021) formulated the connection between CP and Online Convex Optimization (OCO;
Zinkevich, 2003), and the latter is able to handle arbitrarily distribution-shifted environments. The
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weakness is that ground truth labels are now required at test time (which we call full supervision),
as opposed to the standard CP procedure. In the other direction, there are CP methods that combat
distribution shifts without test time labels (Tibshirani et al., 2019; Barber et al., 2023; Cauchois et al.,
2024), but they typically assume the distribution shifts are “easy”, such that even without labels, we
can still rigorously infer the test distribution to a certain extent using the labeled calibration dataset.
Overall, it appears that handling both difficulties – distribution shifts and the lack of test time labels –
is a formidable but important challenge remaining in the literature.

Contributions Focusing on classification, this paper develops practical unsupervised methods to
improve the accuracy degradation of CP prediction sets under distribution shifts. The overarching
idea is to exploit the uncertainty evaluation of the base model itself. Although such a quantity is not
always calibrated in a strict sense, it has been consistently observed to strongly correlate with the
magnitude of distribution shifts (Hendrycks and Gimpel, 2017; Wang et al., 2021; Kang et al., 2024),
thus providing a valuable way to probe the test distribution without label access. Under this high
level idea, we make the following contributions.

• First, we propose a new CP-inspired method named ECP (Entropy scaled Conformal Prediction).
The key idea is to scale up the score function in standard CP by an “entropy quantile” of the base
model, calculated on the unlabeled test dataset. Such an entropy quantile measures the base model’s
own uncertainty on the test distribution, and is enforced to be greater than 1.1

More precisely, given each covariate xtest at test time, the score function in standard CP is
determined by the fixed base model, and assigns each candidate label a “propensity score”. Then,
the CP prediction set Ctest simply includes all the candidate labels whose score is above a certain
threshold.2 By scaling up the score function while keeping the threshold fixed, ECP makes the
prediction sets larger, which naturally corresponds to the intuition that the uncertainty of prediction
should be inflated under distribution shifts. Moreover, the amount of such inflation is strongly
correlated with the magnitude of the distribution shift, through the use of the entropy quantile.

• Second, we refine ECP using techniques from unsupervised Test Time Adaptation (TTA) (Niu et al.,
2022), and the resulting method is named EACP (Entropy base-adapted Conformal Prediction).
The key idea is that while ECP keeps the base model fixed at test time, we can concurrently update
it using entropy minimization (Grandvalet and Bengio, 2004; Wang et al., 2021) – a widely adopted
idea in unsupervised TTA, alongside the aforementioned entropy scaling. This “adaptively” reduces
the scaling effect that ECP applies to the score function, thus shrinking the prediction sets of
ECP smaller.

• Finally, we evaluate the proposed methods on a wide range of large-scale datasets under distribution
shifts, as well as different neural network architectures. We find that exchangeability-based CP
(with and without TTA on the base model) consistently leads to lower-than-specified coverage
frequency. However, despite the absence of practical statistical guarantees in this setting, our
methods can effectively mitigate this under-coverage issue while keeping the sizes of the prediction
sets moderate. Furthermore, our methods also significantly improve the prediction sets generated by
the base model itself (without CP). It shows that by bridging the CP procedure (which is statistically
sound) and the base model’s own uncertainty evaluation (which is often informative), our methods
enjoy the practical benefit from both worlds.

2 RELATED WORKS

CP under distribution shifts Considerable efforts have been devoted to developing CP methods
robust to distribution shifts, which can be approximately categorized into two directions. The first
direction does not require test time labels (Tibshirani et al., 2019; Cauchois et al., 2024), but the
distribution shift is assumed to be simple in some sense. The second direction is connecting CP to
adversarial online learning (Gibbs and Candes, 2021), but the true labels are required at test time.
Due to space constraints, a thorough discussion is deferred to Appendix A, as well as a number of
applications that motivate this work.

Unsupervised Test Time Adaptation (TTA) Our techniques are inspired by core ideas in (unsuper-
vised) TTA, whose goal is to update a trained machine learning model at test time, using unlabeled

1This is to ensure that the prediction sets do not become smaller on in-distribution data.
2The score functions are assumed to be positively oriented (Sadinle et al., 2019): labels with larger score are

more likely to be included in the prediction set.
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data from shifted distributions. To achieve this, one could update the batch-norm statistics on the
test data (Nado et al., 2020; Schneider et al., 2020; Khurana et al., 2021), or minimize the test-time
prediction entropy – a natural measure of the model’s uncertainty (Wang et al., 2021; Zhang et al.,
2022; Niu et al., 2022; Song et al., 2023; Press et al., 2024). Notably, these methods can be applied
to any probabilistic and differentiable model (such as modern neural networks), which is naturally
congruent with the key strength of CP. However, to date this line of works has not been connected to
the conformal prediction literature.

3 PRELIMINARIES OF CP

We begin by introducing the standard background of CP without distribution shifts. For clarity, we
assume i.i.d. data in our exposition, rather than the slightly weaker notion of exchangeability. Also
see (Roth, 2022; Angelopoulos and Bates, 2023; Tibshirani, 2023).

LetD be an unknown distribution on the spaceX×Y of covariate-label pairs, and let α ∈ (0, 1) be the
error rate we aim for. Given a calibration dataset D consisting of n i.i.d. samples {x∗

i , y
∗
i }i∈[n] ∼ Dn,

the goal of CP is to generate a set-valued function C : X → 2Y , such that

P(xtest,ytest)∼D,D∼Dn [ytest ∈ C(xtest)] ≥ 1− α. (1)

That is, for a fresh test sample (xtest, ytest) ∼ D, our prediction set C(xtest) covers the ground truth
label ytest with guaranteed high probability. Notice that Eq.(1) alone is a trivial objective, since it
suffices to predict the entire label space C(x) = Y for all x. Therefore, CP is essentially a bi-objective
problem: as long as Eq.(1) is satisfied, we want the prediction set C(x) to be small.

The main difficulty of this set-valued prediction problem is that the range of output 2Y is too large.
In this regard, the key idea of CP is reducing the problem to 1D prediction via a trained machine
learning model (called the base model), such as a neural network. Specifically, we assume access
to a (positively oriented; i.e., larger is better) score function s : X × Y → R+ given by the base
model, such that for each test covariate xtest ∈ X and candidate label y ∈ Y , s(xtest, y) measures
how likely the model believes that y is the true label ytest. Then, all there is left for CP is to pick a
threshold τD ∈ R that depends on the dataset D, and predict the label set (if the score function is
negatively oriented, then ≥ is replaced by ≤)

C(xtest) := {y ∈ Y : s(xtest, y) ≥ τD} . (2)

Under the i.i.d. assumption, the coverage objective Eq.(1) is satisfied by picking τD as the α(1−n−1)-
quantile of the empirical scores {s(x∗

i , y
∗
i )}i∈[n]. Since the training data of the base model is split

from the calibration dataset used to determine τD, this approach is commonly known as split
conformal prediction, which we refer to as SplitCP. Notably, τD is determined by the calibration
dataset D; once the latter is fixed, there is no need to access the ground truth labels at test time.

Examples in classification This paper focuses on classification. In this case, a simple and popular
choice of the score function is s(x, y) = πθ(x)y (Sadinle et al., 2019), where πθ is a trained neural
network parameterized by θ, and πθ(x)y ∈ [0, 1] is the softmax score corresponding to one of the
k-classes y ∈ [k]. Such a score function is positively oriented, which we adopt in this work. We note
that another well-known choice due to Romano et al. (2020) is negatively oriented, and our methods
can be applied there as well.

Distribution shift For the rest of this paper, we study the following deviation of the above standard
CP problem. At test time, instead of working with a single test sample (xtest, ytest) drawn fromD, we
consider a size-N collection of samples3 {xi, yi}i∈[N ] drawn from some new unknown distribution
Dtest. We only observe the covariates, defined as the test dataset Dtest = {xi}i∈[N ]. Importantly,
the ground truth labels on Dtest are not revealed even after predictions are made. The goal, from a
practical perspective, is to output a small prediction set C(xi) at each test covariate xi, satisfying the
specified empirical coverage rate,

1

N

N∑
i=1

1[yi ∈ C(xi)] ≥ 1− α.

3The clearest notation is to index the test samples by (xtest,i, ytest,i). Here we omit the subscript “test” for
conciseness.
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Notice that the function C can now depend on both the labeled calibration dataset D and the unlabeled
test dataset Dtest.

In general, it is impossible to prove meaningful bounds without assuming some form of similarity
between D and Dtest, but we will show that with more help from the base model, the CP procedure
can be modified to work well in practice.

4 OUR METHODS

In this section, we first propose a method called ECP (Entropy scaled Conformal Prediction), which
improves the coverage rate of CP by enlarging its prediction sets using the uncertainty evaluation
of the base model itself. Crucially, this notion of uncertainty can be directly minimized and refined
through unsupervised TTA, leading to an improved method called EACP (Entropy base-Adapted
Conformal Prediction). The latter is able to both

• recover the desired error rate on many challenging distribution-shifted datasets; and
• significantly reduce inflated set sizes under increased uncertainty.

4.1 SCALING CONFORMAL SCORES BY UNCERTAINTY

Let us start with a high-level motivation. Within the SplitCP framework, an important design
objective is local adaptivity: the size of the prediction set C(x) needs to vary appropriately with
the covariate x. To this end, standard practice is to adjust the score function s(x, y) based on some
notion of uncertainty (or difficulty) that the base model decides at each x (Papadopoulos et al., 2008;
Johansson et al., 2015; Lei et al., 2018; Izbicki et al., 2019; Romano et al., 2019; Seedat et al.,
2023; Rossellini et al., 2024). This has the effect of inflating the prediction set on the base model’s
uncertain regions, and has been shown to improve the more informative conditional coverage rate of
CP (Angelopoulos and Bates, 2023; Tibshirani, 2023).
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Figure 1: Entropy vs. the softmax score
of the true label, averaged on each
dataset. Different colors represent differ-
ent datasets, and darker shades represent
greater severity levels of ImageNet-C cor-
ruptions. See Section 5 for more details on
the datasets.

Key idea Inspired by these results, our key idea is to
apply an analogous uncertainty scaling on the score func-
tion, in order to improve the performance of CP under
distribution shifts. However, instead of using the uncer-
tainty of the base model at each covariate x, we draw a
crucial connection to unsupervised TTA, and evaluate
the base model’s uncertainty on the whole distribution-
shifted test dataset Dtest – this effectively aggregates its
“localized” uncertainty at the test covariates {xi}i∈[N ].
In other words, instead of aiming for “local adaptivity”
as in prior works, we use uncertainty scaling to achieve
the adaptivity w.r.t. the unknown distribution shift.

Prediction entropy More concretely, which uncer-
tainty measure should we use on the base model? As
discussed above, the ideal dataset-specific uncertainty
measure would follow from a “localized” uncertainty
measure at each covariate x, and in the context of clas-
sification, a particularly useful one is the entropy of the
base model’s probabilistic prediction,

h(x) = −
∑
y∈[k]

πθ(x)ylogπθ(x)y.

Previous works have established the relation between such an entropy notion and the magnitude of the
distribution shift, showing that larger shifts are strongly correlated with higher entropy (thus higher
uncertainty in the base model), e.g., (Wang et al., 2021; Kang et al., 2024). We provide a consistent
but unique observation in Figure 1, which plots the relation between the entropy (averaged over all
x values in the dataset) and the softmax score of the true label (also averaged over x), evaluated
on a ResNet-50 model4 and across a range of datasets. For the true label to be included in the CP

4We fix the base model to ResNet-50 in most of our experiments, unless otherwise specified.
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prediction set, which is eventually what we aim for, its softmax score should be greater than the CP
threshold τD. Figure 1 shows that an increase in entropy is associated with a decrease in the softmax
score of the true label, which crucially means that we need to scale up the score function in order to
still cover the true label.
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Figure 2: The targeted coverage rate 1 − α vs. the empirical coverage rate, induced by ECP with
different β values (represented by different colors). It shows that simply setting β = 1 − α in
ECP (i.e., the blue dots) consistently works well for all but the most severe distribution shifts (e.g.,
ImageNet-R and ImageNet-C Contrast Severity 5). Such an observation also holds across various α
values, suggesting the effectiveness of this hyperparameter choice.

Now consider going from the “localized” uncertainty measure h(x) to an uncertainty measure on the
test dataset Dtest, denoted as utest. One could use the average N−1

∑N
i=1 h(xi), but to increase the

robustness, we define utest as the β-quantile of {h(xi)}i∈[N ], where β is a hyperparameter. Quite
surprisingly, we find that simply setting β to the desired coverage rate 1 − α is a fairly reliable
choice in practice (see Figure 2), which gives a robust (over)-estimate of typical h(x) values on
the test dataset. We perform all the experiments with this direct relationship to avoid excessive
hyperparameter tuning, but it can be further refined if desired.

Method: ECP Now we are ready to use utest above to scale the score functions on the test dataset,
without label access. The resulting method is named as ECP (Entropy scaled Conformal Prediction).

Formally, define qβ(·) as the β-th quantile of its argument, and let the base model’s uncertainty
measure utest be the “entropy quantile”

utest = q1−α({h(xi)}i∈[N ]). (3)
On any test covariate xi, modified from Eq.(2), we scale the score function by max(1, utest) to form
the CP prediction set

C(xi) := {y ∈ [k] : s(xi, y) ·max(1, utest) ≥ τD}. (4)
Here, we take a maximum with 1 to ensure that the prediction sets of ECP cannot be smaller than
those of standard SplitCP. The pseudocode is presented as Algorithm 1 in the next subsection.

To recap, the intuition of ECP is that a larger distribution shift will result in larger entropy predicted
by the base model, which then leads to a correspondingly larger up-scaling of the score function. In
this way, more candidate labels have scores larger than the fixed CP threshold τD, and the prediction
set grows. Without any access to the test labels, this can help mitigate the under-coverage issue of
standard SplitCP under distribution shifts, and further details are provided in our experiments
(Section 5).
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4.2 OPTIMIZING UNCERTAINTY USING TTA

While ECP already improves the coverage rate of SplitCP on several datasets, it inevitably leads
to larger set sizes and, like typical post-hoc CP methods, still relies on a fixed base model. To
remedy this, we refine ECP using entropy minimization (Grandvalet and Bengio, 2004; Wang et al.,
2021), a classical idea in unsupervised TTA which updates the base model itself on the unlabeled
test dataset. Although such techniques in unsupervised TTA have been investigated in the context of
top-1 accuracy, we take a different perspective and study their ability to improve set-valued classifiers
like conformal predictors.

Key idea Concretely, we first rewrite the entropy h(x) as a loss function w.r.t. the base model’s
parameter θ,

L(x; θ) := h(x) = −
∑
y∈[k]

πθ(x)ylogπθ(x)y. (5)

Our main idea is to update the base model by minimizing this loss function (or a suitable variant) on
the test dataset Dtest, before applying ECP. This brings two intuitive benefits.

• The updated base model is better suited for the shifted distribution Dtest, which generally improves
the quality of the prediction sets built on top of it.

• The base model’s entropy determines the amount of prediction set inflation due to ECP. By directly
minimizing the entropy, the resulting prediction sets can be smaller.

Method: EACP A number of specific TTA methods have been developed to minimize the entropy,
while ensuring certain notions of stability. In this work, we leverage a recent method called ETA
(Efficient Test-time Adaptation; Niu et al. 2022), due to its simplicity and effectiveness even under
continual distribution shifts (Press et al., 2023). Combining this with ECP results in a new CP method,
which we call EACP (Entropy base-Adapted Conformal Prediction).

In practice, one could simply call ETA as a subroutine, so here we only present its high level idea for
completeness. First, the test dataset Dtest is divided into a collection of batches. On each batch (i.e.,
xi with a collection of indices i), ETA filters the base model’s outputs (i.e., softmax scores) s(xi, ·) by
excluding the outputs similar to those already seen. Then, it reweighs the remaining indices based the
associated entropy h(xi), with lower entropy (less uncertain) indices receiving higher weights. This
leads to a weighted batch variant of the loss function Eq.(5), which is then minimized by performing a
single gradient update. Subsequently, the updated base model is applied to ECP to form the prediction
sets of EACP, according to Eq.(4).

The combined pseudo-code of ECP and EACP is provided in Algorithm 1. Here we include an
uncertainty scaling function f as a small generalization, which acts on the entropy quantile before
generating the prediction sets. So far we have only considered the trivial scaling f(x) = x, but more
choices will be studied in the next subsection.

Algorithm 1 Combined pseudocode of ECP and EACP

Require: Test dataset Dtest = {xi}i∈[N ]; trained model with parameter θ and softmax score πθ(x)y;
targeted error rate α; score threshold τD for the error rate α, calculated on a calibration dataset D;
uncertainty scaling function f : R+ → R+.
if EACP then

θ ← ETA(θ,Dtest) ▷ Test-time adaptation sub-routine
end if
utest ← q1−α({h(xi)}i∈[N ]) ▷ Update entropy quantile, Eq.(3)
utest ← f(utest) ▷ Modify the entropy adjustment factor
for xi ∈ Dtest do

return C(xi) := {y ∈ [k] : s(xi, y) ·max(1, utest) ≥ τD} ▷ Predict the label set, Eq.(4)
end for

In Section 5, we demonstrate that EACP can further improve the empirical performance of ECP, by
increasing the coverage rate while maintaining informative set sizes.

6
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4.3 UNCERTAINTY SCALING FUNCTION

In Eq.(4), we essentially scale the score functions linearly by the entropy quantile utest of the base
model. However, this can be adjusted more generally by any (potentially non-linear) function f(·).
The best choice of f(·) depends on the unknown relation between utest and the (1− α)-quantile of
the ground truth labels’ conformal scores, denoted as5

τtest := q1−α [s(xi, yi);xi ∈ Dtest] .

Specifically, such an optimal f(·) should satisfy f(utest) = τD/τtest.
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Figure 3: utest versus τD/τtest on a log-log scale. On mild and moderate distribution shifts, the
linear fit on the log-log plot has slope between 1 and 2. This suggests the effectiveness of using a
linear or quadratic function as f(·), which acts on the entropy quantile. However, we also observe
that a higher-order polynomial is required on more difficult shifts, such as ImageNet-R.

While finding this optimal f(·) is obviously infeasible without observing the ground truth labels at
test time, in Figure 3 we empirically evaluate the ideal choice in a post-hoc manner, across different
datasets, in order to demonstrate the insights. Recall that both utest and τtest depend on the desired
error rate α. Therefore, for each dataset, we vary α and plot the resulting utest versus τD/τtest on
a log-log scale. If we mildly restrict f(·) to the family of polynomials, then its optimal order can
be approximated by the slope of a linear fit on the log-log plot. We only use not-extremely-small α
values (i.e., the lower left corner on the plot) for the linear fit, since it is closer to the typical practice
and less prone to noise.

Figure 3 shows that the optimal polynomial order generally increases with the severity of the
distribution shift, which is consistent with the fact that a larger polynomial order would lead to larger
prediction sets using our methods. While end-users can refine f(·) based on a preference towards
ensuring coverage or small set sizes, we will empirically validate that our methods with either linear
scaling (denoted by ECP1 / EACP1) or quadratic scaling (denoted by ECP2 / EACP2) perform well in
a wide range of settings.

5 EXPERIMENTS

We conduct experiments across a number of large-scale datasets and neural network architectures.
Our setup builds on the standard SplitCP procedure introduced in Section 3, which relies on a
held-out, in-distribution, “development set” for calibrating the CP threshold. On ImageNet variants,
we split the original ImageNet development set (i.e., not used for model training) into a CP calibration
set consisting of 25,000 samples, and an in-distribution test set (sometimes called the validation set
in the CP literature). The readers are referred to Appendix B for more details.

The conformal threshold is found on the calibration set, and used in subsequent distribution-shifted
settings. Importantly, after the conformal threshold is estimated in-distribution, all subsequent steps
are unsupervised. We show results on both stationary and continuously shifting test distributions.

5Recall that the data we face at test time is denoted as {xi, yi}i∈[N ], with the observed part (covariates)
denoted as Dtest = {xi}i∈[N ].
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Baselines We compare our proposed methods to the following baselines:

• NAIVE: generating prediction sets by including classes until their cumulative softmax score is
greater or equal to 1 − α (the target coverage level). This is generated by the base model itself,
without the CP post-processing.

• Standard SplitCP: applying the CP threshold directly on the distribution-shifted data.
• SplitCP with ETA: applying the CP threshold while updating the base model using ETA.

Furthermore, in settings with stationary distribution shifts, we compare to Robust Conformal (RC;
Cauchois et al. 2024), an existing CP algorithm that handles distribution shifts via robust optimization.
In settings with continual distribution shifts, we compare to a number of OCO-based algorithms
(Bhatnagar et al., 2023a; Gibbs and Candès, 2024; Zhang et al., 2024) that require additional access
to the ground truth labels.

In all experiments, the target coverage rate is set to 0.90. We also analyze our methods with both
linear and quadratic scaling, as described in Section 4.3.

Datasets We investigate a number of ImageNet (Deng et al., 2009) variants including: ImageNet-
V2 (Recht et al., 2019), ImageNet-R (Hendrycks et al., 2021a), and ImageNet-A (Hendrycks et al.,
2021b). We also test our approach on datasets from the WILDS Benchmark (Koh et al., 2021) which
represent in-the-wild distribution shifts across many real world applications, including iWildCam
(animal trap images), RXRX1 (cellular images), and FMOW (satellite images).

While the previous datasets present a single distribution shift, the ImageNet-C (Hendrycks and
Dietterich, 2019) dataset allows us to investigate shifts across many types and severities. Specifically,
ImageNet-C applies 19 visual corruptions to the ImageNet validation set across four corruption
categories — noise, blur, weather, and digital, with five severity levels for each corruption. See
Appendix B.1 for more details on the datasets.

5.1 STATIONARY SHIFTS

Table 1: ECP and EACP can achieve very competitive empirical coverage rates on a number of
distribution-shifted datasets, across a variety of imaging domains (ecological, cellular, satellite, etc).
All results are from ResNet-50 models except FMOW, which uses a DenseNet-121 (Huang et al.,
2016). Quadratic uncertainty scaling provides better coverage rates, however, linear scaling results in
smaller set sizes.

Method ImageNet-V2 ImageNet-R ImageNet-A iWildCam RXRX1 FMOW

Coverage

SplitCP 0.81 0.50 0.03 0.84 0.84 0.87

NAIVE 0.88 0.69 0.14 0.76 0.48 0.83
RC 0.886 0.63 0.14 0.99 0.91 0.93
ETA 0.81 0.62 0.05 0.84 0.87 0.87

ECP1 0.86 0.61 0.10 0.84 0.87 0.93
ECP2 0.91 0.72 0.27 0.88 0.90 0.96
EACP1 0.86 0.71 0.14 0.84 0.90 0.93
EACP2 0.91 0.80 0.30 0.89 0.93 0.94

Set Size

SplitCP 2.5 3.4 3.4 3.9 81.8 6.2

NAIVE 11.7 20.9 12.7 2.5 6.4 5.8
RC 5.5 10.7 9.6 125 166 10.2
ETA 2.5 3.0 3.6 3.8 100 6.5

ECP1 4.2 9.1 7.4 3.8 105 10.3
ECP2 7.6 23.3 15.1 5.5 137 15.3
EACP1 4.5 6.8 8.7 3.7 133 11.1
EACP2 8.7 16.1 10.1 5.6 177 16.4

6Note this result slightly differs from that reported in (Cauchois et al., 2024), as they evaluate on an alternate
variant of ImageNet-V2.
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Table 1 summarizes our results on various natural distribution-shifted datasets. We observe that
SplitCP (with or without TTA) can exhibit significant gaps with respect to the target coverage rate,
whereas ECP closes the gap quite effectively while maintaining meaningful set sizes. Coverage is
further improved via EACP, which also helps reducing set sizes on some datasets. In general, we also
observe an improvement over RC and NAIVE: the linear scaling variant of our methods has similar
coverage rates as these baselines, while the set sizes are typically smaller.

Here we can see the trade-off between linear and quadratic uncertainty scaling. EACP2 consistently
achieves higher coverage rates, however this also leads to “over-coverage” on some datasets and thus
larger sets. In contrast, EACP1 leads to lower coverage but also smaller set sizes. This trade-off can
be selected by end-users depending on their preference for more accurate or more efficient prediction
sets. In subsequent experiments, we will focus on demonstrating the benefit of EACP2 on coverage,
while noting that the observed set sizes are nonetheless practically useful and far from trivial.

Table 2: Coverage on four different corruption types representing each ImageNet-C category. Com-
pared to the baselines, ECP2 closes the coverage gap on most severity levels, while EACP2 further
improves this by achieving the target coverage rate 0.90 on nearly all corruption types and severities.

Method Contrast Brightness Gaussian Noise Motion Blur
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

NAIVE 0.91 0.89 0.87 0.83 0.76 0.92 0.92 0.91 0.91 0.90 0.88 0.85 0.79 0.69 0.79 0.91 0.90 0.85 0.77 0.71

SplitCP (Sadinle et al., 2019) 0.83 0.78 0.66 0.36 0.09 0.88 0.87 0.86 0.83 0.78 0.79 0.69 0.50 0.26 0.07 0.83 0.74 0.57 0.37 0.27

ETA (Niu et al., 2022) 0.87 0.86 0.84 0.79 0.63 0.88 0.88 0.87 0.86 0.84 0.86 0.82 0.76 0.69 0.54 0.86 0.84 0.80 0.73 0.68

ECP2 (ours) 0.93 0.92 0.89 0.79 0.60 0.94 0.94 0.94 0.93 0.92 0.92 0.88 0.80 0.86 0.38 0.94 0.92 0.86 0.75 0.68

EACP2 (ours) 0.93 0.93 0.93 0.92 0.87 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.90 0.84 0.93 0.92 0.92 0.91 0.89

In Table 2, we show fine-grained results on one corruption type for each ImageNet-C category, and
across each severity level. Here, we can see the benefit of leveraging an uncertainty notion that can
be directly minimized and refined on new test samples. Specifically, EACP2 is able to recover the
target coverage rate on almost all corruption types and severities.
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Figure 4: Our EACP2 method is able to improve coverage using various neural network models
and architectures, under a diverse range of distribution shifts. It consistently “hugs” the desired
coverage rate, while maintaining practical set sizes. Results are averaged across five severity levels
for each corruption type in the ImageNet-C dataset. We zoom in on the right to clearly see the benefit
of adapting at test time on coverage and set sizes. Larger markers reflect a larger neural network
parameter count.

Next, Figure 4 contains the results using neural networks of various architectures and parameter
counts, on all 19 corruption types of ImageNet-C (average across five severity levels). Besides
showing the superior performance of our methods, we observe that the SplitCP baseline (with
and without TTA) generates prediction sets with little variance in the set sizes, regardless of the
achieved coverage rates. We argue that this is an undesirable behavior, as the set sizes themselves are
often used to encode uncertainty evaluations by set-valued classifiers. Our results demonstrate that
explicitly incorporating the base model’s own uncertainty into CP can help mitigating this issue.
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5.2 CONTINUOUS SHIFTS

Finally, we investigate continuous distribution shifts, and the results are shown in Table 3. This has
been previously studied under online conformal prediction, and we build on the experimental setup of
(Bhatnagar et al., 2023b; Zhang et al., 2024). Specifically, the environment shifts between ImageNet-
C severity level 1 to level 5 (either suddenly or gradually), while sampling random corruptions at
each corresponding severity. We emphasize that this is a particularly challenging task, as it presents a
continuous shift in both the magnitude as well as type of corruption. See Appendix B.2 for more
details on this experiment. Here, we compare with existing supervised methods that rely on the
correct label being revealed after every prediction.

Table 3: We evaluate performance on the challenging setting of continuously shifting distributions.
The “label free” column denotes whether a method relies on labels at test-time from the target data.
We recall that SplitCP does not adapt to new data. In addition to the average coverage (↑) and
average size (↓), we also measure the worst local corruption error LCE128 (↓) and worst local set
size LSS128, (↓) on a sliding window of 128 test points.

Gradual shift Sudden shift

Label Free Method Avg. Cov Avg. Size LCE128 LSS128 Avg. Cov Avg. Size LCE128 LSS128

- SplitCP (Sadinle et al., 2019) 0.59 3.1 0.70 3.6 0.59 2.8 0.71 3.5

✗ SAOCP (Bhatnagar et al., 2023a) 0.79 145 0.24 353 0.78 139 0.28 349
✗ DtACI (Gibbs and Candès, 2024) 0.90 101 0.07 455 0.90 142 0.09 450
✗ MAGL-D (Zhang et al., 2024) 0.90 403 0.05 856 0.90 355 0.05 844
✗ MAGL (Zhang et al., 2024) 0.90 117 0.06 573 0.90 168 0.3 704
✗ MAGDIS (Zhang et al., 2024) 0.90 417 0.06 841 0.90 372 0.07 852

✓ ETA (Niu et al., 2022) 0.69 2.9 0.52 3.4 0.67 2.7 0.54 3.5
✓ ECP2 (ours) 0.84 36.6 0.35 90.4 0.82 37.5 0.38 88.5
✓ EACP2 (ours) 0.88 22.4 0.20 47.8 0.86 23.1 0.28 55.7

Overall, our methods demonstrate competitive performance with respect to supervised baselines:
the average set sizes are significantly smaller despite a slight drop in the average coverage rate. In
addition, we also measure the local coverage error LCE128 across the worst sliding window of 128
samples, and similarly the worst local set size, LSS128. While the supervised methods unsurprisingly
result in better local coverage, they also lead to local set sizes that are much larger.

6 CONCLUSION

This paper studies how to improve set-valued classification methods on distribution-shifted data,
without relying on labels from the target dataset. This is an important challenge in many real
world settings, where exchangeability assumptions are violated and labels may be difficult to attain.
We propose an uncertainty-aware method based on the prediction entropy (ECP), and leverage
unsupervised test time adaptation to update the base model and refine its uncertainty (EACP). We
demonstrate that the proposed methods are able to recover the desired error rate on a wide range of
distribution shifts, while maintaining efficient set sizes. Furthermore, they are even competitive with
supervised approaches on challenging and continuously shifting distributions. We hope this inspires
future works continuing to tackle this important challenge.
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APPENDIX

In Appendix A, we provide an extensive overview of additional related works. Further, Appendix
B contains detailed information on our studied datasets and experimental protocols, including TTA
hyper-parameters, CP procedure, and the setup for continual distribution shifts. Appendix C discusses
other possible uncertainty measures and their deficiencies. Appendix D contains additional experiment
results.

A ADDITIONAL RELATED WORKS

CP in decision making Our interest in the considered setting – distribution shifts without test time
labels – is mainly motivated by the growing applications of CP in autonomous decision making. A
very much incomplete list: see (Lekeufack et al., 2023) for a generic treatment; (Lindemann et al.,
2023) for trajectory optimization in robotics; (Yang and Pavone, 2023; Gao et al., 2024) for 3D vision;
(Kumar et al., 2023; Cherian et al., 2024; Gui et al., 2024; Mohri and Hashimoto, 2024; Quach et al.,
2024) for large language models (LLMs); and (Ren et al., 2023) for LLM-powered robotics.

CP under distribution shifts As discussed in the main paper, considerable efforts have been
devoted to developing CP methods robust to distribution shifts. We now survey two possible
directions and their respective limitations.

• The first direction does not require test time labels, but the distribution shift is assumed to be simple
in some sense. For example, Tibshirani et al. (2019) studied CP under covariate shifts, where the
distribution of the label y conditioned on the covariate x remains unchanged. Here, it suffices to
use the classical likelihood ratio reweighting on the calibration dataset, but accurately estimating
the likelihood ratio can be challenging in practice. Another idea is to take a robust optimization
perspective by assuming a certain maximum level of distribution shift and protecting against the
worst case, e.g., (Roth, 2022, Chapter 8) and (Cauchois et al., 2024). The weakness here is the
sensitivity to the hyperparameter, and the obtained prediction sets could be overly conservative.
Various works built on these two ideas. Barber et al. (2023) generalized the reweighting idea
to handle mild but general distribution shifts, but choosing the weights is generally unclear in
practice. Ai and Ren (2024) tackled general distribution shifts by combining reweighting and
robust optimization, which also combines the strengths and limitations from the two sides. Ge et al.
(2024) extended the two ideas to the aggregation of multiple CP algorithms.

• The second direction is connecting CP to adversarial online learning. A line of works (Gibbs
and Candes, 2021; Angelopoulos et al., 2023; Gibbs and Candès, 2023; Bhatnagar et al., 2023b;
Zhang et al., 2024) applied regret minimization algorithms in OCO to select the score threshold
in CP, and Bastani et al. (2022) achieved this task using multicalibration. By relaxing the CP
objective from the coverage probability to the post-hoc coverage frequency, these methods can
handle arbitrary continual distribution shifts. However, they require the true label to be provided
after every prediction, which is a limiting requirement for many use cases in autonomous decision
making. Our experiments will show that it is possible to achieve comparable performance in these
settings without this limitation, i.e., being “label free”.

B EXPERIMENTAL DETAILS

B.1 DATASET DETAILS

We perform experiments on a number of large-scale datasets that are frequently used to evaluate deep
learning performance under distribution shift (Koh et al., 2021; Wang et al., 2021; Minderer et al.,
2021; Niu et al., 2022; Zhang et al., 2022; Bhatnagar et al., 2023a; Zhang et al., 2024):

• ImageNet-V2 (Recht et al., 2019) is an ImageNet test-set that contains 10,000 images that were
collected by closely following the original ImageNet data collection process.

• ImageNet-R (Hendrycks et al., 2021a) includes renditions (e.g., paintings, sculptures, drawings,
etc.) of 200 ImageNet classes, resulting in a test set of 30,000 images.

• ImageNet-A (Hendrycks et al., 2021b) consists of 7,500 real-world, unmodified, and naturally
occurring adversarial images which a ResNet-50 model failed to correctly classify.
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• ImageNet-C (Hendrycks and Dietterich, 2019) applies 19 visual corruptions across four categories
and at five severity levels to the original ImageNet validation set.

• iWildCam (Koh et al., 2021; Beery et al., 2020) contains camera-trap images from different areas
of the world, representing geographic distribution-shift. It includes a validation set of 7,314 images
from the same camera traps the model was trained on, which is used as our calibration data, as well
as 42,791 images from different camera traps that is used as our test set. The images contain one of
the 182 possible animal species.

• RXRX1 (Koh et al., 2021; Taylor et al., 2019) consists of high resolution fluorescent microscopy
images of human cells which have been given one of 1,139 genetic treatments, with the goal of
generalizing across experimental batches. It is split into a 40,612 in-distribution validation set and
34,432 test set.

• FMOW (Koh et al., 2021; Christie et al., 2018) is a satellite imaging dataset with the goal of
classifying images into one of 62 different land use or building types. It consists of 11,483 validation
images from the years from 2002–2013, and 22,108 test images from the years from 2016–2018.

B.2 EXPERIMENTAL PROTOCOLS

Conformal prediction Our split conformal prediction set-up follows previous works (Angelopoulos
et al., 2021; Angelopoulos and Bates, 2023), which divides a held-out dataset into a calibration and
test set. On ImageNet variants, we split the original validation set in half to produce 25,000 calibration
points and 25,000 in-distribution test points. The calibrated scores and / or threshold are then used for
subsequent distribution-shifted data. On the WILDS datasets, we similarly split the in-distribution
validation sets.

Adaptation procedure Our ImageNet-based experiments are conducted on pre-trained ResNets
provided by the torchvision library7, and ViTs provided by the timm library 8. Experiments on
WILDS datasets are conducted using pre-trained models provided by the authors of that study 9. For
EACP and ETA, we closely follow the optimization hyperparameters from the original paper (Niu
et al., 2022): we use SGD optimizer with a momentum of 0.9 and learning rate of 0.00025. We use a
batch size of 64 for all ImageNet experiments, 128 for RXRX1 and FMOW, and 42 for iWildCam.
Our experiments are conducted using a single NVIDIA A40 GPU.

Continuous shift We adopt a slightly modified version of the experimental design for continuous
distribution shift presented in previous works (Bhatnagar et al., 2023a; Zhang et al., 2024). This
involves sampling random corruptions from the ImageNet-C dataset under two regimes: gradual
shifts where the severity level first increases in order from {1, ..., 5} then decreases from {5, ..., 1},
and sudden shifts where the severity level alternates between 1 and 5. In addition to sampling random
corruptions, we also consider in Figure 6 results on the “easier” setting of shifting severities on a
single corruption type.

C WHAT IS THE RIGHT MEASURE OF UNCERTAINTY?

Although in Section 4.1 we propose adjusting the conformal scores by the prediction entropy of
the base model, it is worth asking if there exist other notions of uncertainty that may instead be
used. Here, we consider two additional uncertainty measures and their relation with the softmax
value of the true label (which is ultimately what we would like to include in our prediction set), and
show they are ill-suited for our task. Firstly, in Figure 5a we consider the variance of the softmax
scores. Perhaps surprisingly, we see that distribution shift most often leads to a smaller variance, thus
conveying that the base model is less uncertain. This suggests that softmax variance is a deficient
uncertainty measure as it fails to capture the actual underlying uncertainty on distribution-shifted
data.

We also consider 1− maximum softmax score as another possible uncertainty measure, and see in
Figure 5b that distribution shift is associated with smaller maximum softmax values. Unlike softmax

7https://github.com/pytorch/vision
8https://github.com/huggingface/pytorch-image-models
9https://github.com/p-lambda/wilds

16

https://github.com/pytorch/vision
https://github.com/huggingface/pytorch-image-models
https://github.com/p-lambda/wilds


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.0000 0.0005 0.0010 0.0015 0.0020
Softmax Variance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

So
ftm

ax
 V

al
ue

 o
f T

ru
e 

La
be

l
ImageNet
ImageNet-V2
ImageNet-R
ImageNet-A
Contrast
Brightness
Motion Blur
Gaussian Noise

(a) Softmax variance

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 - Max Softmax

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

So
ftm

ax
 V

al
ue

 o
f T

ru
e 

La
be

l ImageNet
ImageNet-V2
ImageNet-R
ImageNet-A
Contrast
Brightness
Motion Blur
Gaussian Noise

(b) 1 - Max softmax

Figure 5: Similarly to Figure 1, we present the relation between different uncertainty measures and
the average score of the true label. We see that softmax variance (left) has an inverse relation with
distribution shift, and 1− maximum softmax is a bounded metric that may provide an insufficient
adjustment.

Table 4: Our proposed EACP performs well with other TTA methods, as seen here using Tent Wang
et al. (2021) as the TTA update.

Dataset SplitCP Tent ECP2 EACP2

(coverage / set size) (coverage / set size) (coverage / set size) (coverage / set size)

ImageNet-V2 0.81 / 2.5 0.81 / 2.6 0.91 / 8.0 0.92 / 9.6
ImageNet-R 0.50 / 3.2 0.58 / 3.3 0.73 / 23 0.77 / 17
ImageNet-A 0.07 / 1.5 0.21 / 3.1 0.58 / 204 0.40 / 24

iWildCam 0.83 / 3.5 0.81 / 2.6 0.89 / 5.7 0.85 / 3.4
RXRX1 0.85 / 83 0.87 / 101 0.90 / 136.7 0.92 / 176
FMOW 0.87 / 6.3 0.85 / 5.7 0.96 / 15.6 0.94 / 13.4

variance, this does appear to better capture the uncertainty, as we would expect the base model to be
less confident on distribution-shifted data. However, this uncertainty measure can still only take a
maximum value of one and thus may not provide necessary adjustment magnitude, and it is unknown
if it can reliably update the base model label-free.

While there may exist better uncertainty measures that future works can explore, these results suggest
that the prediction entropy is a simple and reliable measure for conformal adjustments that can
effectively capture the underlying uncertainty.

D ADDITIONAL EXPERIMENTS

D.1 OTHER TTA METHODS

We investigate our methods performance with another base TTA method in Table 4. Here, we use
the Tent update (Wang et al., 2021), which is a simpler version of ETA with no re-weighing of the
entropy loss. While our proposed methods are also compatible with Tent, we notice that the more
powerful ETA leads to better coverage and set sizes as seen in Table 1. We can expect that additional
improvements in TTA will similarly lead to improvements in our EACP method.

D.2 MORE ARCHITECTURE COMPARISONS

In Table 5, we further demonstrate our methods improvements to coverage loss on natural distribution
shifts using diverse neural network architectures. As expected, larger and more accurate neural
networks result in better coverage and smaller set sizes using ECP and EACP Ṫhis is encouraging as
it demonstrates our methods can scale along with the underlying model.
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Table 5: On natural distribution shifts, the performance of our methods scale well with the perfor-
mance of the base classifier. This is encouraging as it suggests compatibility

Dataset Model SplitCP ETA ECP2 EACP2

(coverage / set size) (coverage / set size) (coverage / set size) (coverage / set size)

ImageNet-V2

Resnet50 0.81 / 2.5 0.81 / 2.5 0.91 / 7.6 0.91 / 8.7
Resnet152 0.81 / 2.0 0.81 / 2.1 0.89 / 4.6 0.91 / 6.3
Vit-S 0.80 / 1.5 0.80 / 1.5 0.90 / 3.4 0.90 / 3.4
ViT-B 0.80 / 1.2 0.80 / 1.2 0.90 / 2.4 0.90 / 2.4

ImageNet-R

Resnet50 0.50 / 3.4 0.62 / 3.0 0.72 / 23.3 0.80 / 16.1
Resnet152 0.53 / 2.7 0.60 / 2.6 0.71 / 15.3 0.79 / 17.3
Vit-S 0.52 / 1.3 0.53 / 1.3 0.74 / 12.3 0.75 / 11.8
ViT-B 0.58 / 0.9 0.59 / 0.9 0.78 / 8.3 0.79 / 8.0

ImageNet-A

Resnet50 0.03 / 3.4 0.05 / 3.6 0.27 / 15.1 0.30 / 19.1
Resnet152 0.18 / 3.0 0.17 / 3.3 0.43 / 11.8 0.50 / 19.6
Vit-S 0.37 / 1.7 0.37 / 1.7 0.65 / 8.4 0.66 / 8.3
ViT-B 0.47 / 1.2 0.47 / 1.2 0.76 / 6.5 0.76 / 6.4

D.3 CONTINUOUS SHIFTS

In Figure 6, we visualize the coverage and set-sizes of our unsupervised methods and a number of
supervised baselines on the previously described continuous distribution shifts. We show results
on random corruption types as well as fixed corruption types. Our proposed methods perform well
across all these settings; they closely maintain coverage even on sudden and severe shifts, while
leading to substantially smaller set sizes than the baselines.

D.4 IMAGENET-C ALL SEVERITY LEVELS

In Figure 7, we present full results across all ImageNet-C severity levels. We see that our method is
effective in recovering coverage even under many highly severe distribution shifts, and nearly always
recovers the desired coverage on less severe shifts.

D.5 ORACLE RESULTS

Here we compare our methods with an oracle that has observed labels from the distribution-shifted
dataset. Specifically, the oracle is the THR conformal prediction method (Sadinle et al., 2019) that
has been calibrated on half of the distribution-shifted dataset, following regular split conformal. Since
the oracle is guaranteed to provide the desired coverage level in the set-up, our comparison focuses
on the prediction set sizes; we refer to the main paper for coverage comparisons. We observe in Table
6 that in every case except FMOW, a variant of ECP and EACP achieves smaller set sizes than the
oracle. In Table 7, EACP consistently achieves substantially smaller set sizes on ImageNet-C while
also recovering error targets (see Table 2). We reiterate here that smaller sets are preferred if error
rates are maintained.

Table 6: ECP and EACP achieve prediction set sizes that are often equal or smaller than the oracle
method. Coverage rate is 0.90.

Method ImageNet-V2 ImageNet-R ImageNet-A iWildCam RXRX1 FMOW

Set Size

ORACLE 6.8 79.0 95.3 6.6 140 7.87

ECP1 4.2 9.1 7.4 3.8 105 10.3
ECP2 7.6 23.3 15.1 5.5 137 15.3

EACP1 4.5 6.8 8.7 3.7 133 11.1
EACP2 8.7 16.1 10.1 5.6 177 16.4

D.6 IN-DISTRIBUTION RESULTS

In Table 8, we observe that our methods maintain coverage and reasonable set sizes on in-distribution
data.
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(a) Shifting (random) corruptions
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(b) Contrast corruption
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(c) Brightness corruption

D.7 COMPARISON WITH WEIGHTED CP

Tibshirani et al. (2019) present a method for improving coverage under covariate shift by re-weighing
calibration scores based on an estimated likelihood ratio (wcp). Although estimating likelihood ratios
in our setting is challenging, we nonetheless present a comparison here for completeness. We follow
their approach and train a probabilistic classifier, here a CNN, on each calibration-test pair.

Table 9 suggests that this method may have limited performance in our studied setting. This may be
due to the challenge in estimating accurate likelihood ratios in high-dimensional settings, (Cauchois
et al., 2024). We do not claim that wcp definitely cannot perform well, however the sparsity of
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(d) Gaussian noise corruption

0 100 200 300 400 500 600 700 800
0.2

0.4

0.6

0.8

1.0

Lo
ca

l C
ov

er
ag

e

0 100 200 300 400 500 600 700 800
0.2

0.4

0.6

0.8

1.0

Lo
ca

l C
ov

er
ag

e

0 100 200 300 400 500 600 700 800
0

200

400

600

Lo
ca

l S
et

 S
ize

0 100 200 300 400 500 600 700 800
0

200

400

600

Lo
ca

l S
et

 S
ize

0 100 200 300 400 500 600 700 800
Time

1

2

3

4

5

Co
rru

pt
io

n 
Le

ve
l

0 100 200 300 400 500 600 700 800
Time

1

2

3

4

5

Co
rru

pt
io

n 
Le

ve
l

SplitCP
ETA

ECP
EACP

MagnitudeLearner
MagLearnUndiscounted

MagnitudeLearnerV2
SAOCP

DtACI

(e) Motion blur corruption

Figure 6: Our unsupervised methods ECP and EACP are able to provide nearly the same empirical
coverage, and considerably smaller set sizes, that supervised methods on continuously shifting
distributions. Dashed lines denote methods that rely on a ground truth label being revealed at test
time.

Table 7: Comparison of ECP and EACP on a subset of synthetic shifts. The numbers refer to severity
level.

Method Contrast Brightness Gaussian Noise Motion Blur
1 3 5 1 3 5 1 3 5 1 3 5

ORACLE 5.5 30.3 562 2.5 3.7 9.8 6.2 70.6 317 9.7 101 638

Set Size ECP2 10.5 27.8 180 5.3 7.7 14.9 10.0 43.1 109 12.9 43.7 79.0

EACP2 5.5 7.4 25 4.5 5.7 7.6 5.7 16.0 42.7 6.3 12.8 25.5

previous literature here suggests that further studies may be required. Finally, note that wcp is
ill-suited for the case of continuously shifting distributions, further limiting its general applicability.
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(d) Severity level 4
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Figure 7: Performance on 19 ImageNet-C corruptions on each severity level. EACP2 hugs the desired
coverage line on nearly all severity levels. Larger markers indicate larger parameter count.

Table 8: Results on in-distribution data using ImageNet-1k validation set.

SplitCP ECP1 ECP2 EACP1 EACP2

Coverage 0.90 0.92 0.94 0.91 0.93
Set size 2.1 2.8 4.2 2.8 4.1
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Table 9: The wcp method appears to provide minimal coverage improvements in this setting, possibly
due to the difficulty in estimating likelihood ratios.

Method ImageNet-V2 ImageNet-R ImageNet-A

Coverage

SplitCP 0.81 0.50 0.03

wcp 0.82 0.35 0.06

ECP2 0.91 0.72 0.27
EACP2 0.91 0.80 0.30

Set Size

SplitCP 2.5 3.4 3.4

wcp 2.6 0.74 4.3

ECP2 7.6 23.3 15.1
EACP2 8.7 16.1 10.1
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