
NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in the Real World

Correlated Trajectory Uncertainty for
Adaptive Sequential Decision Making

Ian Char1∗, Youngseog Chung1∗, Rohan Shah1, Willie Neiswanger2,3, and Jeff
Schneider1,4

1Machine Learning Department, Carnegie Mellon University
2Computer Science Department, Stanford University
3Department of Computer Science, University of Southern California
4Robotics Institute, Carnegie Mellon University

1. Introduction

One of the great challenges with decision making tasks on real world systems is the fact
that data is sparse and acquiring additional data is expensive. In these cases, it is often
crucial to make a model of the environment to assist in making decisions. At the same time,
limited data means that learned models are erroneous, making it just as important to equip
the model with good predictive uncertainties. In the context of learning sequential decision
making policies, these uncertainties can prove useful for informing which data to collect for
the greatest improvement in policy performance (Mehta et al., 2021, 2022) or helping the
policy identify and avoid regions of state and action space that are uncertain during test
time (Yu et al., 2020). Additionally, assuming that realistic samples of the environment can
be drawn, an adaptable policy can be trained that attempts to make optimal decisions for
any given possible instance of the environment (Ghosh et al., 2022; Chen et al., 2021).

In this work, we examine the so-called “probabilistic neural network” (PNN) model
that is ubiquitous for learning a transition function in model-based reinforcement learning
(MBRL) works. We argue that while PNN models may have good marginal uncertainties,
they form a distribution of non-smooth transition functions. Not only are these function
samples unrealistic and may hamper adaptability, but we also assert that this leads to
poor uncertainty estimates when predicting multiple step trajectories. To address this, we
propose a simple sampling method that can be implemented on top of pre-existing models.
We evaluate our sampling technique on a number of control environments, including a
realistic nuclear fusion task. Not only do smooth transition function samples produce
more calibrated uncertainties, but they also lead to better downstream performance for an
adaptive policy.

2. Method

Preliminaries. In this work, we focus on finding optimal policies for infinite-horizon
Markov Decision Processes (MDPs). We define the following MDP,M := (S,A, r, T, T0, γ).
S is the set of states; A is the set of actions that can be played at any state; r : S×A×S → R

∗. Equal contribution author.

1

is the reward function over current state, action, and next state; T : S × A → S is the
transition function; T0 ⊂ ∆(S) is the initial state distribution; and γ is the discount factor.
∆(S) and ∆(A) denotes the class of probability distributions over the state and action
space, respectively, and we assume that S ⊂ RD. Also, in this work we constrain the
transition function to be deterministic. Our goal is to learn a policy function, π : S →
∆(A) that maximizes the objective J(π) = E

[∑∞
t=1 γ

t−1r(st, at, st+1)
]
, where at ∼ π(st),

st+1 = T (st, at), and the expectation is over randomness in initial state and policy actions.
We focus on deep reinforcement learning algorithms in which π is a neural network.

One difficulty that arises with deep reinforcement learning methods is the large number
of samples needed to learn a good policy. Model-based reinforcement learning (MBRL)
methods alleviates this by also learning a model of the environment, T̂ . One can then
reduce the number of samples needed from the true MDP by supplementing the data with
fictitious samples generated using T̂ and π. For notational convenience, let X := S × A
be the space of concatenated state-action pairs. A trajectory in the MDP of length H can
then be written as (x1, x2, . . . , xH), where xt := (st, at) ∈ X , st = T (xt−1), at ∼ π(st), and
s1 ∼ T0. Instead of learning the transition to the next state xt → st+1, in practice one
usually learns the state delta: xt → st+1− st, such that the learned model fθ : X → ∆(RD)
can predict the next state as T̂ (xt) = st + fθ(xt), where θ is the parameters of the model.
One can then use the learned model to “rollout” a fictitious trajectory (x̂1, x̂2, . . . , x̂H),
where x̂t = (ŝt, ât), ŝt ∼ T̂ (x̂t−1), ât ∼ π(ŝt), and ŝ1 ∼ T0. As a last piece of notational
convenience, we use superscripts to denote particular dimensions of vectors. For example,

s
(d)
t is the dth dimension of st and f

(d)
θ (x) is the dth dimension of the model’s output.

2.1 The “Probabilistic Neural Network”

One of the first works to emphasize the importance of uncertainty in MBRL was Chua
et al. (2018). To model the transition function, this work proposes using an ensemble of
so-called “probabilistic neural networks” (PNN), which are models that output predictive
distributions instead of point predictions. In particular, they propose learning a PNN that
outputs a mean vector and diagonal covariance matrix which parameterize a multivariate
Gaussian distribution. In the context of our work, when fθ is such a PNN, we write
fθ(x) = (µθ(x), σθ(x)), where µθ : X → RD and σθ : X → RD are the mean and standard
deviation functions respectively. We will always assume this form of predictive distribution
when referring to a PNN. Since this work, PNN’s have been used in many MBRL works,
including works from both the online (Janner et al., 2019) and offline (Yu et al., 2020; Chen
et al., 2021; Yu et al., 2021) settings.

In their paper, Chua et al. (2018) motivate the ensemble of PNNs by claiming that the
predicted variance of a PNN, σθ, captures aleatoric uncertainty (i.e. the randomness inher-
ent in the true dynamics of the MDP) and ensembling accounts for epistemic uncertainty
(i.e. estimation uncertainty stemming from a finite number of datapoints from the system).
However, we claim that in reality this breakdown is not so clear. For one thing, the main
experiments presented in Chua et al. (2018) as well as subsequent works that leverage this
architecture (Janner et al., 2019; Yu et al., 2020; Chen et al., 2021) test their methods in
environments with no aleatoric uncertainty. Despite this absence of aleatoric uncertainty,
σθ seems to play an important role and is even used for penalization in Yu et al. (2020)

2

and Chen et al. (2021) to indicate that the policy is leaving the support of the data. It
seems that PNNs can play an important role in helping capture epistemic uncertainty, and
we demonstrate this empirically in Appendix B with a toy example.

That being said, a PNN can only capture marginal uncertainty (i.e. the uncertainty
for any single input x ∈ X), it has no notion of joint uncertainty over the input space X .

4 2 0 2 4

4

3

2

1

0

1

SPNN Sample
PNN Sample
Predicted Mean
Predicted 95% CI

Figure 1: A visual example of func-
tion samples. The vanilla PNN sam-
ple can be seen in orange and a sample
from our proposed SPNN method can
be seen in blue. Crucially both samples
stem from the same mean and standard
deviation predictions.

As a result, it is unable to draw smooth samples of
the transition function (see Figure 1). Why does
this matter? Consider predicting a full trajectory
and assume that the true dynamics, T , and the
predicted mean function, µθ, are Lipschitz smooth.
Then, if consecutive inputs xt−1 and xt are close
(i.e. ∥xt−1 − xt∥ is small), we expect the residuals
T (xt−1)−µθ(xt−1) and T (xt)−µθ(xt) to also be close.
In other words, we often expect there to be tempo-
ral correlations in the residuals that stem from the
smoothness in the dynamics and policy (we empiri-
cally show these correlations exist in Appendix H).
This may be problematic for two reasons: first, these
correlations in residuals can lead to miscalibrated
uncertainty predictions (see Appendix G) and over-
confident behavior in downstream policy learning.
Second, assuming that an adaptive policy is being
trained, these temporal correlations may be key in distinguishing and adapting to different
environments.

Learning Residual Correlation An ideal model should therefore model uncertainty
jointly over X space, and as a result, be able to sample smooth transition functions that
can be used to generate trajectory predictions. For the following, we fix an output dimension
d and a time step in the dynamics rollout t. To motivate our method, we first note that

the predictive distribution of a PNN can be rewritten as µ
(d)
θ (xt) + σ

(d)
θ (xt)Zt where all of

the stochasticity comes from Zt ∼ N (0, 1). In the vanilla PNN, Z1, . . . , Zt are i.i.d random
variables; however, one can instead learn a joint distribution over these random variables.
Intuitively, this joint distribution should be such that, when ∥xi−xj∥ is small, the correlation
between Zi and Zj is high. To achieve this, for each dimenions d, we leverage a kernel
function κd : X ×X → [0, 1]. This function indicates the similarity between two points, and
we assume that κd(x, x) = 1 in our work. Then, Z1, . . . , Zt are distributed as a multivariate
Gaussian distribution with mean 0 and covariance matrix Σ, where Σi,j = κd(xi, xj). The
parameters of the kernel function can then be tuned by optimizing the likelihood of the
data via a gradient-based optimizer. Because this technique results in smooth transition
function samples, we refer to it as the Smooth Probabilistic Neural Network (SPNN).

There are several important details to note about this method. First, because of our as-
sumption on the kernel function, the marginal distribution remains the same as the vanilla
PNN; only the smoothness of the function samples will change. Second, since every col-
lection of Z1, . . . , Zt is a multivariate Gaussian random variable, this implies that we are
modelling the function of standardized residuals (i.e. T (x)−µθ(x)

σθ(x)
) as a Gaussian Process

3

(GP) parameterized by a constant mean function of 0 and kernel function κd. Although
GPs are often used as a prior over functions, our method is purely frequentist as the GP
is fit to the residuals in the dataset by optimizing kernel parameters via maximum like-
lihood, and a posterior is never computed. That being said, we can take advantage of
GP computational efficiencies in our method. As discussed in Rahimi and Recht (2007)
and Wilson et al. (2020), function samples from a GP can be approximated as Fourier
series. Following this, for every trajectory, we can sample a function g : X → RD where

g(d)(x) =
√

2
B

∑B
b=1 cos(ϕ

T
b,dx+ τb,d). Here, B is the number of bases in the approximation,

τb,d ∼ U(0, 2π), and ϕb,d ∼ pκd
where pκd

is the spectral density corresponding to kernel κd.
One can then simply use g(d)(xt) in place of Zt. See Appendix C for more details.

3. Experiments

We empirically evaluate the impact of drawing smooth transition function samples. We
measure these effects in two ways: first, by assessing how smooth samples affect modeling
metrics such as likelihood and calibration under a test set, and secondly, by assessing how
smooth samples affect the downstream training of policies.

Environments. We test our method on a number of different environments where there
exists some safety critical limit that the agent must avoid. We give brief descriptions of
each environment here, but more details can be found in Appendix D. (Fusion) We first
consider controlling a tokamak for nuclear fusion, an application that has gained interest
in the RL community (Degrave et al., 2022; Char et al., 2023; Seo et al., 2021, 2022). In
our environment, adapted from Char and Schneider (2023), the goal is to push βN (the
normalized ratio between plasma and magnetic pressure) to be as close to a fixed limit as
possible by adjusting the amount of power injected; however, if the limit is exceeded, the
episode ends and the agent is given a large negative reward. The static dataset is comprised
of five trajectories in which a PID controller was used to hit a static βN target well below
the limit. (Mountain) Next, we consider an environment where an agent is tasked with
traversing a mountain ridge in a two-dimensional space. Not only can the agent fall off
either side of the ridge, but there is also a cliff at the end of the ridge that the agent must
get as close as possible to without falling over. To move, the agent has a thruster which
can be angled to accelerate the agent in different directions. To form the dataset for this
environment, we train an agent on the true environment and collect data at different stages
of performance. In total, we consider three variants of datasets which we name Random,
Medium, and Expert. Note that Medium is a supser set of Random, and Expert is a super
set of Medium. (Cart Pole) Finally, we consider the standard environment in which an
agent controls a cart with a pole attached and is tasked with balancing the pole while
ensuring the cart does not go out of bounds. For this environment, we collect 250 data
points with a poor performing policy.

Training For each of the environments listed above, we train an ensemble of five PNNs.
Although forming an ensemble by itself does not give the ability to sample smooth tran-
sition functions, it can introduce correlation in residuals assuming one chooses and fixes
an ensemble member for each trajectory prediction. We found that for all environments
(except the mountain ridge environment), each trained PNN was miscalibrated. Thus, we

4

5 10
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

O
ve

rc
on

fid
en

ce

Fusion

SPNN
PNN

5 10
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
CartPole

5 10
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Random

5 10
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Medium

5 10
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Expert

Figure 2: Overconfidence vs. Timestep. The plots above show the computed overconfidence
by timestep in the rollouts when a single PNN or SPNN is used. The solid line shows the mean
overconfidence computed over five random seeds, and the shaded region shows the standard error.
We use the in-distribution dataset to compute the metrics for the plots shown here.

use the Uncertainty Toolbox (Chung et al., 2021a) to recalibrate each member by finding
a constant scaling for the standard deviation of each output dimension. To learn a policy,
we use the Soft Actor Critic (SAC) (Haarnoja et al., 2018) algorithm. Following Ni et al.
(2021); Chen et al. (2021), we use a recurrent network for the policy to enable the policy
to adapt to different instances of the dynamics. See Appendix E for more details.

Modelling Metric Results We first use uncertainty metrics to evaluate the quality
of multi-step trajectory samples generated using our sampling technique. Specifically, we
measure the average calibration of centered prediction intervals at each timestep. Average
calibration (also referred to as probabilistic or quantile calibration) (Gneiting et al., 2007;
Kuleshov et al., 2018; Song et al., 2019; Chung et al., 2021b) is a standard metric in un-
certainty quantification which measures the average discrepancy between the expected and
observed proportion of data covered by a predictive interval. We also report the component
of miscalibration (i.e. error in average calibration) stemming from overconfidence - where
prediction intervals are too narrow and the observed proportion within the interval is thus
less than the expected proportion. We call this metric the overconfidence, and we focus on
it since it is often preferable to be underconfident, especially in safety-critical tasks.

To compute these metrics, we start by splitting a test set of data into sub-trajectories of
length 10 (a sub-trajectory is a contiguous segment of a full trajectory in the dataset that
need not include the start of the trajectory). Following this our evaluation procedure is as
follows: first, a number of “replay” samples are drawn for each sub-trajectory (i.e. the model
is used to predict the sub-trajectory using the same action sequence), these samples are then
used to form centered prediction intervals for each sub-trajectory, and finally miscalibration
and overconfidence metrics can be computed for each step of the replays. We compute these
metrics for both an in-distribution (ID) dataset, collected using the same policy as the train
set, and an out-of-distribution (OOD) dataset, collected using an expert policy. Concrete
definitions of metrics and more details on evaluation procedure can be found in Appendix F.

Table 1 shows the miscalibrations and overconfidences averaged across time steps for
each environment. Especially in the single PNN case, it is clear that adding smoothness
dramatically decreases the overconfidence in the PNN. This is apparent in Figure 2, where
it is clear that without smoothness, overconfidence grows much faster over time. We also
observe that ensembling often helps with uncertainty, especially when evaluating on OOD
datasets. While adding smoothness to the samples can cause miscalibration due to under-
confidence, we see that the least overconfident models are the ones which couple ensembling
and smoothness.

5

Method Fusion Cart Pole Mountain Random Mountain Medium Mountain Expert
ID

PNN 0.22 ± 0.01 (0.22) 0.27 ± 0.01 (0.24) 0.16 ± 0.01 (0.16) 0.19 ± 0.01 (0.18) 0.16 ± 0.02 (0.15)
SPNN 0.10 ± 0.01 (0.08) 0.14 ± 0.02 (0.05) 0.11 ± 0.01 (0.11) 0.12 ± 0.01 (0.12) 0.12 ± 0.01 (0.09)
PNN Ensemble 0.13 ± 0.01 (0.03) 0.23 ± 0.01 (0.02) 0.06 ± 0.00 (0.04) 0.10 ± 0.01 (0.08) 0.10 ± 0.01 (0.05)
SPNN Ensemble 0.17 ± 0.01 (0.01) 0.29 ± 0.01 (0.00) 0.05 ± 0.00 (0.02) 0.09 ± 0.00 (0.05) 0.11 ± 0.01 (0.03)

O
O
D

PNN 0.35 ± 0.02 (0.35) 0.32 ± 0.01 (0.29) 0.15 ± 0.02 (0.08) 0.37 ± 0.01 (0.37) 0.23 ± 0.02 (0.23)
SPNN 0.27 ± 0.02 (0.26) 0.18 ± 0.02 (0.13) 0.17 ± 0.01 (0.05) 0.33 ± 0.01 (0.33) 0.16 ± 0.02 (0.15)
PNN Ensemble 0.18 ± 0.01 (0.16) 0.16 ± 0.01 (0.03) 0.18 ± 0.01 (0.06) 0.28 ± 0.00 (0.28) 0.14 ± 0.02 (0.11)
SPNN Ensemble 0.17 ± 0.01 (0.14) 0.19 ± 0.01 (0.01) 0.20 ± 0.01 (0.04) 0.26 ± 0.00 (0.26) 0.12 ± 0.01 (0.07)

Table 1: Miscalibrations and Overconfidences. The table shows the miscalibration averaged
over time steps for each method of sampling and environment. In addition we show the standard error
over the five seeds and the proportion of the miscalibration due to overconfidence (in parentheses).
All of these quantities are rounded to two digits. We bold the lowest mean miscalibration and
overconfidence for each of the environments. The top and bottom blocks show the metrics computed
over in-distribution (ID) and out-of-distribution (OOD) datasets, respectively.

Method Fusion Cart Pole Mountain Random Mountain Medium Mountain Expert Average

NN 65.95 ± 1.63 100 ± 0.00 63.57 ± 9.80 26.79 ± 0.62 49.73 ± 2.50 61.21
PNN 65.34 ± 12.94 99.98 ± 0.02 64.29 ± 4.01 23.39 ± 1.34 44.34 ± 13.45 59.47
SPNN 91.46 ± 2.50 98.78 ± 1.22 65.93 ± 1.72 39.08 ± 8.24 84.72 ± 4.73 75.99

Table 2: Normalized Policy Returns. Each of the reported numbers is averaged over the last
20% of recorded evaluation episodes during training and five random seeds. We also report the
standard errors from the five seeds, and we bold the result with the highest mean. All numbers are
normalized using the performance of a poor and expert policy (i.e. a normalized score of 100 is the
same performance as the expert policy).

Policy Performance We now turn to examining the performance of an adaptive policy
trained with and without smooth samples. For this section we include an additional baseline:
an ensemble of neural networks outputting a point prediction (we refer to this as NN).
Table 2 shows the returns achieved by the policy averaged over the last 20% of training steps.
For the fusion environment and all configurations of the Mountain Ridge environment, we
see that it is beneficial to have smooth samples and that this better sampling prevents the
final policy from crossing the βN limit or falling off a cliff for each respective environment.
Interestingly, we see that the medium version of the mountain ridge environment is the most
difficult to optimize. We hypothesize this may be because the medium version of the dataset
has a greater spread of data so the dynamics are more confident yet do not have enough
data to fully model the dynamics. This is therefore a case where it is especially important
that there are smooth samples of the dynamics, and we visually show the difference in policy
performance in Figure 21 in the Appendix. Lastly, while there seems to be little difference
between the final scores in Cart Pole, in Figure 17, we show that the returns while training
are much more reliable when using smooth dynamics samples. We hypothesize this may be
due to the smooth dynamics being more controllable and easier to adapt to.

Discussion. To summarize, in this work we highlighted the existence of correlated errors
in dynamics models and how sampling smooth trajectory functions is key to capture this
phenomenon in uncertainty estimates. Experimentally, we show that with more intelligent
sampling we can achieve less overconfident uncertainty predictions and better performing
policies. In future works, we hope to extend our results to more complex and higher
dimensional environments.

6

References

MD Boyer, KG Erickson, BA Grierson, DC Pace, JT Scoville, J Rauch, BJ Crowley, JR Fer-
ron, SR Haskey, DA Humphreys, et al. Feedback control of stored energy and rotation
with variable beam energy and perveance on diii-d. Nuclear Fusion, 59(7):076004, 2019.

Ian Char and Jeff Schneider. Pid-inspired inductive biases for deep reinforcement learning
in partially observable control tasks. arXiv preprint arXiv:2307.05891, 2023.

Ian Char, Joseph Abbate, László Bardóczi, Mark Boyer, Youngseog Chung, Rory Conlin,
Keith Erickson, Viraj Mehta, Nathan Richner, Egemen Kolemen, et al. Offline model-
based reinforcement learning for tokamak control. In Learning for Dynamics and Control
Conference, pages 1357–1372. PMLR, 2023.

Xiong-Hui Chen, Yang Yu, Qingyang Li, Fan-Ming Luo, Zhiwei Qin, Wenjie Shang, and
Jieping Ye. Offline model-based adaptable policy learning. Advances in Neural Informa-
tion Processing Systems, 34:8432–8443, 2021.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models. Advances in
neural information processing systems, 31, 2018.

Youngseog Chung, Ian Char, Han Guo, Jeff Schneider, and Willie Neiswanger. Uncertainty
toolbox: an open-source library for assessing, visualizing, and improving uncertainty
quantification. arXiv preprint arXiv:2109.10254, 2021a.

Youngseog Chung, Willie Neiswanger, Ian Char, and Jeff Schneider. Beyond pinball loss:
Quantile methods for calibrated uncertainty quantification. Advances in Neural Informa-
tion Processing Systems, 34:10971–10984, 2021b.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al.
Magnetic control of tokamak plasmas through deep reinforcement learning. Nature, 602
(7897):414–419, 2022.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach
to policy search. In Proceedings of the 28th International Conference on machine learning
(ICML-11), pages 465–472, 2011.

Markus Deserno. How to generate exponentially correlated gaussian random numbers.
Department of Chemistry and Biochemistry UCLA, USA, 2002.

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline rl policies should
be trained to be adaptive. In International Conference on Machine Learning, pages
7513–7530. PMLR, 2022.

7

Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E Raftery. Probabilistic forecasts,
calibration and sharpness. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 69(2):243–268, 2007.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Inter-
national conference on machine learning, pages 1861–1870. PMLR, 2018.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. Advances in neural information processing systems, 32,
2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep
learning using calibrated regression. arXiv preprint arXiv:1807.00263, 2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643,
2020.

Viraj Mehta, Biswajit Paria, Jeff Schneider, Stefano Ermon, and Willie Neiswanger. An
experimental design perspective on model-based reinforcement learning. arXiv preprint
arXiv:2112.05244, 2021.

Viraj Mehta, Ian Char, Joseph Abbate, Rory Conlin, Mark Boyer, Stefano Ermon, Jeff
Schneider, and Willie Neiswanger. Exploration via planning for information about the
optimal trajectory. Advances in Neural Information Processing Systems, 35:28761–28775,
2022.

Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. Recurrent model-free rl can
be a strong baseline for many pomdps. arXiv preprint arXiv:2110.05038, 2021.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
in neural information processing systems, 20, 2007.

JT Scoville, DA Humphreys, JR Ferron, and P Gohil. Simultaneous feedback control of
plasma rotation and stored energy on the diii-d tokamak. Fusion engineering and design,
82(5-14):1045–1050, 2007.

Maximilian Seitzer, Arash Tavakoli, Dimitrije Antic, and Georg Martius. On the pitfalls of
heteroscedastic uncertainty estimation with probabilistic neural networks. arXiv preprint
arXiv:2203.09168, 2022.

J Seo, Y-S Na, B Kim, CY Lee, MS Park, SJ Park, and YH Lee. Development of an
operation trajectory design algorithm for control of multiple 0d parameters using deep
reinforcement learning in kstar. Nuclear Fusion, 62(8):086049, 2022.

8

Jaemin Seo, Y-S Na, B Kim, CY Lee, MS Park, SJ Park, and YH Lee. Feedforward beta
control in the kstar tokamak by deep reinforcement learning. Nuclear Fusion, 61(10):
106010, 2021.

Hao Song, Tom Diethe, Meelis Kull, and Peter Flach. Distribution calibration for regression.
In International Conference on Machine Learning, pages 5897–5906. PMLR, 2019.

ITER Physics Expert Group on Confinement Transport, , ITER Physics Expert Group on
Confinement Modelling Database, , and ITER Physics Basis Editors. Chapter 2: Plasma
confinement and transport. Nuclear Fusion, 39(12):2175–2249, 1999.

James Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc
Deisenroth. Efficiently sampling functions from gaussian process posteriors. In Interna-
tional Conference on Machine Learning, pages 10292–10302. PMLR, 2020.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine,
Chelsea Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances
in Neural Information Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and
Chelsea Finn. Combo: Conservative offline model-based policy optimization. Advances
in neural information processing systems, 34:28954–28967, 2021.

9

Appendix A. Related Works

Reinforcement Learning The experimental setting considered in this work falls under
the so-called “offline” reinforcement learning setting (Levine et al., 2020). In this setting,
a policy must be learned from a fixed dataset of environment interactions and additional
environment queries cannot be made. In this setting, Yu et al. (2020) the MOPO algorithm
that uses an ensemble of PNNs and relies on penalties to make sure the policy does not steer
out of the offline dataset’s support. Chen et al. (2021) extend this idea in the algorithm
MAPLE, which incorporates an adaptive policy into the learning procedure. Our reinforce-
ment learning experiments are similar to the set up in MAPLE, except we do full episodes
from start states (drawn from the start distribution which is assumed to be known). In
contrast, MAPLE does short rollouts of 10 steps starting states randomly selected in the
offline dataset.

Gaussian Processes in RL Hypothetically, one could use a GP for the dynamics model
and draw posterior samples when generating rollouts with the policy, and this has been
done for several low dimensional tasks by previous works (Deisenroth and Rasmussen, 2011;
Mehta et al., 2021, 2022) However, the non-parametric nature of GPs makes scaling up to
higher dimensional tasks a challenge. Perhaps an even greater problem comes from the fact
that these posterior samples are much more computationally expensive than their PNN
alternative. Because algorithms such as MBPO, MOPO, and MAPLE require millions if
not billions of model samples to train a neural network policy to convergence, GPs are often
too big of a computational burden to use.

Appendix B. PNN Toy Example

True Function
Mean Prediction
Train Data

Figure 3: PNN Trained on a Toy Example.
The orange points make up the training dataset,
the black dashed line is the true function, and the
dotted blue line shows predicted mean. The blue
shaded region shows three standard deviations of
the predicted Gaussian distribution. We also use
a validation set with 20 points to know when to
stop training the model.

To help guide intuition on why the PNN is
useful even in deterministic environments,
consider a toy regression problem in which
we wish to model the function f(x) =
cos(3x). Our training dataset consists of
100 (X,Y) data points where X is dis-
tributed as an exponential random variable.
As such, there will be a high concentration
of X data around 0, but the concentration
of training data quickly tapers off. We train
a PNN on this toy problem and show the re-
sults in Figure 3. As one would hope, the
PNN is confident in regions where data is
plentiful, and the model produces wide pre-
dictive distributions in regions lacking data.
Why does this happen instead of the net-
work producing highly confident predictive
distribution where the mean goes through
each training point? We hypothesize that
this is due to both the capacity of the network and the property of neural networks to

10

produce generally smooth solutions. Similar observations were also made in Seitzer et al.
(2022), although they consider the setting in which aleatoric noise truly does exist.

Appendix C. Algorithm Details

Algorithm 1 SPNN Trajectory Sampling

1: Input: Policy π, initial state s1, kernels {κd}Dd=1, horizon H, and number of bases B.
2: Sample function g by sampling ϕb,d ∼ pκd

and τb,d ∼ U(0, 2π) for b ∈ {1, . . . , B} and
d ∈ {1, . . . , D}.

3: for t← 1, . . . H do
4: at ∼ π(st)
5: xt ← (st, at)
6: st+1 ← st + µθ(xt) + σθ(xt)g(xt)
7: end for
8: Return (x1, . . . , xH)

Appendix D. Environment Details

Nuclear Fusion Environment As stated in the main body of the paper, this environ-
ment is adapted from Char and Schneider (2023). This environment uses equations de-
scribed in Boyer et al. (2019) and Scoville et al. (2007). In particular, we use the following
relations for stored energy, E, and rotation, vrot:

Ė = P − E

τE
τE = CEI

0.95B0.15P−0.69

βN = Cβ

(
aB

I

)
E

where P is the total power, τE is the energy confinement time, I is the plasma current, a
is the minor radius, B is the magnetic field, and CE , Cβ are constants set to 200 and 5,
respectively. The second of these equations is ITERH-98 scaling (Transport et al., 1999).
For our version of the environment, we also fix I = 106, a = 0.589, and B = 2.75. Similar
to Char and Schneider (2023), we include momentum in the energy update. The equation
describing the evolution of the energy is

Ėt = 0.5

(
Pt −

Et

τE

)
+ 0.5Ėt−1

The observation space for the environment is three dimensional and consists of the current
βN measurement, the rate of change of βN , and the current amount of power being injected
into the system. The action space is one-dimensional and is simply the change in the power.

11

We set the βN limit to be 2.2 , and the reward function is

r(βN , a) :=

(
2.5−|βN−2.2|

2.5

)2
− ∥a∥

10 βN ≤ 2.2

−100 βN > 2.2

where a is the action scaled to be between −1 and 1. We use a horizon length of 100 for
each episode.

Mountain Ridge Environment The mountain ridge environment has five-dimensional
observations space: st = (xt, ẋt, yt, ẏt, θ), where xt is the x position, yt is the y position, and
θ is the angle of the thruster used to propel the agent. The action space is two-dimensional
and consists of athrust and aangle, which controls the amount of thrust and the change in
angle of the thruster, respectively. The updates are as follows:

xt+1 = xt + ẋt∆t

ẋt+1 = ẋt +
(
sign(xt)x

2
t + athrust sin(θt)

)
∆t

yt+1 = yt + ẏt∆t

ẏt+1 = ẏt +
(
athrust cos(θt) + 0.05 exp(yt)

)
∆t

θt+1 = clip
(
θt +

π

6
f(aangle),−π, π

)
where the function f is defined as

f(x) =

{
1 + exp [−12.5 (x− 0.5)] x > 0

1 + exp [12.5 (x+ 0.5)] x ≤ 0

The reward function is simply 6+yt−∥athrust∥
10 while the agent is on the cliff. The episode ends

and the agent recieves a reward of −100 if |xt| > 3, yt < −6, or yt > 5. We use a horizon
length of 200 for each episode.

Appendix E. Additional Training Details

Model Training For each of the dynamics models, we use a network with 2 hidden
layers, each with 512 units. We use two separate heads for the mean and standard deviation
predictions. We find that we can get better uncertainty by adding an additional hidden
layer with 256 units to the standard deviation head. Besides the change in architecture,
the learning procedure follows what is done in Chua et al. (2018), and we use the Adam
(Kingma and Ba, 2014) optimizer with a learning rate of 3 × 10−4 and a batch size of 64.
Lastly, we use 10% of the data as a validation set and early stop based on MSE (although
we pick the checkpoint that achieves the best negative log likelihood).

Reinforcement Learning Training Our implementation of SAC with recurrent policies
closely follows the implementation given by Ni et al. (2021) and uses a Gated Recurrent Unit
(GRU) (Cho et al., 2014). We give hyperparameter settings in Table 3. We train for 100,
250, and 1000 epochs for the Cart Pole, Fusion, and Mountain environments, respectively.

12

Following other offline model-based reinforcement learning works (Yu et al., 2020; Chen
et al., 2021), we add a penalty to the reward to indicate when the policy is going out of
distribution. When using PNN models, we use the maximum predicted standard deviation
among the ensemble members, and, when using neural networks with point predictions, we
use the standard deviation among the mean predictions. As per (Chen et al., 2021) we scale
this uncertainty by 0.25.

When simulating episodes with the model during training time, the trajectory can some-
times blow up and predict large values. While this is rare, we find that it helps training
stability to cap the velocity components of the state space to reasonable values. Finally,
for all methods of sampling, we choose a member of the ensemble to make predictions each
episode, and we fix this member for the entire episode.

Hyperparameter Value

Discount Factor 0.99
Learning Rate 3× 10−4

Batch Size 256
Target Soft Update Weight 5× 10−3

History Lookback Size 64
Exploration Steps per Epoch 1000
Gradient Steps per Epoch 1000

Table 3: Reinforcement learning hyperparameters.

Appendix F. Model Metric Details

A widely accepted metric in uncertainty quantification to evaluate the validity of distribu-
tional predictions is average calibration. Given input covariates X, target variables Y , a
predictive distribution with CDF FX : X → (Y → [0, 1]) and its corresponding quantile
function F−1

X : X → ([0, 1]→ Y), F is said to be average calibrated if

P
(
Y ≤ F−1

X (p)
)
= p,∀p ∈ [0, 1]. (1)

Note that Eq. 1 assesses the validity of the predictive quantile function F−1
X , which

is identical to a prediction interval between the probabilities [0, p]. We note that centered
prediction intervals (e.g. a 95% prediction interval that spans the probabilities [0.025, 0.975])
can be more useful in practice, and we assess the average of centered prediction intervals,
which is defined as:

P
(
F−1
X (0.5− p/2) ≤ Y ≤ F−1

X (0.5 + p/2)
)
= p,∀p ∈ [0, 1]. (2)

Miscalibration, i.e. error in average calibration of centered intervals, is then measured
as ∫ 1

0
| P
(
F−1
X (0.5− p/2) ≤ Y ≤ F−1

X (0.5 + p/2)
)
− p | dp. (3)

13

Given a dataset {xi, yi}Ni=1, and a uniform draw of probabilities {pk}Kk=1 ∈ [0, 1], mis-
calibration of centered intervals can be estimated as

1

K

K∑
k=1

∣∣∣∣(empirical coverage at pk)− pk

∣∣∣∣, (4)

where (empirical coverage at pk) is defined as 1
N

∑N
i=1 I{F−1

xi
(0.5 − pk/2) ≤ yi ≤

F−1
xi

(0.5 + pk/2)} and I is the indicator function.

We compute miscalibration of centered intervals at each timestep of a trajectory, where
the inputs are the current state-action pairs, and the targets are the state delta: i.e. from
Eq. 4, xi would be the tuple (si,t, ai,t) and yi would be si,t+1− si,t. We used 19 equi-spaced
probabilities: {pk = k

20}
19
k=1. Since an ensemble does not provide a closed form quantile

function, we use empirical quantiles for F−1
xi

by generating many trajectories for a single
test sequence of states and actions.

To measure overconfidence, we performed the outer summation over probabilities in
Eq. 4 only if the empirical coverage was lower than pk:

1

K

K∑
k=1

min (0, (empirical coverage at pk)− pk) , (5)

Appendix G. Ignoring Error Correlation Can Lead to Overconfidence

In this section, we show that under certain assumptions, ignoring the correlation between
consecutive residuals leads to overconfident predictions. While these assumptions make
major simplifications to the problem, this result still gives insight into why overconfidence
may grow over time. In what follows, assume that there is a fixed action sequence a1, . . . , aN .
The corresponding rollout using the true transition function, T , is then x1 . . . , xN+1.

Ideally, we would compare this to the distribution of rollouts created by sampling au-
toregressively from T̂ , which we assume to be a PNN. However since this distribution
is difficult to characterize, we focus on analyzing one-step errors. Towards this end, let
δt := µθ(xt) − T (xt) and let ∆N :=

∑N
t=1 δt. Although the true amount of error after N

steps is hard to reason about because of the predicted sequence’s autoregressive nature, ∆N

can be thought of as a proxy. We also make the following assumptions:

1. The sequence of residuals is Markovian, i.e. p(δt|δ1, . . . , δt−1) = p(δt|δt−1).

2. The distribution between consecutive residuals is[
δt
δt−1

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])

Note that these are assumptions that are made to the true underlying transition function
(i.e. that there are correlations between residuals). We will now see that the standard
deviation of ∆N grows faster if positive correlation is present versus if an independence
assumption is made (as is usually done with sampling procedure in PNNs).

14

Proposition 1 (Deserno (2002)) Following the above assumptions

∆N+1 =

√
1 + ρ

1− ρ
GN+1 −

ρ

1− ρ
δN+1 +

1−
√

1− ρ2

1− ρ
g1

where N > 1, g1, . . . , gN+1
i.i.d∼ N (0, 1), and GN+1 :=

∑N+1
t=1 gt.

Note that the first term of ∆N has standard deviation
√

1+ρ
1−ρN , and the standard deviation

for the rest of the terms does not grow as N increases. In contrast, if one were to model
residuals as independent, the standard deviation of the sample trajectories from that model
after N steps would be

√
N . Again, the assumptions made here prevent any statement

from being made in the actual setting in which trajectories are autoregressively predicted;
however, it does give intuition as to why PNNs may produce overconfidence predictive
distributions over time.

We now restate the proof from Deserno (2002) for completeness.

Proof

Using the fact that p(δt|δt−1 = d) ∼ N (ρd, 1−ρ2), we can express the sequence in terms
of IID samples as follows:

δ1 = g1; δt = ρδt−1 +
√
1− ρ2gt

We can expand the right definition of δt to get the following,

δt = ρt−1g1 +
√
1− ρ2

t∑
i=2

giρ
t−i

Summing this up to get ∆N ,

∆N+1 =

N+1∑
t=1

[
ρt−1g1 +

√
1− ρ2

t∑
i=2

giρ
t−i

]

= g1
1− ρN+1

1− ρ
+
√
1− ρ2

N+1∑
i=2

gi

N+1∑
n=i

ρn−i

= g1
1− ρN+1

1− ρ
+

√
1− ρ2

1− ρ

(
N+1∑
i=2

gi − ρ

N+1∑
i=2

giρ
N+1−i

)
.

The first term in the bracket is GN+1−g1, and the second term can be rewritten with δN+1.

∆N+1 =

√
1 + ρ

1− ρ
GN+1 −

ρ

1− ρ
xN +

1−
√
1− ρ2

1− ρ
g1

15

Method Fusion Cart Pole Mountain Random Mountain Medium Mountain Expert

Dimension 0 0.69 ± 0.13 0.96 ± 0.04 0.95 ± 0.02 0.94 ± 0.01 0.93 ± 0.02
Dimension 1 0.70 ± 0.04 0.95 ± 0.05 0.93 ± 0.01 0.97 ± 0.01 0.98 ± 0.01
Dimension 2 0.85 ± 0.08 0.96 ± 0.04 0.62 ± 0.10 0.57 ± 0.07 0.51 ± 0.11
Dimension 3 - 0.93 ± 0.07 0.45 ± 0.03 0.66 ± 0.02 0.68 ± 0.07
Dimension 4 - - -0.02 ± 0.03 0.13 ± 0.02 0.13 ± 0.03

Table 4: Empirical Correlations Each value is the average over five seeeds and five ensemble
members. Note entries in the table that are entry are due to the environment being lower dimensional
(e.g. Fusion only has three dimensions).

Appendix H. Empirical Correlations

We empirically compute temporal correlation between the residuals for models, specifically
ensembles of PNNs trained on all our environments. Consider a rollout in the true dynamics
- (s0, a0, r0), . . . , (sn, an, rn). For a given ensemble member, let b0 =

T (s0,a0)−µθ(s0,a0)
σθ(s0,a0)

, . . . , bn =
T (sn,an)−µθ(sn,an)

σθ(sn,an)
be the corresponding sequence of standardized residuals. We make the as-

sumption that successive residuals bi, bi+1 are sampled from a bivariate gaussian with cor-

relation coefficient ρ, that is

[
bi
bi+1

]
∼ N (µ,Σ), where µ =

[
0
0

]
and Σ =

[
1 ρ
ρ 1

]
. Then, we

compute the maximum likelihood estimator, ρ̂, based on the observed residuals b1, . . . , bn.
The estimates in Table 4 are averaged over five seeds and five ensemble members in each
corresponding ensemble.

Appendix I. Additional Experimental Results

Additional Calibration Results To better understand how uncertainty estimates change
with different sampling procedures, we provide additional plots of the miscalibration and
overconfidence metrics. Figures 4- 11 show how both metrics change with respect to time
for single models and an ensemble. Figures 12- 15 show how the metrics change with re-
spect to ensemble size. In all of these, it is clear that smooth samples mitigate against
overconfidence over time; however, this can also cause uncertainty predictions to be slightly
underconfident.

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

M
is

ca
lib

ra
tio

n

Fusion

SPNN
PNN

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
CartPole

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Random

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Medium

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Expert

Figure 4: Average miscalibration for ID data using a single PNN with respect to rollout
step. The regions shows the standard error over the five seeds.

Reinforcement Learning Training Curves We also provide plots of the average re-
turns during training of the policy in Figures 16- 20. In general, we see that training with
SPNN is less prone to overfitting and often more stable.

16

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

M
is

ca
lib

ra
tio

n

Fusion

SPNN
PNN

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
CartPole

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Random

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Medium

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Expert

Figure 5: Average miscalibration for ID data using an ensemble of PNNs with respect
to rollout step. The regions shows the standard error over the five seeds.

5 10
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

O
ve

rc
on

fid
en

ce

Fusion

SPNN
PNN

5 10
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
CartPole

5 10
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Random

5 10
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Medium

5 10
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Expert

Figure 6: Average overconfidence for ID data using a single PNN with respect to rollout
step. The regions shows the standard error over the five seeds.

Can additional penalty help in the Mountain environment? To prevent the agent
from falling off the cliff, it is possible that a higher scale on the penalty could be beneficial.
In Table 5, we test what happens when the penalty scaling is changed to 0.0 or 1.0. We find
that greatly increasing the penalty 4× does not have same affect on policy performance as
intelligent sampling.

Method Mountain Random Mountain Medium Mountain Expert Average

SPNN Penalty=0.0 61.41 ± 4.47 29.67 ± 0.87 88.00 ± 1.60 59.69
PNN Penalty=0.0 63.64 ± 11.41 23.13 ± 1.15 68.77 ± 11.97 51.84
NN Penalty=0.0 31.26 ± 5.68 27.25 ± 0.67 40.71 ± 5.11 33.07

SPNN Penalty=0.25 65.93 ± 1.72 39.08 ± 8.24 84.72 ± 4.73 63.24
PNN Penalty=0.25 64.29 ± 4.01 23.39 ± 1.34 44.34 ± 13.45 44.01
NN Penalty=0.25 63.57 ± 9.80 26.79 ± 0.62 49.73 ± 2.50 46.7

SPNN Penalty=1.0 62.05 ± 1.07 40.45 ± 8.91 81.78 ± 3.63 61.42
PNN Penalty=1.0 53.06 ± 7.93 30.57 ± 2.33 46.28 ± 4.63 43.3
NN Penalty=1.0 67.47 ± 10.56 25.71 ± 0.07 55.07 ± 12.17 49.42

Table 5: Normalize policy performances for different penalties on the Mountain envi-
ronment. Each result is averaged over the last 20% of evaluations during training. Five seeds were
used to compute the average scores, and we show the standard errors.

Mountain Environment Visualization To better understand what is happening in
the Mountain environment, we plot the average path taken by each type of policy (see
Figure 21). While all policies are overconfident and have episdoes where the agent falls off
the cliff, on average policies trained with SPNN stay within the support of the dataset and
avoid falling off the cliff.

17

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
O

ve
rc

on
fid

en
ce

Fusion

SPNN
PNN

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
CartPole

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Random

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Medium

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Expert

Figure 7: Average overconfidence for ID data using an ensemble of PNNs with respect
to rollout step. The regions shows the standard error over the five seeds.

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

M
is

ca
lib

ra
tio

n

Fusion

SPNN
PNN

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
CartPole

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Random

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Medium

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Expert

Figure 8: Average miscalibration for OOD data using a single PNN with respect to
rollout step. The regions shows the standard error over the five seeds.

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

M
is

ca
lib

ra
tio

n

Fusion

SPNN
PNN

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
CartPole

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Random

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Medium

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Expert

Figure 9: Average miscalibration for OOD data using an ensemble of PNNs with respect
to rollout step. The regions shows the standard error over the five seeds.

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

O
ve

rc
on

fid
en

ce

Fusion

SPNN
PNN

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
CartPole

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Random

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Medium

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Expert

Figure 10: Average overconfidence for OOD data using a single PNN with respect to
rollout step. The regions shows the standard error over the five seeds.

18

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
O

ve
rc

on
fid

en
ce

Fusion

SPNN
PNN

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
CartPole

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Random

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Medium

2.5 5.0 7.5 10.0
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Expert

Figure 11: Average overconfidence for OOD data using an ensemble of PNNs with
respect to rollout step. The regions shows the standard error over the five seeds.

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5

M
is

ca
lib

ra
tio

n

Fusion

SPNN
PNN

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
CartPole

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Random

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Medium

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Expert

Figure 12: Average miscalibration over rollout for ID data with respect to ensemble
size. The error bars shows the standard error over the five seeds.

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5

O
ve

rc
on

fid
en

ce

Fusion

SPNN
PNN

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
CartPole

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Random

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Medium

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Expert

Figure 13: Average overconfidence over rollout for ID data with respect to ensemble
size. The error bars shows the standard error over the five seeds.

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5

M
is

ca
lib

ra
tio

n

Fusion

SPNN
PNN

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
CartPole

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Random

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Medium

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Expert

Figure 14: Average miscalibration over rollout for OOD data with respect to ensemble
size. The error bars shows the standard error over the five seeds.

19

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5

O
ve

rc
on

fid
en

ce

Fusion

SPNN
PNN

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
CartPole

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Random

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Medium

2 4
Ensemble Size

0.0

0.1

0.2

0.3

0.4

0.5
Mountain Expert

Figure 15: Average overconfidence over rollout for OOD data with respect to ensemble
size. The error bars shows the standard error over the five seeds.

50000 100000 150000 200000 250000
Samples

30

40

50

60

70

80

90

Av
er

ag
e

R
et

ur
ns

Fusion

SPNN
NN
PNN

Figure 16: Average returns for the Fusion environment during training. The regions shows
the standard error over the five seeds.

20

0 20000 40000 60000 80000 100000
Samples

150

160

170

180

190

200

Av
er

ag
e

R
et

ur
ns

CartPole

SPNN
NN
PNN

Figure 17: Average returns for the Cart Pole environment during training. The regions
shows the standard error over the five seeds.

21

0.2 0.4 0.6 0.8 1.0
Samples 1e6

20

0

20

40

60

80

Av
er

ag
e

R
et

ur
ns

Mountain Random

SPNN
NN
PNN

Figure 18: Average returns for the Mountain Random environment during training.
The regions shows the standard error over the five seeds.

22

0.2 0.4 0.6 0.8 1.0
Samples 1e6

40

20

0

20

40

60

80

Av
er

ag
e

R
et

ur
ns

Mountain Medium

SPNN
NN
PNN

Figure 19: Average returns for the Mountain Medium environment during training.
The regions shows the standard error over the five seeds.

23

0.2 0.4 0.6 0.8 1.0
Samples 1e6

40

20

0

20

40

60

80

100

120
Av

er
ag

e
R

et
ur

ns
Mountain Expert

SPNN
NN
PNN

Figure 20: Average returns for the Mountain Expert environment during training. The
regions shows the standard error over the five seeds.

PNN
SPNN
NN

Figure 21: Average trajectory in medium mountain ridge environment. To create this
figure, we collect 100 paths in the true environment with each of the five policies corresponding to
the random seeds. We then average each path together, and the average path can be seen in the top
plot. The red regions represent terminal regions where the agent falls off the cliff, and the contour
lines show the contours of the mountain ridge. Here, the x-axis shows the y position of the agent as
described in the environment definition (Appendix D). The bottom plot shows a histogram of the y
data in the Medium dataset, and the dashed black line shows the most extreme recorded y value.

24

	Introduction
	Method
	The ``Probabilistic Neural Network''

	Experiments
	Related Works
	PNN Toy Example
	Algorithm Details

	Environment Details
	Additional Training Details
	Model Metric Details
	Ignoring Error Correlation Can Lead to Overconfidence
	Empirical Correlations
	Additional Experimental Results

