
Under review as a conference paper at ICLR 2024

GFLOWNET TRAINING BY POLICY GRADIENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative Flow Networks (GFlowNets) have been shown with an attractive ca-
pability to generate combinatorial objects with desired properties. In this pa-
per, we propose a policy-dependent reward that bridges the flow balance in
GFlowNet training to optimizing the expected accumulated reward in traditional
Reinforcement-Learning (RL). This allows us to derive policy-based GFlowNet
training strategies. It is known that the training efficiency is affected by the design
of backward policies in GFlowNets. We propose a coupled training strategy that
can jointly solve the GFlowNet training and backward policy design. Performance
analysis is provided with a theoretical guarantee of our proposed methods. We
conduct experiments on both simulated and real-world datasets to verify that our
policy-based strategy for GFlowNet training can outperform existing GFlowNet
training strategies.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) are a family of generative models on the space of combi-
natorial objects X (e.g. graphs composed by organizing nodes and edges in a particular manner,
or strings composed of characters in a particular ordering). GFlowNets aim to solve a challenging
task, sampling x ∈ X with probability proportional to some non-negative reward function R(x)
that defines an unnormalized distribution, where |X | can be enormous and the distribution modes
are highly isolated by its combinatorial nature. GFlowNets (Bengio et al., 2021; 2023) decompose
the process of generating or sampling x ∈ X by generating incremental trajectories that start from
a null state, pass through intermediate states, and end at x as the desired terminating state. These
trajectory instances are interpreted as the paths along a Directed Acyclic Graph (DAG). Probability
measures of trajectories are viewed as the amount of ‘water’ flows along the DAG, with R(x) being
the total flow of trajectories that end at x, so that following the forward generating policy defined by
the measure, sampled trajectories will end at x with the probability proportional to R(x).

GFlowNets bear a similar form of reinforcement learning (RL) in that they both operate over Marko-
vian Decision Processes (MDP) with a reward function R(x), where nodes, edges, and node transi-
tion distributions defined by Markovian flows are considered as states, actions, and stochastic poli-
cies in MDPs. They, however, differ in the following aspects: the goal of RL problems is to learn
some optimal policies that maximize the expected cumulative trajectory reward by R. For value-
based RL methods, the core to achieve this is by reducing the Temporal Difference (TD) error of
Bellman equations for the estimated state value function V and state-action value functionQ (Sutton
& Barto, 2018; Mnih et al., 2013). GFlowNets amortize the sampling problem into finding some
Markovian flow that assigns the proper probability flow to edges (actions) so that the total flow of
trajectories ending at x is R(x). When studying these in the lens of RL, the existing training strate-
gies are also value-based in that they achieve the goal by keeping the balance flow equation over
states of the DAG, whose difference can be measured in trajectory-wise and edge-wise ways (Ben-
gio et al., 2021; 2023; Malkin et al., 2022a; Madan et al., 2023). Due to the similarity of GFlowNet
training and RL, investigation of the relationships between them not only can deepen understanding
of GFlowNets, but also helps derive better training techniques from RL. While Bengio et al. (2021)
have established a relationship under the prerequisite that the forward policy implied by the flow
function is uniform, this scenario is restrictive. In this work, we propose policy-dependent rewards
for GFlowNet training. This bridges GFlowNets to RL in that keeping the flow balance over DAGs
can be reformulated as optimizing the expected accumulated rewards in RL problems. We then de-
rive policy-based training strategies for GFlowNets, which optimize the accumulated reward by its

1



Under review as a conference paper at ICLR 2024

gradients w.r.t the forward policy directly (Agarwal et al., 2019). In terms of RL, we acknowledge
that the existing GFlowNet training strategies can be considered value-based and have the advantage
of allowing off-policy training over policy-based methods (Malkin et al., 2022b). Value-based meth-
ods, however, face the difficulty in designing a powerful sampler that can balance the exploration
and exploitation trade-off, especially when the combinatorial space is enormous with well-isolated
modes. Besides, Typical annealing or random-mixing solutions with the trained forward policy may
lead to the learned policy trapped in local optima. Finally, designing strategies for powerful samplers
vary according to the structure and setting of modeling environments. Therefore, there is no guaran-
teed superiority of value-based methods over policy-based methods. The efficiency of policy-based
methods depends on robust estimation of policy gradients, which can be achieved by variance re-
duction techniques for gradient estimation. Besides, policy-based methods allow off-policy training
(Degris et al., 2012; Haarnoja et al., 2018), for example by importance sampling. Our work pro-
vides alternative ways to improve GFlowNet performance. Our contributions can be summarized as
follows:

• We reformulate the GFlowNet training problem as RL over a special MDP where the re-
ward is policy-dependent, and the underlying Markovian Chain is absorbing. We further
derive policy gradients for this special MDP, and propose policy-based training strategies
for GFlowNets, inspired by existing policy-based RL methods (Sutton et al., 1999; Schul-
man et al., 2015; Achiam et al., 2017).

• We then formulate the design of backward policies in GFlowNets also as an RL problem
and propose a coupled training strategy. While finding a desired forward policy is the goal
of GFlowNet training, backward policies are used as the components of training objectives.
Well-designed backward policies are expected to improve training efficiency (Shen et al.,
2023).

• We provide performance analyses for theoretical guarantees of our method for GFlowNet
training. Our theoretical results are also accompanied by performing experiments in three
application domains, hyper-grid modeling, sequence design, and Bayesian Network (BN)
structure learning. The obtained experimental results serve as empirical evidence for the va-
lidity of our work and also help empirically understand the relationship between GFlowNet
training and RL.

2 PRELIMINARIES

2.1 DAGS AND NOTATIONS

In a DAG G := (S,A), s ∈ S denotes a state and a ∈ A denotes a directed edge (s→s′) and
A ⊆ S × S. Assuming that there is a topological ordering S0, . . . ,ST for T + 1 disjoint subsets
of S, then S =

⋃T
t=0 St and an element of St is denoted as st. We use {≺,≻,⪯,⪰} to define the

partial orders between states; for example, ∀t < t′ : st ≺ st′ . Furthermore, being acyclic means
∀(s→s′) ∈ A: s ≺ s′. For any s ∈ S, we denote its parent set by PaG(s) = {s′|(s′→s) ∈ A}
and its child set ChG(s) = {s′|(s→s′) ∈ A}. Correspondingly, We denote the edge sets start and
end at s as A(s) = {(s→s′)|s′ ∈ ChG(s)} and Ȧ(s) = {(s′→s)|s′ ∈ PaG(s)} respectively. The
complete trajectory set is defined as T = {τ = (s0 → · · · → sT )|∀(s→s′) ∈ τ : (s→s′) ∈ A}.
We use τ⪰s to denote the sub-trajectory that starts at s, and τ≥t the sub-trajectory that starts at st.

For the DAG G in GFlowNets, we have two special states: the initial state s0 with Pa(s0) = ∅ and
S0 = {s0}, and the final state sf with Ch(sf ) = ∅ and ST = {sf}. Furthermore, the terminal
state set, ST−1, covering the object set X with a reward function R : X → R+. For notation
compactness, we restrict G to be graded 1 so that ∀(s→s′) ∈ A, s ∈ St : s′ ∈ St+1. Accordingly,
A can be decomposed into

⋃T−1
t=0 At where At

⋂
At′ ̸=t = ∅ and at ∈ At represents an edge

(st→st+1) connecting S and St+1. The complete trajectory set is T = {τ = (s0→ . . .→sT )|s0 =
s0, sT = sf ;∀t ∈ {1, . . . , T} : (st−1→st) ∈ At−1}.

1Any DAG can be equivalently converted to be graded by adding dummy non-terminating states. Please
refer to Appendix A of Malkin et al. (2022b) for more details.

2



Under review as a conference paper at ICLR 2024

2.2 GFLOWNETS

GFlowNets aim at efficient sampling from P ∗(x) := R(x)
Z∗ , where Z∗ =

∑
x∈X R(x) and directly

computing Z∗ is often challenging with typically large |X |. To achieve this, GFlowNets define
a probability measure F (τ) : T → R+ (Bengio et al., 2023), termed as ‘flow’, so that for any
event E, F (E) =

∑
τ∈E F (τ) and the total flow Z = F (s0) = F (sf ). For any event E and E′,

P (E) := F (E)/Z and P (E|E′) := F (E∪E′)
F (E′) . Furthermore, F is restricted to be Markovian, which

means that ∀τ = (s0, . . . , sT = sf ) ∈ T :

P (τ) =

T∏
t=1

PF (st|st−1), PF (st|st−1) := P (st−1→st|st−1) =
F (st−1→st)
F (st−1)

, (1)

where F (s→s′) =
∑
τ∈{τ |(s→s′)∈τ} F (τ) and F (s) =

∑
τ∈{τ |s∈τ} F (τ). Similarly, we can de-

fine PB(st−1|st) := P (st−1 → st|st) = F (st−1→st)
F (st)

. For a desired F , we require PT(x) :=

P (x→sf ) = P ∗(x). As shown in Bengio et al. (2023), the necessary and sufficient condition is:∑
s∈Pa(s′)

F (s→s′) =
∑

s′′∈Ch(s)

F (s′→s′′), ∀s′ ∈ S \ {s0, sf}, (2)

where we clamp F (x→sf ) = R(x) for any x ∈ X .

Directly estimating the transition flow F (s→s′) via the flow matching objective (Bengio et al., 2021)
can suffer from the explosion of F values, of which the numerical issues may lead to the failure of
model training. In practice, the Trajectory Balance (TB) objective has been shown to achieve the
state-of-the-art training performance (Malkin et al., 2022a). With the TB objective, the desired flow
is estimated by the total flow Z and a pair of forward/backward policies, PF (s′|s) and PB(s|s′).
The TB objective LTB(PD) of a trajectory data sampler PD is defined as:

LTB(PD) := EPD(τ)[LTB(τ)], LTB(τ) =

(
log

PF (τ |s0)Z
PB(τ |x)R(x)

)2

. (3)

In the equation above, PF (τ |s0) =
∏T
t=1 PF (st|st−1) with PF (τ) = PF (τ |s0) and PF (τ |x) =

PF (τ)/P
⊤
F (x) by assumptions of GFlowNets. Correspondingly, PB(τ |x) =

∏T−1
t=1 PB(si−1|si),

PB(τ) := (R(x)/Z∗)PB(τ |x), and PB(τ |s0) = PB(τ). Furthermore, we define µ(s0 = s0) :=

Z/Ẑ as the distribution over S0 so that PF (τ) = PF,µ(τ) := PF (τ |s0)µ(s0), where Ẑ is a constant
whose value is clamped to Z. We define PB,ρ(τ) := PB(τ |x)ρ(s0) with a chosen distribution ρ(·).

3 POLICY GRADIENTS FOR GFLOWNET TRAINING

Following Malkin et al. (2022b), we first extend the relationship between the GFlowNet training
strategies based on the TB objective and KL divergence. With the extended equivalence, we then
introduce our policy-based and coupled training strategies for GFlowNets. Finally, we present theo-
retical analyses on our proposed strategies.

3.1 GRADIENT EQUIVALENCE

When choosing trajectories sampler PD(τ) = PF (τ), the gradient equivalence between using the
KL divergence and TB objective has been proven (Malkin et al., 2022b). However, this forward
gradient equivalence does not take the total flow estimator, Z, into account. Moreover, the backward
gradient equivalence requires computing the expectation over P⊤

B (x) = R(x)/Z∗, which is not
feasible. In this work, we extend the proof of the gradient equivalence to take all gradients into
account and remove the dependency on unknown Z∗, while keeping feasible computation.

3



Under review as a conference paper at ICLR 2024

Proposition 1. Given a parametrized forward policy PF (·|·; θ), a backward policy PB(·|·;ϕ), and
a total flow estimator Z(θ), the gradient of the TB objective can be written as:

1

2
∇θLTB(PF ; θ) = ∇θ{Dµ(·;θ)

KL (PF (τ |s0; θ), PB(τ |s0)) +
1

2
(logZ(θ)− logZ∗)

2}

= ∇θDµ(·;θ)
KL (PF (τ |s0; θ), P̃B(τ |s0)); (4)

1

2
∇ϕLTB(PB,ρ;ϕ) = ∇ϕDρ

KL(PB(τ |x;ϕ), PF (τ |x)) = ∇ϕD
ρ
KL(PB(τ |x;ϕ), P̃F (τ |x)). (5)

Remark 1. We note that training via TB was intrinsically done in an off-policy setting, so
∇LTB(PD) = EPD(τ)[∇LTB(τ)] for any choice of PD.

In the equations above, P̃F (τ |x) = PF (τ) and P̃B(τ |s0) := R(x)

Ẑ
PB(τ |x), denoting two un-

normalized distributions of PF (τ |x) and PB(τ |s0). For arbitrary distributions p, q, and u,
Du

KL(p(·|s), q(·|s)) := Eu(s)[DKL(p(·|s), q(·|s))].
The proof is provided in Appendix A.1. As the TB objective is a special case of the Sub-Trajectory
Balance (Sub-TB) objective (Madan et al., 2023), we also provide the proof of the gradient equiva-
lence with respect to the Sub-TB objective in Appendix A.3, where the initial distribution µ becomes
non-trivial.

3.2 RL FORMULATION OF GFLOWNET TRAINING

Inspired by the equivalence relationship in Proposition 1, we propose new reward functions that
allow us to formulate GFlowNet training as RL problems, and a corresponding policy-based training
strategy.

Definition 1 (Policy-dependent Rewards). For any action corresponding to a := (s→s′) ∈
A(s)(a ∈ Ȧ(s′)), we define two reward functions as:

RF (s, a; θ) := log
πF (s, a; θ)

πB(s′, a)
, RB(s

′, a;ϕ) := log
πB(s

′, a;ϕ)

πF (s, a)
, (6)

where πF (s, a; θ) := PF (s
′|s; θ), πB(s′, a;ϕ) := PB(s|s′;ϕ), πB(x, a) is clamped to R(x)/Ẑ for

a = (x→sf ). For any a /∈ A(s), RF (s, a) := 0. For any a /∈ Ȧ(s′), RB(s′, a) := 0.

Tuples (S,A,G, RF ) and (S, Ȧ,G, RB) specify two Markov Decision Processes (MDPs) with non-
stationary rewards. In the MDPs, G specifies a deterministic transition environment such that
P (s′|s, a) = 1s′:(s→s′)=a. (G, πF ) and (G, πF ) corresponds to two absorbing Markovian chains.
Accordingly, the nature of DAGs allows us to define time-invariant expected value functions of
states and state-action pairs, which are defined as VF (s) := EPF (τ>t|st)[

∑T−1
t′=t RF (st′ , at′)|st = s]

and QF (s, a) := EPF (τ>t+1|st,at)[
∑T−1
t′=t RF (st′ , at′)|st = s, at = a]. Then we define JF :=

Eµ(s0)[VF (s0)], AF (s, a) := QF (s, a) − VF (s), and dF,µ(s) := 1
T

∑T−1
t=0 PF (st = s). We

likewise denote the functions for the backward policy as {VB , QB , JB , AB , dB,ρ}. More details
are provided in Appendix B.1. By definition, VF (s0) = EPF (τ>t|s0)[

∑T−1
t′=0 RF (st′ , at′)|s0] =

DKL(PF (τ |s0), P̃B(τ |s0)) , so JF = Dµ
KL(PF (τ |s0), P̃B(τ |s0)). We can obtain JB =

Dρ
KL(PB(τ |x), P̃F (τ |x)). We can then conclude that GFlowNet training can be converted into

minimizing the expected value function JF and JB by Proposition 1. By the derivation of∇JF and
∇JB that are provided in Appendix B.3, minimizing JF and JB is equivalent to updating πF ,πB
and µ by the following two objectives:

min
π′
F ,µ

′
T · EdF,µ(s),π′

F (s,a) [AF (s, a)] + Eµ′(s0)[VF (s0)], min
π′
B

T · EdB,ρ(s),π′
B(s,a) [AB(s, a)] (7)

where (dF,µ, AF , VF ) and (dB,ρ, AB) corresponds to (πF , µ) and πB . Our policy-based method
generalizes the TB-based training with PD = PF in two aspects. First, it can be shown that with
gradient estimation based on a batch of trajectories, TB-based training corresponds to approximate
Q(s, a) empirically based on the batch data and reduces the estimation variance by a constant base-
line. By contrast, Q(s, a) is approximated functionally, and V (s) serves as a functional baseline for

4



Under review as a conference paper at ICLR 2024

variance reduction in our policy-based method, which typically renders more robust gradient esti-
mation Schulman et al. (2016) (see Appendix B.4). Second, our policy-based methods intrinsically
correspond to minimizing the KL divergence between two distributions. This does not require G
to be a DAG. Thus, it allows cycles for more flexible modeling of the generation process of object
x ∈ X , which we leave as future work.

Moreover, it is known that policy-based methods may suffer from the high variance of gradient
estimators (Agarwal et al., 2019). Trust-Region Policy optimization (TRPO) (Schulman et al., 2015)
is a popular policy-based method used in RL, where it is proved that it can lead to a non-decreasing
performance gain via constraining the policy update size and thus increase the training stability.
Then, πF and µ are updated by the following TRPO-based objective:

min
π′
F ,µ

′
T · EdF,µ(s),π′

F (s,a) [AF (s, a)] + Eµ′(s0)[VF (s0)] s.t. DdF,µ

KL (πF (s, a), π
′
F (s, a)) ≤ δ (8)

The objective for PB can be defined in a similar way and is omitted here. Our method can be seen
as a generalization of the original method to MDPs where the reward is policy-dependent, and the
induced Markov chain is absorbing. We defer the corresponding proof for its performance analysis
in Section 3.4. Details of model parameter updating rules by our policy-based and TRPO-based
methods are provided in Appendix B.5.

3.3 RL FORMULATION OF GUIDED BACKWARD POLICY DESIGN

During training of GFlowNets, (PB , R) specifies the amount of desired flow that (PF , Z) is opti-
mized to match. While PB(·|·) can be chosen free in principle (Bengio et al., 2023), a well-designed
PB that assigns high probabilities over sub-trajectories preceding the terminating state x with a high
reward value R(x), will improve training efficiency. Following (Shen et al., 2023), we formulate
the design problem as minimizing the following objective:

LTB−G(P
ρ
B) := EPρ

B(τ)[LTB−G(τ)], LTB−G(τ ;ϕ) :=

(
log

PB(τ |x;ϕ)
P̃G(τ |x)

)2

(9)

where PG(τ |x) =
∏T−1
t=0 PG(st−1|τ≥t) is called the guided backward trajectory distribution, which

can be non-Markovian, , and PG(τ) = PG(τ |x)R(x)/Z∗. As required by the training w.r.t PF ,
objective LTB−G aims at finding the backward policy whose Markovian flow best matches the non-
Markovian flow induced by PG2.

Proposition 2. Given PG and PB(·|·;ϕ), the gradients of LTB−G can be written as:

1

2
∇ϕLTB−G(P

ρ
B ;ϕ) = ∇ϕD

ρ
KL(PB(τ |x;ϕ), PG(τ |x)) (10)

The proof can be found in Appendix A.2. Based on the proposition, we propose a new reward that
allows us to formulate the backward policy design problem as an RL problem.

Definition 2. Given a guided backward trajectory distribution PG(τ |x), we define a reward function
for any action a := (s→s′) ∈ Ȧ(s′) as:

RGB(s
′, a;ϕ) := log

πB(s
′, a;ϕ)

πG(s′, a)
, (11)

where πG(s′, a) := PG(s|τ⪰s′). For any a /∈ Ȧ(s′), RGB(s′, a) := 0.

Accordingly, we denote the associated function set as {V GB , QGB , JGB , AGB , dGB,ρ}, which are defined
in a similar way as RB but replacing PF by PG.

By the definition of JGB and Proposition 2, we can conclude that ∇ϕJGB (ϕ) = 1
2∇ϕLTB−G(P

ρ
B ;ϕ)

and the design of backward policy can be solved by minimizing JGB . The form of PG will be detailed
in the experiment section for the corresponding tasks.

2By non-Markovian assumption, PG(τ |x) can factorize in arbitrary ways condition on x. Here it is assumed
to factorize in the backward direction for notation compactness.

5



Under review as a conference paper at ICLR 2024

Algorithm 1 GFlowNet Training Workflow

Require: PF (·|·; θ), Z(θ), PB(·|·;ϕ), PG(·|·)
for n = {1, . . . , N} do
D ← {τ̂ |τ̂ ∼ PF (τ ; θ)}
Update θ w.r.t RF and D
if ϕ ̸= ∅ then
Ḋ ← {τ̂ |∀x ∈ D : τ̂ |x ∼ PB(τ |x)}
if PG(τ̂ |x) ̸= PB(τ̂ |x) then

Updated ϕ w.r.t RGB and Ḋ
else

Updated ϕ w.r.t RB and Ḋ
end if

end if
end for

R(x)/Z
*

PF(τ)

PB(τ)

PG(τ)

PF
T
(x)DKL

DKL

Figure 1: Dotted lines illustrate the spanning range
of trajectories for one-dimensional states. PB and
PG share the fixed terminating distribution over x.
When pushing PF to match PB trajectory-wise,
P⊤
F (x) will also be pushed to match R(x)/Z∗.

Following the pipeline by Shen et al. (2023), we must solve the optimization of LTB−G to find the
desired PB at first. Then, fixing PB , we can optimize LTB to find the desired PF . This gives rise
to training inconvenience in practice. Since PG is not guaranteed to be a good policy, the learned
PB that approximate PG may also not be a good policy for the training w.r.t PF , putting the training
based on LTB−G in vain. Besides, it is troublesome if we want to dynamically design PB i.e. PG
is adapted from PF currently learned. In the next section, we further show that the RL formulation
allows us to optimize JF and JGB jointly.

The workflow of our coupled training strategy is summarized in Algorithm 1 and depicted by Fig. 1.

3.4 PERFORMANCE ANALYSIS

In the previous sections, we formulate two RL problems with respect to RF and RGB . Now, we show
below that the two problems can be solved jointly.

Theorem 1. Denoting JGF the corresponding function of RF when PB = PG and choosing ρ(x) =
P⊤
F (x), JGF , JF and JGB satisfy the following inequality:

JGF ≤ JF + JGB +RG,maxB

√
1

2
(JF + logZ∗ − logZ), (12)

where RG,maxB = maxs,aR
G
B(s, a).

The proof is given in Appendix C.1. As shown in Proposition 1, minimization of JF will incur the
decrease of DKL(PF (τ |s0), PB(τ |s0)) = JF + logZ∗ − logZ. Thus, by minimizing JF and JGB
jointly, the upper bound of JGF decreases.

In the previous sections, we have also introduced the TRPO-based method besides the vanilla policy-
based methods. Based on the bounds below, the TRPO-based method can be derived following a
similar procedure in Schulman et al. (2015) and Achiam et al. (2017).

Theorem 2. For two forward policies (πF , π′
F ) withD

d′F,µ

KL (π′
F (·, s), πF (·, s)) < δF , and two back-

ward policies (πB , π′
B) with D

d′B,ρ

KL (π′
B(·, s), πB(·, s)) < δB

1

T
(JF − J ′

F ) ≤ Ed′F,µ(s)πF (s,a)[A
′
F (s, a)] + ϵ′F (2δF )

0.5 + δF ,

1

T
(JB − J ′

B) ≤ Ed′B,ρ(s)πB(s,a)[A
′
B(s, a)] + ϵ′B(2δB)

0.5 + δB ,

(13)

where ϵ′F = maxsEπF (s,a)[A
′
F (s, a)] and ϵ′B = maxsEπB(s,a)[A

′
B(s, a)]. Similar results also

apply to JGB and AGB for the backward policy PB .

The proof is given in Appendix C.2.

6



Under review as a conference paper at ICLR 2024

3.5 RELATED WORK

GFlowNet training GFlowNets were first proposed by Bengio et al. (2021) and trained by an Flow
Matching (FM) objective, which aims at minimizing the mismatch of equation 2 w.r.t a parameter-
ized state flow estimator F (s) and a parameterized edge flow estimator F (s→ s′) directly. Bengio
et al. (2023) reformulated equation 2 and proposed a Detailed Balance (DB) objective, where edge
flow F (s → s′) are represented by F (s)PF (s′|s) or F (s′)PB(s|s′). Malkin et al. (2022a) claimed
that the FM objective and DB objective are prone to inefficient credit propagation across long trajec-
tories and showed the TB objective as the more efficient alternative. Madan et al. (2023) proposed a
Sub-TB objective that unified the TB and DB objectives as special cases, which can be considered
as Sub-TB objectives with sub-trajectories, which are complete or of length 1 respectively. Zimmer-
mann et al. (2022) proposed KL-based training objectives and Malkin et al. (2022b) first established
the equivalence between the KL and TB objectives. Shen et al. (2023) analyzed how the TB objec-
tive learns the desired flow under the sequence prepend/append MDP setting, and proposed a guided
trajectory balance objective.

Variational inference In recent approximate Bayesian inference development (Koller & Fried-
man, 2009), many generative models based on amortized VI (Zhang et al., 2018) and Deep Neural
networks (DNNs) have shown promising potential to model complex processes (Kingma & Welling,
2014; Burda et al., 2015). These models typically involve minimizing the selected divergence mea-
sures between the target distribution and the variational distribution parametrized by DNNs. Hierar-
chical Variational Inference (HVI) models (Vahdat & Kautz, 2020; Zimmermann et al., 2021) gen-
eralize these models to better explore specific statistical dependency structures between observed
variables and latent variables by introducing the hierarchy of latent variables. GFlowNets can be
considered as a special HVI model, where non-terminating states are latent variables, the hierar-
chy corresponds to a DAG, and the task of minimizing divergences is achieved by keeping the flow
balance (Malkin et al., 2022b). Our work provides another view of divergence minimizing by inter-
preting the divergence as the expected accumulated reward.

Policy-based RL Policy-based RL methods typically aim to optimize the expected value function
J directly based on policy gradients (Sutton et al., 1999). The most relevant policy-based methods
are the Actor-Critic method (Sutton & Barto, 2018) and Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015) along with its extension – Constrained Policy Optimization (CPO) (Achiam
et al., 2017). Compared to our methods, they work under the assumption that the reward functions
must be fixed w.r.t. policies. The underlying Markov chains are further assumed to be ergodic by
CPO and TRPO.

Imitation learning Imitation learning in RL is to learn a policy that mimics the expert demonstra-
tions with limited expert data, by minimizing the gap between the learned policy and expert policy
measured by the 0− 1 loss or Jensen–Shannon divergence empirically (Rajaraman et al., 2020; Ho
& Ermon, 2016). For GFlowNet training in this work, we reduce the gap between the forward policy
and the expert forward policy at the trajectory level, as the expert trajectory distribution is equal to
PB(τ), implicitly encouraging the learned policy to match the desired expert policy.

Bi-level optimization Our proposed training strategy can also be seen as a Stochastic Bi-level
Optimization method for GFlowNet training (Ji et al., 2021; Hong et al., 2023; Ghadimi & Wang,
2018). The inner problem is the RL problem w.r.t RB or RGB for designing backward policies. The
outer problem is the RL problem w.r.t RF for forward policies. For gradient-based solutions to Bi-
level optimization in general, the learning rate of inner problems is carefully selected to guarantee
the overall convergence, which is not required in our method specifically designed for GFlowNet
training.

4 EXPERIMENTS

To compare our policy-based training strategies for GFlowNets with the existing value-based strat-
egy based on the TB objective, we have conducted three simulated experiments for hyper-grid mod-
eling, two real-world experiments for sequence design and one study on Bayesian Network structure

7



Under review as a conference paper at ICLR 2024

50K 100K 150K 200K
Number of sampled trajectories

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l V
ar

ia
tio

n

DB-U
DB-B
TB-U
TB-B
RL-U
RL-B
RL-T
RL-G

50K 100K 150K 200K
Number of sampled trajectories

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l V
ar

ia
tio

n

DB-U
DB-B
TB-U
TB-B
RL-U
RL-B
RL-T
RL-G

50K 100K 150K 200K
Number of sampled trajectories

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l V
ar

ia
tio

n

DB-U
DB-B
TB-U
TB-B
RL-U
RL-B
RL-T
RL-G

Figure 2: Training curves of DTV between P⊤
F (x) and P ∗(x) for 256 × 256 (left), 128 × 128 ×

128 (middle) and 32× 32× 32× 32 hyper-grids (right).

learning. The detailed descriptions of experimental settings can be found in Appendix D. We com-
pare the performance of GFlowNets by the following training strategies: (1) DB-U: DB-based train-
ing strategy with a fixed uniform PB(·|·); (2) TB-U: TB-based training strategy with a fixed uniform
PB(·|·); (3) RL-U: our proposed policy-based training strategy with a fixed uniform PB(·|·); (4)
RL-T: our TRPO-based training strategy with a fixed uniform PB(·|·); (5) DB-B: DB-based training
strategy with a parameterized PB(·|·); (6) TB-B: TB-based training strategy with a parameterized
PB(·|·); (7) RL-B: our proposed policy-based training strategy with a parameterized PB(·|·); and
(8) RL-G: our joint training strategy based on policy gradients with guided distribution PG.

4.1 HYPER-GRID MODELING

In this experiment, we use the hyper-grid environment following Malkin et al. (2022b). In terms
of GFlowNets, states are the coordinate tuples of an D-dimensional hyper-cubic grid with heights
equal to N . The initial state s0 is 0. Starting from s0, actions correspond to increasing one of D
coordinates by 1 for the current state or stopping the process at the current state and outputting it
as the terminating state x. A manually designed reward function R(·) assigns high reward values to
some grid points while assigning low values to others. We conduct experiments on 256×256, 128×
128×128 and 32×32×32×32 grids. The obtained results across five runs are shown in Fig. 2 and
Table 1 in the Appendix. We use the total variation DTV and Jensen–Shannon divergence DJSD to
measure the gap between P⊤

F (x) and P ∗(x), where P⊤
F (x) is computed by dynamic programming.

We use Ttrain to denote the average training time (in minutes). The graphical illustrations of P⊤
F (x)

and P ∗(x) are shown in Figs. 7 and 8 in the Appendix.

In the first setting, it can be observed that our policy-based RL-U or RL-B performs better than the
existing GFlowNet training methods by DB-U, TB-U, DB-B, or TB-B. With the parametrized back-
ward policy, RL-B achieves the second-best performance. This shows that our policy-based training
strategies give a more robust gradient estimation. Besides, RL-G achieves the best performance
and converges much faster than all the other competing methods. In RL-G, the guided distribution
assigns small values to the probability of terminating at coordinates with low rewards. This pre-
vents the forward policy from falling into the reward ‘desert’ between the highly isolated modes.
Finally, RL-T outperforms DB-U, TB-U, DB-B and TB-B, and it behaves more stably during train-
ing. This confirms that with the help of trust regions, the gradient estimator becomes less sensitive
to environment noises. It, however, performs slightly worse than RL-U. This phenomenon may be
ascribed to the choice of hyper-parameter δF that may over-regularize PF . It is expected that using a
proper scheduler of δF during training may further improve the performance. In the second setting,
RL-U achieves better results than DB-U and TB-U as expected. While the performance of RL-B
is similar to TB-B, it converges faster with respect to the number of sampled training trajectories.
Thus, the results further support the effectiveness of our policy-based methods. Besides, RL-G and
RL-T achieve the second-best and the best performances and RL-T shows faster convergence and
better stability than RL-G. This again shows the superiority of coupled and TRPO-based strategies,
confirming our theoretical analysis conclusions. In the third setting, while policy-based methods
generally perform better than the flow-balance-based methods, the performance gap between policy-
based methods and value-based methods is not as obvious as in the former two cases. This may be
ascribed to that environment heights H may have more influence on the modeling difficulty than
environment dimension N as hyper-grids are homogeneous w.r.t each dimension.

8



Under review as a conference paper at ICLR 2024

50K 100K 150K 200K
Number of sampled trajectories

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

To
ta

l V
ar

ia
tio

n

DB-U
DB-B
TB-U
TB-B
RL-U
RL-B
RL-T
RL-G

Figure 3: Training curves of
DTV between P⊤

F (x) and
P ∗(x) for the SIX6 dataset.

50K 100K 150K 200K
Number of sampled trajectories

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

To
ta

l V
ar

ia
tio

n

DB-U
DB-B
TB-U
TB-B
RL-U
RL-B
RL-T
RL-G

Figure 4: Training curves for the
QM9 dataset.

50K 100K 150K 200K
Number of sampled trajectories

0.0

0.1

0.2

0.3

0.4

0.5

0.6

To
ta

l V
ar

ia
tio

n

DB-U
DB-B
TB-U
TB-B
RL-U
RL-B
RL-T
RL-G

Figure 5: Training curves for
the BN structure learning exper-
iment.

4.2 SEQUENCE DESIGN

In this set of experiments, we use GFlowNets to generate nucleotide strings of length D and molec-
ular graphs composed of D blocks according to given rewards. The initial state s0 = ∅ is an empty
sequence. The generative process runs as follows: starting from s0, an action is taken to pick one of
the empty slots and fill it with one element until the whole sequence is fulfilled. Then the sequence
is returned as the terminating state x. We use the SIX6 dataset composed of strings of length 8
and the QM9 dataset composed of molecular graphs with five blocks in Shen et al. (2023). The
experimental results across five runs are summarized in Table 9, Figs. 3 and 4. For the SIX6 dataset,
DB-B achieves the best performance, but its stability is poor compared to the other methods. Except
for DB-B, RL-G still achieves the best performance. Besides, our policy-based methods generally
perform better than TB-based methods. For the QM9 dataset, our policy-based methods also per-
form better than TB-based methods and RL-G achieves the best performance. These results support
policy-based strategies as alternative ways for GFlowNet training.

4.3 BAYESIAN NETWORK STRUCTURE LEARNING

In this experiment, we investigate GFlowNets for Bayesian Network (BN) structure learning follow-
ing the settings adopted in Deleu et al. (2022). The set X in GFlowNets here corresponds to a set
of BN structures, which are also DAGs. BN structure learning can be understood as approximating
P (x|D) ∝ R(x) given a dataset D. With a set of nodes, the state space for GFlowNets is the set
of all possible DAGs over the given nodes. The actions correspond to adding edges over a DAG
without introducing a cycle. The generative process of a BN structure is interpreted as starting from
an empty graph, an action is taken to decide to add an edge or terminate the generative process at
the current graph structure. The number of possible DAGs grows exponentially with the number of
nodes. We here test the same benchmark for fair comparisons with previous works (Deleu et al.,
2022; Malkin et al., 2022b) with the number of nodes set to 5 and the corresponding total numbers
of DAGs is about 2.92 × 104. The experimental results across five runs are shown in Fig. 5 and
Table 2 in the Appendix. The graphical illustrations of P⊤

F (x) and P ∗(x) are shown in Fig. 11. As
shown in the figures, all methods achieve similar performances, which can be ascribed to the fact
that the state space is relatively small. Nevertheless, RL-T achieves the best performance, and both
RL-T and RL-G achieve fast convergence. These results further demonstrate the effectiveness of our
policy-based methods for GFlowNet training.

5 CONCLUSION, LIMITATIONS AND FUTURE WORKS

This work bridges the flow-balance-based GFlowNet training to RL problems. We developed policy-
based training strategies, which provide alternative ways to improve training performance compared
to the existing value-based strategies. The experimental results support our claims. By formulating
the training task as optimizing an expected accumulative reward, our policy-based training strategies
are not limited to the cases where G must be a DAG. The consequent work will focus on extending
the proposed methods to general G with the existence of cycles for more flexible modeling of gener-
ative processes. Besides, while our policy-based training strategies do not require an explicit design
of a data sampler and are shown to achieve better GFlowNet training, they may still get trapped into
local optima due to the variance of gradient estimation when the state space is very large. Thus. fu-
ture research will also focus on further improving policy-based methods, with more robust gradient
estimation according to the explained gradient equivalence relationship.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. In Proceedings of
the 29th International Coference on International Conference on Machine Learning, pp. 179–186,
2012.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. In Uncertainty
in Artificial Intelligence, pp. 518–528. PMLR, 2022.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Effat Golpar Raboky and Tahereh Eftekhari. On nilpotent interval matrices. Journal of Mathematical
Modeling, 7(2):251–261, 2019.

Charles Grinstead and Laurie J Snell. Introduction to probability. 2006.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving linear systems.
Journal of research of the National Bureau of Standards, 49(6):409–436, 1952.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM
Journal on Optimization, 33(1):147–180, 2023.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
design. In International conference on machine learning, pp. 4882–4892. PMLR, 2021.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and
Yann LeCun (eds.), ICLR, 2014. URL http://dblp.uni-trier.de/db/conf/iclr/
iclr2014.html#KingmaW13.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Jack Kuipers, Giusi Moffa, and David Heckerman. Addendum on the scoring of gaussian directed
acyclic graphical models. 2014.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from
partial episodes for improved convergence and stability. In International Conference on Machine
Learning, pp. 23467–23483. PMLR, 2023.

10

http://dblp.uni-trier.de/db/conf/iclr/iclr2014.html#KingmaW13
http://dblp.uni-trier.de/db/conf/iclr/iclr2014.html#KingmaW13


Under review as a conference paper at ICLR 2024

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems,
35:5955–5967, 2022a.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J Hu, Katie E Everett, Dinghuai
Zhang, and Yoshua Bengio. Gflownets and variational inference. In The Eleventh International
Conference on Learning Representations, 2022b.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Nived Rajaraman, Lin Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamental limits
of imitation learning. Advances in Neural Information Processing Systems, 33:2914–2924, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Proceedings of the
International Conference on Learning Representations (ICLR), 2016.

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving GFlowNet training. arXiv preprint
arXiv:2305.07170, 2023.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667–19679, 2020.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in variational
inference. IEEE transactions on pattern analysis and machine intelligence, 41(8):2008–2026,
2018.

Heiko Zimmermann, Hao Wu, Babak Esmaeili, and Jan-Willem van de Meent. Nested variational
inference. Advances in Neural Information Processing Systems, 34:20423–20435, 2021.

Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, and Christian A Naesseth. A
variational perspective on generative flow networks. Transactions on Machine Learning Research,
2022.

11



Under review as a conference paper at ICLR 2024

A GRADIENT EQUIVALENCE

Lemma 1. (REINFORCE trick (Williams, 1992)) Given a random variable u following a dis-
tribution p(·|ψ) parameterized by ψ and a arbitrary function f , we have ∇ψEp(u;ψ)[f(u)] =
Ep(u;ψ)[f(u)∇ψlogp(u;ψ)].

A.1 PROOF OF PROPOSITION 1

Proof. First of all, we split the parameter of the total flow estimator and forward transition prob-
ability and denote them as Z(θZ) and PF (·|·; θF ) respectively. Besides, we define c(τ) =(
log PF (τ |s0)

R(x)PB(τ |x)

)
. For the gradients w.r.t θF :

1

2
EPF (τ ;θF )[∇θFLTB(τ ; θF )] =

1

2
EPF,µ(τ ;θF )

[
∇θF (c(τ ; θF ) + logZ)

2
]

= EPF,µ(τ ;θF ) [(c(τ ; θF ) + logZ)∇θF logPF (τ |s0; θF )]
= EPF,µ(τ ;θF ) [(c(τ ; θF ) + logZ)∇θF logPF (τ |s0; θF )] + EPF,µ(τ ;θF ) [∇θF (c(τ ; θF ) + logZ)]︸ ︷︷ ︸

=0

(14)

where the second terms are equal to zeros as EPF (τ |s0;θF )[∇θF c(τ ; θF )] =
EPF (τ |s0;θF )[∇θF logPF (τ |s0; θF )] = 0 by Lemma 1. Thus,

1

2
EPF (τ ;θF )[∇θFLTB(τ ; θF )] = Eµ(s0)

[
∇θFEPF (τ |s0;θF ) [c(τ ; θF ) + logZ]

]
= Eµ(s0)

[
∇θFDKL(PF (τ |s0; θF ), P̃B(τ |s0))

]
= ∇θFD

µ
KL(PF (τ |s0; θF ), P̃B(τ |s0)) (15)

Besides, we have:

e.q.15
= ∇θFD

µ
KL(PF (τ |s0; θF ), P̃B(τ |s0)) +∇θFEPF,µ(τ ;θF ) [logZ

∗ − logZ]︸ ︷︷ ︸
=∇θF

(logZ∗−logZ)=0

=∇θFD
µ
KL(PF (τ |s0; θF ), PB(τ |s0)) (16)

The gradients w.r.t θZ is:

1

2
EPF (τ)[∇θZLTB(τ ; θZ)] =

1

2
EPF (τ)

[
∇θZ (c(τ) + logZ(θZ))

2
]

= EPF (τ) [(c(τ) + logZ(θZ))∇θZ logZ(θZ)]
= [DKL(PF (τ |s0), P̃B(τ |s0))][∇θZ logZ(θZ)]

= ∇θZ
Z(θZ)

Ẑ
DKL(PF (τ |s0), P̃B(τ |s0))

= ∇θZD
µ(·;θZ)
KL (PF (τ |s0), P̃B(τ |s0)) (17)

Besides, we have:

e.q.17
= [∇θZ logZ(θZ)][DKL(PF (τ |s0; θF ), P̃B(τ |s0)) + log

Z∗

Z∗ ]

=[∇θZ logZ(θZ)][DKL(PF (τ |s0; θF ), PB(τ |s0)) + log
Z(θZ)

Z∗ ]

=∇θZ
Z(θZ)

Ẑ
[DKL(PF (τ |s0; θF ), PB(τ |s0))] +

[
∇θZ log

Z(θZ)

Z∗

] [
log

Z(θZ)

Z∗

]
=∇θZD

µ(·;θZ)
KL (PF (τ |s0; θF ), PB(τ |s0)) +

1

2
∇θZ

[
log

ZθZ

Z∗

]2
(18)

12



Under review as a conference paper at ICLR 2024

Combine equation 15 and 17, we obtain:
1

2
EPF (τ ;θ)[∇θLTB(τ ; θ)] = ∇θD

µ(·;θ)
KL (PF (τ |s0; θ), P̃B(τ |s0))] (19)

Combine equation 16 and 18, we obtain:
1

2
EPF (τ ;θ)[∇θLTB(τ ; θ)] = ∇θ

{
D
µ(·;θ)
KL (PF (τ |s0; θ), PB(τ |s0))] +

1

2
(logZ(θZ)− logZ∗)

2

}
(20)

Now let’s consider the backward gradients and denote c(τ) =
(
log PB(τ |x)

PF (τ)

)
.

1

2
EPB,ρ(τ ;ϕ)[∇ϕLTB(τ)]

= EPB,ρ(τ ;ϕ) [(c(τ ;ϕ) + logR(x)− logZ)∇ϕlogPB(τ |x;ϕ)]
= EPB,ρ(τ ;ϕ) [c(τ ;ϕ)∇ϕlogPB(τ |x;ϕ)] + Eρ(x)

[
(logR(x)− logZ)EPB(τ |x;ϕ)[∇ϕlogPB(τ |x;ϕ)]︸ ︷︷ ︸

=0 by Lemma 1

]
= EPB,ρ(τ ;ϕ)[c(τ ;ϕ)∇ϕlogPB(τ |x;ϕ)] + EPB,ρ(τ ;ϕ)[∇ϕc(τ ;ϕ)]︸ ︷︷ ︸

=0 by Lemma 1

= Eρ(x)[∇ϕDKL(PB(τ |x;ϕ), P̃F (τ |x))]
= ∇ϕDρ

KL(PB(τ |x;ϕ), P̃F (τ |x)) (21)
Besides, we have

(21)
= ∇ϕDρ

KL(PB,ρ(τ |x;ϕ), P̃F (τ |x)) + Eρ(x)
[
∇ϕEPB(τ |x;ϕ)[logP

⊤
F (x)]︸ ︷︷ ︸

=logP⊤
F (x)∇ϕ1=0

]
= ∇ϕDρ

KL(PB(τ |x;ϕ), P̃F (τ |x)) +∇ϕEPB,ρ(τ ;ϕ)[logP
⊤
F (x)] (22)

= ∇ϕDρ
KL(PB(τ |x;ϕ), PF (τ |x)) (23)

A.2 PROOF OF PROPOSITION 2

Proof. The proof can be done by a procedure similar to that of PB in proposition 1 by replacing
P̃F (τ |x) with PG(τ |x).

A.3 SUB-TRAJECTORY EQUIVALENCE

Proposition 2 in the paper by Malkin et al. (2022b) only considered the gradients of the Sub-TB
objective (Madan et al., 2023) w.r.t PF (·|·) and PB(·|·). We provide an extended proposition below
that also takes the gradients w.r.t state flow estimator F (·) into consideration. For any m < n and
n,m ∈ {1, T − 1}, we denote the set of sub-trajectories that start at some state in Sm and end in
some state in Sn as T̄ = {τ̄ = (sm→ . . .→sn)|∀i ∈ {m, . . . , n − 1} : (si→si + 1) ∈ Ai}. The
sub-trajectory objective LSub−TB(PD) = EPD(τ̄)[LSub−TB(τ̄)] is defined by:

LSub−TB(τ̄) = log

(
PF (τ̄ |sm)F (sm)

PB(τ̄ |sn)F (sn)

)2

, (24)

In the equations above, PF (τ̄ |sm) =
∏n
t=m+1 PF (st|st−1), PB(τ̄ |sn) =

∏n
t=m+1 PB(st−1|st)

and F (sn = x) is clamped to R(x). Besides, we define µ(sm) = F (sm)/Ẑm and ρ(sn) =

F (sn)/Ẑn where Ẑm and Ẑn are the two normalizing constants whose values are clamped to∑
sm
F (sm) and

∑
sn
F (sn). Furthermore, we define PF,µ(τ̄) = µF (sm)PF (τ̄ |sm) and PB(τ̄) =

ρB(sn)PB(τ̄ |sn) so that PF,µ(τ̄ |sn) = PF,µ(τ̄)/ρ
∗(sn) and PB,ρ(τ̄ |sm) = PB,ρ(τ̄)/µ

∗(sm),
where ρ∗(sn) = F ∗(sn)/Ẑ

∗
n, F ∗(sn) =

∑
τ̄ :sn∈τ̄ F (sm)PF (τ̄ |sm) is the ground-truth state

flow over Sn implied by PF , Ẑ∗
n =

∑
sn
F ∗(sn), µ∗(sm) = F ∗(sm)/Ẑ∗

m, F ∗(sm) =∑
τ̄ :sm∈τ̄ F (sn)PB(τ̄ |sn) is the ground-truth state flow over Sm implied by PB , and Ẑ∗

m =∑
sm
F ∗(sm).

13



Under review as a conference paper at ICLR 2024

Proposition 3. For a forward policy PF (·|·; θ), a backward distribution PB(·|·;ϕ), state flow
F (·; θ), and state flow F (·;ϕ)3, the gradients of Sub-TB can be written as:

1

2
∇θLSub−TB(PF,µ; θ) = ∇θDµ(·;θ)

KL (PF (τ̄ |sm; θ), PB,ρ(τ̄ |sm)) +∇θDKL(µ(sm), µ∗(sm))

= ∇θDµ(·;θ)
KL (PF (τ̄ |sm; θ), P̃B,ρ(τ̄ |sm)),

1

2
∇ϕLSub−TB(PB,ρ;ϕ) = ∇ϕDρ(·;ϕ)

KL (PB(τ̄ |sn;ϕ), PF,µ(τ̄ |sn)) +∇θDKL(ρ(sm), ρ∗(sm))

= ∇ϕDρ(·;ϕ)
KL (PB(τ̄ |sn;ϕ), P̃F,µ(τ̄ |sn))

(25)

where P̃F,µ(τ̄ |sn) := PF,µ(τ̄)/ρ(sn) and P̃B,ρ(τ̄ |sm) := PB,ρ(τ̄)/µ(sm) are approximation to
PF,µ(τ̄ |sn) and PB,ρ(τ̄ |sm).

Proof. First of all, we split the parameter of the state flow estimator and forward transition prob-
ability and denote them as F (·; θM ) and PF (·|·; θF ) respectively. Besides, we define c(τ̄) =(
log PF (τ̄ |sm)

F (sn)PB(τ̄ |sn)

)
For the gradients w.r.t θF :

1

2
EPF,µ(τ̄ ;θF )[∇θFLsub−TB(τ̄ ; θF )] =

1

2
EPF,µ(τ̄ ;θF )

[
∇θF (c(τ̄ ; θF ) + logF (sm))

2
]

= EPF,µ(τ̄ ;θF ) [(c(τ̄ ; θF ) + logF (sm))∇θF logPF (τ̄ |sm; θF )] + EPF,µ(τ̄ ;θF ) [∇θF (c(τ̄ ; θF ) + logF (sm))]︸ ︷︷ ︸
=0 by Lemma 1

= Eµ(sm)[∇θFDKL(PF (τ̄ |sm; θF ), P̃B,ρ(τ̄ |sm)]

= ∇θFD
µ
KL(PF (τ̄ |sm; θF ), P̃B,ρ(τ̄ |sm)) (26)

Besides,

1

2
EPF,µ(τ̄ ;θF )[∇θFLsub−TB(τ̄ ; θF )] =

1

2
EPF,µ(τ̄ ;θF )

[
∇θF (c(τ̄ ; θF ) + logF (sm))

2
]

= EPF,µ(τ̄ ;θF ) [c(τ̄ ; θ)∇θF logPF (τ̄ |sm; θF )] + Eµ(sm)

[
logF (sm)EPF (τ̄ |sm;θF ) [∇θF logPF (τ̄ |sm; θF )]︸ ︷︷ ︸

=0 by Lemma 1

]
= EPF,µ(τ̄ ;θF ) [c(τ̄ ; θF )∇θF logPF (τ̄ |sm; θF )] + EPF,µ(τ̄ ;θF ) [∇θF c(τ̄ ; θF )]︸ ︷︷ ︸

=0

= ∇θFEPF,µ(τ̄ ;θF ) [c(τ̄ ; θF )] + Eµ(sm)

[
∇θFEPF (τ̄ |sm;θF )[logµ

∗(sm)]︸ ︷︷ ︸
=logµ∗(sm)∇θF

1=0

]
+∇θF logẐn

= ∇θFEPF,µ(τ̄ ;θF ) [c(τ̄ ; θF )] +∇θFEPF,µ(τ̄ ;θF )[logµ
∗(sm) + logẐn]

= ∇θFD
µ
KL(PF (τ̄ |sm; θF ), PB,ρ(τ̄ |sm))] (27)

For the gradients w.r.t θM , we have:

1

2
EPF,µ(τ̄ ;θM )[∇θMLsub−TB(τ̄ ; θM )] =

1

2
EPF,µ(τ̄ ;θM )

[
∇θM (c(τ̄) + logF (sm; θM ))

2
]

= EPF,µ(τ̄ ;θM ) [(c(τ̄) + logF (sm; θM ))∇θF logF (sm; θM )]

= Eµ(sm;θM )

[
∇θF log

F (sm; θM )

Ẑm
DKL(PF (τ̄ |sm; θM ), P̃B(τ̄ |sm))

]
= ∇θMD

µ(·;θM )
KL (PF (τ̄ |sm), P̃B(τ̄ |sm)) (28)

3Here the Fθ and Fϕ actually share the same parameters and represent the same flow estimator F . Model
parameters are duplicated just for the clearness of gradient equivalences. Therefore the true gradient of the state
flow estimator F is ∇θFθ +∇ϕFϕ.

14



Under review as a conference paper at ICLR 2024

Besides,
1

2
EPF,µ(τ̄ ;θM )[∇θMLsub−TB(τ̄ ; θM )] =

1

2
EPF,µ(τ̄ ;θM )

[
∇θM (c(τ̄) + logF (sm; θM ))

2
]

= EPF,µ(τ̄ ;θM ) [c(τ̄)∇θF logF (sm; θM )] + Eµ(sm;θM ) [logF (sm; θM )∇θM logF (sm; θM )]

= EPF,µ(τ̄ ;θM )

[
(c(τ̄) + logµ∗(sm) + logẐn)∇θM logF (sm; θM )

]
+

Eµ(sm;θM )

[
(logF (sm; θM )− logµ∗(sm)− logẐm)∇θM logF (sm; θM )

]
(29)

where EPF,µ(τ̄ ;θM )

[
logẐn∇θM logF (sm; θM )

]
= EPF,µ(τ̄ ;θM )

[
logẐm∇θM logF (sm; θM )

]
= 0

by Lemma 1.

e.q 29
= Eµ(sm;θM )

[
∇θM log

F (sm; θM )

Ẑm
DKL(PF (τ̄ |sm), PB,ρ(τ̄ |sm))

]
+

Eµ(sm;θM )

[(
log

F (sm; θM )

Ẑm
− logµ∗(sm)

)
∇θM log

F (sm; θM )

Ẑm

]
= ∇θMD

µ(·;θM )
KL (PF (τ̄ |sm), PB,ρ(τ̄ |sm)) +∇θMDKL(µ(sm; θM ), µ∗(sm)) (30)

Combining equation 26 and 28, we obtain

1

2
EPF,µ(τ̄ ;θ)[∇θLsub−TB(τ̄ ; θ)] = ∇θD

µ(·;θ)
KL (PF (τ̄ |sm; θ), P̃B(τ̄ |sm)) (31)

Combining equation 27 and 30, we obtain

1

2
EPF,µ(τ̄ ;θ)[∇θLsub−TB(τ̄ ; θ)] = ∇θ{D

µ(·;θ)
KL (PF (τ̄ |sm; θ), PB(τ̄ |sm))+DKL(µ(sm; θ), µ∗(sm))}

(32)
Splitting ϕ into ϕB and ϕM and denoting c(τ̄) = log PB(τ̄ |sn)

F (sm)PF (τ̄ |sm) , the gradient derivations of ϕ
follows the similar way as θ.

B RL FRAMEWORK

B.1 DERIVATION OF RL FUNCTIONS

Let’s first consider the case of forward policies. For any s ∈ St and a = (s→s′) ∈ A(s) with
t ∈ {0, . . . , T − 1}, we define the VF,t and QF,t as:

VF,t(s) := EPF (τ>t|st)

[
T−1∑
t′=t

RF (st′ , at′)

∣∣∣∣st = s

]

= RF (s) + EPF (st+1|st)

[
EPF (τ>t+1|st+1)

[
T∑

t′=t+1

RF (st′ , at′)

∣∣∣∣st+1 = s′

] ∣∣∣∣st = s

]
= RF (s) + EπF (s,a)[VF,t+1(s

′)]

QF,t(s, a) := EPF (τ>t+1|st,at)

[
T−1∑
t′=t

RF (st′ , at′)

∣∣∣∣st = s, at = a

]

= RF (s, a) + EPF (τ>t+1|st+1)

[
T∑

t′=t+1

RF (st′ , at′)

∣∣∣∣st+1 = s′

]
= RF (s, a) + VF,t+1(s

′)
(33)

where RF (s) := EπF (s,a)[RF (s, a)], VF,T (·) := 0, and QF,T (·, ·) := 0. Since St ∩ St′ = ∅ for
any t ̸= t′, we can read off the time indices (topological orders) from state values. Plus the fact
that RF (s, a) := 0 for any a /∈ A(s), we are allowed to define two universal VF : S → R and
QF : S ×A → R such that VF (st = s) := VF,t(s) and QF (st = s, a) := QF,t(s, a).

15



Under review as a conference paper at ICLR 2024

Remark 2. While the transition environment G is exactly known, the state space S can be exponen-
tially large, so the exact value of V and Q is intractable. This, in spirit, corresponds to a regular
RL problem where the exact values of V and Q are infeasible due to the unknown and uncertain
transition model P (s′|s, a).

For backward policies, rewards are accumulated from time T to 1. Similarly, for s′ ∈ St and
a = (s→s′) ∈ Ȧ(s′) we can define:

VB,t(s
′) := EPB(τ<t|st)

[
t∑

t′=1

RB(st′ , at′)

∣∣∣∣st = s′

]
= RB(s

′) + EπB(s′,a)[VB,t−1(s)]

QB,t(s
′, a) := EPB(τ<t−1|st,at)

[
t∑

t′=1

RB(st′ , at′)

∣∣∣∣st = s′, at = a

]
= RB(s

′, a) + VB,t−1(s)

(34)

where RB(s′) = EπB(s′,a)[RB(s
′, a)], VB,0(·) := 0, and QB,0(·, ·) := 0. For the same reason as

forward policies, we can define universal functions VB : S → R and QB : S × Ȧ → R such that
VB(st = s′) := VB,t(s

′) and QB(st = s′, a) := QB,t(s
′, a).

The expected value functions are defined as:

JF = Eµ(s0)[VF (s0)] = Dµ
KL(PF (τ |s0), P̃B(τ |s0)

JB = Eρ(x)[VB(x)] = Dρ
KL(PB(τ |x), P̃F (τ |x)).

(35)

The advantages functions are defined as: AF (s, a) = QF (s, a)−VF (s) andAB(s, a) = QB(s, a)−
VB(s).

We define forward accumulated state distribution as dF,µ(s) := 1
T

∑T−1
t=0 PF,µ(st) such that for

arbitrary function f : S ×A → R,

EPF,µ(τ)

[
T−1∑
t=0

f(st, at)

]
=

T∑
t=0

EPF,µ(st,st+1) [f(st, at)] =

T∑
t=0

EPF,µ(st),π(st,at) [f(st, at)]

=

T∑
t

S∑
s

PF,µ(st = s)

A∑
a

π(s, a)f(s, a) (36)

=

S∑
s

A∑
a

(

T∑
t

PF,µ(st = s))π(s, a)f(s, a)

= T ·
S∑
s

A∑
a

dF,µ(s)π(s, a)f(s, a)

= T · EdF,µ(s),πF (s,a)[f(s, a)] (37)

where equation 36 holds in that ∀s /∈ St : P (st = s) = 0 and ∀a /∈ A(s) : π(s, a) = 0.
By the fact that St ∩ St′ = ∅ for any t ̸= t′ and any τ ∈ T must pass some st ∈ St for all
t ∈ {0, . . . , T − 1}, PF,µ(st) is a valid distribution over St and

∑
st
PF,µ(st) = 1. Accordingly,

dF,µ(s) is a valid distribution over S and T · dF,µ(st) = PF,µ(st). Analogically, we can define
dB,ρ :=

1
T

∑T
t=1 PB,ρ(st) such that for arbitrary function f : S × Ȧ → R,

EPB,ρ(τ)

[
T∑
t=1

f(st, at)

]
= T · EdB,ρ(s),πF (s,a)[f(s, a)] (38)

B.2 DAGS AS TRANSITION ENVIRONMENTS

Theorem 3. (Golpar Raboky & Eftekhari, 2019): Let P ∈ RN×N be a non-negative matrix, the
following statements are equivalent:

1. P is nilpolent;

16



Under review as a conference paper at ICLR 2024

2. PN =0;

3. The directed graph G(S,A) associated with P is a DAG graph;

4. There exists a permutation matrix U such that UTPU is a strictly triangular matrix.

where S = {s0, . . . , sN−1} and A = {(si→sj)|Pi,j ̸= 0} are node and edge sets.

Lemma 2. : For any DAG graph G(S,A) associated with P ∈ RN×N with T + 1(≤ N) different
topological node orders indexed by integers [0, T ],

∀t > T, P t = 0 (39)

Proof. We prove the result by contradiction. Assuming P t(t > T ) is not zero, then ∀i ̸= j:

(P t)i,j =
∑
k1:t−1

Pi,k1Pk1,k2 . . . Pkt−1,j (40)

By the nature of DAG graphs, ∀(s′→s) ∈ A : s′ ≺ s. Then the above expression is equal to:

=
∑

k1:si≺sk1

Pi,k1

 ∑
k2:sk1≺sk2

Pk1,k2 . . .

 ∑
kt−1:s

kt−2≺skt−1

Pkt−2,kt−1
Pkt−1,j


=

∑
k1:t−1:(si≺sk1≺...≺skt−1≺sj)

Pi,k1Pk1,k2 . . . Pkt−1,j

> 0

(41)

Then it means that there at least exists a trajectory (si ≺ sk1 ≺ . . . ≺ skt−1 < sj) with non-zero
probability. However, there are at least t+1 distinct topological orders in the path, which contradicts
the assumption that there are T + 1 different node orders.

Let’s return to the graded DAG, G(S,A) in GFlowNets. For the easiness of analysis, we restrict
forward and backward policies and initial distribution to be tabular forms, PF ∈ R|S|×|S|,µ ∈ R|S|,
PB ∈ R|S|×|S|, and ρ ∈ R|S| such that PF (sj |si) = (PF )j,i and PB(sj |si) = (PB)j,i. Besides,
we split initial distribution vectors by µ = [µ̄; 0] ∈ R|S| and ρ = [0; ρ̄] ∈ R|S|, where µ̄ and ρ̄
denote the probabilities of states except sf and s0 respectively. We denote the graph equipped with
self-loop over sf as GF (S,A∪ {(sf→sf )}), and the reverse graph equipped with self-loop over s0

as GB(S, Ȧ ∪ {(s0→s0)}). Accordingly, we enhanced PF and PB by defining PF (sf |sf ) := 1 and
PB(s

0|s0) := 1. (GF , PF ) specifies an absorbing Markov Chains: sf is the only absorbing state as
only self-loop is allowed once entering sf ; the sub-graph over S \ {sf} is still a DAG, so any state
s ∈ S \ {sf} is transient as it can be visited at least one time. Similarly, (GB , PB) specifies another
absorbing Markov Chains with absorbing state s0. For graph GF and GB , their transition matrices
PF and PB can be decomposed into:

PF =

(
P̄F 0
rF 1

)
, PB =

(
1 rB
0 P̄B

)
(42)

Where r⊤F ∈ R|S|−1 and r⊤B ∈ R|S|−1 denotes the forward probability of (s→sf ) for any s ∈
S \ {sf} and (s0 ← s), for any s ∈ S \ {s0} , P̄F ∈ R(|S|−1)×(|S|−1) and P̄B ∈ R(|S|−1)×(|S|−1)

denote probability of (s→s′) for any s, s′ ∈ S \ {sf} and (s← s′) for any s, s′ ∈ S \ {s0} .

Lemma 3. : For (G,PF , µ) and (GB , PB , ρ), dF,µ ∈ R|S| and dB,ρ ∈ R|S|, can be written in the
following form:

dF,µ =
(
d̄F,µ, 0

)
, d̄F,µ =

1

T
(I − P̄F )−1µ̄ (43)

dB,ρ =
(
0, d̄B,ρ

)
, d̄B,ρ =

1

T
(I − P̄B)−1ρ̄ (44)

17



Under review as a conference paper at ICLR 2024

Proof. We prove the result for the forward case. A similar proof procedure can easily derived for
the backward case, so it is omitted. First of all, by the nature of Markov Chains, PF,µ(st = si) =

[(PF )
tµ]i, and dF,µ = 1

T

∑T
t=0(PF )

tµ. Then, it can be easily verified (Grinstead & Snell, 2006):

(PF )
t =

(
(P̄F )

t 0
∗ 1

)
, (45)

where the explicit expression of the upper right corner is omitted. By theorem 3, P̄F is a nilpotent
matrix and by lemma 2, 1

T

∑T
t=0(P̄F )

t = 1
T

∑∞
t=0(P̄F )

t = 1
T (I − P̄F )

−1(The second equality
follows that fact that: (I − P̄F )

∑∞
t=0(P̄F )

t =
∑∞
t=0(P̄F )

t −
∑∞
t=1(P̄F )

t = I). Therefore,

dF,µ =
1

T

(∑T
t=0 P̄

t
F 0

∗ 1

)
µ =

(
1

T
(I − P̄F )−1µ̄, ∗µ̄

)
By theorem 11.4 in Grinstead & Snell (2006), (I− P̄F )−1

i,j is the expected number of times the chain
is in state sj starting from si before absorbing in sf . And [(I− P̄F )−1µ̄]j is the expected number of
times the chain is in state sj before absorbing. Since ∀s /∈ S0 : µ(s) = 0 and the fact G is graded,
any trajectories over G must start from states in S0 to state in ST i.e.

∑
j [(I − P̄F )−1µ̄]j = T .

Thus, 1
T [(I − P̄F )

−1µ̄]i denote the fraction of staying in transient state si before absorbing, this is,
the probability observing state si within T time steps. By the same reasoning, we can conclude that
∗µ̄ = 0 as sf can not be reached within T − 1 transitions.

Lemma 4. : For two forward policy, πF and π′
F , and two backward policy, πB and πB′ , we have:

DTV (dF,µ(·), d′F,µ(·)) ≤ D
d′F,µ

TV (πF (s, ·), π′
F (s, ·)),

DTV (dB,ρ(·), d′B,ρ(·)) ≤ D
d′B,ρ

TV (πB(s, ·), π′
B(s, ·)),

(46)

where for three arbitrary distributions p,q and u, DTV (p(·), q(·)) := 1
2 ||p(·) − q(·)||1 and

Du
TV (p(·|s), q(·|s)) := 1

2Eu(s)||p(·|s)− q(·|s)||1.

Proof. The proof procedure follows that of Lemma 3 in Achiam et al. (2017). For two forward
policy πF and π′

F , denoting N̄F := (I − P̄F )−1 and N̄ ′
F := (I − P̄ ′

F )
−1, then

N̄−1
F − (N̄ ′

F )
−1 = P̄ ′

F − P̄F := ∆ (47)

and
N̄ ′
F − N̄F = N̄ ′

F∆N̄F (48)

Then,

||dF,µ − d′F,µ||1 = ||d̄F,µ − d̄′F,µ||1

=
1

T
||(N̄F − N̄ ′

F )µ̄||1 =
1

T
||N̄F∆d̄′F,µ||1

≤ 1

T
||N̄F ||1||∆d̄′F,µ||1 ≤ ||∆d̄′F,µ||1 (49)

Therefore, we have

||∆d̄′F,µ||1 = ||(P ′
F − PF )d′F,µ||1 =

∑
s

∣∣∣∣∣∑
s′

(P ′
F (s

′|s)− PF (s′|s)) d′F,µ(s)

∣∣∣∣∣
≤
∑
s,s′

|P ′
F (s

′|s)− PF (s′|s)|d′F,µ(s) =
∑
s,a

|π′(s, a)− π(s, a)|d′F,µ(s)

= Ed′F,µ(s)
[||π′

F (s, ·)− πF (s, ·)||1]

Where first equality holds by the fact that PF (sf |sf ) = P ′
F (s

f |sf ) = 1 for any two forward
policies consistent with GF . The result of backward policies can be derived analogically and is
omitted here.

18



Under review as a conference paper at ICLR 2024

B.3 DERIVATION OF GRADIENTS

Proposition 4. The gradients of JF (θ) and JϕB w.r.t θ and ϕ can be written as:

∇θJF (θ) = TEdF,µ(s)πF (s,a) [QF (s, a)∇θlogπF (s, a; θ)] + Eµ(s0)[VF (s0)∇θlogµ(s0; θ)]
= TEdF,µ(s)πF (s,a) [AF (s, a)∇θlogπF (s, a; θ)] + Eµ(s0)[VF (s0)∇θlogµ(s0; θ)]

∇ϕJB(ϕ) = TEdB,ρ(s)πB(s,a) [QB(s, a)∇ϕlogπB(s, a;ϕ)]
= TEdB,ρ(s)πB(s,a) [AB(s, a)∇ϕlogπB(s, a;ϕ)]

(50)

Proof.

∇θJF (θ) = ∇θ
Zθ

Ẑθ
VF (s0; θ) =

VF (s0; θ)

Ẑθ
+
Zθ

Ẑθ
∇θVF (s0; θ)︸ ︷︷ ︸

(0)

(0)
= EPF,µ(s0)[∇θVF (s0; θ)] = EPF,µ(s0)

[
∇θEπF (s0,a0;θ)[QF (s0, a0; θ)]

]
= EPF,µ(s0,a0) [∇θlogπF (s0, a0; θ)QF (s0, a0; θ) +∇θQF (s0, a0; θ)]
= EPF,µ(s0,a0) [∇θlogπF (s0, a0; θ)QF (s0, a0; θ)] + EPF,µ(s0,a0) [∇θRF (s0, a0; θ) + VF (s1; θ)]︸ ︷︷ ︸

(1)

(1)
= EPF,µ(s0,a0)

[
∇θlog

πF (s0, a0; θ)

πB(s1, a0)

]
︸ ︷︷ ︸

(2)

+EPF,µ(s1) [∇θVF (s1; θ)]

(2)
= EPF,µ(s0)

[
EπF (s0,a0)[∇θlogπF (s0, a0; θ)]

]
= EPF,µ(s0)[∇θ1] = 0︸ ︷︷ ︸

By Lemma1

(51)

Therefore,

EPF,µ(s0)[∇θVF (s0; θ)] = EPF,µ(s0,a0) [∇θlogπF (s0, a0; θ)QF (s0, a0; θ)] + EPF,µ(s1) [∇θVF (s1; θ)]
(52)

Keep doing the process, we have

EPF,µ(st)[∇θVF (st; θ)] = EPF,µ(st,at) [∇θlogπF (st, at; θ)QF (st, at; θ)]+EPF,µ(st+1)

[
∇θ VF (st+1; θ)︸ ︷︷ ︸

V (sT )=0

]
(53)

Then,

∇θJF (θ) = EPF,µ(τ)

[
T−1∑
t=0

∇θlogπF (st, at; θ)QF (st, at; θ)

]
= EdF,µ(s)πF (s,a) [∇θlogπF (s, a; θ)QF (s, a; θ)] (54)

Besides,

∇θJF (θ) = EdF,µ(s)πF (s,a) [∇θlogπF (s, a; θ)QF (s, a; θ)]− EdF,µ(s)

[
VF (s)EπF (s,a)[∇θlogπF (s, a; θ)︸ ︷︷ ︸

=0

]
]

= EdF,µ(s)πF (s,a) [∇θlogπF (s, a; θ)AF (s, a; θ)] (55)

19



Under review as a conference paper at ICLR 2024

B.4 CONNECTION OF POLICY-BASED TRAINING TO TB-BASED TRAINING

As shown in Appendix B.3, the gradient of JF w.r.t θF can be written as:

∇θF JF (θF ) = TEdF,µ(s)πF (s,a) [QF (s, a)∇θF logπF (s, a; θF )]

= EPF,µ(τ)

[
T−1∑
t=0

∇θlogπF (st, at; θ)QF (st, at)

]

= EPF,µ(τ)

[
T−1∑
t=0

∇θlogπF (st, at; θ)EPF,µ(τ)

[
T−1∑
t′=t

RF (st′ , at′)

∣∣∣∣st, at
]]

= EPF,µ(τ)

[
T−1∑
t=0

∇θlogπF (st, at; θ)

(
T−1∑
t′=t

RF (st′ , at′)

)]

− C EPF,µ(τ)

[
T−1∑
t=0

∇θlogπF (st, at; θ)

]
︸ ︷︷ ︸

=0 by Lemma 1

= EPF,µ(τ)

[
T−1∑
t=0

∇θlogπF (st, at; θ)

(
T−1∑
t′=t

RF (st′ , at′)− C

)]
(56)

where C is some added baseline and constant w.r.t θ for variance reduction during gradient es-
timation. Given a batch of D = {τ1, . . . , τN}, this result implies that: when we estimate
∇θF JF (θF ) directly without the help of QF and VF (it is equivalent to estimate ∇θFLTB(θF )
or ∇θFD

µ
KL(PF (τ |s0; θF ), P̃B(τ |s0)) by Proposition 1), we approximate QF (s, a) empirically by

1
Ns,a

∑
n:(snt ,a

n
t )=(s,a)

∑T−1
t′=t RF (s

n
t′ , a

n
t′ ; θ), where Ns,a is the number of trajectories that pass

(s, s′) at time t (a := (s → s′)), and reduce the estimation variance by a constant C that is
computed based on current data batch D. By comparison, under the RL formulation, ∇θF JF (θF )
is computed by EPF,µ(τ)

[∑T−1
t=0 ∇θlogπF (st, at; θ) (QF (st, at)− VF (st))

]
, where VF (s′) is ap-

proximated by a parameterized function ṼF (s′, η) (see Appendix B.5), and Q(s, a) is approximated
by R(s, a) + ṼF (s

′). This functional approximation of Q(s, a) leads to biased gradient estimation
but typically reduces variance Schulman et al. (2016). The constant baseline C is generalized to an
unbiased functional baseline ṼF , which utilizes not only the current dataD but also all the past data.

Based on the discussion above, QF and VF play the role of reducing the variance of gradient es-
timation. In principle, both TB-based training and policy-based training correspond to minimiz-
ing Dµ

KL(PF (τ |s0; θF ), P̃B(τ |s0)), this support the stability our policy-based method with non-
stationary reward.

B.5 MODEL PARAMETER UPDATING RULES

We list the model updating rules for PF and µ below. The updating rules for PB follow analogically.
Denoting the updated parameter and current parameter as θ′ and θ respectively, the first way for
model updating is by the following objective

min
θ
T · EdF,µ(s),πF (s,a;θ) [AF (s, a)] + Eµ(s0;θ)[VF (s0)] (57)

The gradients of the above formula are equal to∇θJF (θ). Given a batch of D = {τ1, . . . , τN}, the
gradient is approximated by:

ĝF :=
1

N

N∑
n=1

T−1∑
t=0

[
(Q̂F (s

n
t , a

n
t )− ṼF (st; η))∇θlogπF (snt , ant ; θ)

]
+

1

N

N∑
n=1

V̂F (s
n
0 )
∇θZθ
Ẑ

(58)

In the equation above, V̂F (snt ) =
∑T−1
t′=t R(s

n
t′ , a

n
t′); ṼF (·; η) is the functional approximation to

VF (·) by objective EdF,µ(s)[(VF (s)− ṼF (s; η))2] whose gradient w.r.t η are approximated by ĝV :=

∇η 1
N

∑
n,t(V̂F (s

n
t )− ṼF (snt ))2; Q̂F (snt , a

n
t ) =

∑T−1
t′=t R(s

n
t′ , a

n
t′), which is a unbiased estimation

20



Under review as a conference paper at ICLR 2024

for QF (snt , a
n
t ) ( or = RF (s

n
t , a

n
t ) + ṼF (s

n
t ; η), which is biased estimation but typically has lower

variance.). Finally, the model parameters are updated by θ′ ← θ − αF ĝF and η′ ← η − αV ĝV .

For the trust-region way, the optimization objective is defined as:

min
θ′F ,θ

′
Z

T · EdF,µ(s;θ),π(s,a;θ′F ) [AF (s, a; θ)] + Eµ(s0;θ′Z)[VF (s0; θ)]

s.t. D
dF,µ(·;θ)
KL (πF (s, a; θF ), πF (s, a; θ

′
F )) ≤ δF

(59)

In practice, the above formula can be linearly approximated by:

min
θ′F ,θ

′
Z

(
T · ∇θ′FEdF,µ(s;θ),π(s,a;θ′F ) [AF (s, a; θ)]

)⊤ (
θ′F − θF

)
+ Eµ(s0;θ′Z)[VF (s0; θ)]

s.t. (θ′F − θF )⊤
(
∇2
θ′F
D
dF,µ(·;θ)
KL (πF (s, a; θF ), πF (s, a; θ

′
F ))
)
(θ′F − θF ) ≤ δF

(60)

Denoting ĝF and Ĥ as the estimation of the first-order gradient of the objective and the second-order
gradient of the KL divergence constraint w.r.t θF , ĝZ as the estimation of the first-order gradient of
the objective w.r.t θZ , then model parameters are updated by:

θ′F ← θF −
(

2δF

ĝ⊤Ĥ−1ĝ

)0.5

Ĥ−1ĝ, θ′Z ← θZ − αZ ĝZ (61)

When the dimension of θ′ is high, compute Ĥ−1 is computationally expensive, so we use the con-
jugate gradient method which can estimate Ĥ−1ĝF based on ĤĝF (Hestenes et al., 1952).

C PERFORMANCE ANALYSIS

C.1 PROOF OF THEOREM 1

Proof.

JGF = JF + (JGF − JF )

= JF + EPF,µ(τ)

[
log

PF (τ |s0)Z
PG(τ |x)R(x)

− log PF (τ |s0)Z
PB(τ |x)R(x)

]
= JF + EPF,µ(τ)

[
log

PB(τ |x)
PG(τ |x)

]
+ EPB,ρ(τ)

[
log

PB(τ |x)
P̃G(τ |x)

]
− EPB,ρ(τ)

[
log

PB(τ |x)
P̃G(τ |x)

]
= JF + JGB + Eρ(x)[logZG(x)] +

∑
τ

(PF,µ(τ)− PB,ρ(τ))RGB(τ |x) (62)

where RGB(τ |x) := log PB(τ |x)
PG(τ |x) =

∑T
t=1R

G
B(st, at), then

JGF = JF + JGB + ⟨PF,µ(·)− PB,ρ(·), RGB(·)⟩
≤ JF + JGB + ||PF,µ(·)− PB,ρ(·)||1||RGB(·)||∞
≤ JF + JGB + T · ||PF,µ(·)− PB,ρ(·)||1RG,maxB (63)

where the first inequality follows from Hölder’s inequality and the second inequality holds by
maxτR

G
B(τ) ≤ T ·maxs,aR

G
B(s, a) := T ·RG,maxB . By Pinsker’s inequality:

||PF,µ(·)− PB,ρ(·)||1 ≤
√

1

2
DKL(PF,µ(τ), PB,ρ(τ)) (64)

21



Under review as a conference paper at ICLR 2024

Besides,

DKL(PF,µ(τ), PB,ρ(τ)) = EPF,µ(τ)

[
log

PµF (τ |x)P⊤
F,µ(x)

PB(τ |x)P⊤
F,µ(x)

]

≤ EPF,µ(τ)

[
log

PµF (τ |x)
PB(τ |x)

]
+ EP⊤

F,µ(x)

[
log

P⊤
F,µ(x)

R(x)/Z∗

]
︸ ︷︷ ︸

≥0

= DKL(PF,µ(τ), PB(τ)) = Dµ
KL(PF (τ), P̃B(τ))− logZ + logZ∗

= JF + logZ∗ − logZ (65)

Then we have:

JGF ≤ JF + JGB + Eρ(x)[logZG(x)] +RG,maxB

√
1

2
(JF + logZ − logZ∗) (66)

Lemma 5. Given two forward policies (πF , π′
F ) or backward (πB , π

′
B), we have

1

T
(JF − J ′

F ) = EdF,µ(s),π(a,s)[A
′
F (s, a)] +D

dF,µ

KL (πF (s, a), π
′
F (s, a))

1

T
(JB − J ′

B) = EdB,ρ(s),π(a,s)[A
′
B(s, a)] +D

dF,ρ

KL (πB(s, a), π
′
B(s, a))

(67)

Proof.

VF (s0)− V ′
F (s0) = EPF (τ |s0)

[
T−1∑
t=0

RF (st, at)

]
+ V ′

F (sT )︸ ︷︷ ︸
:=0

−V ′
F (s0)

= EPF (τ |s0)

[
T−1∑
t=0

RF (st, at) + V ′
F (st)− V ′

F (st)

]
− V ′

F (s0) + V ′
F (sT )

= EPF (τ |s0)

[
T−1∑
t=0

Rπ(st, at) + V ′
F (st+1)− V ′

F (st)

]

= EPF (τ |s0)

[
T−1∑
t=0

A′
F (st, at)

]
+ EPF (τ |s0)

[
T−1∑
t=0

(RF (st, at)−R′
F (st, at))

]
(68)

Thus,

JF − J ′
F = Eµ(s0)[VF (s)− V

′
F (s)]

= EPF,µ(τ)

[
T−1∑
t=0

A′
F (st, at)

]
+ EPF,µ(τ)

[
T−1∑
t=0

(RF (st, at)−R′
F (st, at))

]
= EdF,µ(s),πF (s,a)[A

′
F (s, a)] + EdF,µ(s)π(a,s)[RF (s, a)−R

′
F (s, a)]

= T · EdF,µ(s),πF (s,a)[A
′
F (s, a)] + T · EdF,µ(s)[DKL(πF (·, s), π′

F (·, s))] (69)

The result for the backward case can easily be derived following a similar proof procedure as the
forward case.

C.2 PROOF OF THEOREM 2

By Lemma 5:

1

T
(JF − J ′

F ) = EdF,µ(s),π(a,s)[A
′
F (s, a)] +D

dF,µ

KL (πF (·, s), π′
F (·, s))︸ ︷︷ ︸

=δF

(70)

22



Under review as a conference paper at ICLR 2024

Let Ā′
F ∈ R|S| denote the vector components of EπF (s,a)[A

′
F (s, a)]. Then we have

EdF,µ(s)πF (s,a)[A
′
F (s, a)] = ⟨dF,µ, Ā′

F ⟩
= ⟨d′F,µ, Ā′

F ⟩+ ⟨dF,µ − d′F,µ, Ā′
F ⟩

≤ Ed′F,µ(s)πF (s,a)[A
′
F (s, a)] + ||dF,µ − d′F,µ||1||Ā′

F ||∞ (71)

By Lemma 4:

≤ Ed′F,µ(s)πF (a,s)[A
′
F (s, a)] + 2Ed′F,µ(s)

[
DTV (πF (s, ·), π′

F (s, ·))
]
ϵ′F (72)

By Pinsker’s inequality:

≤ Ed′F,µ(s)πF (a,s)[A
′
F (s, a)] + 2Ed′F,µ(s)

[(
1

2
DKL(π(·, s), π′(·, s)

)0.5
]
ϵ′F (73)

By Jensen’s inequality:

≤ Ed′F,µ(s)π(a,s)
[A′
F (s, a)] + 2

(
1

2
Ed′F,µ(s)

[DKL(π(·, s), π′(·, s)]
)0.5

ϵ′F (74)

Thus, we have
1

T
(JF − J ′

F ) ≤ Ed′F,µ(s)π(a,s)
[A′
F (s, a)] + (2δ)0.5ϵ′F + δF (75)

D ADDITIONAL EXPERIMENT INFORMATION

In all three domains, we follow a regular way of sample policy design: sample policy is a mix
of the learned forward policy and a uniform policy where the mix-in factor of the uniform policy
starts at 0.5 and decays exponentially at a rate of 0.99 after each training iteration. We use the
Adam optimizer with learning rate {10−3, 5 × 10−3, 10−1} for the optimization of policies, value
functions, and total flow estimator respectively. The batch size is set to 128.

D.1 HYPER-GRID MODELING

For value-based methods like TB-based training strategy, the policy PD for training data
sampling works in an offline way. The design of guided distribution follows the way
proposed by Shen et al. (2023). Explicit designs are shown in the following sections.

Figure 6: Graphical representation of the reward
function for a two-dimensional hyper-grid.

Environment In this hyper-grid en-
vironment, S \ {sf} is equal to
{s = ([s]1, . . . , [s]D)|∀i ∈ [1, . . . , D], [s]i ∈
[0, . . . , N − 1]} where the initial state
s0 = (0, . . . , 0) and sf can be represented
by any invalid coordinate tuple of the hyper-
grid, and is denoted as (−1, . . . ,−1) in our
implementation. For each state s ̸= sf , we
have D + 1 possible actions in A(s): (1)
increment the ith coordinate by one, arriving at
s′ = ([s]0, . . . , [s]i + 1, . . .); (2) choose stop-
ping actions (s→sf ), terminating the process
and return x = s as the terminating coordinate
tuple. By definition, G is not a graded DAG,
and S \ {sf} = X as all coordinate tuples can

be returned as the terminating states. The reward R(x) is defined as:

R(x) = R0 +R1

D∏
d=1

1

[∣∣∣∣ [s]d
N − 1

− 0.5

∣∣∣∣ ∈ (0.25, 0.5]

]
+R2

D∏
d=1

1

[∣∣∣∣ [s]d
N − 1

− 0.5

∣∣∣∣ ∈ (0.3, 0.4]

]
(76)

23



Under review as a conference paper at ICLR 2024

256x256 128x128x128 32x32x32x32
Method DTV DJSD Ttrain DTV DJSD Ttrain DTV DJSD Ttrain
DB-U 0.573± 0.016 0.220± 0.012 40.5 0.429± 0.014 0.185± 0.011 36.3 0.376± 0.030 0.088± 0.003 11.4s
TB-U 0.208± 0.075 0.071± 0.039 24.5 0.498± 0.001 0.215± 0.001 23.1 0.098± 0.007 0.012± 0.002 20.4
RL-U 0.104± 0.053 0.031± 0.013 33.4 0.323± 0.214 0.131± 0.102 23.8 0.074± 0.010 0.008± 0.001 21.0
RL-T 0.194± 0.078 0.060± 0.042 71.6 0.052± 0.003 0.005± 0.000(2) 53.4 0.101± 0.003 0.019± 0.002 59.3
DB-B 0.403± 0.018 0.128± 0.022 53.0 0.247± 0.013 0.056± 0.006 46.2 0.101± 0.012 0.020± 0.003 14.1
TB-B 0.351± 0.142 0.129± 0.081 29.6 0.066± 0.036 0.008± 0.005 21.7 0.101± 0.013 0.012± 0.001 20.6
RL-B 0.100± 0.093 0.028± 0.041 43.3 0.057± 0.022 0.006± 0.002 43.2 0.079± 0.009 0.007± 0.001 25.2
RL-G 0.086± 0.073 0.016± 0.025 43.1 0.055± 0.021 0.006± 0.002 42.8 0.056± 0.007 0.005± 0.001 24.4

Table 1: Hyper-grid modeling performance comparison of GFlowNets trained by different strategies.

where R0 = 10−2, R1 = 0.5 and R2 = 2 in our experiment. For a trajectory τ =
(s0, . . . , si, . . . , sf ), the probability of the guided distribution can be written as:

PG(τ |x) =
∏
i

PG(si|si−1, x),

∀si ̸= sf , PG(si|si−1, x) =

{
PF (si|si−1)∑

s:s ̸=sf
PF (s|si−1)+ϵf

, if R(si−1) ≤ R0

PF (si|si−1) otherwise

PG(s
f |si−1, x) =

{
ϵf∑

s:s ̸=sf
PF (s|si−1)+ϵf

, if R(si−1) ≤ R0

PF (s
f |si−1) otherwise

(77)

where si ̸= sf and ϵf = 10−5. As all the coordinate tuples can be terminating states, this is, sf is
the child of all the other states, the expression above means that for a state si−1 with low reward, its
probability of being a terminating state is replaced by a small value ϵf . In this way, we discourage
the generative process from stopping early at low reward coordinate tuples.

0 50 100 150 200 250
DB-U

0

50

100

150

200

250
0 50 100 150 200 250

TB-U

0

50

100

150

200

250
0 50 100 150 200 250

RL-U

0

50

100

150

200

250
0 50 100 150 200 250

RL-T

0

50

100

150

200

250

0 50 100 150 200 250
DB-B

0

50

100

150

200

250
0 50 100 150 200 250

TB-B

0

50

100

150

200

250
0 50 100 150 200 250

RL-B

0

50

100

150

200

250
0 50 100 150 200 250

RL-G

0

50

100

150

200

250

Figure 7: Graphical illustrations of P⊤
F (x) averaged across 5 runs of different training strategies for

a 256× 256 hyper-grid.

Model Architecture Policy PF is parametrized by a neural network with 4 hidden layers and the
hidden dimension is 256. Policy PB is fixed to be uniform over valid actions or parameterized in the
same way as PF . Coordinate tuples are transformed by K-hot encoding before being fed into Neural
Networks.

24



Under review as a conference paper at ICLR 2024

0 20 40 60 80 100 120
DB-U

0

20

40

60

80

100

120

0 20 40 60 80 100 120
TB-U

0

20

40

60

80

100

120

0 20 40 60 80 100 120
RL-U

0

20

40

60

80

100

120

0 20 40 60 80 100 120
RL-T

0

20

40

60

80

100

120

0 20 40 60 80 100 120
DB-B

0

20

40

60

80

100

120

0 20 40 60 80 100 120
TB-B

0

20

40

60

80

100

120

0 20 40 60 80 100 120
RL-B

0

20

40

60

80

100

120

0 20 40 60 80 100 120
RL-G

0

20

40

60

80

100

120

Figure 8: Graphical illustrations of P⊤
F (x) averaged across 5 runs of different training strategies for

a 128 × 128 × 128 hyper-grid. For visualization easiness, only the marginals of 2 dimensions are
plotted.

D.2 SEQUENCE DESIGN

Environment In this environment, S = {−1, 0, . . . , N − 1}D with element s corresponds to a
sequence composed of integers ranging from −1 and N − 1 logits. The set {0, . . . , N − 1} denotes
the nucleotide types or building blocks, and the integer−1 represents that the corresponding position
within s is unfilled.

The initial empty sequence s0 is represented by {−1}D. For st ∈ St, there are t elements in
{0, . . . , N − 1} and the rest equal to −1. There are D · (N − t) actions in A(s) that correspond to
fill in one of the empty slots by one integer in {0, . . . , N − 1}. The generative process will not stop
until sequences are fulfilled. By definition, G is a graded DAG and SN = X = {0, . . . , N}D. We
use the reward values provided in the dataset directly. Following Shen et al. (2023), we use reward
exponents of 3 and 5, and normalize rewards to [0.001, 10] and [0.001, 100] for the SIX6 and QM9
datasets respectively. The guided distribution design also follows Shen et al. (2023).

Model Architecture Policies are constructed in the same way as the hyper-grid modeling experi-
ment.

To further validate the relationships between policy-based methods and TB-based methods as ex-
plained in Appendix B.4. We compare the performance of TB-U, TB-Q and RL-Q. TB-Q denotes
training GFlowNets by TB-U with trajectory sampler PD = PF . RL-Q denotes training GFlowNets
by RL-U with Q and V estimated empirically from the training data batch D during each training
iteration. As shown in Fig. 10, the training behaviors of TB-Q and RL-Q are quite close. This
validates our claims that when PD = PF , TB-based methods correspond to represent Q and V
empirically and our policy-based methods represented them functionally providing more robust gra-
dient estimation.

D.3 BAYESIAN NETWORK STRUCTURE LEARNING

Environment A Bayesian Network is a probabilistic model that represents the joint distribution
of N random variable and the joint distribution factorizes according to the network structure x:

P (y1, . . . , yN ) =

N∏
n=1

P (yn|Pax(yn)) (78)

25



Under review as a conference paper at ICLR 2024

SIX6 QM9
Method DTV DTV

DB-U 0.175± 0.030 0.139± 0.035
TB-U 0.203± 0.011 0.056± 0.007
RL-U 0.167± 0.008 0.042± 0.004
RL-T 0.168± 0.014 0.057± 0.007
DB-B 0.154± 0.060 0.147± 0.041
TB-B 0.202± 0.015 0.070± 0.007
RL-B 0.166± 0.011 0.035± 0.005
RL-G 0.164± 0.011 0.035± 0.006

Figure 9: Sequence design performance compari-
son of the GFlowNets trained by different strate-
gies.

50K 100K 150K 200K
Number of sampled trajectories

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

To
ta

l V
ar

ia
tio

n

TB-U
TB-Q
RL-Q

Figure 10: Peformance comparison between TB-
U and TB-Q and RL-Q

where Pax(yn) denote the set of parent nodes of yn according to graph x. As the structure of any
graph can be represented by its adjacency matrix, the state space can be defined as S := {s|H(s) =
0} ∈ {0, 1}N×N where H corresponds to the acyclic graph constraint (Deleu et al., 2022), the
initial state s0 = {0}N×N and specially sf := {−1}N×N in our implementation. For each state s,
a ∈ A(s) can be any action that turns one of 0 values of s to be 1 (i.e. adding an edge) while keeping
H(s′) = 0 for the resulting graph s′, or equal to (s → sf ) that stopping the generative process and
return x = s as the terminating state. By definition, the corresponding G is not a graded DAG.

Given observation dataset Dy of y1:N , the structure learning problem can be understood as approxi-
mating P (x|Dy) ∝ P (x,Dy) = P (Dy|x)P (x). Without additional information about graph struc-
ture x, P (x) is often assumed to be uniform. Thus, P (x|Dy) ∝ P (Dy|x) and the reward function
is defined as R(x) ∝ P (Dy|x). Distribution P (Dy|x) is also called graph score and we use BGe
score (Kuipers et al., 2014) in our experiment. Following Deleu et al. (2022), the ground-truth graph
structure is generated from Erdős–Rényi model, and the observation dataset Dy with 100 samples
is simulated from the ground-truth graph. The guided distribution design follows the hyper-grid ex-
periment. A low probability value, 10−5 is assigned to the probability of terminating at states with
logRmax(·)− logR(·) < 10.

Model Architecture Policies are constructed in the same way as the hyper-grid modeling experi-
ment, but adjacency matrices are fed into neural networks directly without encoding.

Method DTV (×10−2) DJSD(×10−3) Method DTV (×10−2) DJSD(×10−3)
DB-U 5.26± 1.12 3.91± 0.32 DB-B 5.92± 1.64 3.39± 0.12
TB-U 2.95± 0.26 2.84± 0.07 TB-B 4.69± 0.80 5.22± 1.23
RL-U 3.52± 2.03 4.33± 3.13 RL-B 6.10± 0.67 6.31± 1.08
RL-T 2.35± 0.13 2.15± 0.16 RL-G 3.72± 0.49 4.60± 1.61

Table 2: BN structure learning performance comparison of the GFlowNets trained by different
strategies.

26



Under review as a conference paper at ICLR 2024

0 5000 10000 15000 20000 25000 30000
DB-U

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0 5000 10000 15000 20000 25000 30000
TB-U

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0 5000 10000 15000 20000 25000 30000
RL-U

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0 5000 10000 15000 20000 25000 30000
RL-T

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0 5000 10000 15000 20000 25000 30000
DB-B

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0 5000 10000 15000 20000 25000 30000
TB-B

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0 5000 10000 15000 20000 25000 30000
RL-B

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0 5000 10000 15000 20000 25000 30000
RL-G

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

Figure 11: In each plot, the blue lines are the graphical illustrations of P⊤
F (x) averaged across five

runs of a training strategy for the BN structure learning experiment. The orange line is the ground-
truth distribution and its values are plotted in an increasing order.

27


	Introduction
	Preliminaries
	DAGs and notations
	GFlowNets

	Policy gradients for GFlowNet training
	Gradient equivalence
	RL formulation of GFlowNet training
	RL formulation of Guided backward policy design
	Performance Analysis
	Related Work

	Experiments
	Hyper-grid Modeling
	Sequence Design
	Bayesian Network Structure Learning

	Conclusion, Limitations and Future Works
	Gradient Equivalence
	Proof of Proposition 1
	Proof of proposition 2
	Sub-trajectory equivalence

	RL framework
	Derivation of RL functions
	DAGs as transition environments
	Derivation of gradients
	Connection of policy-based training to TB-based training
	Model parameter updating rules

	Performance analysis
	Proof of Theorem 1
	Proof of Theorem 2

	Additional experiment information
	hyper-grid Modeling
	Sequence design
	Bayesian Network Structure Learning


