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ABSTRACT

Full-Reference image quality assessment (FR IQA) is important for image com-
pression, restoration and generative modeling, yet current neural metrics remain
slow and vulnerable to adversarial perturbations. We present BiRQA, a com-
pact FR IQA metric model that processes four fast complementary features within
a bidirectional multiscale pyramid. A bottom-up attention module injects fine-
scale cues into coarse levels through an uncertainty-aware gate, while a top-down
cross-gating block routes semantic context back to high resolution. To enhance ro-
bustness, we introduce Anchored Adversarial Training, a theoretically grounded
strategy that uses clean ”anchor” samples and a ranking loss to bound pointwise
prediction error under attacks. On five public FR IQA benchmarks BiRQA outper-
forms or matches the previous state of the art (SOTA) while running ∼ 3× faster
than previous SOTA models. Under unseen white-box attacks it lifts SROCC
from 0.30-0.57 to 0.60-0.84 on KADID-10k, demonstrating substantial robust-
ness gains. To our knowledge, BiRQA is the only FR IQA model combining
competitive accuracy with real-time throughput and strong adversarial resilience.

1 INTRODUCTION

Image Quality Assessment (IQA) is a fundamental problem in computer vision with applications
in image restoration, compression, and generative modeling. Full-Reference (FR) IQA estimates
perceived quality by comparing a distorted image with its pristine reference. While classical ap-
proaches like PSNR and SSIM are fast, they overlook many complex perceptual details, driving
interest in deep learning approaches. Yet even strong neural IQA models still face two pressing
issues: (i) slow inference speed that limits real-time use, and (ii) high vulnerability to adversarial
perturbations, threatening reliability in safety-critical applications.

Adversarial attacks introduce imperceptible perturbations that mislead NN-based IQA models. De-
spite recent defenses for FR-IQA, robustness benchmarks show that many metrics remain vulnerable
Gushchin et al. (2024), making them unsuitable for domains such as medical imaging, autonomous
driving, and content authentication, where scores must remain trustworthy under both adversar-
ial and benign perturbations. Moreover, these vulnerabilities allow attackers to manipulate image
search results, as search engines like Bing rely on IQA metrics for ranking (Microsoft (2013)). Such
attacks can also falsify public benchmark results(Huang et al. (2024); Wu et al. (2024)) by exploit-
ing weaknesses in IQA models and artificially boosting perceived algorithm quality. For example,
incorporating a vulnerable IQA metric as a loss function in image restoration can degrade actual
image quality (Ding et al. (2021)) or cause visual artifacts (Kashkarov et al. (2024)). These risks
highlight the urgent need for an FR IQA method that combines accuracy with adversarial robustness.

In this work, we present BiRQA: a precise, fast, compact, and attack-resilient FR IQA metric. The
model builds a multiscale feature pyramid and injects feature maps that capture important patterns
for human visual system (gradient structure, color dissimilarities, and local binary patterns) into a
lightweight neural network. Information flows bidirectionally, which is generally a novel concept in
IQA: a bottom-up attention lifts fine artifacts with an uncertainty-aware gate that outputs strength
and confidence, reducing error propagation across scales. Then a top-down cross-gating supplies
global context. This flow reduces scale-specific blind spots, yielding more precise quality scores
across unseen distortions. A reliability-aware aggregation head pools each scale with GeM and
combines per-scale contributions via softmax-normalized confidence weights, producing an inter-
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pretable convex combination. Reliability is strengthened through anchor-based adversarial training
(AT) that fine-tunes the model to preserve the ranking of adversarial predictions with respect to clean
anchors. Theoretical analysis links the anchor-based optimization objective to a maximal pointwise
prediction error. Extensive experiments on standard IQA benchmarks show that BiRQA achieves
superior accuracy while maintaining computational efficiency (∼15 FPS on 1920 × 1080 images).
Furthermore, our method generalizes across diverse distortion types and remains resilient to adver-
sarial perturbations, outperforming existing methods in attack scenarios. The key contributions are:

• A novel FR IQA model architecture BiRQA uses bidirectional, uncertainty-aware cross-
scale fusion with interpretable aggregation. The proposed CSRAM (fine→coarse) and
SCGB (coarse→fine) modules exchange signals through learned gates, while a lightweight
head aggregates scales with uncertainty-aware weights. The code will be publicly available.

• Theoretically grounded anchored AT uses clean anchors samples and a ranking loss to
tighten a prediction error bound, boosting SROCC under attacks by up to 0.30 over the
undefended model and 0.05 over the prior defenses.

• Extensive experiments on five public FR IQA benchmarks and four unseen white-box at-
tacks show that BiRQA matches or surpasses previous SOTA metrics, runs ∼ 3× faster
than transformer methods, and improve integral robustness scores by up to 12%.
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Figure 1: Overall scheme of BiRQA. A reference–distorted pair yields four feature maps per pyra-
mid level. Cross-Scale Residual Attention Module (CSRAM) and Spatial Cross-Gating Block
(SCGB) allow the model to pass information in both directions between scales. A Reliability-Aware
Head (GeM + dual MLPs) estimates per-level impact and reliability.

2 RELATED WORK

Full-Reference Image Quality Assessment. Assessing the quality of images is critical for numer-
ous applications, such as compression, super-resolution, and other image processing techniques. FR
IQA methods evaluate perceptual quality by comparing a distorted image to its pristine reference.
While PSNR is fast, it correlates poorly with the Human Visual System (HVS). Metrics like SSIM
(Wang et al. (2004)), MS-SSIM (Wang et al. (2003)), FSIM (Zhang et al. (2011)), SR-SIM (Zhang
& Li (2012)), and VIF (Sheikh & Bovik (2006)) model structure, phase, saliency, or visibility to
better match perception at low cost. These methods depend on heuristics and analytic features,
ensuring computational efficiency. Deep learning further improves performance with models like
LPIPS (Zhang et al. (2018)) and DISTS (Ding et al. (2020)). Transformers extend this via SwinIQA
(Liu et al. (2022)), IQT (Cheon et al. (2021)), AHIQ (Lao et al. (2022)), and the current state-of-
the-art (SOTA) method TOPIQ (Chen et al. (2024)), which adopts a multiscale top-down scheme
with Cross-Self Attention. Several recent models further exploit multiscale attention. SwinIQA and
IQT both address cross-scale information flow: SwinIQA relies on a heavy transformer pipeline,
whereas proposed BiRQA model integrates lightweight CNN layers with perceptually grounded an-
alytic features to retain speed. IQT passes representations from coarse-to-fine layers, while BiRQA’s
Cross-Scale Residual Attention Module (CSRAM) exchanges information bottom-up, yielding a
bidirectional interaction that improves detail recovery.Beyond multiscale attention, some works ex-
plore learning to rank image quality. RankIQA (Liu et al. (2017)) trains a Siamese network to predict
quality for NR IQA. To our knowledge, ranking has not yet been combined with adversarial training
in FR IQA, a gap we address through the anchored ranking loss in BiRQA.
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Robust IQA Methods. In FR IQA, an attack adds an imperceptible perturbation that deceives the
metric. Attacks are classified as white-box, where gradients and parameters are known, or black-
box, where only output scores are available (Chakraborty et al. (2021)). IQA-specific attacks have
been proposed in Korhonen & You (2022); Shumitskaya (2024; 2023); Zhang et al. (2022).

Defenses divide into certified and empirical categories. While certified defenses offer provable
guarantees, they remain too slow for real-time use. Empirical strategies are more practical and
often revolve around adversarial training or input purification. There are some works focused on
NR-IQA, including input purifications (E-LPIPS, Kettunen et al. (2019)), adversarial training (R-
LPIPS (Ghazanfari et al. (2023)), AT (Chistyakova et al. (2024))) and architecture modification
(Grad.Norm., Liu et al. (2024)). Although previous AT methods employ data augmentation or gradi-
ent regularization, our anchored adversarial training integrates a ranking loss to enhance robustness.

3 METHOD

FR IQA requires four properties still unmet by many deep learning models: (1) accuracy, (2) low
latency, (3) resilience to adversarial perturbations, and (4) sensitivity to multi-scale artifacts. To
meet these goals, we present BiRQA, a compact hybrid network that injects lightweight, human-
interpretable feature maps into a bidirectional attention pyramid guided by HVS principles. Figure 1
sketches the pipeline: feature maps are arranged in a four-level pyramid, preserving fine detail at
high resolution and summarizing global structure at lower resolutions. At each scale, an Adaptive-
Fusion block reweights channels, a bottom-up Cross-Scale Residual Attention Module (CSRAM)
lifts fine-scale cues to coarser levels, and a top-down Spatial Cross-Gating Block (SCGB) feeds
semantic context back to higher resolutions, completing the bidirectional exchange. A Reliability-
Aware Head (RAH) pools per-scale representations and aggregates them via normalized reliability
weights to produce the final score. Training minimizes a PLCC-oriented regression loss together
with an anchored ranking loss.

3.1 FEATURE EXTRACTION

Feature selection was guided by two primary criteria: computational efficiency and the ability to de-
tect complementary types of image degradation. To keep model fast we explored various lightweight
analytic features rather than building complex image representations from raw images. We evalu-
ated 11 candidate features, including Gabor filters, wavelet transform, entropy map, edge map, detail
loss measure (Li et al. (2011)), VIF, and saliency. A total of 300+ feature combinations were tested.
The following four features delivered the best accuracy–runtime trade-off; adding raw images as
additional inputs to BiRQA worsened results. Full details are provided in Appendix B. The four
chosen features address distinct aspects of quality degradation: (1) SSIM map: costs little to com-
pute and provides a spatial implementation of the structural-similarity idea, which is consistent with
how people compare distortions. (2) Local informational content: measures the variance of pixel
intensities to estimate whether a region is highly informative. The selection of this feature was in-
spired by IW-SSIM (Wang & Li (2010)). (3) YCbCr color difference map: isolates chroma shifts
and color bleeding in channels aligned with the HVS. (4) Local Binary Patterns (LBP): compares
each pixel with its neighboring pixels to encode local texture information into binary patterns. This
method has proven effective under adversarial attacks (Asmitha et al. (2024)).

Unlike many recent IQA models that crop images to lower resolutions for faster computation and
compatibility with pre-trained backbones, our approach avoids cropping to preserve global context
and degradation-specific regions. Instead, we compute feature maps at the original resolution and
integrate them into a pyramidal framework. This method uses four pyramid levels, each downscaled
by a factor of two from the previous level, enabling the network to capture and aggregate multiscale
degradation information effectively.

3.2 BIRQA NETWORK

Following feature extraction, the BiRQA network processes these features to compute the final qual-
ity score. Each feature map at every pyramid level is first preprocessed individually to highlight sig-
nificant spatial regions. These preprocessed feature tensors we denote as {F j

i }, F
j
i ∈ RDj×Hi×Wi ,

3
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where Hi,Wi are feature map dimensions on i-th pyramid level, Dj denoting the number of chan-
nels for feature j.

Multi-feature Adaptive Fusion. At pyramid level i, we concatenate the four features, compute
a joint attention vector αj

i = σ
(
MLPj

i (GAP(F 0
i ⊕F 1

i ⊕F 2
i ⊕F 3

i ))
)
, and obtain the fused tensor

Gi = ϕi(
⊕3

j=0 α
j
i ⊙ F j

i ), where GAP is global average pooling, ⊙ – element-wise multiplica-
tion and ⊕ – concatenation, ϕi – convolution. A Squeeze-and-Excitation block (Hu et al. (2018))
adaptively recalibrates Gi by “squeezing” spatial information into a channel descriptor via global
pooling and then “exciting” (reweighting) each channel through a learned gating mechanism. This
allows BiRQA to dynamically emphasize relevant feature channels and suppress noisy or redundant
ones, improving robustness at negligible extra cost.
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Figure 2: Scheme of the Cross-Scale Residual Attention Module (CSRAM) that lifts high-resolution
cues to the next scale and injects them via uncertainty-aware gated residuals (strength α, confidence
ρ, and residual R) to refine the lower-resolution features.

Naive resizing can blur high-frequency artifacts and propagate false positives; we transmit a
gated residual whose strength and confidence are learned separately. We introduce Cross-
Scale Residual Attention Module (CSRAM, Fig. 2) to interconnect scales. Fine-scale arti-
facts arise first; CSRAM lifts their cues upward while controlling reliability. We form a mes-
sage Ĝi+1 = Conv ↓(Gi) + Resize ↓(Gi). A channel attention block computes a spatial mask
via channel pooling Mi+1 = σ

(
AvgPool(Ĝi+1) + MaxPool(Ĝi+1)

)
, and refine the message:

Ĝi+1 ← Ĝi+1 ⊙ Mi+1. From zi+1 = [Gi+1,Mi+1], we use three 1×1 projections ψ that
yields: (i) a nonnegative injection strength map αi+1 = softplus(ψα(zi+1)), (ii) a bounded in-
jection confidence map ρi+1 = σ(ψρ(zi+1)), and (iii) feature map Ri+1 = tanh(ψR(Ĝi+1)). Here,
softplus enforces nonnegativity and tanh limits residual energy for stability. The final update is
Gi+1 ← Gi+1+(ρi+1⊙αi+1)⊙Ri+1. This uncertainty-aware gating mechanism is, to our knowl-
edge, novel technique in FR IQA; it is parameter-light, tolerates small misalignments, and exposes
interpretable reliability maps.

Spatial Cross-Gating Block (SCGB). Inspired by He et al. (2024), SCGB routes coarse context
downward to suppress spurious high-resolution noise. For adjacent scales i (fine) and i+1 (coarse),
we form gi←i+1 = σ(MLP(Gi+1)) and refineGi ← Gi+Gi⊙gi←i+1. Together, upward CSRAM
and downward SCGB provide a two-way highway that transfers only distortion evidence relevant to
perceived quality.

Reliability-Aware Scale-Wise Fusion. BiRQA produces multi-scale feature tensors after SCGB,
yet common fusion schemes (concatenations/MLPs or gating) hide cross-scale contributions and
may be unstable across datasets. We introduce a light additive scale aggregation head that makes
per-scale contributions explicit and learnable while keeping runtime overhead minimal. Post-SCGB
tensors Gi ∈ RC×Hi×Wi are fed into Reliability-Aware Head (RAH): each scale is pooled to
zi = GeM(hi(Gi)) ∈ Rd, where hi is a 1 × 1 conv to a shared width d, and GeM is generalized-
mean pooling with learnable exponent p. Two tiny MLPs produce a contribution ci ∈ R and a
reliability logit ai ∈ R. Denoting S as the number of scales, we form normalized gates wi =

softmax(a0, . . . , aS−1) to obtain ŷ =
∑S−1

i=0 wici, a convex, interpretable aggregation that is stable
across datasets and cheap to compute.
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3.3 ANCHORED ADVERSARIAL TRAINING

We propose an adversarial fine-tuning strategy, AAT, that leverages adversarial examples without
directly penalizing quality labels. Our approach relies on the assumption that adversarial perturba-
tions are either imperceptible or only slightly visible, which is the most common case in real-world
adversarial scenarios. A key idea is to leverage the availability of clean examples (images with
reliably predicted quality) as “anchors“ for the training process.

Problem Formulation. Image-processing systems increasingly operate in untrusted environments
where imperceptible perturbations can manipulate quality scores. We formalize an adversary that
adds an ℓp-bounded noise δ (∥δ∥p ≤ ϵ) to the distorted image xd of a pair (xr, xd). When higher
scores denote better quality the attacker seeks to maximize fθ(xr, xd + δ); if lower scores indicate
higher quality, the attacker aims to decrease it. The same approach could do the opposite task, as
demonstrated in Antsiferova et al. (2024). This focus does not restrict the generality of our study, as
the principles apply symmetrically. Formally, we define an adversarial attack as

max
∥δ∥p≤ϵ

fθ(xr, xd + δ). (1)

For a given model fθ; training data D containing image pairs with associated quality label y;
and a loss function L of the model, vanilla adversarial training is a min-max optimization prob-
lem(Chistyakova et al. (2024)):

min
θ

E(xr,xd,y)∼D

[
max
∥δ∥p≤ϵ

L(fθ(xr, xd + δ), y)
]
. (2)

The inner maximization generates strong adversarial examples xd+ δ, while the outer minimization
adjusts the model parameters θ to improve robustness.

In image classification, the ground-truth label is unaffected by adversarial perturbations. Quality
scores, however, do change slightly with perceptual content, so directly re-using equation 2 creates
a label-shift. Prior work tackles this by penalizing or rescaling the label(Chistyakova et al. (2024)),
but this brings two practical obstacles: (i) subjective studies follow diverse protocols, so matching
MOS (Mean Opinion Score) scales must be repeated for every dataset; (ii) the metric that drives
penalization can itself be vulnerable, enabling attack transfer.

3.3.1 ANCHORED RANKING LOSS

To take advantage of reliable “anchors“, we define the anchored ranking loss:

Lanchor(y, ỹ) =
1

|S|N
∑
i∈S

N∑
j=1

max{0, R(y, ỹ)i,j}
∥R(y, ỹ)∥∞

, (3)

whereR(y, ỹ) is an element-wise ranking matrix with elementsR(y, ỹ)i,j = (yi−yj) sign(ỹj− ỹi),
N is the size of mini-batch, |S| – number of anchors. Intuitively, this loss penalizes any deviation
in the predicted ordering relative to the ground truth, emphasizing comparisons with clean samples.
We can more effectively constrain the model’s predictions on adversarial examples by anchoring the
loss on a reliable subset S. Given the formulation above, we establish the following result:

Theorem 1: Pointwise Error Bound via Anchored Ranking Loss

Fix a mini-batch with ground-truth MOS y = (y1, . . . , yN ) and predictions ỹ. Let S ⊆
{1, . . . , N} be the anchor indices and set

E = max
i
|ỹi − yi|, R = max

i,j
|yi − yj |. (4)

Assume constants λ, ε,∆ > 0 exist such that: (i) Anchor spacing: ∆ ≤ yik+1
− yik ≤ λ

for consecutive anchors ik, ik+1 ∈ S; (ii) Anchor accuracy: |ỹi − yi| ≤ ε for all i ∈ S
Suppose that anchored ranking loss satisfies Lanchor < δ. Then, the maximum pointwise
error is bounded by

E ≤ ε+ λ
(
1 +

√
2δ N R/∆

)
= ε+O

(
λ
√
δ
)
. (5)

5
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Proof Sketch. We isolate the sample with the largest prediction error E and split that error into
the anchor-tolerated part ε+ λ and an overshoot τ . Because anchors are at most λ apart, inaccurate
prediction for attacked sample by τ necessarily creates τ/λ rank inversions with other anchors. MOS
values differ by at least ∆, so each inversion contributes a fixed positive amount to the anchored
ranking loss; in total the loss grows like (τ/λ)2. Since the measured loss is bounded above by δ,
this quadratic growth forces τ to scale no larger than λ

√
δ N R/∆. Adding back the unavoidable

ε + λ part gives the claimed bound E ≤ ε + λ
(
1 + O(

√
δ)
)
. The full proof is provided in the

Appendix A.

Numerical example

For instance, consider a dataset which MOS values lie in the interval [0, 100], a nearly perfect
IQA model (ϵ = 0.1), and a batch size ofN = 16 images. If, during the construction of each
training batch, we do that in such a manner that the distance between neighboring anchors
does not exceed λ = 0.5 (R ≤ λ ∗ N = 16) and the anchored-ranking loss is δ = 0.01,
then the our guaranteed bound for quality score becomes less than 2% of the MOS range:∣∣ỹj − yj∣∣ ≤ 0.1 + 0.5× 3.57 ≈ 1.88

Theorem 1 requires only (i) an anchor spacing upper-bound λ — trivially satisfied by sorting a
mini-batch and selecting evenly spaced samples; and (ii) an anchor-accuracy tolerance ϵ that is
automatically met for a well-trained model on clean images. No dataset-specific statistics, MOS
rescaling, or certified bounds are needed, so the conditions hold for any FR IQA corpus used in
practice. Further details on the empirical satisfaction of these assumptions and on loss convergence
are provided in Appendix C.2.

3.4 IMPLEMENTATION DETAILS

For training BiRQA model, we used Adam optimizer with lr = 10−4, batch size 32, and the fol-
lowing loss function:

L(y, ŷ) = αMSE(y, ŷ)− (1− α)PLCC(y, ŷ);α = 0.7. (6)

During adversarial training each mini-batch is drawn from a narrow MOS band, which limits both
the label spread R and the anchor spacing λ. Within this band a random subset of images is left
clean to serve as anchors while the remaining images are attacked. The network already predicts
clean images well, so the anchor error ϵ stays negligible. Because R and λ are both bounded by the
band width, the bound in Theorem 1 simplifies to a term driven mainly by λ. Narrower bands there-
fore tighten the guarantee and speed up convergence. Adversarial fine-tuning procedure outlined in
Algorithm 1, where LAAT :

LAAT =
1

2
Lanchor +

1

2
L. (7)

This composite loss enforces robust relative ordering under adversarial perturbations while still con-
straining absolute prediction error.

The complete set of parameters used for BiRQA and adversarial training procedure is listed in
Appendix E.

Algorithm 1 Anchored Adversarial Fine-Tuning
Require: Network fθ , training set D, mini-batch size N , attack routine A, perturbation budget ϵ, desired

anchor spacing λ
while not converged do

Sample mini-batch B = {(xk
r , x

k
d, y

k)}Nk=1 from D
Sort B by yk and choose an index set S s.t. |yik+1 − yik | ≤ λ
for k = 1, . . . , N do

x̂k
d ← A(xk

r , x
k
d; fθ, ϵ) ▷ solve equation 1

ỹk ← fθ(x
k
r , x̂

k
d)

Compute loss LAAT(y
k, ỹk) via equation 7

θ ← ADAM
(
θ,∇θLAAT

)

6
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4 EVALUATION SETUP

Table 1: FR datasets used in experiments.

Dataset Resolution Ref. Images Dist. Images Ratings

LIVE 768× 512 29 779 25k
CSIQ 512× 512 30 866 5k
TID2013 512× 384 25 3,000 524k
KADID-10k 512× 384 81 10,125 30.4k
PIPAL 288× 288 250 23,200 1.13M
PieAPP 256× 256 200 20,280 1M+

Datasets. To compare our approach with
current solutions, we provide various experi-
ment results. We conducted intra- and cross-
dataset evaluations, thorough robustness com-
parison, and an ablation study. As shown in Ta-
ble 1, we conduct experiments on several pub-
lic datasets: LIVE(Sheikh et al. (2006)), CSIQ
(Larson & Chandler (2010)), TID2013 (Pono-
marenko et al. (2013)), KADID-10k (Lin et al. (2019)), PIPAL (Jinjin et al. (2020)), and two-
alternative forced choice (2AFC) dataset: BAPPS (Zhang et al. (2018)). When available, we used
official splits for train/val/test parts and the mean value for 10 runs on random splits in 6:2:2 propor-
tion. These splits are based on reference images to prevent content overlap.

Evaluation Metrics. We evaluate performance using two widely accepted correlation metrics for
datasets with MOS values: Pearson’s Linear Correlation Coefficient (PLCC) and Spearman’s Rank-
Order Correlation Coefficient (SROCC). Both metrics are in the range [-1, 1], with a positive value
meaning a positive correlation. A larger SROCC indicates a more accurate ranking ability of the
model, while a larger PLCC indicates a more accurate fitting ability of the model. We also use a
paired bootstrap test (1k resamples) to assess if differences in SROCC are statistically significant.

Adversarial Robustness Comparison Methodology. We compare the effectiveness of the pro-
posed adversarial training method for the BiRQA proposed model and for LPIPS models to keep
consistency with previous works. KADID-10k train and test parts were used for adversarial train-
ing and testing, utilizing the Projected Gradient Descent with 10 iterations (PGD-10, Madry et al.
(2017)) as attack method. The attack budget was ϵ = 8/255. We compare different adversarial
training techniques by SROCC and Integral Robustness Score (IR-Score, Chistyakova et al. (2024))
on clean and attacked data.

The IR-Score assesses the model’s ability to withstand perturbations of varying strengths, as recom-
mended in Carlini et al. (2019). Adversarial examples were generated with perturbation magnitudes
ϵ ∈ E = {2, 4, 8, 10}/255. Scores were normalized using min-max scaling and mapped to a uni-
fied domain via neural optimal transport to account for distributional differences. The IR-Score is
calculated as follows:

IRscore = Rf −Rf̂ , where Rg =
1

N |E|

N∑
i=1

∑
ϵ∈E

(
g(x(i)r , x

(i)
d )− g(x(i)r , x

(i)
d + δ(i)g,ϵ)

)
. (8)

Here (x
(i)
r , x

(i)
d ) are reference/distorted images, δ(i)g,ϵ is a perturbation at budget ϵ crafted against

model g ∈ {f, f̂}, f̂ is the adversarially trained variant, and N is the number of images. Larger
values indicate greater average reduction in attack-induced drop versus the baseline.

5 RESULTS

Full Reference Benchmarks. Across standard FR-IQA benchmarks (LIVE, CSIQ, TID2013,
PieAPP, PIPAL), BiRQA matches or surpasses prior SOTA in both PLCC and SROCC (e.g., LIVE
0.989/0.988, CSIQ 0.981/0.979; see Tab. 5 in Appendix due to limited space). On PieAPP, corre-
lation is slightly lower, likely due to its broader distortion coverage. Per-distortion analysis shows
SROCC ≈0.90-0.95 for most categories, with reduced effectiveness on some specific types such
as radial geometric transforms. To assess the generalization capabilities of the proposed model,
we performed cross-dataset evaluations. The model was trained on large KADID-10k and PIPAL
datasets and tested on LIVE, CSIQ, and TID2013 datasets. The results are presented in Table 2.
The proposed base BiRQA performs comparably to the TOPIQ model and exceeds it in 9 out of 12
experiments, highlighting its robust generalization across diverse datasets. AAT-BiRQA performs
slightly worse than vanilla BiRQA, but, nonetheless, keeps up with the SOTA performance. This
demonstrates that our adversarial training achieves robustness with negligible cost to normal-case
performance – a key advantage over many defenses.
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Table 2: Cross-dataset performance on benchmarks (PLCC and SROCC are reported in correspond-
ing columns for each benchmark). The best values are bolded, and the second best are underlined.

Method Trained on KADID-10k Trained on PIPAL

LIVE CSIQ TID2013 LIVE CSIQ TID2013

WaDIQaM-FR Bosse et al. (2017) 0.940 0.947 0.901 0.909 0.834 0.831 0.895 0.899 0.834 0.822 0.786 0.739
PieAPP Prashnani et al. (2018) 0.908 0.919 0.877 0.892 0.859 0.876 — — — — — —
LPIPS-VGG Zhang et al. (2018) 0.934 0.932 0.896 0.876 0.749 0.670 0.901 0.893 0.857 0.858 0.790 0.760
DISTS Ding et al. (2020) 0.954 0.954 0.928 0.929 0.855 0.830 0.906 0.915 0.862 0.859 0.803 0.765
AHIQ Lao et al. (2022) 0.952 0.970 0.955 0.951 0.889 0.885 0.903 0.920 0.861 0.865 0.804 0.763
TOPIQ Chen et al. (2024) 0.957 0.974 0.963 0.969 0.916 0.915 0.913 0.939 0.908 0.908 0.846 0.816

BiRQA (ours) 0.967 0.977 0.966 0.967 0.925 0.921 0.911 0.933 0.913 0.912 0.855 0.824
AAT-BiRQA (ours) 0.962 0.970 0.961 0.962 0.918 0.917 0.909 0.925 0.909 0.910 0.850 0.817

Table 3: Robustness of adversarially trained IQA models on KADID-10k. SROCC is evaluated at
ϵ = 8/255; IR-Score uses ϵ∈{2, 4, 8, 10}/255. Bold numbers denote the best result for each model.
All adversarial variants were trained only with PGD-10.

Model SROCC↑ IR-Score↑ Train time
Clean FGSM C&W AutoAttack FACPA FGSM C&W AutoAttack FACPA (min)

base LPIPS 0.893 0.542 0.260 0.239 0.496 — — — — 46
R-LPIPS 0.858 0.570 0.327 0.266 0.515 0.541 0.403 0.385 0.507 123
AT-LPIPS 0.852 0.730 0.523 0.481 0.753 0.722 0.596 0.510 0.613 101
AAT-LPIPS (ours) 0.865 0.753 0.589 0.536 0.810 0.783 0.652 0.582 0.630 345

base TOPIQ 0.938 0.524 0.284 0.269 0.512 — — — — 352
R-TOPIQ 0.879 0.533 0.305 0.314 0.509 0.572 0.431 0.456 0.520 437
AT-TOPIQ 0.892 0.839 0.513 0.552 0.760 0.763 0.615 0.550 0.611 514
AAT-TOPIQ (ours) 0.917 0.844 0.593 0.580 0.811 0.802 0.691 0.601 0.645 558

base BiRQA 0.954 0.568 0.295 0.350 0.503 — — — — 105
R-BiRQA 0.902 0.571 0.291 0.357 0.502 0.563 0.427 0.414 0.525 218
AT-BiRQA 0.907 0.801 0.573 0.560 0.788 0.769 0.638 0.551 0.620 205
AAT-BiRQA (ours) 0.943 0.836 0.614 0.602 0.819 0.811 0.690 0.614 0.657 267

Adversarial Robustness Comparison. We benchmark four variants of three full-reference IQA
(LPIPS, TOPIQ and the proposed BiRQA) against common ℓ∞ white-box attacks. Compared meth-
ods are: (1) base: no adversarial training; (2) R-: vanilla adversarial training; (3) AT-: adversarial
training with label smoothing (Chistyakova et al. (2024)); (4) AAT- (ours): Anchored Adversarial
Training. All AT and AAT models were optimized with a PGD-10 attack of budget ϵ=8/255. At
test time we evaluate four unseen attacks: FGSM(Goodfellow et al. (2014)), C&W(Carlini & Wag-
ner (2017)), AutoAttack (AA, Croce & Hein (2020)) and the perceptual FACPA attack (Shumitskaya
(2023)). Robustness is measured by SROCC and IR-Score on the KADID-10k dataset.

Table 3 presents the results, which shows that AAT achieves state-of-the-art robustness and outper-
forms other approaches by 0.02-0.06 SROCC points and by similar margins on IR-Score. AAT also
provides the best SROCC on unperturbed test set compared to other defense methods. Even without
defense, BiRQA possesses more robustness compared to both LPIPS and TOPIQ, surpassing them
by 0.02 − 0.03 in terms of IR-Score. Although AAT requires more time during adversarial fine-
tuning phase, it provides the best overall results. More experiments can be found in the Appendix
C.3-C.4, including experiments on 2AFC datasets under White-Box and Black-Box attacks.

Theoretical bounds in practice. Our adversarial training uses an anchored ranking loss that ties
each perturbed sample to a small set of clean anchor images within the mini-batch. Theorem 1 estab-
lishes that as this loss approaches zero, the maximum prediction error on any adversarial example is
provably bounded by a small constant. In practice, the empirical errors respect this bound, as shown
in Fig. 6b in Appendix. Moreover, the objective drops below 10−2 within 500 iterations, indicating
stable, fast optimization (see Fig. 6a in Appendix).

Statistical significance was tested on the PIPAL by a paired bootstrap of SROCC differences (1k
resamples). As Table 7 in Appendix shows, BiRQA exceeds every previous FR IQA metric, gaining
up to 0.57 SROCC over PSNR and a positive but very small ∼0.003 over the strongest baselines
AHIQ and TOPIQ (statistically significant on PIPAL due to the large sample size, though the margin
is small in absolute terms), while the robust variant AAT-BiRQA sacrifices only 0.007.
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Figure 3: Computational efficiency (FPS) vs. Per-
formance (PLCC) comparison on PDAP-HDDS
dataset with image size of 1920× 1080 pixels.

Computational Complexity. We assessed the
computational efficiency of each IQA model
by executing 100 forward passes on 100 ran-
dom images from the PDAP-HDDS(Liu et al.
(2018)) dataset and averaging the resulting run-
times. Experiments were performed on an
NVIDIA A100 GPU (80 GB). Measurements
are end-to-end: every operation required by
model is considered, including the feature cal-
culation for BiRQA.

Figure 3 summarizes the trade-off between ac-
curacy and efficiency. Our method achieves
performance on par with TOPIQ while run-
ning substantially faster than all competing
approaches. Consistent with prior observa-
tions, transformer-based architectures (TOPIQ,
DISTS, LPIPS) are much slower than their
CNN-based counterparts.

Figure 4: Ablation study for BiRQA model. The
CSRAM and SCGB modules were replaced with
cross-attention layers and element-wise multipli-
cation. The Reliability-Aware Head (RAH) mod-
ule was replaced with pooling and MLP.

CSRAM SCGB RAH PLCC SROCC

✗ ✗ ✗ 0.801 0.813
✓ ✗ ✗ 0.907 0.911
✓ ✓ ✗ 0.925 0.928
✓ ✓ ✓ 0.938 0.942

Ablation Study and Feature Selection. We
exhaustively trained 231 candidate models cov-
ering every combination of 1-, 2-, and 3-feature
sets drawn from an 11-feature pool on KADID-
10k. Each candidate was scored by a Pareto
trade-off between SROCC and inference speed.
We dropped the three weakest features and
evaluated all 70 four-feature sets from the re-
maining eight. Validation SROCC flattened at
four features; adding a fifth would increase in-
ference cost without accuracy gains. The final
combination (SSIM, Informational Map, Color
Difference, and LBP) shows the best SROCC
while remains relatively fast and captures complementary structure, information content, chromatic
shifts, and fine texture cues. A model that uses only raw image pairs outperforms any single analytic
feature map, but adding raw image input to the chosen four lowers SROCC, indicating the Color
Difference map already embeds the raw signal. Complete ablations can be found in Appendix B.

Table 4 presents results on the KADID-10k dataset for the variation of the BiRQA model. Enabling
CSRAM lifts correlations markedly, highlighting that cross-scale interchange with uncertainty-
aware gating is crucial for capturing fine artifacts without losing global context. Adding SCGB
then activates fully bidirectional information flow between scales and yields a further, consistent
improvement, while the reliability-aware head consolidates these signals and sharpens calibration.

6 CONCLUSION

In this work, we introduce BiRQA, a novel Full-Reference IQA metric that balances state-of-the-
art performance while maintaining computational efficiency. It combines analytic feature maps
with a lightweight neural network architecture, that incorporates a multi-scale pyramid framework,
adaptive fusion and cross-scale attention mechanisms. This design captures multi-scale perceptual
differences, achieving an inference speed of 15 FPS on 1920 × 1080 images, surpassing many
counterparts. Extensive evaluations confirm that BiRQA matches or exceeds leading methods.

To address the critical challenge of adversarial robustness, we propose Anchored Adversarial Train-
ing (AAT) with an anchored-ranking loss and prove a mini-batch pointwise-error bound under mild
assumptions. Empirically, the anchored loss drops quickly and remains low, and prediction errors
stay within the theoretical bound. AAT delivers clear robustness gains over other defenses across
four unseen attacks, with only a small drop on clean data. The trends persist when summarized by
IR-Score across budgets. Limitations include weaker performance on some distortions (e.g., radial
geometry). We hope these findings encourage further work into robust, efficient IQA models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We will release the full training/evaluation code, pre-trained checkpoints, and an environment file
(Conda environment.yml) in the supplementary and on a public repository upon acceptance. Our
experiments use standard FR-IQA datasets—LIVE, CSIQ, TID2013, KADID-10k, PIPAL (and
BAPPS for 2AFC)—with official splits when available; otherwise we report the mean over 10 runs
using 6:2:2 reference-image-based splits to avoid content leakage.

We provide:

• Code & config: scripts for clean training and Anchored Adversarial Training (AAT), eval-
uation on clean and attacked sets, IR-score computation.

• Hyperparameters: all values needed to reproduce results (optimizer, batch size, learning
rate, loss weights, AAT mixing, PGD settings, ϵ budgets).

• Checkpoints & logs: trained weights and per-split predictions.
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APPENDIX

A PROOF OF THEOREM 1

Notation. Let y = (y1, . . . , yN ) ∈ RN be ground-truth mean opinion scores (MOS) and ỹ =
(ỹ1, . . . , ỹN ) be the model predictions on the current mini-batch. Let S ⊆ {1, . . . , N} be the
anchor indices, which denote clean samples in mini-batch. The remaining samples are attacked.

Assumptions. There exist constants λ, ε,∆ > 0 such that

1. Anchor density. The anchor MOS values are sorted and successive anchors differ by at most λ:

∆ < yik+1
− yik ≤ λ ∀ ik ∈ S.

2. Anchor accuracy.
∣∣ỹi − yi∣∣ ≤ ε ∀i ∈ S.

3. MOS resolution.
∣∣yi − yj∣∣ ≥ ∆ ∀i ̸= j.

4. Anchored ranking loss. Denote the element-wise ranking matrix

Ri,j(y, ỹ) = (yi − yj) sign(ỹj − ỹi),

and write ∥R∥∞ := maxi,j |Ri,j |. We use

Lanchor(y, ỹ) =
1

|S|N
∑
i∈S

N∑
j=1

max{0, Ri,j(y, ỹ)}
∥R∥∞

. (9)

Let
E := max

1≤j≤N

∣∣ỹj − yj∣∣ and R := max
i,j

∣∣yi − yj∣∣.
Theorem 1 (Pointwise Error Bound via Anchored Ranking Loss). If the anchored loss satisfies
Lanchor(y, ỹ) < δ, then

E ≤ ε + λ
(
1 +

√
2δ N R

∆

)
. (10)

Proof. 1. Pick the worst sample. Choose j⋆ = argmaxj |ỹj − yj | and set e := ỹj⋆ − yj⋆ , so
|e| = E. The case e < 0 is symmetric; assume e > 0 henceforth.

2. Define the overshoot. Put
τ := e− ε− λ.

If e ≤ ε+ λ then equation 10 holds trivially, so assume τ > 0.

3. Count the mis-ordered anchors. Because consecutive anchor MOS are at most λ apart, every
sample is within λ/2 of some anchor. Shifting the prediction of j⋆ by an additional τ + λ/2 > λ/2
therefore flips its order with at least

m :=
⌈
τ
λ

⌉
≥ τ

λ

anchors whose ground-truth MOS are strictly larger than yj⋆ .

4. Lower-bound the loss contribution. For each such anchor i we have yi > yj⋆ but ỹj⋆ > ỹi,
hence Ri,j⋆(y, ỹ) ≥ yi − yj⋆ . By the MOS-resolution assumption every violated pair contributes at
least ∆, 2∆, . . . ,m∆, so

m∑
k=1

(yj⋆ + k∆− yj⋆) = ∆
m(m+ 1)

2
≥ ∆m2

2
.

5. Relate to Lanchor. Only one column (that of j⋆) is used, therefore

Lanchor ≥
∆m2

2

N R
=

∆m2

2N R
.
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6. Solve for τ . The assumption Lanchor < δ implies ∆m2

2N R < δ. Substituting m ≥ τ/λ gives
τ2 < 2δ N R

∆ λ2.

7. Express e and E. Using τ = e − ε − λ and E = |e| yields e ≤ ε + λ + λ
√

2δ N R
∆ , which is

exactly equation 10.

1 (11 combs.)
2 (55 combs.)
3 (165 combs.)
4 (70 combs.)
4 (final combination) 
5 (final combination + 1 extra) 
Raw input 
Raw input + final combination 

Figure 5: SROCC and inference FPS on KADID-10k for different feature sets. The chosen quartet
lies on the Pareto frontier, offering the best accuracy. FPS was measured on images with 1920×1080
resolution.

B CHOICE OF FEATURES

We carefully designed a list of possible features for our model, including SSIM, Informational Map,
Color Difference, Local Binary Pattern (LBP), Gabor Filters, Wavelet Transform, Entropy Map,
Edge Map, Detail Loss Measure (DLM), Visual Information Fidelity (VIF) and Saliency Map. Short
descriptions for these features are provided in Table 4.

We began with these 11 candidate analytic feature maps and exhaustively evaluated all 1-, 2-, and 3-
feature combinations (11, 55, and 165 models, respectively) on KADID-10k (60/20/20 train/val/test
split), measuring SROCC and inference speed (FPS). FPS was measured end-to-end (feature com-
putation + the neural network) at 1920 × 1080 resolution on a single NVIDIA A100 80 GB GPU.
Each model was trained from scratch under the same architecture and hyperparameters; ≈2 GPU-
hours per run, totaling≈600 GPU-hours. Based on joint accuracy–speed, the three weakest features
(Saliency, Wavelet Transform, and Entropy Map) were removed. From the remaining eight features,
we trained all

(
8
4

)
= 70 four-feature combinations. We did not explore all five-feature sets: their

cost is prohibitive for real-time deployment and validation SROCC already saturates at four features
(adding any additional feature to the best four-feature set yields no improvement). As a check, we
added each of the remaining features to the best four-feature combination and tested them. The
resulting SROCC values decreased upon adding a fifth feature, likely due to redundancy. In these
experiments we varied only the input features to BiRQA, keeping the architecture fixed.

Figure 5 presents all 300+ evaluated feature combinations. The selected features SSIM, Informa-
tional Map (IM), Color Difference (CD), and LBP are complementary: SSIM captures structural
deviations, IM reflects local information content, CD measures chromatic/luminance discrepancies
in a perceptually motivated space, and LBP encodes fine-scale texture. A model using only raw im-
age pairs outperforms any single analytic feature. However, concatenating raw pixels with the four
selected features reduces SROCC. This likely stems from redundancy, because CD already encodes
pixel level differences in an alternative color space, resulting in increased input dimensionality under
a fixed capacity predictor, which can hurt generalization.
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Table 4: Description of evaluated IQA features

Feature Description / Key Benefit

SSIM Structural Similarity Index compares luminance, contrast and structural compo-
nents between a reference and a test image, yielding a single score that tracks
perceived quality with high correlation to the human visual system (HVS).

Informational Map Generates a spatial weighting map based on local information content (gradient
magnitude), giving more influence to perceptually important, detail-rich regions.

Color Difference Computes perceptual color difference in YCbCr color space, making the metric
sensitive to chromatic distortions that luminance-only measures may miss.

LBP Local Binary Patterns encode micro-texture by thresholding each neighborhood
against its centre pixel; the histogram is gray-scale and rotation robust, providing
a compact descriptor of fine texture changes.

Gabor Filters A bank of Gabor kernels isolates edge and texture energy in specific frequency-
orientation bands, capturing blur, ringing and other anisotropic artifacts.

Wavelet Transform Discrete wavelet decomposition splits the image into multi-resolution sub-
bands; analyzing coefficients across scales localizes blur or compression arti-
facts while preserving both spatial and frequency information.

Entropy Map Computes local Shannon entropy inside sliding windows; high-entropy areas
correspond to regions with greater visual information, enabling quality scores
that prioritize complex, information-dense regions.

Edge Map Gradient-based edge extraction detects intensity discontinuities and object
boundaries; comparing edge strength between reference and distorted images
is effective at spotting blur or sharpening artifacts.

Detail Loss Measure (DLM) Measures the dissimilarity of high-frequency gradients between image pairs,
providing a direct quantification of lost fine-scale detail (e.g., due to denois-
ing, compression or over-smoothing).

VIF Visual Information Fidelity models images as Gaussian Scale Mixtures and com-
putes the mutual information lost in the distorted version, grounding the metric
in natural-scene statistics and information theory.

Saliency Uses the saliency neural network model to predict likely gaze locations, helping
the final metric align with where observers are most likely to look.

C ADDITIONAL ANALYSIS AND RESULTS

C.1 MORE RESULTS ON FR BENCHMARKS

Table 5 presents a comprehensive comparison across widely used FR IQA benchmarks. The pro-
posed BiRQA model achieves state-of-the-art or competitive results on most datasets, including
LIVE, CSIQ, PieAPP, and the large-scale PIPAL dataset, for both PLCC and SROCC metrics. No-
tably, BiRQA reaches or surpasses a correlation of 0.98 on LIVE and CSIQ, and outperforms recent
transformer-based methods on the more challenging PieAPP and PIPAL datasets while maintaining
high efficiency.

AAT-BiRQA, which incorporates our proposed anchored adversarial training scheme, offers slightly
lower correlations on clean data due to the regularization effect of adversarial robustness, but still
maintains strong overall performance. This makes it preferable in safety-critical or attack-prone
environments.

BiRQA shows slightly lower scores on TID2013, where it ranks just below the best-performing
model (AHIQ). This can be attributed to the peculiar distortion types present in TID2013 such as
chromatic aberration, mean shift, and severe radial distortions, that are underrepresented in modern
training sets. Additionally, some distortions in TID2013 are known to interact poorly with analytic
features (e.g., SSIM and LBP), which may limit BiRQA’s ability to fully capture perceptual degra-
dation in those cases. We hypothesize that deeper fine-tuning or explicit modeling of these artifact
types may further improve performance on such legacy datasets.

Overall, BiRQA and its adversarially trained variant AAT-BiRQA demonstrate strong generalization
across datasets and distortion types, validating the effectiveness of bidirectional multiscale fusion
and anchor-based adversarial training.
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Table 5: Quantitative comparison with related works on public FR benchmarks, including the tradi-
tional LIVE, CSIQ, TID2013 with MOS labels, and recent large-scale datasets PieAPP, PIPAL with
2AFC labels. The best and second results are bold and underlined, respectively, and “—” indicates
the score is not available or not applicable.

Method LIVE CSIQ TID2013 PieAPP PIPAL
PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC

PSNR 0.865 0.873 0.819 0.810 0.677 0.687 0.135 0.219 0.277 0.249
SSIM (2004) 0.937 0.948 0.852 0.865 0.777 0.727 0.245 0.316 0.391 0.361
MS-SSIM (2003) 0.940 0.951 0.889 0.906 0.830 0.786 0.051 0.321 0.163 0.369
VIF (2006) 0.960 0.964 0.913 0.911 0.771 0.677 0.250 0.212 0.479 0.397
MAD (2010) 0.968 0.967 0.950 0.947 0.827 0.781 0.231 0.304 0.580 0.543
VSI (2014) 0.948 0.952 0.928 0.942 0.900 0.897 0.364 0.361 0.517 0.458

DeepQA (2017) 0.982 0.981 0.965 0.961 0.947 0.939 0.172 0.252 — —
WaDIQaM (2017) 0.980 0.970 — — 0.946 0.940 0.439 0.352 0.548 0.553
PieAPP (2018) 0.986 0.977 0.975 0.973 0.946 0.945 0.842 0.831 0.597 0.607
LPIPS-VGG (2018) 0.978 0.972 0.970 0.967 0.944 0.936 0.654 0.641 0.633 0.595
DISTS (2020) 0.980 0.975 0.973 0.965 0.947 0.943 0.725 0.693 0.687 0.655
JND-SalCAR (2020) 0.987 0.984 0.977 0.976 0.956 0.949 — — — —
AHIQ (2022) 0.989 0.984 0.978 0.975 0.968 0.962 0.840 0.838 0.823 0.813
TOPIQ (2024) 0.984 0.984 0.980 0.978 0.958 0.954 0.849 0.841 0.830 0.813

BiRQA (ours) 0.989 0.988 0.981 0.979 0.964 0.959 0.852 0.845 0.837 0.822
AAT-BiRQA (ours) 0.984 0.980 0.980 0.975 0.958 0.952 0.840 0.830 0.831 0.811

C.2 ANCHOR-LOSS CONVERGENCE AND THEORETICAL BOUNDS

Figure 6 (a) traces the anchored-ranking loss Lanchor over the first 1,000 optimization steps (mini-
batches). Two curves are shown: the raw batch-wise loss (blue) and an exponential-moving-average
with a window of 20 iterations (orange). By iteration∼650 the smoothed loss drops below 10−3 and
remains there for the rest of training, with only small mini-batch jitter (< 10% relative amplitude).
This meets the target δ = 10−3 used in Theorem 1, so the theoretical bound on pointwise prediction
error is already guaranteed after less than two epochs. The plot confirms that anchored adversarial
training converges quickly and stably, delivering the tight loss levels required for the robustness
guarantee without extended hyper-parameter tuning.

Figure 6 (b) compares the theoretical bound of Theorem 1 with the observed maximum pointwise
error during AAT fine-tuning on KADID-10k. The empirical curve never exceeds the bound and
decays at the same exponential rate, giving concrete evidence that the bound is valid.

(a) (b)

Figure 6: (a): Convergence of the Anchored Ranking Loss over 1,000 iterations. (b): Comparison
of bounds, provided by Theorem 1 with empirical values of maximum pointwise errors.

C.3 ROBUSTNESS UNDER DIFFERENT ATTACK STRENGTHS

Figure 7 shows how Spearman rank-order correlation varies with FGSM attack strength on the
KADID-10k test set. We evaluate BiRQA, LPIPS and TOPIQ together with their anchored adver-
sarial training versions under five ℓ∞ budgets ϵ = {0, 2, 4, 8, 10}/255, where ϵ = 0 corresponds to
clean images. All models are trained on the KADID-10k training set. BiRQA consistently maintains
higher correlation than LPIPS and TOPIQ as perturbation strength increases. Anchored adversarial
training markedly reduces the performance drop for each metric, with the anchored BiRQA variant
retaining the highest SROCC across all budgets.
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Figure 7: Robustness of FR IQA metrics to FGSM attack with different perturbation budgets evalu-
ated on KADID-10k dataset. Solid lines show SROCC of vanilla models without adversarial train-
ing, dashed lines show SROCC of models trained with AAT.

C.4 2AFC DATASETS ROBUSTNESS COMPARISON

We evaluated four variations of three FR IQA models (LPIPS, TOPIQ and BiRQA) on Two Alterna-
tive Forced Choice (2AFC) dataset BAPPS. We compare AAT to (1) base: no adversarial training;
(2) R-: vanilla adversarial training; (3) AT-: adversarial training with label smoothing. All AT and
AAT models were optimized with a PGD-10 attack of budget ϵ = 8/255. These models were at-
tacked by seven unseen methods: FGSM, C&W, AutoAttack (AA), FACPA, the perceptual attack
of Zhang et al., SquareAttack and Parsimonious, including 5 White Box and 2 Black Box methods.
All attacks during testing were evaluated with a budget of ϵ = 8/255. We report accuracy on clean
and attacked versions of the BAPPS test set.

Table 6 presents the results, which shows that AAT achieves state-of-the-art robustness and out-
performs other approaches by 0.02-0.1 accuracy points. AAT also provides the best accuracy on
unperturbed test set compared to other defense methods. Even without defense, BiRQA possesses
more robustness compared to LPIPS and TOPIQ, surpassing them by 0.03− 0.06 in terms of accu-
racy.

Table 6: Accuracy on 2AFC BAPPS test set of different adversarial training techniques, which were
applied to LPIPS, TOPIQ and BiRQA models. The best results for each model are bolded. PGD-10
with ϵ = 8/255 was used during training.

Model White-Box Attacks Black-Box Attacks
Clean FGSM C&W AutoAttack FACPA Zhang et al. SquareAttack Parsimonious

base LPIPS 0.742 0.260 0.102 0.135 0.415 0.301 0.511 0.513
R-LPIPS 0.728 0.487 0.306 0.298 0.471 0.375 0.567 0.533
AT-LPIPS 0.729 0.495 0.440 0.412 0.589 0.436 0.615 0.586
AAT-LPIPS (ours) 0.736 0.520 0.486 0.459 0.632 0.494 0.643 0.618
base TOPIQ 0.784 0.358 0.320 0.341 0.496 0.416 0.542 0.552
R-TOPIQ 0.762 0.420 0.391 0.350 0.523 0.459 0.589 0.581
AT-TOPIQ 0.768 0.493 0.467 0.479 0.584 0.510 0.634 0.614
AAT-TOPIQ (ours) 0.775 0.526 0.544 0.552 0.612 0.546 0.658 0.653
base BiRQA 0.794 0.405 0.350 0.376 0.521 0.462 0.571 0.574
R-BiRQA 0.771 0.491 0.382 0.417 0.545 0.526 0.614 0.587
AT-BiRQA 0.771 0.573 0.473 0.485 0.570 0.581 0.662 0.672
AAT-BiRQA (ours) 0.782 0.594 0.561 0.580 0.637 0.610 0.690 0.703
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C.5 STATISTICAL SIGNIFICANCE

We measure practical improvements by the difference in Spearman rank-order correlation (SROCC):

∆ρi,j = SROCC(yMOS , yi)− SROCC(yMOS , yj),

where yMOS is the vector of mean-opinion scores, i and j index two IQA metrics, and yi, yj are
their predictions. For every pair of IQA metrics, we estimate ∆ρ and its 95% confidence interval
(CI) via a paired non-parametric bootstrap: We used the PIPAL dataset with a size of N = 23, 200
distorted images for this experiment. From the test set of N image pairs we drew R = 1,000
bootstrap samples of size N with replacement, keeping the MOS vector and the two prediction
vectors aligned. On each resample b ∈ [1, ..., R] we computed ∆ρ(b). The median of {∆ρ(b)} is
reported as the effect size. The 2.5th and 97.5th percentiles form the two-sided 95% CI.

An improvement is considered significant when the lower CI bound is positive and ∆ρ ≥ 0.01,
consistent with recent FR IQA benchmarks. Table 7 shows the results. The bootstrap makes no
distributional assumptions, accounts for dependence between predictions, and remains valid even
when error variance varies across the MOS range.

Table 7 shows that BiRQA outperforms every prior FR IQA metric on PIPAL. The gain is dramatic
against classical metrics (e.g., +0.567 SROCC over PSNR) and even if small remains statistically
significant against the strongest modern baselines (AHIQ/TOPIQ). The robustness-enhanced variant
(AAT-BiRQA) sacrifices no more than 0.007 SROCC, confirming that anchored adversarial fine-
tuning adds security almost for free.

Table 7: Pairwise ∆SROCC (±95% CI) on PIPAL (N = 23,000 distorted images) for 1,000 paired
nonparametric bootstrap resamples (image pairs drawn with replacement; MOS and predictions kept
aligned). Positive values favor the row metric; negative values favor the column metric. Only the
lower triangle is shown; “—” indicates the symmetric counterpart.

PSNR SSIM MAD WaDIQaM LPIPS DISTS AHIQ TOPIQ BiRQA
(ours)

PSNR — — — — — — — — —

SSIM 0.103
±0.003 — — — — — — — —

MAD 0.281
±0.005

0.178
±0.001 — — — — — — —

WaDIQaM 0.292
±0.007

0.189
±0.001

0.011
±0.001 — — — — — —

LPIPS 0.336
±0.007

0.232
±0.001

0.054
±0.003

0.044
±0.001 — — — — —

DISTS 0.399
±0.006

0.295
±0.001

0.117
±0.006

0.107
±0.004

0.063
±0.002 — — — —

AHIQ 0.564
±0.017

0.460
±0.014

0.282
±0.014

0.272
±0.012

0.228
±0.009

0.165
±0.004 — — —

TOPIQ 0.565
±0.016

0.461
±0.014

0.283
±0.015

0.273
±0.013

0.229
±0.010

0.166
±0.004

0.001
±0.000 — —

BiRQA
(ours)

0.567
±0.014

0.463
±0.014

0.285
±0.013

0.275
±0.013

0.231
±0.009

0.168
±0.004

0.003
±0.000

0.002
±0.000 —

AAT-BiRQA
(ours)

0.560
±0.016

0.457
±0.013

0.278
±0.013

0.268
±0.011

0.224
±0.008

0.161
±0.003

−0.004
±0.001

−0.005
±0.001

−0.007
±0.001
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D COMPARISON WITH PURIFICATION DEFENSES

Table 8 compares the proposed AAT technique with adversarial purification methods. These meth-
ods do not modify the IQA model itself. Instead they are preprocess input images. We compare
AAT-BiRQA against basic preprocessing techniques such as Random Flip, Random Rotate and the
specialized DiffPure defense method (Nie et al. (2022)). Results show that AAT-BiRQA outper-
forms all other purification methods, except DiffPure on SquareAttack. This likely reflects that
SquareAttack has the least similar perturbations to PGD-10 used during adversarial training.

Table 8: Accuracy on 2AFC BAPPS test set for AAT-BiRQA compared to some adveersarial purifi-
cation methods. The best results are bolded. PGD-10 with ϵ = 8/255 was used during training of
AAT-BiRQA.

Model White-Box Attacks Black-Box Attacks
Clean FGSM C&W AutoAttack FACPA Zhang et al. SquareAttack Parsimonious

base BiRQA 0.794 0.405 0.350 0.376 0.521 0.462 0.571 0.574
base BIRQA + Random Flip 0.751 0.471 0.467 0.422 0.569 0.570 0.606 0.608
base BIRQA + Random Rotate 0.720 0.446 0.431 0.390 0.534 0.512 0.541 0.553
base BIRQA + DiffPure 0.741 0.522 0.498 0.452 0.619 0.603 0.712 0.698
AAT-BiRQA (ours) 0.782 0.594 0.561 0.580 0.637 0.610 0.690 0.703

E LIST OF PARAMETERS

The complete set of hyperparameters for both clean and adversarial training is provided in Table 9.
For standard training, we use a regression-based objective that balances MSE and PLCC. In the
adversarial setting, our anchored fine-tuning strategy integrates PGD-based attacks into the training
loop and jointly optimizes clean and ranking losses.

Table 9: List of hyper-parameters and description of experimental set-up for BiRQA.

Parameter Value Parameter Value
Vanilla (clean) training Anchored Adversarial Training (AAT)

Optimizer Adam Inner attacker PGD-10
Adam (β1, β2) 0.9/0.999 PGD step size 2/255

Batch size 32 PGD norm type ℓ∞
Epochs 2500 Perturbation budget ϵ train: 8/255; test: {2, 4, 8, 10}/255

Learning rate 10−4 Anchor spacing λ 0.5

Loss function Lclean = α1MSE− (1− α1)PLCC
α1 = 0.7

AAT loss α2Lanchor + (1− α2)Lclean

α2 = 0.5
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