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ABSTRACT

Reinforcement Learning (RL) plays a crucial role in aligning large language mod-
els (LLMs) with human preferences and improving their ability to perform com-
plex tasks. However, current approaches either require significant computational
resources due to the use of multiple models and extensive online sampling for
training (e.g., PPO) or are framed as bandit problems (e.g., DPO, DRO), which
often struggle with multi-step reasoning tasks, such as math problem-solving and
complex reasoning that involve long chains of thought. To overcome these lim-
itations, we introduce Direct Q-function Optimization (DQO), which formulates
the response generation process as a Markov Decision Process (MDP) and utilizes
the soft actor-critic (SAC) framework to optimize a Q-function directly parame-
terized by the language model. The MDP formulation of DQO offers structural
advantages over bandit-based methods, enabling more effective process supervi-
sion. Experimental results on two math problem-solving datasets, GSM8K and
MATH, demonstrate that DQO outperforms previous methods, establishing it as a
promising offline reinforcement learning approach for aligning language models.

1 INTRODUCTION

Large language models (LLMs) have shown remarkable performances and potentials on a wide
range of tasks including dialog generation (Han et al., 2024), general question answering (Alawwad
et al., 2024), code generation (Jimenez et al., 2023; Chen et al., 2024b), agents (Wang et al., 2024)
and math problem solving (Yu et al., 2024; Shao et al., 2024). To ensure good performance, one
of the key procedures is to align the language models with human preferences or task-specific re-
quirements by reinforcement learning (RL) (Bai et al., 2022; Touvron et al., 2023). Canonically, the
alignment training pipeline consists of two stages (Ouyang et al., 2022). In the first stage, a reward
model under the Bradley-Terry model (Bradley & Terry, 1952) is trained on human or environment-
labeled preference data. Then the language model is trained by online RL algorithms like Proximal
Policy Optimization (PPO) (Schulman et al., 2017) with the reward signals provided by the reward
model trained in stage one.
Despite the good performance achieved, the online RL methods usually involve sampling during
training, which is both costly and unstable compared to offline methods (Choshen et al., 2020).
These issues are overcome by offline preference learning methods, of which the representative is
Direct Preference Optimization (DPO) (Rafailov et al., 2024). DPO and its follow-ups (e.g., Zhao
et al. (2023); Azar et al. (2024)) treat the language model as the policy model and reward model
simultaneously and train the model on offline pairwise preference data directly, therefore eliminating
the need for a separate reward model. Though simple, direct preference learning has been shown
effective and efficient in LLM alignment (Tunstall et al., 2023).
However, in practice, sometimes it is hard to acquire pairwise data required by the above meth-
ods. This issue becomes particularly severe under scenarios like math problem solving or code
generation when generating high-quality data requires domain-specific expertise (Saunders et al.,
2022; Bowman et al., 2022). This drawback of DPO has recently been circumvented by Direct Re-
ward Optimization (DRO) (Richemond et al., 2024). DRO formulates the LLM generation task as
a single-step MDP (i.e., bandit) and adopts the framework soft actor-critic (SAC) (Haarnoja et al.,
2018), where the advantage is directly parameterized by the language model. Consequently, DRO
inherits the advantage of offline policy gradient and gets rid of the dependency on pairwise data.
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Table 1: A comparison between DQO, offline learning algorithms, including supervised fine-tuning
(SFT), reject sampling (RS) (Dong et al., 2023), DPO (Rafailov et al., 2024), KTO (Ethayarajh
et al., 2024), DRO (Richemond et al., 2024) and online algorithm PPO (Schulman et al., 2017).
DQO enjoys all the benefits listed in the left-most column.

SFT RS DPO KTO DRO PPO DQO
Free from online sampling during training ✓ ✓ ✓ ✓ ✓ ✗ ✓
Learn from negative samples ✗ ✗ ✓ ✓ ✓ ✓ ✓
Learn from unbalanced samples ✗ ✗ ✗ ✓ ✓ ✓ ✓
Ability to use process supervision ✗ ✗ ✗ ✗ ✗ ✓ ✓

Nevertheless, DRO treats the process as a bandit problem, which neglects the intrinsic long-horizon
nature of a wide spectrum of tasks that require complex multi-step reasoning like math problem
solving and code generation (Kang et al., 2024; Miao et al., 2024), where an erroneous reasoning is
almost fatal. Previous RL research found that if rewards are only provided at the end of the episode,
discovering this sparse reward signal is a hard exploration problem and sparse reward functions may
not be able to meaningfully distinguish between a wide range of different policies, which makes
the training inefficient (Riedmiller et al., 2018; Wilcox et al., 2022). In the meanwhile, recent
studies show that signals from process reward models (PRMs) can further boost the performance
of language model (Zhang et al., 2024a; Lightman et al., 2023). The positional information of
PRM scores usually implies the critical mistakes in the reasoning and therefore provides stronger
supervision signals. However, if the whole generation process is simplified as a single action, the
process rewards will be aggregated and the positional information will be lost, implying that DRO
cannot efficiently utilize process supervision.
In order to overcome the aforementioned issues, in this paper, we propose Direct Q-function op-
timization (DQO), an offline RL algorithm for LLMs. In DQO, the responding procedure is for-
mulated as a Markov Decision Process (MDP) and our goal is to learn an optimal policy under
KL-regularization. Our algorithm adopts the framework of soft Q-learning, where the Q-function is
directly parameterized by the language model. Then both the Q-function network and the value net-
work are updated according to Soft Bellman Equation on offline data. The MDP formulation makes
DQO a multi-step learning algorithm, and can therefore exploit process reward signals. A holistic
comparison of our method and other alignment methods is shown in Table 1. Unlike DPO or DRO,
where all tokens (actions) within a response (trajectory) are evenly incentivized or punished, DQO
can discover the correct reasoning steps in a incorrect response, see the case in Table 2. Specifically,
our contributions are summarized as follows

• We propose Direct Q-function optimization, or DQO, an offline RL algorithm for LLMs. Com-
pared to previous methods, DQO can learn from offline and negative or unbalanced samples.
Moreover, DQO is featured by step-wise learning, which is favorable for long-horizon tasks and
able to exploit process rewards.

• We introduce a practical instantiation of DQO, which equips DQO with λ-return and importance
sampling. These techniques stabilize the training process and ensure a good performance.

• We empirically compare DQO with a wide range of widely used alignment algorithms on math
problem-solving tasks. Experiment results show that DQO outperforms these baselines on both
GSM8K and MATH datasets. Moreover, as shown by our experiment, when process rewards are
available, the performance of DQO can be further boosted, indicating that DQO can benefit from
process rewards.

2 PRELIMINARIES

In this section, we introduce the foundational concepts and notations that underpin our proposed
algorithm. We first review the basic framework of modeling language generation as a reinforcement
learning task, followed by a KL-regularized reinforcement learning objective.
Modeling Language Generation as Token-Level MDP Reinforcement Learning (RL) is concerned
with learning a policy that maximizes the cumulative reward for an agent interacting with an envi-
ronment. In this work, we formalize language generation tasks as a Markov decision process (MDP).
We denote prompt as x and a response to the prompt as y, which can each individually be broken
down into a sequence of tokens, for example, x = (x0, . . . , xm), from a fixed discrete vocabulary
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Table 2: A case study of learned V -function. We select a prompt-response pair from the GSM8K
training set and split the response into nine segments by double line breaks. We extract the V -
function value at each line break. The model makes a mistake at the beginning of the fifth segment
(where $$x=y$$ is erroneous). The model predicts high V -values from the first segment to the
fourth segment. After that, the predictions drop significantly. The value trends preciously reflect the
correctness of the reasoning and thus can serve as an informative process supervision.

Text Process Value Correctness
Prompt Jorge has an equal number of baseball cards as Matias, who has 6 fewer

cards than Carlos. If Carlos has 20 baseball cards, what is the total
number of baseball cards the three have?
Please reason step by step, and produce a final answer following 4 ’#’,
like ’#### 0’.

- -

Response
**Step 1: Identify the information provided**

0.6016 ✓
- Jorge has an equal number of baseball cards
as Matias.
- Matias has 6 fewer cards than Carlos.
- Carlos has 20 baseball cards.

0.6719 ✓

**Step 2: Translate the information into
equations**

0.7969 ✓
Let x be the number of baseball cards Jorge and
Matias each have.
Let y be the number of baseball cards Carlos
has.

0.6680 ✓
$$x = y$$ $$y = x + 6$$ $$y = 20$$

0.1016 ✗

**Step 3: Substitute the equations to find x**
0.0013 ✗

$$x = x + 6$$ $$0 = 6$$ This is a
contradiction, so the given information is not
consistent.

0.4688 ✗

**Therefore, there is no solution to the
problem as the given constraints are
contradictory.**

0.1768 ✗

#### 0 ⟨eos⟩ - ✗

A. We define the token-level MDP as a tuple M = (S,A,P, H, r, d0, ω). In the defined MDP, S is
the space of the state consisting of all tokens generated so far, i.e., st = (x0, . . . , xm, y1, . . . , yt−1).
The action space A is the fixed discrete vocabulary. The dynamics P are the deterministic transition
model between tokens, i.e., P(st+1|st, a) = 1 for st = (x0, . . . , xm, y1, . . . , yt−1), a = yt and
st+1 = (x0, . . . , xm, y0, . . . , yt)

1. The generation process will terminate once the terminal action
ω (usually end-of-sentence token) is taken or reaches the maximum horizon length H . The reward
function r(s, a) provides scalar feedback for the agent’s performance after taking action a in state
s. In RLHF, the reward function is usually learned from human feedback over preferences or given
by a series of rules depending on the specific tasks. The initial state distribution d0 is a distribution
over prompts x, where an initial state s0 is comprised of the tokens from x.
KL-Regularized Reinforcement Learning Objective We formulate the optimization objective as
a KL-regularized RL problem. Our goal is to approximate the optimal KL-regularized policy

π∗ = argmax
π

Eπ,s0∼d0

[
H∑

h=1

(
r(sh, ah)− βKL

(
π(·|sh)∥πref(·|sh)

) )]
, (1)

where H is the total number of decision steps, s0 is a prompt sampled from the dataset, r(sh, ah)
is the token-level reward from the reward function, β is the coefficient controlling the magnitude
of KL-regularization and πref is the initialisation policy. In classic RLHF and most LLM-related
tasks, the reward is sparse and is only applied at the terminal action ω, i.e. the end-of-sentence token

1For notational simplicity, we ignore the case that LLM can call an external tool. If the tool does not
introduce randomness, the state transitions are also deterministic. Even if the state transitions are random, we
can use samples to approximate the state transition probabilities.
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<eos>. However, our structure is flexible enough to incorporate both dense and sparse rewards from
ruled-based reward models, turn-level reward models, process-supervised reward models (PRM), or
just outcome-supervised reward models.
We consider rewriting our objective function (1) under the framework of max-entropy reinforcement
learning. Specifically, we decompose the KL-regularization term KL(π(·|sh)∥πref(·|sh)) into cross-
entropy and entropy, leading to the following objective:

π∗ = argmax
π

Eπ,s0∼d0

[
H∑

h=1

(r(sh, ah) + β log πref(ah|sh) + βH(π(·|sh)))

]

= argmax
π

Eπ,s0∼d0

[
H∑

h=1

(r(sh, ah) + βH(π(·|sh)))

]
, (2)

where H(π(·|sh)) = −Ea∼π log π(a|sh) denotes the entropy of the policy at state sh and the KL-
regularized reward r is defined as r(sh, ah) = β log πref(ah|sh) + r(sh, ah). Equation 2 leads
to a maximum entropy reinforcement learning problem, which enjoys the well-known closed-form
solution (Haarnoja et al., 2018) as follows:

π∗(a|sh) = exp

(
Q∗(sh, a)− V ∗(sh)

β

)
, (3)

where Q∗ and V ∗ are shorthands for the soft Q-function Qπ∗
and soft V -function V π∗

. Specifically,
the soft Q-function and soft V -function of arbitrary policy π are defined as follows

Qπ(sh, a) = r(sh, a) + Eπ

[
H∑

t=h+1

(r(st, at) + βH(π(·|st)))

]
, (4)

V π(sh) = Eπ

[
H∑
t=h

(r(st, at) + βH(π(·|st)))

]
. (5)

Equation (3) reveals that the optimal policy π∗, soft Q-function Q∗, and soft V-function V ∗ are
interdependent, which means that knowing any two of them allows us to compute the third one.

3 DIRECT Q-FUNCTION OPTIMIZATION (DQO)

3.1 THE DQO OBJECTIVE

We adopt the Soft Actor-Critic (SAC) learning framework to learn the state value function V and
state-action value function Q. In SAC, the Q-function and V -function, which are parameterized by
θ and ϕ respectively, are updated by minimizing the following squared residuals:

LV (ϕ) = Esh∼D

[(
Vϕ(sh)− Ea∼πθ(·|sh)

[
Qθ(sh, a)− β log πθ(a|sh)

])2]
, (6)

LQ(θ) = E(sh,ah,sh+1)∼D

[(
Qθ(sh, ah)− r(sh, ah)− Vϕ(sh+1)

)2]
, (7)

where D is the distribution of previously sampled states and actions and θ is the parameter of Q-
function, and, essentially the policy (i.e., the LLM) in DQO. For simplicity of notations, we always
set Vϕ(sH+1) = 0 for all ϕ and sH+1. As shown in (3), the optimal policy π∗, optimal Q-function
Q∗, and optimal value function V ∗ are tightly interconnected. Specifically, they satisfy the rela-
tionship Q∗(sh, ah) = β log π∗(ah|sh) + V ∗(sh). Inspired by this, we parameterize the Q-value-
network with the policy as follows

Qθ(sh, ah) = β log πθ(ah|sh) + Vϕ(sh), (8)

where πθ(·|·) is the policy network, or the language model in this paper. In equation (8), instead
of using an additional model to parameterize Q-value and learning the policy from the optimal Q-
function Q∗, we directly infer the policy from the Q-function by parameterizing it with π. Therefore,
we name our algorithm as Direct Q-function optimization (DQO).
By plugging in equation (8) to equation (7), we can rewrite the loss function for the policy as:

Lπ(θ) = E(sh,ah,sh+1)∼D

[(
Vϕ(sh) + β log πθ(ah|sh)− r(sh, ah)− Vϕ(sh+1)

)2]
. (9)
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Substituting r(sh, ah) by its definition β log πref(ah|sh)+r(sh, ah), we obtain the objective function
of the policy network as follows:

Lπ(θ) = E(sh,ah,sh+1)∼D

[(
β log

πθ(ah|sh)
πref(ah|sh)

−
(
r(sh, ah) + Vϕ(sh+1)− Vϕ(sh)

))2]
. (10)

Now we come to the training loss of V -function (6). The following proposition shows that we can
move the expectation in (6) out of the square.

Proposition 3.1. Let L̃V (ϕ) be defined as below, then L̃V (ϕ) and LV (ϕ) defined in (6) has same
gradient with respect to ϕ.

L̃V (ϕ) = E(sh,ah)∼D

[(
Vϕ(sh)−

[
Qθ(sh, ah)− β log πθ(ah|sh)

])2]
. (11)

Proposition 3.1 shows that we can use L̃V (ϕ) in (11) to substitute LV (ϕ) in (6). To eliminate the
Qθ(sh, ah) in (11), we consider the soft Bellman equation:

Qπ(sh, ah) = rh(sh, ah) + Esh+1∼P(·|sh,ah)[V
π(sh+1)],

where under deterministic transition sh+1 = concat(sh, ah) and Esh+1∼P(·|sh,ah)[V
π(sh+1)] can be

estimated by the samples in the dataset Vϕ(sh+1). Consequently, we substitute Qθ(sh, ah) in (11)
by r(sh, ah) + Vϕ(sh+1) and obtain the loss for the value function Vϕ in the following form:

L̃V (ϕ) = E(sh,ah,sh+1)∼D

[(
Vϕ(sh)− r(sh, ah)− Vϕ(sh+1) + β log πθ(ah|sh)

)2]
= E(sh,ah,sh+1)∼D

[(
Vϕ(sh) + β log

πθ(ah|sh)
πref(ah|sh)

− Vϕ(sh+1)− r(sh, ah)

)2]
. (12)

We notice here that the left-hand-side of (12) and (10) are the same. Consequently, we define

L(ϕ, θ) = E(sh,ah,sh+1)∼D

[(
β log

πθ(ah|sh)
πref(ah|sh)

+ Vϕ(sh)− Vϕ(sh+1)− r(sh, ah)

)2]
. (13)

When D is composed of pre-generated offline data, we employ importance sampling to reweight the
offline data, ensuring that the offline dataset can be used effectively. We defer the detailed discussion
to Section 3.3. It is worth highlighting that in our formulation of DQO, we consider generating each
single token as an action. If we consider generating the whole utterance as a single action and
set the horizon length H = 1, then equation (10) and equation (12) degenerates to the loss used by
DRO (Richemond et al., 2024). This means that DRO can be viewed as a special case of the learning
framework of DQO.

3.2 MITIGATING BIAS WITH λ-RETURN

One-step temporal difference (TD) errors have high bias and perform poorly when the value func-
tion is not well-initialized, resulting in inefficient learning. To address this, we incorporate λ-
return (Schulman et al., 2015) to improve the updates for Q-function and V -function. By definition,
we know that V π(sh) is the sum of reward gained by next n actions and V π(sh+n), or formally,

V π(sh) = Eπ

[
V π(sh+n) +

n−1∑
l=0

(
β log

πref(ah+l|sh+l)

π(ah+l|sh+l)
+ r(sh+l, ah+l)

)]
.

Given a trajectory {s0, a0, · · · , sH , aH}, we use the empirical samples to estimate the n-step return
and define the empirical n-step return as:

G
(n)
ϕ,θ(sh) = Vϕ(sh+n) +

n−1∑
l=0

(
β log

πref(ah+l|sh+l)

πθ(ah+l|sh+l)
+ r(sh+l, ah+l)

)
.

It is worth noticing that G(1)
ϕ,θ(sh) is exactly the target in (12). Now we are able to define λ-return,

which is the weighted average of all n-step returns:

Gλ
ϕ,θ(sh) =

{
(1− λ)

∑H−h
n=1 λn−1G

(n)
ϕ,θ(sh), if λ < 1

G
(H−h)
ϕ,θ (sh), if λ = 1

.
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We replace the target for value updates in (10) from one-step return G
(1)
ϕ,θ(sh) to λ-return Gλ

ϕ,θ
(sh),

where ϕ and θ is the copy of ϕ and θ but are not counted into the back-propagation gradients. Now
we have the loss function for the value network as follows:

LV (ϕ) = Esh∈D

[(
Gλ

ϕ,θ
(sh)− Vϕ(sh)

)2]
. (14)

Similarly, we also use the λ-return Gλ
ϕ,θ

(sh+1) to substitute the target Vϕ(sh+1) in (10). The new
loss for Q-function (which is parameterized by πθ) with λ-return is:

LQ(θ) = E(sh,ah,sh+1)∼D

[(
β log

πθ(ah|sh)
πref(ah|sh)

−
(
r(sh, ah) +Gλ

ϕ,θ
(sh+1)− Vϕ(sh)

))2
]
.

(15)

3.3 REWEIGHTING OFFLINE DATA WITH IMPORTANCE SAMPLING

As we have mentioned before, our targets (10) and (12) only holds when the dataset is online sam-
pled from πθ. However, in this work, we focus on offline setting and the data is pre-collected from
πref . Therefore, there is a distributional shift between the behavior policy πref which generated
the data, and the target policy πθ. In order to mitigate this mismatch, offline RL algorithms often
incorporate regularization techniques, including constraints or regularization on the learned policy
and involving importance sampling. In this work, in addition to the KL-regularized RL objective,
we employ importance sampling to reweight the offline data to match the distribution of trajectories
generated by the current policy.
Let µ represent the behavior policy under which the offline data D was generated and π be the
current online policy. When the transition P is deterministic, the probability of a trajectory τ under
µ and π are computed as follows:

µ(τ |s1) =
H∏

h=1

µ(ah|sh), π(τ |s1) =
H∏

h=1

π(ah|sh).

Therefore, we know that when the offline dataset D is sampled from τ , we have

Eτ∼π[f(τ)] = Eτ∼D

[
π(τ |s1)
µ(τ |s1)

f(τ)

]
= Eτ∼D

[∏H
h=1 π(ah|sh)∏H
h=1 µ(ah|sh)

f(τ)

]
,

where f(τ) is any function of trajectory τ . This indicates that we can use the importance ratio
π(τ |sh)/µ(τ |sh) to adjust the loss. Empirically, we truncate the importance sampling rate to avoid
gradient explosion caused by extreme values. The final ratio we apply is shown as follows

w(τ) = min

(
e,

H∏
h=1

π(ah|sh)
µ(ah|sh)

)
= exp

(
min

(
1,

H∑
h=1

log
π(ah|sh)
µ(ah|sh)

))
, (16)

Now let µ = πref and π = πθ, we plug in the importance ratio w(τ) in (16) to the loss functions (14)
and (15) and then obtain our final loss functions for offline learning.

LV (ϕ) = Eτ∼D

[
w(τ) ·

H∑
h=1

(
Gλ

ϕ,θ
(sh)− Vϕ(sh)

)2]
,

Lπ(θ) = Eτ∼D

[
w(τ) ·

H∑
h=1

(
β log

πθ(ah|sh)
πref(ah|sh)

−
(
r(sh, ah) +Gλ

ϕ,θ
(sh+1)− Vϕ(sh)

))2
]
.

When computing the gradient of the loss, the importance sampling weight w(τ) is not involved
in the gradient computation. The introduction of importance ration enables us to leverage offline
datasets in an online RL framework, ensuring that the updated policy remains consistent with the
distribution of trajectories it would encounter during online interaction.

4 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate the effectiveness of our proposed
method. Moreover, we show that our method can be further augmented by utilizing process rewards.
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Table 3: Experiment results for Qwen2-7B-Instruct model. We use bold for the best and underline
for the second best. DQO significantly improves the base model’s performance. This improvement
surpass all the baselines when doing greedy decoding. As for sampling, DQO is comparable to DPO
and surpass all other baselines.

Data GSM8K MATH
Generation Method Greedy Sample Greedy Sample

Qwen2-7B-Instruct 72.77 60.77 ± 1.62 37.44 35.79 ± 0.50

SFT 85.06 84.06 ± 0.66 44.38 37.34 ± 0.41
Reject Sampling 84.15 84.43 ± 0.59 49.82 48.19 ± 0.43

DPO 85.35 85.67 ± 1.01 49.36 48.24 ± 0.29
KTO 86.35 83.52 ± 0.64 50.32 46.52 ± 0.48
DRO 86.73 82.56 ± 0.48 51.84 47.39 ± 0.28

DQO 87.95 85.13 ± 0.47 51.96 49.36 ± 0.25

Table 4: Experiment results for Gemma-1.1-7B-it model. We use bold for the best performance and
underline for the second best performance. DQO significantly improves the base model’s perfor-
mance. On GSM8K, DQO surpasses all other baselines by a significant margin. On MATH dataset,
DQO achieves a comparable performance with DRO when doing greedy decoding and outperforms
all the baseline when doing sampling at inference.

Data GSM8K MATH
Generation Method Greedy Sample Greedy Sample

Gemma-1.1-7B-it 39.65 37.89 ± 1.02 17.04 16.14 ± 0.21

SFT 53.45 46.14 ± 1.07 21.64 18.84 ± 0.47
Reject Sampling 53.60 53.17 ± 0.94 21.74 20.77 ± 0.26

DPO 63.46 62.76 ± 0.48 23.18 23.44 ± 0.30
KTO 50.49 49.29 ± 0.74 18.56 18.58 ± 0.17
DRO 62.92 63.00 ± 0.92 24.56 24.10 ± 0.37

DQO 64.51 64.00 ± 0.37 24.90 24.84 ± 0.29

4.1 DATASETS

We evaluate the models using two widely established mathematical problem-solving datasets:
MATH (Hendrycks et al., 2021) and GSM8K (Cobbe et al., 2021). The MATH dataset consists
of 5,000 challenging problems in its test set and 7500 in its train set. The problems cover various
fields like algebra, geometry, probability, and calculus. The GSM8K dataset consists of a train set of
7473 problems and a test set of 1319 problems. The problems are mostly simpler grade-school math
word problems. The problems in both datasets usually require multi-step reasoning and complex
arithmetic to derive the correct answers.
We use the 7.5K training problems from the MATH dataset and 7.47K training problems from the
GSM8K dataset to generate the training corpus of our baselines and DQO. We use our base model
and sample 20 responses for each prompt in the training set and then label all these responses as
positive and negative responses. The detailed usage of these samples is discussed in the next section
and please refer to the Appendix A for a more detailed discussion of our dataset construction.

4.2 MODELS, BASELINES AND EVALUATION

In our experiments, we select two pretrained models, Gemma-1.1-it-7B2 (Gemma) (Team et al.,
2024) and Qwen2-7B-Instruct3 (Qwen) (Yang et al., 2024) as our base model. We implement our
method based on HybridFlow (Sheng et al., 2024). We select SFT, reject sampling (RS), DPO, KTO
and DRO as our baselines. We defer the detailed training set construction and training hyperparam-
eters as well as other training details of the baselines and our method to Appendix B.
We evaluate the models generated by our method and baseline methods on the test set of GSM8K
and MATH. We consider two different decoding strategies, greedy decoding and sampling. We set

2https://huggingface.co/google/gemma-1.1-7b-it
3https://huggingface.co/Qwen/Qwen2-7B-Instruct
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the sampling parameters to the same as when we generated the training corpus. For each prompt
in the dataset, we sampled with 5 different seeds and report the mean and standard deviation of the
performance.

4.3 EMPIRICAL RESULTS AND ABLATION STUDIES

Here we show our main results on both the GSM8K and MATH datasets. The results are shown
in Table 3 and Table 4 respectively. From Table 3, we see that all the methods improve the perfor-
mance of the base models by a significant margin. Particularly, on GSM8K, DQO improves the per-
formance from 72.77% to 87.95% for greedy generation and 60.77% to 85.13% for sampling. This
improvement is comparable with DPO and surpasses DRO and other baselines by a margin of 0.70%
for sampling and 1.22% for greedy generation. On MATH, we also see a significant performance
improvement from DQO. As for greedy decoding, the performance of DQO, while comparable with
DPO and DRO, surpasses all other baselines by a margin of 1.64%. As for sampling, DQO reaches
a performance of 49.36%, which surpasses the performance of the best baseline method DPO by a
margin of 1.12%. These results indicate that DQO achieves a comparable performance of DPO and
surpasses other baselines by a considerable margin.
When it turns to the results on Gemma, we see that DQO enjoys larger advantages. As demonstrated
in Table 4, we see that all considered methods result in significant improvement. Specifically, on
GSM8K, DQO improves the base model’s performance by a margin of 24.86% for greedy decoding
and 26.11% for sampling. These results surpass the improvement obtained by DPO by margins
of 1.05% as for greedy decoding and is comparable to the performance of DRO when sampling.
The advantage is even more compared to other baseline methods. On the MATH dataset, we see
that DQO also improves the model’s performance by a prominent margin of 7.86% and 8.70%
for greedy generation and sampling, respectively. This improvement slightly surpasses DRO and
surpasses other baseline methods by a margin of at least 2.28% for greedy decoding and 2.56% for
sampling. In summary, DQO results in promising improvement over the base models under all the
scenarios and outperforms all our baseline methods.

4.3.1 IMPORTANCE SAMPLING

Table 5: The impact of importance sampling rate on both Q-function loss and V -function loss.
The experiments are conducted on Gemma. When training without an importance sampling ratio
on Q-function loss, the performances degenerate significantly on both GSM8K and MATH. When
keeping the importance ratio only on Q-function loss, there is also a moderate performance loss on
MATH.

Data GSM8K MATH
Generation Method Greedy Sample Greedy Sample

Q-loss w/o IS V -loss w/o IS 58.68 60.20 21.96 22.68
V -loss w/ IS 56.03 56.48 20.82 20.94

Q-loss w/ IS V -loss w/o IS 63.53 64.06 22.28 23.18
V -loss w/ IS 64.51 64.00 24.90 24.84

Table 6: The impact of λ-return on Gemma. When decreasing λ from 1.0 to 0.95, we observe a
significant performance dropping more than 4.31% on GSM8K and 2.30% on MATH.

Data GSM8K MATH
Generation Method Greedy Sample Greedy Sample

λ = 0.95 60.20 59.21 22.60 22.26
λ = 1.0 64.51 64.00 24.90 24.84

To demonstrate the impact of the importance sampling ratio in DQO, we train DQO on Gemma
without the importance sampling ratio for Q-function loss, V -function loss, and both. We present
the results in Table 5. The results show that, without adding importance sampling, the performance
will be significantly deteriorated. Specifically, on the GSM8K dataset, when importance sampling is
not introduced to Q-function loss, the performance degenerates by a margin over 3.80%. Similarly,
on the MATH dataset, we see that when we exclude the importance sampling ratio from Q-function
loss, the performance decreases by a margin over 2.16%. When we keep the importance sampling
ratio only on Q-function loss, the performance on GSM8K almost maintains but we still see a
moderate performance loss on MATH. These results show that the importance sampling ratio, on
both Q-function and V -function loss, plays important roles in DQO training.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.3.2 λ-RETURN

In order to demonstrate the impact of λ-return, we vary the value of λ and evaluate the training
results on Gemma. Empirically, we find that the best performance is obtained at λ = 1 and quickly
degenerates when decreasing λ. Therefore we pick λ = 0.95 to make the comparison. The results
are shown in Table 6. When switching λ to 0.95, we observe that the performance on GSM8K
decreases by a margin of more than 4.31% for greedy generation and almost 5% for sampling.
The results on MATH demonstrate a similar pattern and the performances of λ = 0.95 dropped by a
margin of 2.30% on both inference strategies. The results indicate that λ-return is the key component
in the target of policy training.
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Figure 1: A visual demonstration of our process reward construction. We split all the responses to
segments. For correct responses we assign all process reward to one. For negative responses, we
start from each prefix and generate 20 samples. We then find the longest prefix where the best of 20
samples is correct and assign all the process rewards before to 1.

4.4 DQO WITH PROCESS SCORE

Figure 2: The correlation between the trained
values (trained without process scores) and
our constructed process scores. As the train-
ing proceeds, we observe a growth in the cor-
relation between these two values, indicating
that the value model in DQO learns the cor-
rectness of the reasoning process.

In this section, we show that when process scores at
intermediate steps are available, the performance of
DQO can be further improved. Here, we use syn-
thetic process scores. In order to obtain a synthetic
process score, we consider using an empirical pass-
ing rate to estimate the quality of a given response
prefix. Specifically, given a prompt string x, for
each failed response y, we first split the response
into several segments y[0 : n], where n is the num-
ber of segments and we use y[0 : i] to denote the
concatenation of first i segments. Beginning from
i = n−1, we randomly sample 20 trajectories given
prefix contat(x, y[0 : i]). If there is at least one cor-
rect completion, we assume that the reasoning pro-
cess in y[0 : i] is correct and all the process rewards
for the previous step will be set to 1/n. We com-
bine these process reward scores with the original
rewards. The process is summarized in Figure 1.
Table 7: Experiment results for DQO augemented by process scores. With process rewards, when
using greedy decoding, the performance of DQO is further enhanced by 0.53% on GSM8K and
0.32% on MATH. The performance when doing sampling also increase on GSM8K and maintains
almost the same on MATH.

Method GSM8K MATH
Generation Method Greedy Sample Greedy Sample

Gemma-1.1-7b-it 39.65 37.89 ± 1.02 17.04 16.14 ± 0.21

DQO 64.51 64.00 ± 0.37 24.90 24.84 ± 0.29
DQO w/ process scores 65.04 64.55 ± 0.66 25.22 24.70 ± 0.38

We conduct the experiments on Gemma, and the results are summarized in Table 7. Equipped
with our estimated process scores, we see a further improvement. Specifically, on GSM8K, using
our process scores further increases the performance by 0.53% for greedy decoding and 0.55% for
sampling. On MATH, process scores also boost the model’s performance by a further 0.32% when
doing greedy decoding and maintains almost the same to DQO without process reward for sampling.
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The results imply that DQO can be further enhanced by utilizing process scores. Additionally,
we discovered that even without process scores, DQO is capable of identifying correct reasoning
steps. The trained values demonstrate a growing correlation with the synthetic process scores, see
in Figure 2, suggesting that DQO effectively learns to recognize correct reasoning steps, enhancing
the reasoning process over time.

5 RELATED WORK

Reinforcement Learning for Language Model Alignment Aligning language models with human
preferences, or reinforcement learning with human feedback (RLHF), dates back to the work of
Wirth et al. (2017) and Christiano et al. (2017). It has been widely applied to a bunch of recent
models including GPT-4 (Achiam et al., 2023), Gemini (Team et al., 2023), and Llama (Touvron
et al., 2023), leading to the surprising performance of these models. The alignment procedure usu-
ally takes place after supervised finetuning (SFT). In the canonical approaches of RLHF (Ouyang
et al., 2022; Bai et al., 2022; Munos et al., 2024), a reward model is first trained with preference data
and then the model is updated with Proximal Policy Optimization (PPO). Another line of works,
initiating from Direct Preference Optimization (DPO) (Rafailov et al., 2024), include SLiC (Zhao
et al., 2023), IPO (Azar et al., 2024), KTO (Ethayarajh et al., 2024) and so on. These approaches are
featured by directly parameterizing the reward models with the language model and then training on
offline preference data. Following DPO, one branch of works, including GSHF (Xiong et al., 2024a),
SPPO (Wu et al., 2024) and INPO (Zhang et al., 2024b), adapts DPO or its variant to online samples
and iterative training and resulted to state-of-the-art models. On the other hand, Richemond et al.
(2024) adapted offline reinforcement learning algorithm to direct preference learning and proposed
Direct Reward Optimization (DRO), which combined offline policy learning with a value function
learning and updated policy network and value network iteratively. Our work has a similar structure
to DRO, but models the language generation as an MDP rather than a bandit and can utilize process
supervision to facilitate training.
Multi-step and Long Horizon RL for LLM alignment Many tasks for LLMs require LLMs to
reason step by step or interact with the environment turn by turn. However, the rewards are usually
sparse since they are only provided at the end of a long horizon of reasoning or interactions. In
traditional RL literature, one approach towards breaking the curse of lone horizon and sparse reward
is to train or estimate an intermediate value function or process reward (Park et al., 2024) and use
the process reward to guided searching (Torne et al., 2023; Zhang et al., 2024a) and RL training.
The utilization of process reward has also led to better performance for LLM reasoning (Zhang
et al., 2024a; Lightman et al., 2023). Most straightforwardly, Snell et al. (2023) proposed ILQL,
which employed implicit Q-learning to train a Q-function network and V-function network. Then,
at inference time, ILQL uses learned value functions to perturb the log probabilities of the initial
policy towards utility-maximizing behavior. The success of direct preference learning also stimu-
lates a lot of work adapting DPO to multi-turn scenarios. To estimate process reward and utilize
the information provided, Chen et al. (2024a); Lai et al. (2024); Xie et al. (2024) leverages process
reward signals or AI feedback to construct preference pairs for intermediate steps and update the
model with original DPO. On the other hand, Xiong et al. (2024b); Shani et al. (2024) extends the
vanilla DPO to accommodate the multi-turn structure. However, these approaches require pairwise
data, which might not be available or easy to obtain on some specific occasions. Our work, while
following the approach of direct preference learning, eliminates the need for pairwise data and can
be boosted by process rewards.

6 CONCLUSION

In this work, we propose DQO, an offline reinforcement learning algorithm for enhancing the lan-
guage model’s ability in multi-step reasoning. Compared to previous online methods like PPO, the
offline nature of DQO bypasses the requirement of an extra reward model and online sampling dur-
ing training. Previous offline methods usually formulate the LLMs’ responding process as a bandit
problem, which usually fails to capture the implicit long-horizon and multi-step nature of those tasks
requiring a long chain of thought. In contrast, DQO frames the tasks as a Markov decision process
and further employs a soft actor-critic framework to learn the V -function and the Q-function, which
is directly parameterized by the language model. To verify the effectiveness of DQO, we conduct
extensive experiments on two math-problem-solving datasets, GSM8K and MATH, and empirical
results show that DQO outperforms all our baseline. Currently, our experiment results are limited to
two base models due to time constraints and we leave it as future work.
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A DATASET CONSTRUCTION

Table 8: The distribution of positive and negative trajectories sampled from the base models. These
data are directly applied to train DQO, DRO and KTO.

Model Qwen Gemma

Dataset GSM8K MATH GSM8K MATH

# Positive Responses 104105 71776 57922 22600

# Negative Responses 45355 78224 91538 127400
In this section, we provide details about the generating process of our training data. For all problems,
we add format guide to make to language models’ generation follows the same format as the solu-
tion provided by the dataset. Specifically, we use the following templates for GSM8K and MATH
respectively

• GSM8K: {{ problem }} \n Please reason step by step, and produce a final answer following 4 ‘#’,
like ‘#### 0’.

• MATH: {{ problem }} \n Please reason step by step, and put your final answer within \boxed{}.

The prompt is further wrapped by chat-ML template. We then sample 20 responses for each prompts
with sampling parameter top p=0.9, top k=16 and threshold=0.01. For each response, we
use regular expression to unwrap the answer and match it with the reference to generate the label.
The distribution of positive and negative responses are shown in Table 8. For reject sampling, we
collect all correct response as the training target. For DPO, we first pairs up all positive and negative
responses and then randomly sample from all possible pair to make the size of DPO training set
approximately half of DQO, which means the dataset contains a similar number of trajectories. We
summarize the dataset size for each baselines in Table 9.
Table 9: The size of datasets for all of our baselines and DQO. We ensure that the size of DPO
training set is at least half of the training set of the training set for DQO. This guarantees that the
number of trajectories in DPO dataset is no less than the number of trajectories in the dataset of
DQO for a fair comparison.

Model Dataset SFT RS DPO KTO/DRO/DQO

MATH 7500 71776 87424 150000Qwen GSM8K 7473 94889 87996 149460

MATH 7500 22600 94624 150000Gemma GSM8K 7473 46062 79523 149460

B ADDITIONAL EXPERIMENT DETAILS

We conducted all our experiments on 8× NVIDIA A100 GPUs with approximately 80G memories.
The training time is less than 1 hours for SFT, about 1 hours for RS, 4 hours for DPO, KTO, 6 hours
for DRO and 10 hours for DQO. We summarize the detailed hyperparameters as follows.

SFT and Reject Sampling For SFT and reject sampling, we select the best learning rate from
{2e-5, 1e-5, 5e-6, 1e-6} and the best epoch from {1,2,3}. For SFT, the final learning rate is set to
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2e-5 for Qwen and 5e-6 for Gemma. For reject sampling, the final learning rate is set to 2e-5 for
Qwen and 1e-6 for Gemma. We set global batch size of 8 and therefore global batch size to 64. Both
SFT and reject sampling are trained for 3 epochs. We trained the model for 3 epoches for both SFT
and reject sampling.

DPO and KTO For DPO, we tried β from {0.1, 0.01} and learning rate from {5e-7, 1e-7, 5e-8}
and select the hyperparameter set that yields the best performance. Specifically, for both Qwen and
Gemma we set β to 0.1 and learning rate to 5e-8. We set the local batch size to 8 and therefore
global batch size to 64. We train the model for 1 epoch. As recommended by the original paper of
KTO, We adapt directly transferred our hyperparameters of DPO to train KTO.

DRO and DQO For both DRO and DQO, we tries the KL-regularization parameter β from
{0.01, 0.03, 0.1, 0.3, 1} and learning rate from {5e-7, 1e-7, 5e-8} and then select the best parameter
set that yields the best results. The final parameter for both DRO and DQO is β = 0.03 and we set
learning rate to 5e-7 for Qwen and 1e-7 for Gemma. We set the local batch size to 32 and therefore
global batch size to 256. We train the model for a maximum of 5 epoches and select the best check-
points on the training curve for evaluation. Finally, we select the DRO checkpoints after the first
epoch and DQO checkpoints at the end of the second epoches.
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