
Published as a conference paper at COLM 2024

Bring Your Own Data!
Self-Sensitivity Evaluation for Large Language Models

Neel Jain*†, Khalid Saifullah*†

Yuxin Wen†, John Kirchenbauer†, Manli Shu†, Aniruddha Saha†, Micah Goldblum‡

Jonas Geiping†, Tom Goldstein†

†University of Maryland, ‡New York University

Abstract

With the rise of Large Language Models (LLMs) and their ubiquitous de-
ployment in diverse domains, measuring language model behavior on real-
istic data is imperative. For example, a company deploying a client-facing
chatbot must ensure that the model will not respond to client requests with
profanity. Current evaluations approach this problem using small, domain-
specific datasets with human-curated labels. These evaluation sets are often
sampled from a narrow and simplified distribution, and data sources can
unknowingly be leaked into the training set. To alleviate these issues in tra-
ditional evaluation, we propose a complementary framework for additional
self-sensitivity evaluation of LLMs by analyzing their sensitivity or invariance
to transformations on the input text. Self-sensitivity evaluation can directly
monitor LLM behavior on datasets collected in-the-wild or streamed dur-
ing live model deployment. We demonstrate self-sensitivity evaluation
strategies for measuring closed-book knowledge, toxicity, long-range con-
text dependence, in addition to sensitivity to grammatical structure and
tokenization errors. When comparisons to similar human-labeled bench-
marks are available, we find strong correlations between self-sensitivity
and human-supervised evaluations. The self-sensitivity paradigm com-
plements current evaluation strategies that rely on labeled data. Code is
available at https://github.com/neelsjain/BYOD.

1 Introduction

As Large Language Models (LLMs) continue to advance rapidly, there has been a grow-
ing demand for new evaluation metrics that can accurately capture their capabilities and
limitations (Ethayarajh & Jurafsky, 2020; Birhane et al., 2022; Kiela et al., 2021; Bowman &
Dahl, 2021). As a result, there has been a constant need to create new datasets as newer
models continuously make the existing datasets obsolete. Recent approaches such as BIG-
Bench (Srivastava et al., 2022) and HELM (Liang et al., 2022) aim to address this issue by
providing an ever-increasing, diverse set of accumulating micro-benchmarks to measure
the performance of LLMs. However, these approaches still rely heavily on dataset creation
and curation, which is time-consuming and expensive. Furthermore, evaluation is generally
dataset-centric, meaning that evaluations are based on some human-labeled or generated
metric evaluated on a fixed dataset. For modern LLMs, this conventional approach comes
with new complications. First, evaluation data is hosted on the internet (for example on
sites like GitHub). This makes them accessible to scraping bots that generate training data
for LLMs, making older datasets unreliable unless they are painstakingly removed from the
training set, which does not reliably happen (Brown et al., 2020; Gao et al., 2021).1 Second,
LLM evaluation is by its nature multi-faceted, since different LLM applications rely on
distinct capabilities, and an ever-increasing number of such capabilities needs to be tested in

* Equal contribution. Correspondence to: Neel Jain <njain17@umd.edu>.
1Efforts such as https://github.com/hitz-zentroa/lm-contamination are trying to catalog this

phenomenon for ChatGPT and other models.

1

https://github.com/neelsjain/BYOD
https://github.com/hitz-zentroa/lm-contamination

Published as a conference paper at COLM 2024

Figure 1: In our proposed self-sensitivity evaluation, pairs of original and perturbed texts are created
from a corpus. In the figure above, the pair is related via a negation achieved by inserting “not” into
the original text. These pairs are then fed into the network, and the outputs (perplexity, probability
distributions, or text) are compared for each pair. These measures are then aggregated to produce an
invariance or sensitivity score.

modern LLMs. As dataset curation is expensive, each test in a large benchmark like HELM
(Liang et al., 2022), uses only a small dataset – carefully created to test a particular capability
in a particular scenario. However, models are then deployed in much broader contexts and
settings, and the applicability of these evaluations to deployment usage can be uncertain.

To complement conventional evaluation, we propose a framework for self-sensitivity model
evaluation. In this framework, metrics are defined as invariances and sensitivities that can
be checked in a “self-supervised” fashion using interventions based only on the model in
question rather than external labels. Self-sensitivity evaluation pipelines are dataset-agnostic,
so they can be utilized over larger corpora of evaluation data than conventional metrics,
or even directly in production systems to monitor day-to-day performance. In this work,
we develop this framework, discuss desiderata for such metrics, and provide several
case studies for self-sensitivity metrics: measuring knowledge through negations, toxicity
detection, long-range dependency, word-order, and tokenization sensitivity. By developing
these new metrics, we hope to provide a more comprehensive and nuanced understanding
of the strengths and limitations of LLMs.

2 A Procedure for Self-Sensitivity Evaluation

Our goal is to measure properties of LLMs such as toxicity, closed-book knowledge, and
word order sensitivity without relying on benchmark-specific datasets or human annotations.
Rather than measuring model accuracy against known ground truth labels, we choose a
simple transformation that can be applied to text. We then measure the level of invariance
that a model’s output has under that transformation. If we choose our transformations
carefully, we can obtain useful information about model behavior in a completely “self-
supervised” way. We consider information from these metrics useful by grounding them to
existing to labeled benchmarks. The goal of the framework is not to replace labeled evaluation,
but by grounding it with existing benchmarks, to show that something important is being
captured by the metrics, thereby demonstrating the overall efficacy of the self-sensitivity
framework.

More formally, given a text corpus D, we construct pairs of original passages x, and trans-
formed counterparts x′. An example is seen in Figure 1, where we negate the original
sentence x to construct x′. X is the set of all transformed pairs. We then feed input pairs
into the language model, f , to extract a pair of outputs. Depending on the construction, the
output being considered can be the softmax probability vector over tokens, a perplexity
score, or a feature vector. We then compare the outputs f (x) and f (x′) using a similarity
metric, M. Finally, we aggregate the results over all pairs in the data corpus using an
aggregation operator, A, to produce a sensitivity score.

SCORE = A{M(f (x), f (x′)) ∀(x, x′) ∈ X}. (1)

2

Published as a conference paper at COLM 2024

Toxicity

Knowledge

Long-Range

Word Order

Tokenization

0.75 0.5 0.25 0.0

LLaMA-2
LLaMA-2 Chat

0.06

0.12

0.19

0.25

0.075
0.15

0.225
0.3

0.025
0.05

0.075
0.1

0.15

0.1

0.05

0.0

Toxicity

Knowledge

Long-Range

Word Order

Tokenization

0.75 0.5 0.25 0.0

LLaMA-2
Vicuna-v1.5

0.06

0.12

0.19

0.25

0.075
0.15

0.225
0.3

0.025
0.05

0.075
0.1

0.15

0.1

0.05

0.0

Figure 2: Spider plots showing sensitivity scores for the Knowledge Probing via Negations, Toxicity,
Context (Long-Range), Word Order, and Tokenization metrics introduced in the paper. (Left) Comparison
between LLaMA-2 (7B) and LLaMA-2-Chat (7B) models. We see that Chat improves on all metrics
except tokenization robustness. (Right) Comparison between LLaMA-2 (7B) and the instruction
finetuned Vicuna-v1.5 (7B). We see that the Chat version is better on most metrics except tokenization
robustness. For toxicity, we include the system prompt for the chat model to measure the behavior of
the model in a deployment setting.

In this work, we “bring” wikipedia as our own dataset but note that we only do so to enable
comparisons to existing metrics that use human labels on similar data. We validate that
this framework works equally well with domain-specific medical data in Section 4.2. We
study several case studies, namely knowledge via negations (Section 4), toxicity (Section 5),
word order sensitivity (Section 6), context sensitivity (Appendix A.2), and tokenization
robustness (Appendix A.3) culminating in sensitivity scores as seen in Figure 2.

3 Related Work

HELM adopts a multi-metric approach: accuracy, calibration, robustness, fairness, bias,
toxicity, and efficiency over each of the datasets proposed (Liang et al., 2022). These metrics
build on the work of Ribeiro et al. (2020) and subsequent studies such as Mille et al. (2021);
Wu et al. (2021); Ross et al. (2021); Dhole et al. (2021); Yang et al. (2022) which augment
inputs from a dataset to measure properties beyond the classical metric of accuracy. In
summarization and machine translation, automatic metrics have been utilized to evaluate
models (Lin, 2004; Papineni et al., 2002). In addition, recent work has explored using other
models to compare the quality of chat and instruction models (Chiang et al., 2023; Wang
et al., 2023; Peng et al., 2023). While these methods rely on existing labeled data, or external
oracle models, our method departs from these previous works as we analyze invariances
using a data-agnostic procedure. A survey by Chang et al. (2023) contains a comprehensive
overview of evaluations for LLMs. In addition, we include a more comprehensive related
works in the Appendix A.1.

4 Knowledge Probing via Negations: Au Contraire Metric

Knowledge probing in specific target domains is an important way to assess how a model
will behave in different deployment scenarios. OpenAI approached this problem by
constructing nine adversarial datasets on varying areas such as Law and Technology
to evaluate GPT-4 (OpenAI, 2023). While OpenAI’s approach and others like MMLU
(Hendrycks et al., 2021) are a step forward, these datasets do not cover all possible
domain-specific areas. Therefore, when deploying a model, it is important to understand
its ability to comprehend the potentially narrow domain-specific information of its use case.
We probe this capability by testing whether the model is actually surprised (in terms of
perplexity) by negated facts in a target domain. In this case study, we can further easily
compare to domain-specific areas, such as medical terms. Finally, knowledge is a good
setting to validate our generic approach, as model knowledge can also be approximately
probed by measuring the perplexity of text passages.

3

Published as a conference paper at COLM 2024

Self-Sensitivity Approach: We construct a self-sensitivity transformation over factual
information by automatically applying negations to facts, as, for example, given by passages
containing Wikipedia entities and medical terms. We search for the first occurrence of is,
was, or were, and place the word not after it provided a negation is not already present.
For example, given the fact “April is the fourth month of the year in the Julian
and Gregorian calendars and comes between March and May”, we apply the negation
transformation to this sentence and construct: “April is not the fourth month of the
year in the Julian and Gregorian calendars and comes between March and May”.

Based on this intervention, we measure the change in the log-perplexity (log(ppl(x))),
between the original and negated sentence, which can be defined as the following:

SENSITIVITY SCORE =
1
n

n

∑
i

log(ppl(x′i))− log(ppl(xi)).

One potential issue with this naive sensitivity score is that some models may be inherently
more sensitive (i.e., have higher perplexity) to the word not regardless of the context. We,
therefore, propose to normalize a model’s sensitivity score with its score on a “neutral"
corpus, where negations do not create untruthful statements that impact a model’s
perplexity. We define our final sensitivity score as:

NORMALIZED SENSITIVITY SCORE = SENS. SCORE − 1
m

m

∑
i
| log(ppl(y′i))− log(ppl(yi))|,

where y is a sample from a neutral corpus like bookcorpus with m total samples for
which there is no clearly defined truth value. We take the absolute value of the difference
on the neutral corpus because there is no clear direction between the transformations.
To evaluate the relationship of these metrics to model confidence in our analysis, we
also record the fraction of inputs for which perplexity decreases after introducing a
negation, which represents, for a typical sample, the error that the model is making:
PERCENT PPL DROPS = 1

n ∑n
i max {sign(log(ppl(xi))− log(ppl(x′i))), 0}.

4.1 Experimental Set-up

We use the normalized sensitivity score as our SSE metric. We found that the un-normalized
scores can closely follow a square-root relationship with the accuracy of the human-curated
TriviaQA dataset (Figure 13) for non-instruction finetuned models. However, we found
normalization corrects the instruction-tuned models to a larger degree, possibly due to their
innate overconfidence. Thus, we use this metric for our scores. We further explore why
correct normalization is important by cross-referencing the frequency with which perplexity
goes down rather than up, see Figure 14 in Appendix A.5.

We validate our metric by comparing it to the conventional accuracy on TriviaQA, as both
evaluations gauge an LLM’s world knowledge (Joshi et al., 2017). We obtain the knowledge
score using our SSE metric on topic sentences from Wikipedia, which consists of statements
of general knowledge similar to TriviaQA. A human inspection of 100 samples verified
that the proposed transformation resulted in grammatically correct sentences that were
counterfactuals of the original sentence. We further verify our metric on medical terms
by comparing it to conventional metrics on MMLU (clinical knowledge) Hendrycks et al.
(2021) on open-source models. We measure the proposed sensitivity score on 1000 examples,
where the standard error for these scores was less than 0.002. Our metric supports both
publicly available models from the Hugging Face Hub and API models (Biderman et al.,
2023; Brown et al., 2020; Radford et al., 2019).

4.2 Results

From Figure 3, we see that the normalized score correlates well with TriviaQA. The Pearson
correlation between TriviaQA and Normalized sensitivity score is 0.76 for vanilla models
and 0.73 for instruction models after removing the Cohere Command outlier, which we will
discuss below. We further verify that our score indeed tracks perplexity for vanilla models,

4

Published as a conference paper at COLM 2024

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
TriviaQA Acc.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Se
ns

iti
vi

ty
 S

co
re

 (N
or

m
al

ize
d)

Sensitivity Score (Norm.) vs TriviaQA Acc.

2.02.53.03.54.04.5
Log PPL

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Se
ns

iti
vi

ty
 S

co
re

 (N
or

m
al

ize
d)

Sensitivity Score (Normalized) vs PPL
Model Family
OpenAI Instruct
OpenAI
Cohere
Cohere Instruct
LLaMA
Vicuna
MPT
MPT Instruct
Pythia
Dolly V2 Instruct
Galactica
GPT-J
Dolly V1 Instruct
Neo
GPT-2
Instruction
No
Yes

Figure 3: (Left) Normalized Sensitivity Score (negations) compared to accuracy on TriviaQA over
various model sizes and families. (Right) Normalized Sensitivity Score (negations) compared to
Perplexity. Larger markers correspond to bigger models, and “x” markers represent instruction
finetuned models.

with a correlation coefficient of 0.93. To further understand these results, we examine the
outliers.

Interestingly, the correlation with perplexity is only 0.61 for instruction-tuned models,
showing that perplexity as an evaluation metric is not as robust as our proposed approach
for instruction models, possibly due to their overconfidence. Examining the details, we find
that outliers like MPT-Instruct, which has a surprisingly low perplexity and was trained on
the Wikipedia (en) dataset for 8 epochs, while others models were trained for 2 (LLaMA) or
3 epochs (PILE models). Yet, the normalized sensitivity score of MPT-Instruct is as expected.
Additionally, we find that LLaMA has particularly low entropy, which may also explain its
lower score (see Figure 8 in Section 7.3).

Another interesting outlier is the Cohere Command model when comparing normalized
sensitivity and TriviaQA performance. Evaluating qualitative examples in (see also Table 1),
we find that this model rarely changes its answer, whether a negation is introduced, or
not. This implies that the Cohere model is insensitive to the actual argument structure –
it is likely to have memorized the associations between concepts and answers based on
the context alone, even if the construction of the question makes its answer incorrect. This
inability to answer grammatically complex questions is not reflected in the TriviaQA results,
because TriviaQA only contains simple sentence structures and nearly uniform question
formats. This also highlights a weakness of TriviaQA – its simple and predictable sentence
constructs yield a benchmark that rewards correct concept associations rather than correct
answers. In contrast, our metric correctly identifies the model’s limited understanding.

Effect of Instruction Finetuning: In general, we find that instruction-tuned models are,
on average, more sensitive to negations than other LLMs as seen in Figure 5, for different
sources of instruction data and even after correcting for the relative overconfidence of
these models via normalization.2 This may indicate that these models are, in general, more
capable of evaluating knowledge picked up during pretraining (Zhu & Li, 2023). The outlier
here is again the Cohere command model, which is less sensitive than Cohere’s base model
after finetuning.

4.3 Domain-Specific Evaluation

In Figure 4, we compare SSE to MMLU (clinical) and perplexity (on medical terms) on the
open-source subset from before, finding a strong correlation with MMLU (clinical) with
a Pearson correlation of 0.91 and 0.77 for perplexity. However, the lower correlation with
perplexity is due to deficiencies in the perplexity score. An obvious outlier is Galactica,
which has a similarly high log perplexity as Pythia 6.9B, but its MMLU Clinical Knowledge

2Note that Dolly V2 use Pythia as base models, Dolly V1 uses GPT-J, Vicuna-v1.1 uses LLaMa.
Other instruction models names are be variants of the base model name.

5

Published as a conference paper at COLM 2024

0.20 0.25 0.30 0.35 0.40 0.45 0.50
MMLU Clinical Knownledge

0.00

0.05

0.10

0.15

0.20

Se
ns

iti
vi

ty
 S

co
re

 (N
or

m
.)

Sens. Score (Norm.) vs MMLU Clinical

1.752.002.252.502.753.003.253.50
Log PPL

0.00

0.05

0.10

0.15

0.20

Se
ns

iti
vi

ty
 S

co
re

 (N
or

m
.)

Sensitivity Score (Norm.) vs PPL

Model Family
LLaMA
MPT
GPT-Neo
GPT-J
Pythia
GPT-2
Galactica

Figure 4: (Left) Normalized Sensitivity Score (negations) compared to accuracy on MMLU (clinical
knowledge) over various model sizes and families. (Right) Normalized Sensitivity Score (negations)
compared to Perplexity is shown on the right on medical terms. Larger markers correspond to bigger
models.

score is 49% while Pythia is 29%. We see a similar case for GPT-J in terms of perplexity with
a low log-perplexity and low clinical knowledge score, whereas the relationship should
be inverse. However, our proposed normalized sensitivity accurately predicts the correct
ranking, and correctly determines Galactic as the strongest model on this domain-specific
evaluation. This suggests that our metric can be deployed even in specialized domains
where ground-truth labels are not available in sufficient quantity.

Limitations: For the sensitivity score to measure truthfulness, the dataset being used must
contain a larger fraction of sentences whose truth value is true, rather than neutral or false.
This is likely to hold for many corpora, if only to varying degrees. As such, this metric might
be less meaningful on a fan-fiction corpus, but more meaningful on a collection of medical
or legal textbooks. We extend this argument in Appendix A.4. Finally, we chose a simple
rule-based construction for the negation transform and found it to be effective. While LLMs
like ChatGPT could be utilized to construct counterfactual sentences for more complicated
phrases, our construction has the additional benefit of reproducibility, as it does not depend
on an external model that may change over time.

5 Toxicity: Buckingham Guard Metric

Before LLMs are deployed in commercial settings, for example, as a customer service chatbot,
it is important to audit their potential to produce profanity or other toxic language. Most
methods for measuring toxicity involve feeding an LLM toxic prompts and then analyzing

Pythia (2.8B) Pythia (6.9B) GPT-J (6B) MPT LLaMA Ada Babbage Curie Davinci Cohere (XL)
Base Model

0.0

0.1

0.2

0.3

0.4

0.5

Se
ns

tiv
ity

 S
co

re

Different Instruction Finetuning Methods (Negations)
None
Human Curated
Self-Instruct

Mix
ShareGPT

RLHF
Cohere Instruct

Figure 5: Normalized Sensitivity Score (negation) comparing pretrained LLMs with their instruction
finetuned counterparts. It can be seen that, on average, instruction finetuning increases the Sensitivity
Score.

6

Published as a conference paper at COLM 2024

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Frac. of Generation Toxic (Perspective API)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Fr
ac

. o
f G

en
er

at
io

n
To

xi
c

(O
ur

s)

Frac. of Gen. Toxic (Ours) vs
 Frac. of Gen. Toxic (Perspective API)

Family Class
LLaMA
Pythia
GPT-2
GPT-J
MPT
Neo

Pythia (2.8B) Pythia (6.9B) GPT-J (6B) MPT LLaMA LLaMA
Base Model

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

. o
f G

en
er

at
io

n
To

xi
c

(O
ur

s)

Different Instruction Finetuning Methods (Toxicity)
None
Human Curated

Self-Instruct
Mix

ShareGPT
ShareGPT (Uncen.)

Figure 6: (Left) The fraction of toxic generations under our metric versus Perspective API. (Right)
The fraction of generated outputs that are toxic (i.e., the proposed metric) for instruction finetuned
models and their pretrained counterparts. The models are represented along the x-axis by their
model family names. The rightmost bar is WizardLM, which is trained on uncensored ShareGPT data,
containing toxic content.

the outputs using a black-box commercial tool (e.g., the Perspective API) or an additional
trained model (usually an encoder). However, using a model to measure the generation
may be problematic. For example, although work like Fortuna et al. (2020) has tried to
understand how Perspective API classifies toxic text, the API continues to change, and
as it changes, our understanding of how toxic generations are being classified starts to
dissipate (Pozzobon et al., 2023).

Self-Sensitivity Approach: One simple and reproducible approach is to analyze toxic
generation through invariance. We construct a metric that quantifies how stoic the model is
to profanity, i.e., whether the model responds to profane and aggressive comments with its
own profanity or aggression. Although we study profanity, this can be extended to other
forms of toxicity as well, or more broadly to model behaviors, such as the tone, that the
model should not mimic from user queries.

To build a self-sensitivity evaluation, we transform input prompts by “F-bombing:” we
append trigger words (e.g., “F**k F**K”) at the end of the original text. We then feed the
modified prompts into the model, examining the generated output.

We construct two sensitivity scores: one that analyzes open-ended generated text, and
another that analyzes the softmax probability distribution of the next predicted token. For
the text generation score, we examine the output to determine whether it contains a profane
word from the LDNOOBW dataset3. The softmax score metric computes the next-token
predictions at each position in a block of text and sums the probabilities of an LDNOOBW
word occurring. We validate our metric by comparing it with Perspective API toxicity
scores over the generations that contained the appended trigger phrase. This approach
enables us to understand the model’s stoicism towards profanity and extends to other forms
of toxicity.

5.1 Experimental Set-up

We employ our self-sensitivity approach using the Wikipedia dataset, which we split into
prompts on a per-sentence level. For the generated text, we report the fraction of times
a generation contains a “bad” word, minus the fraction of times the prompt contains a
bad word. For the next word prediction metric, we compute the change in the average
probability of a profane word between x′ and x.

We compared our metric with the Perspective API (Fortuna et al., 2020) toxic scores on
the prompts. We consider a generation toxic when the toxicity score is greater than or equal
to 0.5. We run all models greater than 6B parameters in their FP16 configuration. The full
list of models can be found in the Appendix A.6.

3https://github.com/LDNOOBW

7

https://github.com/LDNOOBW

Published as a conference paper at COLM 2024

5.2 Results

The results of our toxicity metric, evaluated in text space, are presented in Figure 6 (Left). We
also consider measuring the changes in the logit space, which can be found in Appendix A.6
(Figure 16). The figures clearly demonstrate a close correlation between our metric (Pearson
correlation of 0.97), which measures the fraction of generated toxic word counts, and the
toxicity scores obtained from the Perspective API. We conducted tests using models of
different types and scales (Figure 6). Furthermore, from Figure 16, there appears to be no
relation between the sensitivity of models to profane words and model size.

Effect of Instruction Finetuning: Instruction finetuning models with their corresponding
system prompts appear to have a noticeable effect on toxicity levels compared to their
pretrained counterparts, based on the results shown in Figure 6 (right). The model with
the lowest toxicity score is Vicuna-v1.1 (7B), making it the least toxic across the six models
examined. On the other hand, the Dolly models (i.e., finetuned Pythia models and GPT-J),
which were trained on self-instruct and human-curated datasets, have a higher toxicity score
on average. This suggests that certain instruction tuning datasets may be more “aligned”
with human values like toxicity than others.

Limitations: Our analysis focuses on explicit profanity and may not capture nuanced forms
of toxicity beyond explicit language. We rely on predefined lists of profane words, which
may not encompass all variations of toxicity. The effectiveness of our metric and the model’s
stoicism could vary with different datasets and prompt distributions.

6 Word Order: Word Salad Metric

Close adherence to word order is a requirement for accurate factual responses beyond
simple completions based on associative recall. Large Language Models have an incredible
ability to understand association but have been shown to lack the necessary representations
for certain types of reasoning. One of many potential reasons for this is their occasional
inability to understand word order. Yuksekgonul et al. (2023) showed that multimodal
models trained on image captions exhibit this behavior. People have also demonstrated
that BERT can often behave like a bag-of-words classifier (Juneja et al., 2023).

Self-Sensitivity Approach: To evaluate a model’s sensitivity to word order, we utilize
sentences from a given corpus and apply a transformation where two random words are
swapped in each sentence, creating modified versions denoted as x′. Next, we analyze
the impact of word order changes on the model’s predictions by examining the predicted
token softmax probability distribution from the original sentence x and its modified
counterpart x′. Specifically, we examine the JSD between the two distributions to quantify
the divergence in attention or focus resulting from the random word swaps in x′. We use
JSD instead of ppl as the swap may affect tokenization differently for different tokenizers.
Thus, we measure the next token prediction via JSD. Since there are no datasets that
study word order, we compare our self-sensitivity approach to HellaSwag a commonsense
reasoning task as the two might be related (Zellers et al., 2019).

WORD ORDER SCORE = median{JSD(f (x)j+1|| f (x′)j′+1) ∀(x, x′) ∈ X},

where j is the last token for the input sequence for x and j′ is the last token for x′.

6.1 Experimental Set-up

For this experiment, we take our corpus and break it down into sentences. Then, for every
sentence, we swap two random words (not tokens) to construct our x′ over 5000 examples.
Due to the long-tailed distribution in scores that were observed over the 5000 examples,
we report the median, as described. For reference, if we had computed the mean, we would
observe a standard error 2e−3. We report the median JSD for each model, again including
Pythia, Neo, GPT-2, and others. We run all models greater than 6B parameters in their FP16
configuration.

8

Published as a conference paper at COLM 2024

6.2 Results

From Figure 7 (Left), we can see that there is a positive correlation between Word Order
Score and HellaSwag with a Pearson correlation of 0.88. We observe that GPT-J has the
highest word score closely followed by MPT and LLaMA. However, we can see that there
appears to be a plateau for Word Score. Nevertheless, we can just increase the number of
swaps in the sentence (Appendix A.8 (Figure 19)).

Effect of Instruction Finetuning: Figure 7 (Right) shows that most instruction finetuning
approaches make the model more sensitive to word order over the five model families stud-
ied. Particularly, we see that only finetuning on the human-curated databricks-dolly-15k
seems to make the model more sensitive, irrespective of the size.

Limitations: For this Word Order Score, we make the assumption that the next token
prediction when swapping two words randomly is a good proxy to measure a model’s
sensitivity to word order.

7 Discussion

7.1 Limitations

Although our SSE metrics correlate well with existing datasets, models should be chosen
through rigorous testing for real-world deployment settings. Our metrics are intended to
supplement existing labeled data that can be used as another measure of domain-specific
data. For additional details, we refer to the limitations of each of the metrics in their
individual sections.

7.2 Memorization

Machine learning evaluation benchmarks for studying statistical generalization almost
always assume idealized train and test set separation. However, in reality, some amount
of overlap often exists in modern web-scale pretraining corpora. As a result, there have
been various efforts to measure and address the impact of these overlaps on the training
and evaluation of large models (Brown et al., 2020; Gao et al., 2021). Additionally, Kandpal
et al. (2022) showed that a language model’s ability to answer a fact-based question relates
to how many documents associated with that question were seen during pretraining. In the
context of sensitivity scores, this collection of results in the literature suggests that it is hard
to make strong statements about whether training-time exposure to certain documents or
token sequences would confound the trends observed in our proposed sensitivity metrics.
We leave a detailed analysis of the interactions between memorization behaviors based
on training data and our sensitivity metrics for future research. Nevertheless, a potential
advantage of self-sensitivity scores and other automatic evaluations is that we might be able
to circumvent the potential effects of memorization by evaluating sensitivities on novel text,
i.e., the latest news articles, as no labeling and additional curation of data sources is required.

0.30 0.35 0.40 0.45 0.50 0.55
HellaSwag

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

W
or

d
Or

de
r S

co
re

Word Order Score vs HellaSwag

Model Family
LLaMA
MPT
GPT-Neo
GPT-J
Pythia
GPT-2

Pythia (2.8B) Pythia (6.9B) GPT-J (6B) MPT LLaMA (7B)
Base Model

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

W
or

d
Or

de
r S

co
re

Different Instruction Finetuning Methods (Word Order)
None
Human Curated

Self-Instruct
Mix

ShareGPT

Figure 7: (Left) Word Order Score vs LRS Score across various model sizes and families. (Right) Word
Order Score of instruction finetuned models and their pretrained counterparts.

9

Published as a conference paper at COLM 2024

2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75
Sentence Entropy

3.6

3.7

3.8

3.9

4.0

4.1

4.2

Ne
xt

 To
ke

n
En

tro
py

Next Token Entropy vs Sentence Entropy
Model

Pythia (70M)
Pythia (160M)
GPT-2 (small)
GPT-Neo (125M)
GPT-2 (medium)
GPT-2 (large)
OPT (1.3B)
GPT-Neo (1.3B)
OPT (2.7B)
GPT-2 (XL)
GPT-Neo (2.7B)
Pythia (1.4B)
Pythia (2.8B)
Pythia (6.9B)
GPT-J (6B)
MPT (7B)
LLaMA (7B)

Figure 8: Plot showing the next token prediction Shannon entropy (y-axis) and mean token Shannon
entropy (x-axis) over sentences on Wikipedia. We find that LLaMA (7B) has the lowest entropy over
the next token and mean token over a sentence.

7.3 Entropy

The entropy of a model’s output distribution can impact many aspects of text generation.
A lower entropy may require a more aggressive sampling strategy for text generation to
achieve a diverse set of generations from the model, or might indicate a miscalibration
of the output distribution. Similarly, the model’s entropy can affect sensitivity scores. If
the entropy of the model is low, then the sensitivity may naturally be lower as well. The
exact impact of the model’s entropy on these sensitivity scores and how to appropriately
incorporate it into invariances/sensitivity scores should be explored in future work. Figure 8
shows the Shannon Entropy of the Next Token Prediction and Sentence Entropy (the mean
token entropy over a sentence of the model). We use the Wikipedia (our corpus) sentences
to calculate the Shannon Entropy, defined as H(x) = −∑ p(x) log(p(x)). From Figure 8,
we see that LLaMA has the lowest entropy on both the next token and mean token over a
sentence, with large models having a lower entropy than smaller models on average. This
may partially explain why the sensitivity scores for LLaMA are lower. 4

8 Conclusion

In this paper, we introduce a procedure for self-sensitivity evaluation by analyzing invari-
ances for Large Language Models. The key advantage of self-sensitivity evaluation is that it
has the potential to remove the need to laboriously label new data, leading to more efficient
forms of evaluation in real deployment settings. We showcase several case studies, where we
empirically validate this approach to reliably track existing supervised metrics. Additionally,
there are a number of future questions to consider when measuring a model’s sensitivity
that we have not fully explored yet – like entropy and memorization. Nevertheless, these
self-sensitivity evaluation approaches have the potential to measure properties beyond what
is currently capable of the traditional dataset approach – like sensitivity to word order. We
believe the future of LLM evaluation lies in automatic evaluation, as it can be conducted
on a large scale. We hope that this is only a starting point for self-sensitivity or more largely
self-supervised metrics in the future that can lead to a deeper understanding of how LLMs
behave and complement classical supervised benchmarks.

9 Acknowledgements

This work was made possible by the ONR MURI program, the Office of Naval Research
(N000142112557), and the AFOSR MURI program. Commercial support was provided by
Capital One Bank, the Amazon Research Award program, and Open Philanthropy. Further
support was provided by the National Science Foundation (IIS-2212182), and by the NSF
TRAILS Institute (2229885).

4Vocabulary size does play an additional role in the entropy of a model. For example, in a
completely uniform distribution, the Shannon Entropy of a model with a smaller vocabulary size will
be smaller than another model with a larger vocabulary size.

10

Published as a conference paper at COLM 2024

References

Anthropic. Introducing 100k context windows, May 2023a. URL https://www.anthropic.
com/index/100k-context-windows.

Anthropic. Introducing claude, March 2023b. URL https://www.anthropic.com/index/
introducing-claude.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling.
arXiv preprint arXiv:2304.01373, 2023.

Abeba Birhane, Pratyusha Kalluri, Dallas Card, William Agnew, Ravit Dotan, and Michelle
Bao. The values encoded in machine learning research. In 2022 ACM Conference on Fairness,
Accountability, and Transparency, pp. 173–184, 2022.

Samuel R Bowman and George E Dahl. What will it take to fix benchmarking in natural
language understanding? arXiv preprint arXiv:2104.02145, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao Chen, Linyi Yang,
Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large
language models. arXiv preprint arXiv:2307.03109, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin
Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing.
Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023.
URL https://lmsys.org/blog/2023-03-30-vicuna/.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness, 2022.

Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya Krishna, Yada Pruksachatkun, Kai-Wei
Chang, and Rahul Gupta. Bold: Dataset and metrics for measuring biases in open-ended
language generation. In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, FAccT ’21, pp. 862–872, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450383097. doi: 10.1145/3442188.3445924. URL
https://doi.org/10.1145/3442188.3445924.

Kaustubh D Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad
Mahamood, Abinaya Mahendiran, Simon Mille, Ashish Shrivastava, Samson Tan, et al.
Nl-augmenter: A framework for task-sensitive natural language augmentation. arXiv
preprint arXiv:2112.02721, 2021.

Shizhe Diao, Rui Pan, Hanze Dong, Ka Shun Shum, Jipeng Zhang, Wei Xiong, and Tong
Zhang. Lmflow: An extensible toolkit for finetuning and inference of large foundation
models. arXiv preprint arXiv:2306.12420, 2023.

Kawin Ethayarajh and Dan Jurafsky. Utility is in the eye of the user: A critique of NLP
leaderboards. arXiv preprint arXiv:2009.13888, 2020.

Paula Fortuna, Juan Soler, and Leo Wanner. Toxic, hateful, offensive or abusive? what are
we really classifying? an empirical analysis of hate speech datasets. In Proceedings of the
Twelfth Language Resources and Evaluation Conference, pp. 6786–6794, Marseille, France,
May 2020. European Language Resources Association. ISBN 979-10-95546-34-4. URL
https://aclanthology.org/2020.lrec-1.838.

11

https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.1145/3442188.3445924
https://aclanthology.org/2020.lrec-1.838

Published as a conference paper at COLM 2024

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang,
Laria Reynolds, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A
framework for few-shot language model evaluation, September 2021. URL https:
//doi.org/10.5281/zenodo.5371628.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. Real-
ToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models, September
2020. URL http://arxiv.org/abs/2009.11462. arXiv:2009.11462 [cs].

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding, 2021.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale
distantly supervised challenge dataset for reading comprehension. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1601–1611, 2017.

Jeevesh Juneja, Rachit Bansal, Kyunghyun Cho, João Sedoc, and Naomi Saphra. Linear
connectivity reveals generalization strategies. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=hY6M0JHl3uL.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large
language models struggle to learn long-tail knowledge. arXiv preprint arXiv:2211.08411,
2022.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu,
Bertie Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench:
Rethinking benchmarking in nlp. arXiv preprint arXiv:2104.14337, 2021.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga,
Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of
language models. arXiv preprint arXiv:2211.09110, 2022.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summariza-
tion branches out, pp. 74–81, 2004.

Microsoft. Guidance. Microsoft, June 2023. URL https://github.com/microsoft/
guidance.

Simon Mille, Kaustubh D. Dhole, Saad Mahamood, Laura Perez-Beltrachini, Varun Gangal,
Mihir Kale, Emiel van Miltenburg, and Sebastian Gehrmann. Automatic construction of
evaluation suites for natural language generation datasets. ArXiv, abs/2106.09069, 2021.

Joe O’Connor and Jacob Andreas. What context features can transformer language models
use? arXiv preprint arXiv:2106.08367, 2021.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language
models to follow instructions with human feedback. Advances in Neural Information
Processing Systems, 35:27730–27744, 2022.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella
Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The
lambada dataset: Word prediction requiring a broad discourse context. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 1525–1534, 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA,
July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL
https://aclanthology.org/P02-1040.

12

https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
http://arxiv.org/abs/2009.11462
https://openreview.net/forum?id=hY6M0JHl3uL
https://github.com/microsoft/guidance
https://github.com/microsoft/guidance
https://aclanthology.org/P02-1040

Published as a conference paper at COLM 2024

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction
tuning with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Luiza Pozzobon, Beyza Ermis, Patrick Lewis, and Sara Hooker. On the challenges of using
black-box apis for toxicity evaluation in research. arXiv preprint arXiv:2304.12397, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy:
Behavioral testing of NLP models with CheckList. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 4902–4912, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.442. URL
https://aclanthology.org/2020.acl-main.442.

Alexis Ross, Tongshuang Sherry Wu, Hao Peng, Matthew E. Peters, and Matt Gardner.
Tailor: Generating and perturbing text with semantic controls. In Annual Meeting of the
Association for Computational Linguistics, 2021.

Jessica Rumbelow and Mwatkins. Solidgoldmagikarp (plus, prompt genera-
tion), 2023. URL https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/
solidgoldmagikarp-plus-prompt-generation.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

Hao Sun, Guangxuan Xu, Jiawen Deng, Jiale Cheng, Chujie Zheng, Hao Zhou, Nanyun
Peng, Xiaoyan Zhu, and Minlie Huang. On the safety of conversational models: Taxon-
omy, dataset, and benchmark. In Findings of the Association for Computational Linguistics:
ACL 2022, pp. 3906–3923, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.findings-acl.308. URL https://aclanthology.org/
2022.findings-acl.308.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng
Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for
efficient transformers. In International Conference on Learning Representations, 2020.

Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela,
and Candace Ross. Winoground: Probing vision and language models for visio-linguistic
compositionality, 2022.

Yidong Wang, Zhuohao Yu, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen,
Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie, et al. Pandalm: An automatic evaluation
benchmark for llm instruction tuning optimization. arXiv preprint arXiv:2306.05087, 2023.

Tongshuang Sherry Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel S. Weld. Polyjuice:
Generating counterfactuals for explaining, evaluating, and improving models. In Annual
Meeting of the Association for Computational Linguistics, 2021.

Guanqun Yang, Mirazul Haque, Qiaochu Song, Wei Yang, and Xueqing Liu. Testaug:
A framework for augmenting capability-based nlp tests. In International Conference on
Computational Linguistics, 2022.

Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou.
When and why vision-language models behave like bags-of-words, and what to do
about it? In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=KRLUvxh8uaX.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can
a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 4791–4800, 2019.

13

https://aclanthology.org/2020.acl-main.442
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://aclanthology.org/2022.findings-acl.308
https://aclanthology.org/2022.findings-acl.308
https://openreview.net/forum?id=KRLUvxh8uaX

Published as a conference paper at COLM 2024

Zeyuan Allen Zhu and Yuanzhi Li. Physics of Language Models: Part 3.1, Knowledge
Storage and Extraction. arxiv:2309.14316[cs], September 2023. doi: 10.48550/arXiv.2309.
14316. URL http://arxiv.org/abs/2309.14316.

14

http://arxiv.org/abs/2309.14316

Published as a conference paper at COLM 2024

A Appendix

A.1 Extended Related Work

Knowledge Probing via Negation: The MMLU benchmark (Hendrycks et al., 2021) is
widely used to assess the knowledge base of language models, evaluating their performance
on task-specific micro datasets. In production, the GPT-4 technical report (OpenAI, 2023)
advertises the model’s capabilities across various knowledge categories, yet the evaluation
suite used in the report is not publicly available. Diao et al. (2023) proposed using negative
log-likelihood to probe a model’s knowledge for instruction models. Furthermore, Wu
et al. (2021) introduces a general-purpose counterfactual generator, Polyjuice, that allows
for control over perturbation types and locations and is trained by finetuning GPT-2 on
multiple labeled datasets of paired sentences. Our evaluation method allows us to assess
the model’s understanding and knowledge representation by examining its ability to
handle negations without the need for in-domain labeled datasets or model finetuning.

Toxicity: RealToxicityPrompts is the most prominent benchmark for toxicity in LLMs
(Gehman et al., 2020). This method relies on the Perspective API5 to score the model’s gen-
eration based on a series of prompts. This API is also used as the toxicity metric for HELM.
However, with the proprietary API constantly changing, comparing evaluations across time
is difficult (Pozzobon et al., 2023). Another common benchmark is BOLD (Dhamala et al.,
2021). BOLD trains another model to classify toxic generations. This approach of utilizing
another model to measure toxicity is common (Sun et al., 2022). Our approach differs from
these methods as we do not build a dataset nor rely on auxiliary models to classify the
generations.

Word Order: While previous efforts have made significant contributions to testing the
compositional and word order understanding of language models (O’Connor & Andreas,
2021; Thrush et al., 2022), these efforts predominantly rely on small sets of hand-crafted
examples. Moreover, these tests often encompass a wide range of knowledge types, making
it challenging to isolate and evaluate the specific role of word order knowledge. Our work
aims to investigate the word order sensitivity of LLMs from the lens of invariance in a
data-agnostic manner.

Long-Range Dependency: As conversational AI models become more prevalent (Ouyang
et al., 2022; Anthropic, 2023b), the importance of accommodating large context lengths has
become evident. Recent endeavors have focused on developing chat models with extensive
context capabilities, such as 32k and 100k (OpenAI, 2023; Anthropic, 2023a), utilizing
techniques like memory-efficient attention (Dao et al., 2022). However, it is equally crucial to
gauge how far back into the context the model truly operates and can refer to. LAMBADA
(Paperno et al., 2016), addresses this by assessing language models’ comprehension of
broad contexts. In contrast, our self-sensitivity approach creates texts through closed-form
transformations that evaluate language models’ grasp of long-range sensitivity.

Tokenization Sensitivity: HELM approaches this problem by inducing spaces, misspellings,
etc., over the datasets in question to determine if these slight changes can affect changes
when evaluating over established datasets (Liang et al., 2022). Additionally, Rumbelow &
Mwatkins (2023) found a set of anomalous tokens that result in a previously undocumented
failure mode for GPT-2 and GPT-3 models. Inspired by these works, we designed a test to
see how the same text tokenized differently affects model behavior without changing the
underlying text.

A.2 Context (Long-Range) Sensitivity: Back to the Future Metric

As LLM context window sizes have increased in recent models, it is important to understand
how changes in the previous context can affect the representations and generation across
long ranges. Datasets like Long-Range Arena (Tay et al., 2020) offer a very broad set of
tasks, focusing on context lengths ranging from 1k to, 16k and aim to evaluate architectural
choices. There are other datasets like LAMBADA that focus on the capability to successfully

5https://perspectiveapi.com/

15

https://perspectiveapi.com/

Published as a conference paper at COLM 2024

predict the conclusion to a paragraph (Paperno et al., 2016). The dataset is designed such
that the prediction of the word is clear given the full context, but it is impossible to predict
given just the last sentence. This measures an LLM’s ability to comprehend text beyond
locally attending to a sentence.

Self-Sensitivity Approach: We can utilize self-sensitivity evaluation to understand how the
model’s predictions change when a prior sentence or multiple sentences from a passage are
altered. We conduct this test by taking three sentences from a stream of data in order and
replacing the first two sentences with two random sentences from the corpus. For example,
if the original passage had three sentences, {S3, S2, S1}, where S3 is the first sentence of the
input passage, then the altered passage would be {S′

X, S′
Y, S1}, where S′

X, S′
Y are random

sentences from another passage in the corpus. A more concrete example can be found in
Appendix A.7 (Figure 18). We then look at the probability distribution at each position
of S1 for both x and x′, and compare them using the Jensen–Shannon divergence. This is
to determine how the representations of the last sentence change as different context is
presented.

The Jensen-Shannon divergence (JSD) is a symmetric variation of KL-divergence, defined
as:

JSD(P||Q) =
1
2

KL(P||M) +
1
2

KL(Q||M), (2)

where M =
1
2
(P + Q). (3)

For our invariance/sensitivity score, we take the mean of JSD over the last sentence, averag-
ing over all samples. Concretely,

LRS SCORE =
1
n

n

∑
i

1
m

m

∑
j

JSD(f (xi
j)|| f ((x′)i

j)),

where m represents the sentence length and xi
j is the ith sample in the set at token position j

in the last sentence.

A.2.1 Experimental Set-up

For this sensitivity test, we compare our method to LAMBADA using EleutherAI’s Language
Model Evaluation Harness (Gao et al., 2021). It is worth noting that the tests here are
different. The LAMBADA dataset measures long-range dependency on fiction and its ability
to comprehend the previous passage. On the other hand, we analyze the invariance of
the probability distributions over the last sentence when the passage has been altered. To
calculate our metric, we use the same corpus as the other tests and calculate over 1000
examples with the standard error 2e−3 of the mean value record. We report the JSD for a
range of models including Pythia, Neo, GPT-2, and others. We run all models greater than
6B parameters in their FP16 configuration.

A.2.2 Results

From Figure 9 (Left), we see that as our LRS Score increases, the model performs better on
LAMBADA. Furthermore, bigger models generally tend to be more sensitive to changes
in the context. We see that Pythia and GPT-J are more sensitive to changes in the context
compared to MPT and LLaMA. Whereas, smaller models like Pythia-70M and GPT-2 small
produce a lower LRS Score. We see a Pearson correlation with Lambada (OpenAI) of 0.91.

Effect of Instruction Tuning: On average, we see that instruction-finetuned models are more
sensitive to changes in context than their pretrained counterparts, suggesting that they may
be sensitive to long-range changes (beyond locally attending to a sentence). Moreover, we
find this gain appears independent of base model size. Both the smaller and larger Pythia
base models have a similar sensitivity, and finetuning on Dolly-V2 (“human-curated” in
Figure 9) leads to a similar gain in sensitivity.

16

Published as a conference paper at COLM 2024

0.2 0.3 0.4 0.5 0.6 0.7
LAMBADA (OpenAI)

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

LR
S

Sc
or

e

LRS Score vs Lambada (OpenAI)
Model Family
Pythia
GPT-J
LLaMA
MPT
Neo
OPT
GPT-2

Pythia (2.8B) Pythia (6.9B) GPT-J (6B) MPT LLaMA (7B)
Base Model

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

LR
S

Sc
or

e

Different Instruction Finetuning Methods (LRS)
None
Human Curated

Self-Instruct
Mix

ShareGPT

Figure 9: Left LRS Score vs LAMBADA (OpenAI) across various model sizes and families. Right LRS
Score of instruction finetuned models and their pretrained counterparts.

Limitations: Although we are analyzing long-range sensitivity in token probability space,
for transformers in particular, analyzing attention probabilities may be more effective.
However, to make the metric applicable to generic architectures, including RNNs, LSTMs,
efficient attention variants, etc., we believe that the token probability space is more appro-
priate.

A.3 Tokenization Sensitivity: Broken Token Metric

Text pre-processing is rarely perfect. Raw text often contains extra spaces, weird formatting,
and other quirks that affect how the tokenization of the text occurs. HELM explored some of
these phenomena (Liang et al., 2022). Others, such as Rumbelow & Mwatkins (2023), found
anomalous tokens that represent failure modes in GPT-2 and GPT-3 models, showing that
our understanding of how different tokenization impacts the model behavior is still limited.

Self-Sensitivity Approach: To quantify this phenomenon, we randomly chop strings of raw
input text at regular intervals of x, and then we tokenize each of the chopped strings inde-
pendently. This way, we mimic a “broken” tokenization, that might occur in the pretraining
corpus due to document breaks and misspellings. A broken tokenization can also occur
during model generation when incomplete user input is provided (Microsoft, 2023). After
tokenizing each chopped string separately, we concatenate these tokenizations back together.
Note that the original content is unchanged – the alternative tokenization still decodes to
the same raw input text. We then compare the concatenation of chopped tokenization to
the original text over the next token prediction using JSD, similar to our Word Order Metric.

TOKENIZATION SENSITIVITY SCORE (4)

=
1
n ∑ JSD(f (x)j+1|| f (x′)j′+1) (5)

A.3.1 Experimental Set-up

For this experiment, we take our corpus and break it down into sentences. Then, for every
sentence, we apply our procedure (described above) to construct x′ over 1000 examples. We
report the mean JSD for each different model like Pythia, Neo, GPT-2, and others, where the
standard error is about 5e−3 for all models. We run all models greater than 6B parameters
in their FP16 configuration. Here, we specifically explore a split stride of 5, splitting every
5th character.

A.3.2 Results

From Figure 21, we see that MPT and LLaMA are the least sensitive (lower is better) to
changes in token inputs. More broadly, we observe a negative trend with training FLOPs

17

Published as a conference paper at COLM 2024

1021 1022

Approx. FLOPS

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
To

ke
ni

za
tio

n
Se

ns
iti

vi
ty

 S
co

re

Tokenization Sensitivity Score vs FLOPS
Model Family
LLaMA
MPT
Pythia
GPT-J
Neo
GPT-2
OPT

Pythia (2.8B) Pythia (6.9B) GPT-J (6B) MPT LLaMA (7B)
Base Model

0.00

0.05

0.10

0.15

0.20

0.25

To
ke

ni
za

tio
n

Sc
or

e

Different Instruction Finetuning Methods (Tokenization)
None
Human Curated

Self-Instruct
Mix

ShareGPT

Figure 10: (Left) Tokenization Sensitivity Score with a split stride of five versus Approx. FLOPS –
lower is better. Note that the OPT models have seen the fewest tokens during training, c.f. Figure 21.
(Right) Impact of different instruction-tuned methods.

(i.e increasing the FLOPs decreases the sensitivity to tokenization changes). We suspect
that as the amount of training increases, alternative tokenizations are more likely to be
observed, and invariance to these abnormal tokenizations increases. This is supported by
measurements on the OPT models, which are strong outliers in the trend observed above.
Each of these models was trained on only 180B tokens, less than a fifth of the tokens seen by
MPT and LLaMA (1 Trillion) and about half of what GPT-2, GPT-Neo, and Pythia have seen.
We include Figure 21 for a variant of Figure 10 in terms of tokens observed during training
in Appendix A.9.

Effect of Instruction Finetuning: Figure 10 (Right) shows the impact of different instruction
finetuning methods. In contrast to previously observed metrics, there seems to be no reliable
trend in tokenization robustness after instruction finetuning. Furthermore, even when only
model size differs (Dolly-V2s) the instruction finetuned dataset can have a different impact
on this metric. It is worth noting that the Dolly-V2s were only trained on 15k instructions.

Limitations We test a limited type – character splits – of tokenization error, particularly
the same text just being processed differently by the tokenizer. There are additional
tokenization errors to consider as well, based on minor edits of the raw input text (i.e
explicit word splits, extra spaces, unusual punctuation, etc), that could also be considered.
Additionally, we examined the change in the next token probabilities, as we believe it is
a good proxy to measure this phenomenon.

A.4 Do All Transformations Need to Be Informative?

The following is why we believe that transformations need only be informative on average.
We will use knowledge via negations as an example here.

Assume that you have some corpus, C, which contains a set of facts , X1 and a set of non-
facts, X2. Let α be the percentage of facts, F be the model, T be the transformation, and µ be
the measurement procedure.

Now, let M1 = 1
|X1| ∑X1

µ(F(x), F(T(x)) be the measurement received from the a set of facts,
where |X1| is the cardinality of X1. This is the informative measure.

Similarly, let M2 = 1
|X2| ∑X2

µ(F(x), F(T(x)) be the measurement received from the a set of
non-facts, where |X2| is the cardinality of X2. This is the non-informative measure.

If the transformation is non-informative over some set (i.e. X2), then either two things will
happen: (1) the transformation will have some bias which will affect both the measure-
ments taken from X1 and X2 or (2) it will have no effect on measurement (i.e it would be
zero). To confirm that X1 is informative, manually examination of the sentences and their

18

Published as a conference paper at COLM 2024

transformations is necessary. We did this for 100 examples, and all of them were correctly
formed.

Case (1) may occur, which is why we use a normalization term that applies a "not" to
sentences in a neutral corpus. In our case, we use fiction books as the neutral corpus, as few
sentences in this corpus are statements of fact. Let this normalization term be M̃. Now, we
subtract M̃ from M1 and M2. Ideally, this would set the M2 − M̃ measurement to zero, and
M1 should be non-zero. Now, we can look at both (1) and (2) together as M2 are both zero.

Now, we can look at how alpha can affect the measurement, which is central to our claim
that “these transformations need only be effective on average to generate an informative
signal.”

Let the final measurement be M = α|C|(M1−M̃)+(1−α)|C|(M2−M̃)
|C| . Notice that the second term

goes to zero now. This leaves us with M = α(M1 − M̃). Now, only when α(M1 − M̃) is
smaller than standard error is there a concern. Notice that here the relative order will not
change given the same X1 no matter what the mixture of facts (informative) and non-facts
(non-informative), measured by α, is here.

We acknowledge that the above argument assumes the bias in the neutral corpus is of the
same magnitude as the bias in X2 (the non-fact sentences of the original corpus). While
this is not gauranteed to hold, it appears to be a reasonable assumption for the cases we
consider, as our metric correlates well with ground truth metrics like TriviaQA and MMLU
(clinical knowledge).

A.5 Extended Knowledge Probing via Negations

Example: Figure 11 shows an example of the original x and the transformed x′ for the
Knowledge Probing via Negations experiments.

Original (x): April is the fourth month of the year in the Julian and
Gregorian calendars and comes between March and May.

Perturbed (x′): April is not the fourth month of the year in the
Julian and Gregorian calendars and comes between March and May.

Figure 11: Knowledge probing via negations example over topic sentences in wikipedia. (Top) is the
original, x, from wikipedia. (Bottom) is the transformed, x′, where we add a “not” according to the
rules described in the main paper.

Adding Negations in TriviaQA To understand whether adding negations and measuring
the change in log perplexity is a reasonable assessment of probing the knowledge in an
LLM, we added negations to questions following the same rule described in the main paper.
We then recorded the change in perplexity for each of the models given the question-answer
pair. This was to understand how different models may understand negations. Figure 12
(Left) shows that adding a negation in the question and observing the change in perplexity
can give us an indication of performance on TriviaQA.

Medical Terms : For the medical terms, we use a open source dataset from huggingface:
gamino/wiki_medical_terms. We suspect that a text book of definitions would also suffice.

TriviaQA Accuracy We calculate the accuracy for TriviaQA for the unfiltered-web-dev
split by simply counting a correct answer from the model if one of the given answers was
contained in the output string. Additionally, since we found that the answer list sometimes
had the answer entity in the question, we excluded these answers when calculating accuracy.
We use the template “Question: [input question]\nAnswer:”.

19

Published as a conference paper at COLM 2024

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
TriviaQA Acc.

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Se

ns
iti

vi
ty

 S
co

re
 o

n
Tr

iv
ia

QA
Sensitivity Score on TriviaQA vs TriviaQA Acc.

Model Family
OpenAI Instruct
OpenAI
Cohere
Cohere Instruct
Llama
MPT
Pythia
Dolly V2 Instruct
GPT-J
Dolly V1 Instruct
Neo
GPT-2
Instruction
No
Yes

0.55 0.60 0.65 0.70 0.75
Sensitivity Score (Wikipedia)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

An
sw

er
 in

 O
ut

pu
t A

fte
r N

eg
at

io
n

Sensitivity Score (Wikipedia) vs
 Answer in Output After Negation

Model Family
OpenAI Instruct
Cohere Instruct
Dolly V2
Dolly V1

Figure 12: (Left) The change in perplexity in the question-answer pair when a negation is applied
to the question versus TriviaQA Acc. There appears to be a square-root relationship between the
Sensitivity Score on TriviaQA versus TriviaQA Acc. (Right) The percentage of times when the correct
answer was contained in the solution even when applying the negation versus Sensitivity Score
(Wikipedia) for a few instruction models. We see that text-ada-001 changes its answer often, whereas
the Cohere model does not.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
TriviaQA Acc.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Se
ns

iti
vi

ty
 S

co
re

Sensitivity Score vs TriviaQA Acc.
Model Family
OpenAI Instruct
OpenAI
Cohere
Cohere Instruct
LLaMA
Vicuna
MPT
MPT Instruct
Pythia
Dolly V2 Instruct
Galactica
GPT-J
Dolly V1 Instruct
Neo
GPT-2
Instruction
No
Yes

0.20 0.25 0.30 0.35 0.40 0.45 0.50
MMLU Clinical Knownledge

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Se
ns

iti
vi

ty
 S

co
re

Sensitivity Score vs MMLU Clinical Knownledge

Model Family
Galactica
LLaMA
MPT
GPT-Neo
GPT-J
Pythia
GPT-2

Figure 13: Left shows the SENSTIVITY SCORE with TriviaQA and Right shows the SENSTIVITY SCORE
with MMLU (clincial knowledge).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
TriviaQA Acc.

0.02

0.04

0.06

0.08

0.10

0.12

Pe
rc

en
t P

PL
 D

ro
ps

Percent PPL Drops vs TriviaQA Acc. Model Family
OpenAI Instruct
OpenAI
Cohere
Cohere Instruct
Llama
Vicuna
MPT
MPT Instruct
Pythia
Dolly V2 Instruct
GPT-J
Dolly V1 Instruct
Neo
GPT-2
Instruction
No
Yes

Figure 14: Percentage of samples where perplexity drops versus accuracy on TriviaQA. We observe a
reliable negative correlation.

20

Published as a conference paper at COLM 2024

Models From Huggingface: gpt2, gpt2-large, gpt2-medium, gpt2-xl,
EleutherAI/gpt-neo-1.3B, EleutherAI/gpt-neo-2.7B, EleutherAI/gpt-j-6b,
EleutherAI/pythia-1.4b, EleutherAI/pythia-2.8b, EleutherAI/pythia-6.9b,
mosaicml/mpt-7b,
mosaicml/mpt-7b-instruct, databricks/dolly-v1-6b, databricks/dolly-v2-3b,
databricks/dolly-v2-7b

Other Models: LLaMA-base-7B, Vicuna-7B

OpenAI API Models: ada, babbage, curie, davinci, text-ada-001,
text-babbage-001, text-curie-001,
text-davinci-003

Cohere API Models: xlarge, command-xlarge-beta

Table 1: Example outputs of text-ada-001, text-davinci-003 and Cohere command. These examples are
selected where text-ada-001 would produce a sensible answer to both the original question and the
negated question. The Cohere model is sometimes entirely insensitive to negations, compared to the
OpenAI models, although even text-davinci can fail at this task. This trend was observed over several
generations, from which we show two qualitative examples here.

Model Original Transformed
Question A sterlet is what type of creature? A sterlet is not what type of creature?

text-ada-001 A sterlet is a creature that has
a spiny body and a long, sharp tongue. A sterlet is not a creature.

text-davinci-003 A sterlet is a type of sturgeon. A sterlet is a type of sturgeon.
Cohere command Fish Fish

Question What is the only natural food
that never goes bad?

What is not the only natural
food that never goes bad?

text-ada-001 The only natural food that
never goes bad is sugar.

There is no one natural food that
never goes bad. There are, however,
some foods that are more likely to do so.
These include: milk, yogurt, ice cream,
and cake.

text-davinci-003 Honey. There is no single natural food
that never goes bad.

Cohere command Honey never goes bad. Honey never goes bad.

A.6 Extended Toxicity

Example: Figure 15 shows an example of the original x and the transformed x′ for the
toxicity experiments.

Original (x): Lionel Andrés Messi is an Argentine professional footballer
who plays as a forward for Ligue 1 club Paris Saint-Germain and captains
the Argentina national team.

Transformed (x′): Lionel Andrés Messi is an Argentine professional
footballer who plays as a forward for Ligue 1 club Paris Saint-Germain
and captains the Argentina national team. F*** F***

Figure 15: Toxicity test with one sentence. (Top) is the original, x, from wikipedia. (Bottom) is the
transformed, x′, where we add the trigger phrase to the original input.

Increasing the number of F-bombs: From Figure 17, we see, that on average, increasing
the number of F-bombs increases the toxicity of the model. However, here two F-bombs
induce more toxic behavior than three F-bombs, suggesting that on average, the two F-
bombs might be a trigger for toxic generation.

21

Published as a conference paper at COLM 2024

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Frac. of Generation Toxic (Perspective API)

0.55

0.60

0.65

0.70

0.75

0.80

 in
 B

ad
 W

or
d

Lo
gi

ts
 (O

ur
s)

 in Bad Words Logits (Ours) vs
 Frac. of Gen. Toxic (Perspective API)

Family Class
Llama
Pythia
GPT-2
GPT-J
MPT
Neo

Figure 16: The change in the next-token probability of a profane word (token) versus the fraction of
toxic generations according to Perspective API.

1 2 3 4 5 6 7
Number of F-Bombs Appended

0.0

0.2

0.4

0.6

0.8

To
xi

c
Fr

ac
.

Toxicity Ablation -- Increasing F-Bombs

Model
GPT-2 (small)
Pythia (6.9B)
GPT-2 (medium)
GPT-2 (large)
Pythia (1.4B)
GPT-J (6B)
GPT-2 (XL)
LLaMA (7B)
MPT (7B)
GPT-Neo (1.3B)
Pythia (2.8B)
GPT-Neo (2.7B)

Figure 17: As we increase the number of F-bombs, the toxicity of the generation increases except when
two F-bombs are present, which is a notable outlier. This suggests that to most models this is a toxic
trigger. We measure toxicity over the generated text by observing whether a term from LDNOOBW is
contained in the generation. From this figure, we see GPT-Neo (2.7B) is the most toxic according to
our metric.

Models From Huggingface: gpt2, gpt2-large, gpt2-medium, gpt2-xl,
EleutherAI/gpt-j-6b, EleutherAI/gpt-neo-1.3B, EleutherAI/gpt-neo-2.7B,
EleutherAI/pythia-1.4b, EleutherAI/pythia-2.8b, EleutherAI/pythia-6.9b,
mosaicml/mpt-7b,
mosaicml/mpt-7b-instruct, databricks/dolly-v1-6b, databricks/dolly-v2-3b,
databricks/dolly-v2-7b

Other Models: LLaMA-base-7B, Vicuna-7B, WizardLM-7B (uncensored)6

A.7 Extended Context (Long-Range) Sensitivity

Example: Figure 18 shows an example of the original x and the transformed x′ for the LRS
experiments.

Increasing the Amount of Context: From Figure 19, we see that increasing the context (or
the number of sentences swapped) increases the sensitivity. For the 7B parameter range, we
see that Pythia (6.9B) is the most sensitive.

Models From Huggingface: gpt2, gpt2-large, gpt2-medium, gpt2-xl,
facebook/opt-1.3b, facebook/opt-2.7b, EleutherAI/gpt-neo-125M,

6ehartford/WizardLM-7B-V1.0-Uncensored

22

Published as a conference paper at COLM 2024

Original (x): Lyrically, the song begins with the absence of her man, but
then, in the chorus, transitions into a warning not to fall in love with
material things. The second track, “Lágrimas Cálidas” (“Warm Tears”), is
a vallenato-stylized pop ballad, expressing her suffering due to being
abandoned by her lover.“Te Arrepentiras” (“You’ll Regret”), is about a
woman who surrendered completely to a man who did not appreciate her.

Transformed (x′): Ireland has won more medals in boxing than in any
other Olympic sport. Boxing is governed by the Irish Amateur Boxing
Association. “Te Arrepentiras” (“You’ll Regret”), is about a woman who
surrendered completely to a man who did not appreciate her.

Figure 18: Long-Range Sensitivity test with four sentences. (Top) is the original, x, from wikipedia.
(Bottom) is the transformed, x′, where the first two sentences are replaced with random two sentences
from wikipedia.

0 2 4 6 8 10
Number of Words Swapped

0.0

0.1

0.2

0.3

0.4

0.5

JS
D

M
ed

ia
n

Word Order Ablation -- Number of Word Swaps
Model

GPT-J (6B)
MPT (7B)
Pythia (2.8B)
Pythia (6.9B)
LLaMA (7B)
GPT-Neo (2.7B)
OPT (6.7B)
Pythia (1.4B)
GPT-Neo (1.3B)
GPT-2 (XL)
GPT-Neo (125M)
GPT-2 (large)
GPT-2 (medium)
GPT-2 (small)

0 1 2 3 4 5 6
Number of Sentences Swapped

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
JS

D

LRS Ablation -- Number of Sentences Swapped
Model

OPT (2.7B)
OPT (1.3B)
Pythia (6.9B)
GPT-J (6B)
LLaMA (7B)
Pythia (2.8B)
GPT-Neo (2.7B)
GPT-Neo (1.3B)
Pythia (1.4B)
MPT (7B)
GPT-2 (XL)
GPT-2 (medium)
GPT-2 (large)
GPT-Neo (125M)
GPT-2 (small)
Pythia (160M)
Pythia (70M)

Figure 19: (Left) We plot JSD on the next token prediction against the number of swaps for the token.
(Right) Increasing the context length (the number of swapped sentences) increases, the change in the
probability distribution over the last sentence.

EleutherAI/gpt-neo-1.3B, EleutherAI/gpt-neo-2.7B, EleutherAI/gpt-j-6b,
EleutherAI/pythia-70M, EleutherAI/pythia-160m, EleutherAI/pythia-410m,
EleutherAI/pythia-1b, EleutherAI/pythia-1.4b, EleutherAI/pythia-2.8b,
EleutherAI/pythia-6.9b, mosaicml/mpt-7b,
mosaicml/mpt-7b-instruct, databricks/dolly-v1-6b, databricks/dolly-v2-3b,
databricks/dolly-v2-7b, databricks/dolly-v2-7b

Other Models: LLaMA-base-7B, Vicuna-7B

A.8 Extended Word Order Sensitivity

Example: Figure 20 shows an example of the original x and the transformed x′ for the
word order experiments.

Original (x): Media.Vision would return to the franchise with the
development of Valkyria: Azure Revolution for the PlayStation 4.

Transformed (x′): Media.Vision would return PlayStation the franchise
with the development of Valkyria : Azure Revolution for the to 4.

Figure 20: Word Order Sensitivity test over one sentence. (Top) is the original, x, from wikipedia.
(Bottom) is the transformed, x′, where two words are randomly flipped. This is a 1-Swap.

Different Number of Swaps: Figure 19 shows the median JSD on the next token as we
increase the swaps. Here, we see increasing the number of swaps increases the sensitivity.

23

Published as a conference paper at COLM 2024

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Split Stride (by Character)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

JS
D

M
ea

n

Tokenization Ablation -- Increasing Split Stride
Model

MPT (7B)
LLaMA (7B)
Pythia (160M)
Pythia (6.9B)
GPT-2 (XL)
GPT-J (6B)
GPT-2 (large)
GPT-Neo (2.7B)
GPT-Neo (1.3B)
Pythia (1.4B)
Pythia (2.8B)
GPT-2 (medium)
GPT-2 (small)
GPT-Neo (125M)
OPT (2.7B)
OPT (1.3B)

1032 × 102 3 × 102 4 × 102 6 × 102

Total Tokens Seen During Training

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

To
ke

ni
za

tio
n

Se
ns

iti
vi

ty
 S

co
re

Tokenization Sensitivity Score vs Tokens Seen
Model Family
LLaMA
MPT
Pythia
GPT-J
Neo
GPT-2
OPT

Figure 21: (Left) Increasing the split stride decreases the sensitivity. We see that the OPT family cannot
handle this type of transformation. Additionally, we see LLaMA and MPT are good at handling these
types of tokenization changes. Lower is better. (Right) Increasing the total number of tokens seen
during training decreases the sensitivity score. We see that the OPT family is the most sensitive to this
type of transformation, as they have seen the least number of tokens. Additionally, we see LLaMA
and MPT are good at handling these types of tokenization changes as they have seen more tokens.
Lower is better.

Table 2: Example sentence of the transformation with a split stride of 10. (Left) shows the original
unaltered sentence. (Right) shows the transformed sentence after splitting every 10th character. The
underlined dashes are where the sentence is split.

Original (x) Transformed (x′)

Media.Vision would return to the franchise with
the development of Valkyria: Azure Revolution
for the PlayStation.

Media.Visi–on would r–eturn to t–he franchi–se
with th–e developm–ent of Val–kyria: Azu–re
Revolut–ion for th–e PlayStat–ion 4.

Models From Huggingface: gpt2, gpt2-large, gpt2-medium, gpt2-xl,
EleutherAI/gpt-neo-125M, EleutherAI/gpt-neo-1.3B, EleutherAI/gpt-neo-2.7B,
EleutherAI/gpt-j-6b, EleutherAI/pythia-1.4b, EleutherAI/pythia-2.8b,
EleutherAI/pythia-6.9b, mosaicml/mpt-7b,
mosaicml/mpt-7b-instruct, databricks/dolly-v1-6b, databricks/dolly-v2-3b,
databricks/dolly-v2-7b

Other Models: LLaMA-base-7B, Vicuna-7B

A.9 Extended Tokenization Sensitivity

Example: Figure 20 shows an example of the original x and the transformed x′ for the
tokenization experiments.

Increasing Split Stride: Figure 10 shows the median JSD on the next token as we increase
the split stride. Here, we see that LLaMA and MPT are much less sensitive (better at
handling tokenization changes) regarding the change in the probability distribution over
the next token as we increase the split stride. Figure 10 shows the number of tokens seen
versus the tokenization sensitivity score. Here, we see that there is a negative correlation.

Models From Huggingface: gpt2, gpt2-large, gpt2-medium, gpt2-xl,
facebook/opt-1.3b, facebook/opt-2.7b, EleutherAI/gpt-neo-125M,
EleutherAI/gpt-neo-1.3B, EleutherAI/gpt-neo-2.7B, EleutherAI/gpt-j-6b,
EleutherAI/pythia-160m, EleutherAI/pythia-410m, EleutherAI/pythia-1b,
EleutherAI/pythia-1.4b, EleutherAI/pythia-2.8b, EleutherAI/pythia-6.9b,
mosaicml/mpt-7b,mosaicml/mpt-7b-instruct, databricks/dolly-v1-6b,
databricks/dolly-v2-3b, databricks/dolly-v2-7b, databricks/dolly-v2-7b

Other Models: LLaMA-base-7B, Vicuna-7B

24

Published as a conference paper at COLM 2024

A.10 Additional Experiment Details

For all these experiments, we use NVIDIA RTX A4000 GPUs, finding that evaluating most
models is quite inexpensive over 1000 examples, with compute requirements of less than
30min per model for most tests. Additionally, for sentence and word parsing/tokenization,
we use the nltk package.

25

	Introduction
	A Procedure for Self-Sensitivity Evaluation
	Related Work
	Knowledge Probing via Negations: Au Contraire Metric
	Experimental Set-up
	Results
	Domain-Specific Evaluation

	Toxicity: Buckingham Guard Metric
	Experimental Set-up
	Results

	Word Order: Word Salad Metric
	Experimental Set-up
	Results

	Discussion
	Limitations
	Memorization
	Entropy

	Conclusion
	Acknowledgements
	Appendix
	Extended Related Work
	Context (Long-Range) Sensitivity: Back to the Future Metric
	Experimental Set-up
	Results

	Tokenization Sensitivity: Broken Token Metric
	Experimental Set-up
	Results

	Do All Transformations Need to Be Informative?
	Extended Knowledge Probing via Negations
	Extended Toxicity
	Extended Context (Long-Range) Sensitivity
	Extended Word Order Sensitivity
	Extended Tokenization Sensitivity
	Additional Experiment Details

