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Abstract 
Phylogenetic inference aims at reconstructing the tree describing the evolution of a set of sequences descending from a common ancestor. The 
high computational cost of state-of-the-art maximum likelihood and Bayesian inference methods limits their usability under realistic evolutionary 
models. Harnessing recent advances in likelihood-free inference and geometric deep learning, we introduce Phyloformer, a fast and accurate 
method for evolutionary distance estimation and phylogenetic reconstruction. Sampling many trees and sequences under an evolutionary 
model, we train the network to learn a function that enables predicting a tree from a multiple sequence alignment. On simulated data, we 
compare Phyloformer to FastME—a distance method—and two maximum likelihood methods: FastTree and IQTree. Under a commonly used 
model of protein sequence evolution and exploiting graphics processing unit (GPU) acceleration, Phyloformer outpaces all other approaches 
and exceeds their accuracy in the Kuhner–Felsenstein metric that accounts for both the topology and branch lengths. In terms of topological 
accuracy alone, Phyloformer outperforms FastME, but falls behind maximum likelihood approaches, especially as the number of sequences 
increases. When a model of sequence evolution that includes dependencies between sites is used, Phyloformer outperforms all other 
methods across all metrics on alignments with fewer than 80 sequences. On 3,801 empirical gene alignments from five different datasets, 
Phyloformer matches the topological accuracy of the two maximum likelihood implementations. Our results pave the way for the adoption of 
sophisticated realistic models for phylogenetic inference.
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Introduction
Molecular phylogenies provide essential insights into evolution
ary processes. They are employed in epidemiology to track viral 
spread (Hadfield et al. 2018), in virology to identify events of 
recombination (Nelson et al. 2008), in biochemistry to evaluate 
functional constraints operating on sequences (Harms and 
Thornton 2013), and in ecology to characterize biodiversity 
(Perez-Lamarque et al. 2022). Most of the time, molecular phy
logenies are estimated from aligned nucleotide or amino acid se
quences using probabilistic models in the maximum likelihood 
(ML) or Bayesian frameworks. Parameters of these models in
clude rates of substitution, the topology of the phylogeny, 
and its branch lengths—representing the expected number of 
substitutions per site occurring along that branch. Typically, 
the objective of phylogenetic reconstruction is thus to infer 
both the topology of the tree and its branch lengths. In the 
ML framework, parameter inference is achieved by heuristics 
that attempt to maximize the likelihood. In the Bayesian frame
work, it is often achieved by Markov chain Monte Carlo algo
rithms that sample the posterior distribution. Both approaches 
are computationally expensive for two reasons. First, they need 
to explore the space of tree topologies, which grows super- 
exponentially in the number of leaves (Felsenstein 2004). 

Second, this exploration involves numerous computations of 
the likelihood, each obtained with a costly sum-product algo
rithm (Felsenstein’s pruning algorithm; Felsenstein 1981). 
This computational cost has kept researchers from using 
more realistic models of sequence evolution, which would for 
instance take into account interactions between sites of a pro
tein (as in e.g. Kleinman et al. 2010). Such simplifications are 
well-known to be problematic, as several reconstruction arti
facts directly associated to model violations were discovered 
early in the history of model-based phylogenetic reconstruction 
(Weisburg et al. 1989; Yang 1996; Telford et al. 2005). Much 
faster methods exist, but they are generally less accurate 
(Guindon and Gascuel 2003). In particular, distance methods 
(e.g. neighbor joining [NJ], Saitou and Nei 1987; BioNJ, 
Gascuel 1997; FastME, Lefort et al. 2015) build a hierarchical 
clustering of sequences based on some estimate of their evolu
tionary pairwise distances, i.e. the sum of the branch lengths 
along the path between pairs of sequences on the true unob
served phylogenetic tree. While even a simple O(n2) algorithm 
(Waterman et al. 1977) is guaranteed to reconstruct the true 
tree topology if applied to the true distances, making the prob
lem of estimating the tree and the set of distances equivalent, al
gorithms such as NJ further provide the same guarantee even if 
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the estimated distances are at most half the shortest edge length 
in the tree away from their true value (Atteson 1999). This en
sures the statistical consistency of such distance methods given 
unbiased estimates of the true evolutionary distances. In prac
tice, distances are typically estimated under the same probabil
istic models as ML and Bayesian methods but considering each 
pair separately—whereas the latter consider all sequences at 
once—which greatly simplifies computations but discards 
part of the global information contained in the full set of hom
ologous sequences.

Here, we present Phyloformer (PF), a phylogenetic inference 
method exploiting all sequences at once with the speed of dis
tance methods. Importantly, PF can handle complex models of 
sequence evolution for which likelihood computations would 
not be feasible. We build on recent advances in deep learning 

for multiple sequence alignments (MSAs, Rao et al. 2021) and 
in the likelihood-free inference paradigm (Fig. 1). Sometimes 
referred to as simulation-based inference (Lueckmann et al. 
2021), this paradigm exploits the fact that simulating data 
under probabilistic models of sequence evolution is computa
tionally affordable, even in cases where computing likelihoods 
under these models is expensive. Through simulation we sam
ple a large number of phylogenetic trees and MSAs evolved 
along these trees, given a probabilistic model under which 
we want to perform phylogenetic inference. We then learn a 
function that takes an MSA as input and outputs the evolu
tionary distances between all pairs of sequences on the tree. 
This function provides a point inference of the full set of pair
wise distances under the chosen probabilistic model, condi
tional to the observed MSA. Learning the function is 

Fig. 1. Learning a function that reconstructs a phylogenetic tree from an MSA. We simulate phylogenetic trees and evolve MSAs along these trees under 
a given probabilistic model (Simulator panel). Once encoded, we use the examples of MSAs and corresponding trees to optimize the prediction function, 
described in the PF network panel. Each square denotes a vector of dimension d representing one site in one sequence or pair in the MSA, where the 
value of d can be different at each step. PF starts (bottom left) from a one-hot encoded MSA, and builds a representation for the pairs. These pairs then go 
through several layers of axial attention (central panel). Each of these layers shares information across sites within each pair and across pairs within each 
site, progressively building a new representation for each pair that accounts for the entire MSA. For every site of every pair, we finally apply the same fully 
connected network to the Rd embedding in the resulting representation. Finally, we average the embeddings across sites to predict the evolutionary 
distance between each pair (bottom right). At training time, we compare these distances against real ones to optimize the network parameters Φ. At 
inference time, we feed them to FastME to reconstruct a phylogeny.
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computationally intensive, but once done, PF can be used in 
combination with a distance method to reconstruct a tree 
from an MSA very rapidly, regardless of the complexity of 
the model of sequence evolution. We show that under the com
mon LG+GC model (Le and Gascuel 2008), PF leads to phy
logenies as accurate as state of the art ML methods, as 
measured per the Kuhner–Felsenstein (KF) metric that ac
counts for both evolutionary distances and topologies, but 
runs two orders of magnitude faster than these methods on a 
graphics processing unit (GPU). When looking at the 
Robinson–Foulds (RF) metric that only measures topological 
accuracy, PF outperforms FastME, but falls behind ML meth
ods, with performances degrading as the number of leaves in
creases. Under more realistic models, e.g. accounting for 
pairwise dependencies between sites, PF widens the gap with 
all other inference methods in the KF metric, and is on a par 
with ML methods in topological accuracy for small trees.

Related work (Mo et al. 2024) offer a recent review on deep 
learning for phylogenetics. Suvorov et al. (2019) and Zou et al. 
(2020) proposed likelihood-free methods for phylogenetic in
ference, by casting the problem as a classification across pos
sible topologies. Given the super-exponential growth of the 
number of possible unrooted tree topologies in the number 
of sequences, they restricted themselves to trees with four 
leaves (quartet trees), that could then be combined to obtain 
larger trees (Strimmer and Von Haeseler 1996). Both methods 
relied on convolutional neural networks and were, therefore, 
sensitive to the order of the sequences in the alignment and re
stricted to a fixed sequence length—smaller sequences being 
accommodated with padding. More recently, while still only 
considering quartet trees, Tang et al. (2024) proposed a net
work that was independent of sequence order, and reported 
accuracies similar to Zou et al. (2020) using fewer training 
samples. Zaharias et al. (2022) showed that the accuracy of 
the network introduced in Zou et al. (2020) was lower than 
that of ML or distance methods when evaluated on difficult 
problems involving long branches and shorter sequences 
(200 sites), for both quartet trees and trees with 20 leaves. 
Smith and Hahn (2023) proposed a generative adversarial net
work for phylogenetic inference. While also likelihood-free, 
this approach required a new training for each inference, 
and did not scale beyond fifteen species. Jiang et al. (2022) in
troduced a distance-based learning method called Deep-learn
ing Enabled Phylogenetic Placement (DEPP) for the related 
problem of adding new tips into an existing tree. This method 
relies on a convolutional network, trained on a very large ref
erence empirical data set containing a sequence alignment and 
the corresponding reconstructed phylogeny. The network 
learns an embedding of the sequences that captures the pair
wise distances on the tree, and can then be used to predict 
the distances between a query sequence and the sequences in 
the alignment. Based on these distances, the query sequence 
can be placed inside the tree using a dedicated distance-based 
placement algorithm (Balaban et al. 2020). DEPP thus uses 
deep learning for distance-based phylogenetics, like PF, but re
lies on a large empirical data set for its training, which needs to 
be redone if the reference phylogeny or alignment is changed. 
Another class of approaches has rather focused on optimizing 
the tree space exploration, with Azouri et al. (2021) using first 
a traditional machine learning model, namely a random forest 
regressor, to predict optimal, likelihood-maximizing, SPR 
moves. Second, the authors then resorted to reinforcement 
learning and a fully connected neural network architecture 

(Azouri et al. 2024), and showed that, allowing for suboptimal 
moves during tree space exploration, the method could out
perform state of the art techniques. Our work is also related 
to the recent corpus of methods predicting contact between 
pairs of residues from MSAs, a crucial step in protein structure 
prediction (Jumper et al. 2021; Rao et al. 2021). These meth
ods infer distances between sites (columns in the MSA), where
as we infer distances between sequences (rows in the MSA). 
Our network is trained end-to-end to predict distances, where
as the Rao et al. (2021) network is pretrained on a masked lan
guage modeling task to learn a data representation that is then 
used as input for residue contact prediction learning.

Results
Likelihood-Free Phylogenetic Inference with 
Phyloformer
PF is a learnable function for reconstructing a phylogenetic 
tree from an MSA representing a set of homologous sequences 
(Fig. 1). It produces an estimate, under a chosen probabilistic 
model, of the distances between all pairs of sequences, which is 
then fed to a fast distance-based method to infer a phylogenet
ic tree. The key feature of PF is its ability to produce pairwise 
distance estimates that account for all sequences in the 
alignment—providing more accuracy than the fast approaches 
that consider each pair of sequences independently—without 
computing likelihoods—leading to much faster inference 
than full ML or Bayesian approaches.

For a given model of sequence evolution p(MSA | τ, θ) de
scribing how an observed MSA evolves conditionally to a 
phylogeny τ and evolutionary parameters θ—substitution 
rates, equilibrium frequencies—and priors π(θ) and π(τ), we 
generate a large number of samples {(MSA, τ, θ)} under the un
normalized posterior p(MSA, τ, θ) = p(MSA | τ, θ)π(τ)π(θ) 
(Fig. 1, Simulator panel). Because there is a bijection between 
trees and evolutionary distances, these are also samples from 
p(MSA, d, θ) = p(MSA |d, θ)π(d)π(θ) where d is the set of evo
lutionary distances between pairs of leaves in τ and π(d) is the 
distribution over distances induced by π(τ). We then use these 
samples to build a function estimating the tree τ, by optimizing 
a parameterized function FΦ(MSA) that takes the MSA as in
put and outputs point estimates of distances d. Parameters of 
FΦ(MSA) are estimated by minimizing the average absolute er
ror between these point estimates and the real distances, which 
amounts to estimating the median of the posterior distribution 
p(d |MSA, θ), see supplementary methods 1.4, Supplementary 
Material online. At inference time, these distances can then be 
used by a distance-based method like FastME to reconstruct 
an estimate of τ. Assuming that the family of functions de
scribed by FΦ is expressive enough and that enough samples 
are used, this approach offers posterior inference under the 
model (π, p), effectively replacing likelihood evaluations by 
samplings of p(MSA | τ, θ).

Our FΦ relies on self-attention to build a vector representa
tion for each pair of sequences that contains all the information 
from the MSA required to determine the corresponding dis
tance. During each self-attention block, the representation of 
each pair is updated using information extracted from itself 
and from all others. Self-attention is a general mechanism popu
larized by the Transformer architecture (Vaswani et al. 2017) 
that acts on an unordered set of objects {o1, . . . , oN}—in our 
case, the set of pairs of sequences at a single site. A self-attention 
layer replaces each object oi in the set by a weighted average 
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􏽐N
j=1 wijv(oj) of all objects in the set. It relies on functions that 

computes the wij—how much object j weighs in the update of 
object i—and another function v that determines what informa
tion it contributes. Each of these functions depends on weights 
that are optimized during the learning process to make the pre
dicted distances as close as possible to the real ones. For these 
reasons, we expect them to adaptively extract an MSA-aware re
presentation for each pair that captures the relevant information 
from the whole alignment, as opposed to the initial representa
tion where each pair is blind to the rest of the MSA. We provide 
more detail on our self-attention mechanism in the Scalable self- 
attention section. Because we maintain a separate vector re
presentation for each site within each pair, every pair is itself a 
list of elements—the amino acids at a given site for the pair of 
sequences—and thereby also amenable to self-attention. We fol
low the axial attention strategy (Ho et al. 2019; Rao et al. 2021) 
and alternate between a separate update for each site—whereby 
information is shared among pairs as we just described—and a 
similar separate update for each pair whereby information flows 
among the sites. Following the axial attention blocks, we use a 
fully connected neural network on the enriched representation 
of each pair of sequences to predict the corresponding distance 
on the phylogenetic tree.

Performance Under a Standard Model of Evolution
We first assessed the performances of PF on data generated 
under the LG+GC model of sequence evolution, which com
bines the LG matrix of amino acid substitution (Le and 
Gascuel 2008) with rate heterogeneity across sites (Yang 
1994). The LG model is widely used, implemented in many 
phylogenetic tools (Huelsenbeck and Ronquist 2001; Yang 
2007; Höhna et al. 2016; Rambaut 2017) and amenable to 

likelihood computation, making it a good model to compare 
against state of the art ML inference methods. Following 
Szöllõsi et al. (2022), we sampled trees under a birth–death pro
cess, subsequently rescaling the branches to simulate variations 
of the rate of sequence evolution (see supplementary methods 1. 
1, Supplementary Material online). We chose simulation param
eters to match empirical data in the HOGENOM (Penel et al. 
2009) and RaxMLGrove (Höhler et al. 2022) databases (see 
Online Methods and supplementary methods 1.1.1, 
Supplementary Material online). We then evolved MSAs of 50 
sequences and 500 sites under LG+GC along these trees, and 
used the resulting data to train PF (see supplementary methods 
1.2, Supplementary Material online). We compared PF followed 
by FastME to reconstruct the tree from estimated distances 
against two ML methods, IQTree and FastTree, and one dis
tance method, FastME using LG pairwise distances. Figure 2a
shows the average KF distance (Kuhner and Felsenstein 1994) 
between the true and reconstructed phylogeny for each of these 
methods over 500 samples from the same model for increasing 
numbers of leaves. The KF distance is widely used to compare 
phylogenies and captures both topological and branch length 
reconstruction errors. Under this metric, PF achieved a perform
ance similar to ML methods. It is noteworthy that this perform
ance was stable across numbers of leaves, even though our 
network was trained on 50-leaf phylogenies only. The perform
ance was also stable when doing inference over a range of 
sequence lengths, even though PF was trained only on align
ments with 500 positions (supplementary figures 13 and 14, 
Supplementary Material online). FastME with FastME distan
ces was much less accurate. Interestingly, the high accuracy of 
PF—using a GPU—was achieved with the lowest runtime 
among all benchmarked methods (Fig. 3). In particular, it was 
up to 135 times faster than the ML method IQTree, for a similar 

(a) (b)

(c)

Fig. 2. Performance measures for different tree reconstruction method. a) KF distance, which takes into account both topology and branch lengths of the 
compared trees; b) MAE on pairwise distances, which ignores topology; and c) normalized RF distance, which only takes into account tree topology. The 
alignments for which trees are inferred were simulated under the LG+GC sequence model and are all 500 amino acids long. For each measure, we show 
95% confidence intervals estimated with 1,000 bootstrap samples.
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accuracy. FastTree—a faster and supposedly less accurate heur
istic for ML—also had similar accuracy on this dataset, but re
mained one order of magnitude slower than PF. PF was even 
twice as fast as FastME combined with LG distances. As PF itself 
runs FastME to reconstruct a tree from its distance estimates, 
this difference indicates that inferring distances that exploit 
the full MSA with a trained PF on a GPU is actually faster 
than computing the ML distances independently for each pair. 
Conversely, PF was the most memory intensive method, using 
up to 24.2 GB of GPU RAM for alignments of 180 sequences 
(supplementary figure 16, Supplementary Material online), 
which makes it impossible to handle larger trees on 32 Gb 
GPUs. Of note, memory usage can be halved in some cases by 
using automatic mixed precision. Furthermore, running PF in
ference on central processing units (CPUs) is possible with the 
same memory usage as on GPU. However, it is slower than 
IQTree and therefore not advantageous for models amenable 
to likelihood computation.

Figure 2b and c stratify the reconstruction error in terms of 
their topology (panel c, using the normalized RF metric 
Robinson and Foulds 1981) and pairwise distances (panel b, 
using the mean absolute error [MAE] between true and esti
mated distances). PF was more accurate than FastME on 
both criteria. On the other hand, PF had a larger topological 
error than ML methods as measured by the normalized RF dis
tance, and increasingly so for larger numbers of leaves. On the 
contrary, it was better at estimating evolutionary distances. 
A possible explanation for this discrepancy is that since we 
control the tree diameter in our simulation, larger trees 
have shorter branches on average. As branch lengths decrease, 
the number of mispredicted branches increases leading to 

larger topological errors (see supplementary results 2.3, 
Supplementary Material online for an in depth explanation).

Finally, we investigated the ability of PF to handle gaps con
tained in empirical MSAs because of insertion–deletion (indel) 
events that have occurred during sequence evolution. 
Standard models of sequence evolution consider gaps as 
wildcard “X” characters, and thus cannot benefit from the 
information they provide. Models that account for insertion– 
deletion processes are more complicated to implement and 
more costly to run (Redelings and Suchard 2007), but can easily 
be included using our paradigm. We fine-tuned the PF network 
previously trained on ungapped LG+GC data on a smaller da
taset that includes indels, inserted through a model of insertion/ 
deletion events in Alisim (Ly-Trong et al. 2022), choosing pa
rameters as in Trost et al. (2024). Figure 4 shows that the accur
acy of all methods dropped on alignments that include gaps 
compared to alignments that do not (Fig. 2), probably because 
gaps remove information from the alignments. However, the 
difference between PF and ML methods shrinked, with PF out
performing ML methods according to the RF metric for 10 to 
30-leaf trees. This is likely due to PF’s ability to extract informa
tion from gaps, which are encoded as a separate character and 
not as a wildcard character. The drop in performance for larger 
trees is most likely caused by the same phenomenon as the one 
in Fig. 2 (see above and supplementary results 2.3, 
Supplementary Material online).

Performance Under More Realistic Models
Because ML and Bayesian inference approaches must compute 
the likelihood, in practice they can only be used under simple 

Fig. 3. Execution time for different tree reconstruction methods on the LG+GC test set with alignments of length 500. For IQTree ModelFinder (MF) 
times were measured on the Cherry testing set (see section Performance Under More Realistic Models). For all methods except PF, total wall time was 
measured. For PF, the elapsed time is the sum of the time it takes to infer the distances and the time FastME takes to infer the tree from these distances. 
It is important to note that the distance prediction time does not include the time it takes to load the PF weights to the GPU as we did that once before 
inferring distances for all the testing alignments. The faded red dashed line shows the PF execution times, added to the average central processing unit 
(CPU) to GPU model-loading time measured over 100 replicates. The slight discrepancy noticeable at 110 leaves is due to a change of CPUs in our high 
performance computing (HPC) environment (see end of Baselines).
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models such as LG+GC for which these likelihood calculations 
are affordable. PF on the other hand can reconstruct phyloge
nies under arbitrarily complex models of sequence evolution, 
as long as we can efficiently sample training data from these 
models. We now illustrate this feature by considering inference 
tasks under two substitution models that relax common simpli
fying assumptions: independence between sites, and the homo
geneity of selective constraints across sites. The first model we 
used (Cherry, supplementary methods 1.2, Supplementary 
Material online) is derived from a model of sequence evolution 
that includes pairwise amino acid interactions (Prillo et al. 
2023). ML inference under such a model would be very costly 
for two reasons: the substitution matrix has size 400 × 400, 
and would need to be applied to pairs of interacting sites, 
which would need to be identified with additional computa
tions. The second model (SelReg, supplementary methods 1.2, 
Supplementary Material online) draws different selective re
gimes for each site of the alignment: a site can evolve under neu
tral evolution, negative selection, or persistent positive selection. 
ML inference under such a model is achievable with a mixture 
model (e.g. Si Quang et al. 2008), but costly, because the 
SelReg mixture includes 263 distinct amino acid profiles, plus 
a profile for neutral evolution, and a different matrix for posi
tively selected sites. We fine-tuned the PF network previously 
trained under the LG+GC model on alignments sampled under 
the Cherry or the SelReg model. We compared its performances 
against the same methods as before, but allowing IQTree to 
search for the best evolution model available (with the Model 
Finder option). Figure 5 shows that under both the Cherry 
and SelReg models all methods performed worse than under 
LG+GC, presumably because both models decrease the infor
mation provided by a given number of sites, by including pair
wise correlations (Cherry), or positively selected sites that 
might saturate (SelReg). However, PF outperformed all other 
methods by a substantial margin under the KF metric, with dis
tances around 1 whereas others range between 2 and up to 10 

for IQTree under SelReg. Of note, the Model Finder option 
was costly, further increasing the computational edge of PF 
(Fig. 3). Not using this option markedly decreased the accuracy 
of IQTree on the Cherry alignments (supplementary figures 11
and 12, Supplementary Material online). As we observed under 
LG+GC, PF was better at estimating distances than topolo
gies (Fig. 5), with the latter becoming more challenging for 
larger numbers of leaves. We observed a similar trend as 
for the LG − GC experiments, where the RF distances in
creased for larger trees (albeit at a much slower rate), making 
PF progressively lose its edge against misspecified ML meth
ods when only considering topological accuracy. The cause 
of this degradation is likely the same as the one we proposed 
in section Performance Under a Standard Model of Evolution 
(details are provided in supplementary results 2.3, Supplementary 
Material online).

Phyloformer Is Likelihood-Free but Not Model-Free
Since it is trained on data simulated under a specific evolution
ary model, PF is not a model-free method. As such, it is not im
mune to model misspecification, much like all likelihood-based 
tree reconstruction methods. In order to investigate the effects 
of this misspecification we simulated additional testing data 
using three evolutionary models for which the equilibrium fre
quencies as well as the exchange rates were as “far” as possible 
from LG (Minh et al. 2021; Norn et al. 2021), namely: HIVw, 
JTT, and mtRev. For each of these models, we simulated new 
500 amino acid-long alignments, using the trees from the test 
set shown in section Performance Under a Standard Model of 
Evolution and with rate heterogeneity across sites (Yang 1994).

As in section Performance Under a Standard Model of 
Evolution, we inferred trees using PF followed by FastME, 
FastTree using the LG model, IQTree using the LG+GC model 
and FastME using distances computed by FastME under the 
LG model. To quantify the effect of misspecification we also 

(a) (b)

(c)

Fig. 4. Tree comparison metrics for different tree reconstruction methods on the LG+GC+indels test set (alignment length = 500). Legend as in Fig. 2, 
with PF fine-tuned on alignments with gaps named PFIndel + FastME and in cyan.
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inferred trees with IQTree using the correct substitution ma
trix (i.e. HIVw+GC, JTT+GC, and mtREV+GC).

When tested on these new datasets, and as measured by the 
KF distance, all LG tree-inference methods do worse than 
IQTree with the correct model (Fig. 6), except for FastTree 
when inferring larger trees from JTT alignments. However, it 
seems like all methods are similarly impacted, and the relation
ships between these methods is very similar to the one shown in 
Fig. 2. When looking at the normalized RF distance (see 
supplementary figure 15, Supplementary Material online), the 
same dynamic is present: misspecification degrades the accur
acy of all methods but preserves their relative performances. 
Therefore, it seems likely that PF behaves quite similarly to oth
er tree inference methods misspecification-wise, consistently 
with what was reported in Thompson et al. (2024), and is not 
oversensitive to this phenomenon. Of course, inferring a tree 
under the wrong evolutionary model for a given alignment 

will not yield the optimal tree, but that is the case for all other 
model-based tree inference methods.

Phyloformer Performs on Par with ML Methods on 
Empirical Data
We compared the performance of PF and other methods on 
346 orthologous gene alignments from 36 Cyanobacteria 
(Szöllosi et al. 2013), reasoning that good reconstruction 
methods should more often infer trees that match the tree ob
tained on the concatenated gene alignments. We compared the 
LG+GC-with-indel version of PF to the same three methods 
assessed in section Performance Under a Standard Model of 
Evolution. Figure 7a shows that under the RF metric, PF per
formed as well as the other standard methods on empirical 
data, and did so faster—on a GPU.

(a) (b)

(c) (d)

Fig. 5. Normalized RF distance (above) and KF distance (below) for different tree reconstruction methods on the Cherry (left) and SelReg (right) test sets 
(alignment length = 500).
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We conducted a similar analysis on gene-trees over many 
different clades obtained from Zhou et al. (2018). In this 
study, the authors collected a large number of sequence data
sets and inferred gene-trees using IQTree and FastTree under 
the evolutionary model found by IQTree’s ModelFinder for 
each alignment. For IQTree they inferred 10 trees and only 
kept the one with the best likelihood. The authors also recon
structed species trees from concatenated alignments for each 
dataset. We reconstructed trees on the five ensembles of align
ments where at least 80% of alignments were classified as LG 
by IQTree using the LG+GC-with-indel version of PF with 
FastME (see supplementary methods 1.5, Supplementary 
Material online).

We then compared our gene trees as well as the ones from 
Zhou et al. (2018) to the concatenate trees. Here again, 
Fig. 7b shows that in most cases PF performed as well as the 
best of 10 trees estimated with ML methods. Here the compu
tational speed of PF shines as we were able to infer about 

12, 000 trees in under 2 h with one GPU. In Zhou et al. 
(2018), the authors measured execution times of only 10% 
of tree inference tasks, for which the total runtimes of 
IQTree and FastTree were ∼ 10.5 days and 4 h, respectively. 
On the same subset of trees, we measured the total runtime 
of Phyloformer+FastME and standalone FastME at ∼ 11.5 
and 15 min, respectively. Furthermore, PF consistently pro
duced trees with a higher likelihood than FastME trees though 
still lower than pure ML methods (supplementary figure 7, 
Supplementary Material online).

Discussion
Drawing on recent breakthroughs in likelihood-free inference 
and geometric deep learning, we have demonstrated that PF 
achieves rapid and precise phylogenetic inference. The 
likelihood-free paradigm only requires samples from the prob
abilistic model of sequence evolution, which allows inference 

(a) (b) (c)

Fig. 6. KF distance, for different tree reconstruction methods applied to alignments simulated under the (a) HIVw, (b) JTT, and (c) mtREV evolutionary 
models. All methods except IQTree_Correct infer trees using the LG evolutionary model. IQTree_Correct inferes trees using the appropriate model for 
each testing dataset.

(a) (b)

Fig. 7. Comparison of topology reconstruction accuracy between PF and other methods on empirical data. In both panels, we show the normalized RF 
distance between reconstructed gene trees and the corresponding concatenate tree. In a) inferred gene trees on alignments from Szöllosi et al. (2013) using 
the same pipeline as in section Performance Under a Standard Model of Evolution and with the gap-aware version of PF shown in Fig. 4. In b) gene 
alignments, species trees and some gene trees were obtained from Zhou et al. (2018). We inferred gene-trees using the gap-aware version of Phyloformer 
and FastME as in (a). The IQTree predictions were made in Zhou et al. (2018) under the evolutionary model found by IQTree ModelFinder, then 10 predictions 
were done and only the one with the best likelihood was kept. The datasets shown here have ≥ 80% of alignments detected as LG by IQTree.
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under much more complex models than ML or Bayesian infer
ence. Furthermore we exploited an amortized form of this 
paradigm, requiring a single training of a neural network 
that takes an MSA as input and outputs evolutionary distances 
between pairs of sequences—as opposed to approaches like 
approximate bayesian computation (Csilléry et al. 2010) 
that require a new sampling step at each inference. We based 
our neural network on axial self-attention, an expressive 
mechanism that accounts for the symmetries of the MSA 
and seamlessly handles arbitrary numbers of sequences of 
any length.

PF was faster and as accurate as ML inference methods on 
data sampled under the standard LG+GC model, as measured 
by the KF distance that captures both the topological and branch 
length reconstruction accuracy. Computing likelihoods under 
LG+GC is expensive but possible, making ML inference the 
gold standard: reaching the same accuracy faster was the best 
outcome one could hope for. However, PF performed worse 
than ML methods when focusing on topological accuracy 
only. Under more complex models accounting for local depend
encies (Cherry) or heterogeneous selective pressures (SelReg), 
computing likelihoods is too costly, forcing ML methods to 
work under misspecified models, whereas PF can still perform in
ference under the correct model, without any effect on its speed. 
As a result, PF yields the most accurate inference by a substantial 
margin under the KF metric while retaining its computational 
edge. Nonetheless, both of the corresponding networks were 
trained on gapless data and are, therefore, only useful as a proof 
of concept: we do not recommend using them on empirical 
alignments—unless these alignments are gapless themselves.

More generally, we stress that likelihood-free inference using 
neural networks has a model-based nature identical to that of 
ML or Bayesian methods. It formally estimates the posterior dis
tribution defined by the prior and probabilistic model used to 
simulate training data, accessing this model through sampling in
stead of likelihood evaluations. As such, it is not immune to mod
el misspecification: for example, we observed that PF trained on 
LG+GC underperformed on data simulated under Cherry or 
SelReg and vice versa (supplementary figures 11, 12, and 17, 
Supplementary Material online), and that PF was as sensitive 
to misspecification of the matrix of amino acid substitution rates 
as ML methods (Fig. 6). Rather than replacing model choice, we 
believe that the crucial contribution of a likelihood-free method 
like PF is to offer a way to work under more realistic models 
of sequence evolution that were so far not amenable to inference.

It is noteworthy that the inference speed that we report for 
PF was recorded on a GPU, a less widespread hardware than 
the CPU used for other methods, which may limit its interest 
for analyzing a single gene alignment under models amenable 
to ML. On a CPU, PF has a runtime larger than that of IQTree. 
It is, therefore, not an interesting alternative for reconstructing 
a single tree on a CPU under standard models such as 
LG − GC, where ML methods are at least as accurate.

In its current form, PF also becomes less useful as the trees 
get larger. First, our tests revealed that PF’s topological accur
acy decreases as the number of leaves in the phylogeny in
creases, whereas ML approaches are more stable. This is 
likely due to our experimental setting, where larger trees 
have shorter branches on average. It may also be caused by 
PF’s reliance on a distance matrix, which reduces the amount 
of information available for phylogenetic reconstruction com
pared to likelihood methods that estimate probability distri
butions for all ancestral states. In addition, PF’s memory 

usage scales quadratically with the number of sequences 
(supplementary figure 16, Supplementary Material online), 
because it is mostly driven by applying self-attention to pairs 
of sequences. This prevents analyzing larger data sets beyond 
180 sequences of length 500 on a GPU with 32 Gb of RAM. A 
better scaling version could be obtained by working at the se
quence level—attempts to do so have scaled beyond 2,000 se
quences but led to lower accuracies so far.

At the present time, the most useful version of PF is likely to 
be PFIndel, which has been trained under the LG model of se
quence evolution, with indels. This version could have a sig
nificant impact in experiments where many reconstructions 
are necessary, e.g. for bootstrapping and reconstructing sev
eral gene trees of a few dozen leaves from whole genomes or 
transcriptomes, and where branch lengths and topological ac
curacy are equally important. In such a situation, loading the 
network into the GPU memory only needs to be done once, 
which makes the method very efficient. In the future, we ex
pect that PF will have its largest impact on phylogenetic infer
ence after versions are trained on more realistic models of 
sequence evolution which could include model parameter het
erogeneities along the sequence or between branches and 
position-specific dependencies among sites (Boussau and 
Gouy 2006; Blanquart and Lartillot 2008; Kleinman et al. 
2010). Our self-attention network could exploit these latter 
dependencies via the addition of positional encodings—a 
standard approach in the transformers literature. It is yet un
clear if a single, complex enough model of sequence evolution 
will be enough to capture all cases of interest, or if better infer
ence will be achieved by offering a collection of trained net
works corresponding to different realistic models. We will 
study this question in future work, and in the latter case we 
will develop an additional neural network to help choose the 
most relevant model for a given MSA, as currently offered 
by the ModelFinder option of IQTree. Versions of PF could 
also be trained on coding or noncoding nucleotide sequences.

Another important extension of PF will be to train with a 
topological loss function, e.g. directly minimizing the RF metric 
rather than a distance metric. Such a version would address the 
gap that we observed between accuracies in distance and 
topological reconstruction, and could also lead to a more 
scalable method by working around the need for all pairwise 
distances—of quadratic size in the number of sequences, where
as the tree itself has linear numbers of nodes and edges. We also 
believe that extending PF to unaligned sequences will be of inter
est, both because multiple alignments are computationally inten
sive, and because they are error-prone. This could be addressed 
by including the alignment step in the network (Petti et al. 2022; 
Llinares-López et al. 2023). Alternatively, one could forego 
alignment altogether, e.g. by maintaining a length-independent 
representation of each sequence throughout the network.

Beyond phylogenetic reconstruction, our network can be 
trained to infer other parameters of the simulation model. 
This would provide an efficient and flexible way to study phy
lodynamics, phylogeography, and selective pressures operat
ing on the sequences, for instance.

Online Methods
The Phyloformer Neural Network
PF is a parameterized function FΦ that takes as input an MSA of n 

sequences of length L and outputs an estimate of the N = (n
2
) dis

tances between all pairs of sequences. Φ denotes the set of 
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learnable parameters of FΦ. We then input these distances to 
FastME (Lefort et al. 2015) to obtain a phylogenetic tree (Fig. 1).

The PF network starts with a one-hot encoding of the 
aligned sequences: every sequence x is represented as a matrix 
φ(0)(x) ∈ {0, 1}22×L in which column j contains a single non
zero element φ(0)

ij (x) = 1, whose coordinate i ∈ {1, . . . , 22} de
notes the amino acid or gap present in sequence x at position j. 
It then represents each pair (x, x′) of sequences in the MSA by 
the average of their individual representations, i.e. with a 
slight abuse of notation, φ(0)(x, x′) = 1

2 (φ(0)(x) + φ(0)(x′)). Of 
note, φ(0)(x, x′) does not depend on the order of sequences x 
and x′. At this stage, the network represents each site within 
each pair independently of all others, encoding information 
such as “at site 4, sequences x and x′ contain a Leucine and 
an Isoleucine.” The whole purpose of Fϕ is to account for rele
vant information about the evolutionary distance between x 
and x′ contained in other sequences from the alignment. To 
extract this information, Fϕ uses r = 6 self-attention layers 
(Vaswani et al. 2017) that iteratively build updated 
φ(l)(x, x′) ∈ d × L representations of each pair using all others 
in the MSA. More precisely, we use axial attention (Rao et al. 
2021, Fig. 1, central panel) and successively update each pair 
(resp. site) separately by sharing information across sites (resp. 
pairs). Along each axis, we rely on a modified linear attention 
(Katharopoulos et al. 2020, see Scalable self-attention), with 
h = 4 attention heads and embeddings of dimension 64 for 
the value matrix and only 1 for the query and key matrices. 
The r axial attention blocks of PF output for every pair of se
quences a tensor φ(r)(x, x′) ∈ Rd×L informed by all other pairs 
in the same MSA. We convert this representation into a single 
estimate of the evolutionary distance between x and x′ by ap
plying an Rd → R fully connected layer to each site of each 
pair, followed by an average over the sites. We provide more 
details on the FΦ architecture in supplementary section 1.3, 
Supplementary Material online.

Accounting for Symmetries
It is now well understood that accounting for known symmet
ries is key to the success of deep learning, as formalized in geo
metric deep learning (Bronstein et al. 2021). Following this 
principle, we parameterize the function FΦ by a neural net
work that exploits two symmetries of the estimation task: 
the estimated evolutionary distances should not depend on 
the order of the n sequences or L sites in the MSA. More pre
cisely, we want FΦ to be equivariant by permutations of the se
quences: if it returns values dab, dac, dbc when presented with 
sequences (a, b, c), it should return dac, dbc, dab when given 
(c, a, b) as input. On the other hand, when working with a 
model of evolution such as LG+GC which assumes the process 
of evolution being independent and identically distributed 
(i.i.d.) across all sites, it is desirable for the FΦ function to be 
capable to exploit an additional symmetry, namely being in
variant to site permutations which, given the i.i.d. assumption, 
simply lead to another instance of the same evolution process. 
The self-attention updates act on the Rd representations of a 
site within a pair of sequences regardless of their order, yield
ing the desired equivariances. Enforcing these equivariances 
would be more difficult if the updates were general functions 
acting on entire MSAs represented by Rd×N×L tensors. The fi
nal average across sites within each pair makes FΦ invariant 
rather than equivariant by permutation of these sites. In 

addition because none of the operations in FΦ depend on the 
number of sites or pairs, we can use the same FΦ seamlessly 
on MSAs with an arbitrary number of sequences of arbitrary 
length. Finally, it is worth noting that, despite FΦ being invari
ant to site permutations, the network, through the attention 
mechanism across different sites, is capable to account for in
teractions among them. This is demonstrated when the i.i.d. 
assumption is relaxed in the simulations under the Cherry 
model, with the network, regardless of being order-agnostic, 
still being capable of identifying coevolving sites in order to 
provide more accurate predictions (supplementary material 
2.1, Supplementary Material online).

Scalable Self-Attention
Naive implementations of self-attention over M elements scale 
quadratically in M—in our case, both the number of sites and 
pairs of sequences. Indeed, softmax attention as introduced by 
Vaswani et al. (2017) is parameterized by three matrices 
Q, K, V ∈ RM×d for some embedding dimension d, respectively 
called Queries, Keys, and Values, and every update for an elem

ent i computes attention weights (si,1, . . . , si,M) = softmax( q⊤
i K��
d
√ ). 

We resorted to the linear attention of Katharopoulos et al. 

(2020), who exploited the fact that sij = 〈ϕ(qi), ϕ(kj)〉􏽐M

h=1
〈ϕ(qi), ϕ(kh)〉

for 

some nonlinear infinite-dimensional mapping ϕ : Rd →H to a 
Hilbert space H (Schölkopf and Smola 2002) and proposed to re
place ϕ by some other nonlinear, finite-dimensional mappings 
ϕ̃ : Rd → Rt. We can then rewrite the self-attention updates z′i = 
􏽐M

j=1 si,jv j as

z′i =
􏽐M

j=1 ϕ̃(qi)
⊤ϕ̃(kj)vj

􏽐M
h=1 ϕ̃(qi)

⊤ϕ̃(kh)
=

ϕ̃(qi)
⊤ 􏽐M

j=1 ϕ̃(kj)vj

ϕ̃(qi)
⊤ 􏽐M

h=1 ϕ̃(kh)
. (1) 

Because we can precompute each of the two sums and reuse it for 
every query, this simple factorization reduces both the number of 
operations and memory usage from O(M2 · L · d) to 
O(M · L · d · t). Following Katharopoulos et al. (2020), we 
used an ELU-based mapping (Clevert et al. 2016)

ϕ̃(x) = x + 1, if x > 0
exp (x) if x ≤ 0,

􏼚

where the operation is applied entrywise, yielding ϕ̃(x) ∈ Rd vec
tors for x ∈ Rd. In our experiments, we used d = 64 for the 
Values matrix, but noticed that using d = 1 for Queries and 
Keys led to slightly lower training-loss values (supplementary 
figure 21a, Supplementary Material online), while substantially 
reducing the memory footprint of the self-attention layers 
(supplementary figure 21b, Supplementary Material online). 
This observation is consistent with recent research showing 
that Transformers and other neural networks learn through 
gradual rank increase (Abbe et al. 2023; Zhao et al. 2023). 
However, applying (1) with queries and keys of dimension 1 
leads to identical updates z′i for all elements. To work around 
this issue, we normalized each update by the average of queries 
and the sum of keys instead of the usual sum of attention weights, 
leading to

z′i =
ϕ̃(qi)

M−1
􏽐M

g=1 ϕ̃(qg)
·

􏽐M
j=1 ϕ̃(kj)vj

􏽐M
h=1 ϕ̃(kh)

. (2) 
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Training Phyloformer
We trained FΦ using six NVIDIA A100 80 GB GPUs on simu
lated examples through a loss function (see Metrics) compar
ing the estimated and true evolutionary distance (Fig. 1). We 
used the Adam optimizer (Kingma and Ba 2015), batches of 
size 4 and a maximum learning rate of 10−3 with 3,000 linear 
warmup steps followed by a linear decrease of 213,270 steps, 
corresponding to 30 epochs. We also implemented an early 
stopping criterion that stopped training when the validation 
loss did not decrease over five successive 3,000 step intervals.

We first trained an Fpre
Φ function that served as a starting 

point for all the functions used in our experiments, by optimiz
ing Φ with respect to the MAE loss for 20 epochs (≈ 79 h) over 
the 170,616 examples (see section Online Methods) simulated 
under LG+GC, saving a model every 3,000 steps, and eventu
ally retaining the one with lowest RF error (see Metrics) over 
the validation dataset (17,016 examples). For the results in 
Fig. 2, we further optimized the parameters of Fpre

Φ for 4 epochs 
(20 h) with respect to the MRE loss leading to a slightly im
proved error over small distances (supplementary figure 18, 
Supplementary Material online) and on the overall RF metric 
(supplementary figure 10, Supplementary Material online). 
For the results in Figs. 4 and 5, we further optimized the pa
rameters of Fpre

Φ for the MAE loss on gapped MSAs and 
MSAs generated under the Cherry or SelReg substitution mod
els, respectively (see Datasets).

Baselines
IQTree LG+GC (Minh et al. 2020, v2.2.0) reconstructs phy
logenies in the ML framework. It first estimates several parsi
mony trees along with one reconstructed through a distance 
method, then optimizes branch lengths and other parameters 
of the model of sequence evolution, while performing local 
topological rearrangements (nearest neighbor interchanges, 
NNIs) to maximize the likelihood. We ran it with the LG mod
el of amino acid substitution (Le and Gascuel 2008) combined 
with a continuous gamma distribution to model rate hetero
geneity across site (Yang 1993). In our experiments, we did 
five rounds of NNIs since we observed that optimizing for 
more rounds rarely improved the topology of the final tree 
while substantially adding to the running time. The software 
was run with iqtree2 -T 1 -m LG+GC -n 5.

IQTree MF uses the MF mode of IQTree (Kalyaanamoorthy 
et al. 2017), in which likelihoods of an initial tree are 
computed for a large set of substitution models and models 
of rate-heterogeneity across sites. The best fitting model is 
selected using BIC. The rest of the tree search is done as above 
but using the selected model for likelihood estimations. The 
software was run with iqtree2 -T 1 -n 5.

FastTree (Price et al. 2010, v2.1.11 SSE3) reconstructs a 
starting tree using an algorithm inspired from NJ (Saitou 
and Nei 1987) which is subsequently refined with topological 
rearrangements to optimize the minimum evolution criterion. 
The tree is then improved using ML with NNIs. It was run under 
the LG+G4 model of sequence evolution. The software was run 
with fasttree -lg -gamma.

FastME (Lefort et al. 2015, v2.1.6.4) computes a distance 
matrix using ML, then reconstructs a tree topology using 
BioNJ (Gascuel 1997) and further refines it via topological re
arrangements which seek to optimize the Balanced Minimum 
Evolution score. In virtually all performed experiments, we 
observed that the FastME tree search algorithm led to slightly 
better performances than the NJ algorithm (Saitou and Nei 

1987). This is consistent with the existing literature showing 
that these BME-decreasing topological moves also decrease 
the RF error (Desper and Gascuel 2004; Sy Vinh and von 
Haeseler 2005). We did not resort to the --gamma option as 
in our experiments we observed that this lead to worse per
formances. Using FastME as our baseline distance method 
makes the comparison with PF insightful, as the only differ
ence between the two methods is the distance matrix used as 
input. The software was run with fastme --nni --spr 
--protein=LG to reconstruct trees using the inbuilt evolution
ary distance estimation and simply with fastme --nni --spr 
when PF’s predicted distance matrix was provided.

All methods were run on a single CPU thread (Intel Xeon 
E5-2660 2.20 GHz for trees of size 10 to 100 and Intel Xeon 
E5-2650 v3 for trees of size 110 to 200) except for PF distance 
prediction which was run on a single GPU (NVIDIA V100 
32 GB). The experiments run in (Zhou et al. 2018) show 
that RAxML-NG and IQTree2 often have very similar out
puts, in many cases the tree topologies are identical. This phe
nomenon is likely to be also present on simulated data. 
Therefore, in an effort to reduce the computational footprint 
of this study we chose to run only one of these two methods, 
and chose IQTree2 since we also use it to simulate MSAs.

Datasets
We generated ultrametric phylogenies under a birth–death 
process. We used 50-leaf trees for training, and 10-leaf to 
200-leaf trees for testing. We rescaled branch lengths as in 
Szöllõsi et al. (2022) to yield nonultrametric trees. Finally, 
we rescaled each tree to resemble trees found in public data
bases of empirical trees (see also supplementary methods 1. 
1.1, Supplementary Material online, the effect of such a choice 
for the distribution of diameters along with its possible draw
backs is further discussed in supplementary results 2.3, 
Supplementary Material online). We used each rescaled phyl
ogeny to simulate one MSA with AliSim (Ly-Trong et al. 2022) 
for the LG+GC model, or in-house code for Cherry, or Pastek 
(Duchemin et al. 2023) for SelReg. For LG+GC, we sampled 
the parameter of the gamma distribution to match values 
estimated on empirical data. We provide more details in 
supplementary methods 1, Supplementary Material online. 
While it would be possible to train PF models on trees of dif
ferent number of leaves and/or MSAs of different lengths, for 
the sake of implementation simplicity and GPU memory effi
ciency we chose to only train on a single tree size and align
ment length. This ensures that we fill GPU memory with 
useful data during training and not just padding tokens. 
MSA length seems to have little impact at inference time (see 
supplementary figures 13 and 14, Supplementary Material on
line), which probably remains true at training time.

Metrics
We now describe the metrics used throughout this article to 
compare phylogenies or optimize our network.

Let di be the ith of N true evolutionary distances in a 
phylogeny, and d̂i the corresponding estimate output by a 
given tree inference method. Then the MAE and MRE are 
defined as

ℓMAE =
1
N

􏽘N

i=1

|di − d̂i| and ℓMRE =
1
N

􏽘N

i=1

|di − d̂i|

di
.
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When used to compute the loss during PF training, d̂i values 
correspond to distance estimates directly output by FΦ. 
When used as a metric (e.g. in Fig. 2) we use d̂i values ex
tracted from the reconstructed tree, by summing all branch 
lengths on the paths between each pair of leaves—even for 
PF—in order to fairly compare different methods.

In phylogenetic trees, each branch describes a bipartition of 
the set of leaves, paired with a weight (i.e. the branch length). 
Let A and B be the sets of leaf-bipartitions describing trees TA 

and TB, and we,T the weight of a bipartition e in tree T. Then, 
the Normalized RF distances and the KF distance between TA 

and TB can be written

RFnorm(TA, TB) = |A| + |B|( )−1 |A ∪ B| − |A ∩ B|( )

and KF(TA, TB)2 =
􏽘

e∈A∩B

(we,TA − we,TB )2

+
􏽘

e∈A\B

w2
e,TA

+
􏽘

e∈B\A

w2
e,TB
.

Supplementary Material
Supplementary material is available at Molecular Biology and 
Evolution online.
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