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ABSTRACT

Disentangled representation learning (DRL) is a powerful paradigm for improv-
ing the generalization of representations. While recent DRL methods attempt
to handle attribute correlations by enforcing conditional independence based on
attributes, they overlook the realities of complex multi-modal data distributions
and hidden correlations under attributes. We theoretically show that, under such
hidden correlations, existing methods lose mode information and fail to achieve
disentanglement. To address this gap, we introduce Supervised Disentanglement
under Hidden Correlations (SD-HC), a framework that explicitly discovers data
modes under attributes and minimizes mode-based conditional mutual informa-
tion. Theoretically, we establish that SD-HC provides sufficient conditions for dis-
entanglement in the presence of hidden correlations, preserving mode and attribute
information. Empirically, SD-HC shows improved generalization compared to the
state-of-the-art baselines across toy data and seven real-world datasets. Code is
available at https://anonymous.4open.science/r/SD-HC-1FAD.

1 INTRODUCTION
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Figure 1: Correlated human activity data. The dis-
tributions of (a) “walking” / “standing” and (b)
“stroll” / “skip walk” under “walking” differ be-
tween users, exhibiting correlations.

Disentangled representation learning
(DRL) aims to encode each data attribute in
its corresponding representation subspace,
which holds great promise in enhancing
generalization to unseen scenarios (Matthes
et al., 2023; Qian et al., 2021), enabling
controllable generative modeling (Yuan
et al., 2021), and improving fairness (Lo-
catello et al., 2019a). In the supervised
setting, each representation subspace is
learned under the label supervision of
its corresponding attribute, while being
disentangled from other attributes.

Supervised DRL methods typically assume
independence between attributes. In addi-
tion to supervised prediction, mutual infor-
mation (MI) minimization (Kwon et al., 2020; Yuan et al., 2021; Su et al., 2022) is commonly
adopted to achieve disentanglement by enforcing independence between the representations of dif-
ferent attributes. The independence assumption is often violated in real-world data, where correla-
tions are prevalent. Taking human activities as an example, different users have different behavior
patterns, and each user tends to engage in some activities more frequently than others, exhibiting
correlations between activity and user identity (ID) attributes, as shown in Figure 1(a). For corre-
lated attributes, enforcing representation independence causes at least one subspace to lose attribute
information (Funke et al., 2022).

To disentangle correlated attributes, attribute-based conditional mutual information minimization
(A-CMI) (Funke et al., 2022) enforces conditional representation independence that preserves at-
tribute information. However, when a certain attribute takes a value, underlying variations related
to this attribute may lead to a complex multi-modal data distribution, characterized by multiple
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high-density regions, each referred to as a mode. The mode under this value of this attribute may
be correlated with other attributes. Continuing with the human activity example, when activity
attribute takes the value “walking”, variations in pace, stride, and posture may lead to different
walking modes, the relaxed “stroll” and energetic “skip walk”; different users have more subtle
differences in their behavior patterns, exhibiting correlations between walking mode and user ID
attribute, as shown in Figure 1(b). In this case, A-CMI may cause the loss of mode information (as
proved in Proposition 1), which is important for attribute prediction (Nie et al., 2020; Sugiyama,
2021; Li et al., 2017). The modes under different attribute values may form adjacent or interleaved
cluster structures, where preserving such local structures benefits attribute prediction, e.g., the “skip
walk” mode of walking resembles the activity “climbing down”, and explicitly encoding this easily
confused mode helps to recognize the “walking” activity.

To address the above problem, we propose Supervised Disentanglement under Hidden Correlations
(SD-HC). Instead of focusing on attribute correlations as existing works, we delve into the complex
data distributions and hidden correlations under certain attributes. Our contributions are:

• We prove that mode-based CMI minimization is the necessary and sufficient condition for
supervised disentanglement under hidden correlations and attribute correlations. While
existing works have not established the sufficient condition for disentanglement under cor-
relations, we show that CMI minimization can achieve disentanglement under various cor-
relation types, establishing the first sufficient condition.

• We introduce a novel supervised DRL method under hidden correlations, SD-HC, designed
as a model-agnostic framework that implements the sufficient conditions for disentangle-
ment based on discovered data modes. By minimizing mode-based CMI, SD-HC disentan-
gles attributes while preserving mode information that existing methods tend to lose.

• We extensively evaluate SD-HC on toy data and seven real-world datasets, demonstrating
the superiority of SD-HC in attribute prediction tasks across distribution shifts and train-
test correlation shifts. Comprehensive investigations validate the generalization ability and
predictive ability of the learned representations.

2 RELATED WORK

Disentanged Representation Learning. DRL methods can be roughly divided into unsupervised,
weakly-supervised, and supervised DRL. Unsupervised DRL learns independent representation di-
mensions that each correspond to an unknown attribute by self-supervision, e.g., variational auto-
encoding (Higgins et al., 2016; Kim & Mnih, 2018; Chen et al., 2018) or contrastive learning (Zim-
mermann et al., 2021; Matthes et al., 2023). Yet, the feasibility of purely unsupervised disentan-
glement has been questioned (Locatello et al., 2019b), which prompts DRL with weak supervision
(Shu et al., 2020), e.g., similarity (Chen & Batmanghelich, 2020) or grouping information (Boucha-
court et al., 2018). Supervised DRL learns one multi-dimensional representation subspace for each
labeled attribute (Qian et al., 2021; Yuan et al., 2021). Generally, DRL methods assume attribute
independence and enforce representation independence between different attributes for disentangle-
ment. We study supervised DRL, which usually minimizes the MI between representations (Kwon
et al., 2020; Yuan et al., 2021; Su et al., 2022), minimizes the Maximum Mean Discrepancy (MMD)
between representation distributions (Li et al., 2018; Lin et al., 2020), or makes one attribute un-
predictable from the representations of another by adversarial training (Qian et al., 2021; Li et al.,
2022; Lee et al., 2021).

Disentanglement Under Attribute Correlations. Recent works show that independence con-
straints fail to disentangle correlated attributes, causing entanglement for unsupervised DRL (i.e.,
one dimension encodes several correlated attributes) (Träuble et al., 2021) or hurting the predic-
tive ability of representations for supervised DRL (Funke et al., 2022). To disentangle correlated
attributes for unsupervised DRL, adding weak supervision could correct the model (Träuble et al.,
2021; Dittadi et al., 2021); using Hausdorff distance can relax independence constraints to encour-
age factorized supports instead of factorized distributions (Wang & Jordan, 2024; Roth et al., 2023).
These methods can somewhat alleviate entanglement but do not guarantee disentanglement theoret-
ically (Funke et al., 2022; Wang & Jordan, 2024).
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More recently, conditional independence constraints have been introduced to disentangle correlated
attributes. For supervised DRL, A-CMI (Funke et al., 2022) minimizes the CMI based on each at-
tribute between its representation and the joint representations of other attributes, and proves this to
be the necessary condition for disentanglement. For DRL in reinforcement learning (RL), CMID
(Dunion et al., 2023) assumes RL agents act in a temporal Markov Decision Process, and mini-
mizes the CMI based on observed action-representation histories to bypass unobserved current state
features.

To the best of our knowledge, existing works have only established necessary conditions for DRL
under correlations (Wang & Jordan, 2024; Funke et al., 2022), and the sufficiency of CMI minimiza-
tion has only been validated on linear regression examples without formal proofs. We give the first
sufficient conditions for DRL under correlations based on CMI, which hold for multiple attributes
and varying types of correlations.

3 DISENTANGLING UNDER HIDDEN CORRELATIONS

3.1 PROBLEM FORMULATION

Data Generation Process. We assume data are generated according to the causal process in Defini-
tion 1 (Figure 2) based on three key assumptions as listed below. The first is a standard assumption in
DRL that must strictly hold (Suter et al., 2019; Wang & Jordan, 2024), while the others are specific
to our method but can be relaxed, as discussed near the end of Section 3.3.

……

Figure 2: Causal graph
of data generation un-
der hidden correlations
regarding a certain ak.

Definition 1. (Disentangled Causal Process). Consider a causal gener-
ative model p(x|a) for data x with K attributes a = (a1, a2, ..., aK). A
certain attribute ak is associated with a categorical mode variable mk. At-
tributes a are influenced by L confounders ca = (ca1, ..., c

a
L). Conditioned

on ak, mode variable mk and other attributes a−k are influenced by Q
confounders cm = (cm1 , ..., c

m
Q). This causal model is called disentangled

if and only if it follows a structural causal model (SCM) (Pearl, 2009) of
the form:

ca ← nca, cm ← ncm

aj ← ha
j (S

a
j , S

m
j ,na

j ), S
a
j ⊂ {ca1, ..., caL}, Sm

j ⊂ {cm1 , ..., cmQ}, j ̸= k

ak ← ha
k(S

a
k,n

a
k), S

a
k ⊂ {ca1, ..., caL}, k ∈ {1, ...,K}

mk ← hm(ak, c
m,nm)

x← g(a−k,mk,n
x)

(1)
with functions g, ha

i , hm, jointly independent noises nca, ncm, na
i , nm, nx, and confounder subsets

Sa
i , Sm

j , for i = 1, ...,K, j = 1, ...,K, j ̸= k. −k denotes the set of attribute indices {j}j ̸=k.

Key Assumptions. 1 Each attribute is an elementary ingredient that has no causal effect on other
attributes (Suter et al., 2019), i.e., interventions on one attribute do not influence others. 2 For
some value α of attribute ak, p(x|ak = α) might be a multi-modal distribution, e.g., a Gaussian
mixture. Each high-density region of the distribution corresponds to a cluster and is referred to as a
mode. Modes are indexed sequentially by attribute value (e.g., 0 ∼ 2 for α = 0, 3 ∼ 5 for α = 1),
and a categorical mode label mk is assigned to each sample. 3 Correlations may arise from two
confounder sets: ca induces attribute correlations I(ai; ai′), i ̸= i′; cm induces hidden correlations
I(mk; a−k|ak) =

∑
α pak

(ak = α)I(mk; a−k|ak = α), i.e., the expectation of the correlation
between the modes under ak = α and other attributes a−k. I(· ; ·) denotes mutual information.

3.2 THE DEFINITIONS OF DISENTANGLED REPRESENTATIONS

The goal of supervised DRL is to learn disentangled representations zi for each labeled attribute ai
by a mapping f(x) = (zi)

K
i=1, zi ∈ RD. Disentangled zi should (1) contain all information about

ai (Informativeness), including any mode information, i.e., I(zi; ai) = H(ai) and I(zi;mi) =
H(mi), and (2) respect the causal generative structure by remaining invariant to interventions on
another attribute aj , j ̸= i (Independence), as in Definition 2 following (Suter et al., 2019).

3
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Definition 2. (Disentangled Representation). Representation z is disentangled, if for i = 1, ...,K:

p(zi|do(a−i)) = p(zi) (2)

where a−i indicates the joint variable of {aj}j ̸=i, and do(a−i) assigns values to a−i by external
intervention outside the causal process and leaves ai unchanged. Equation 2 requires that zi depends
solely on ai and is unaffected by changes in other attributes, reflecting post-interventional invariance.

3.3 THEORETICAL GUARANTEES FOR DISENTANGLING WITH MODE-BASED CMI
MINIMIZATION

We focus on the DRL of a certain attribute ak with underlying modes. For simplicity, we take K =
2, k = 1 as an example. The causal graph of representation learning is shown in Figure 3c. While
this causal structure remain fixed, different learning objectives make zk encode different information
from data, resulting in varying distributions of zk. We prove that under the data generation process
of Definition 1, A-CMI fails under hidden correlations, while mode-based CMI minimization is
the necessary and sufficient condition for supervised disentanglement under various correlations.
Finally, our results are generalized to multiple attributes and simple cases.

A-CMI Fails Under Hidden Correlations. We show that enforcing attribute-based conditional
independence (A-CMI), I(z1; z2|a1) = 0, could hurt the predictive ability of representations, which
is formalized in Proposition 1 and proved in Appendix B.2.
Proposition 1. If I(m1; a2|a1) > 0, then enforcing I(z1; z2|a1) = 0 leads to at least one of
I(z1;m1) < H(m1) and I(z2; a2) < H(a2).

where H(·) denotes entropy, and the MI I(· ; ·) between a representation and an attribute measures
the amount of information the representation contains about the attribute. I(z1;m1) < H(m1)
indicates that z1 loses mode information about m1, which is important for predicting a1, while
I(z2; a2) < H(a2) indicates that z2 loses attribute information for predicting a2. Thus, minimiz-
ing attribute-based CMI hurts the predictive ability of representations under hidden correlations.
This is an extension of Proposition 3.1 in (Funke et al., 2022), which proves that unconditional MI
minimization fails under attribute correlations.

The Necessary Condition for Disentanglement. A proper independence constraint should be a
necessary condition for disentanglement, preserving the predictive ability of representations (Infor-
mativeness). To identify such constraint, we turn to the properties of the true latent representations
zl
i, i = 1, 2. For example, on human activity data with activity attribute a1, zl

1 encodes the body
movements that characterize activities, which are unaffected by changes in user behavior patterns.

(a) (b) (c)

Figure 3: Causal graphs of representations. (a) and
(b): Data generation with the true latent representations
zl
1, z

l
2, where Red arrows indicate the backdoor paths be-

tween them. (c): Representation learning that produces
the learned representations z1, z2.

Based on Definition 1, we build the
causal graphs of data generation with
zl
i, i = 1, 2. Since the disentangled zi

aims to recover the true latent zl
i and

retain its properties, we derive condi-
tional independence between the true la-
tent representations as a necessary con-
dition for disentanglement. As stated
by the causal graph theorems in Ap-
pendix D.1, two variables X,Y are con-
ditionally independent given a variable
that blocks all backdoor paths between
them, i.e., the paths that flow backward
from X or Y . In Figure 3(a), we con-
sider only attribute correlations as A-
CMI, where a1 blocks the only back-
door path between zl

1 and zl
2. In com-

parison, we consider additional hidden
correlations in Figure 3(b), where m1

blocks all backdoor paths, yet a1 fails to block the path via cm (consistent with the failure of A-CMI
under hidden correlations). Thus, under hidden correlations and attribute correlations, the true la-
tent representations are conditionally independent based on m1, a property the learned disentangled

4
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representations must retain:

I(zl
1; z

l
2|m1) = 0 ⇒ If z1 is the disentangled representation of a1, then I(z1; z2|m1) = 0 (3)

The Sufficient Condition for Disentanglement. We further show that, assuming data are gener-
ated as in Definition 1, mode-based CMI minimization yields Independence and thus suffices for
supervised disentanglement under various correlations, as formalized in Proposition 2.
Proposition 2. Under the data generation process of Definition 1 (K = 2, k = 1), if I(z1;m1) =
H(m1), I(z2; a2) = H(a2), and I(z1; z2|m1) = 0, then p(z1|do(a2)) = p(z1), i.e., z1 is the
disentangled representation of a1.

As the impact of external interventions cannot be directly evaluated (Wang & Jordan, 2024), we
prove Proposition 2 in two steps. First, using mutual information theory, we show that mode-based
CMI minimization leads to conditional independence I(z1; a2|m1) = 0, limiting the information
z1 contains about a2 (Lemma 2.1, proof in Appendix B.3.1). Second, using do-calculus on the
causal graph in Figure 3(c), we show that this conditional independence implies post-interventional
invariance p(z1|do(a2)) = p(z1) based on the data generation process of Definition 1 (Lemma
2.2, see Appendix B.3.2). Notably, Lemma 2.1 reveals the validity under attribute correlations and
hidden correlations.
Lemma 2.1. If I(z1;m1) = H(m1), I(z2; a2) = H(a2), and I(z1; z2|m1) = 0, then I(z1; a2) =
I(m1; a2) and I(z1; a2|m1) = 0.

where I(m1; a2) denotes the total hidden correlations, decomposing as the sum of attribute corre-
lations and hidden correlations, i.e., I(m1; a2) = I(a1; a2) + I(m1; a2|a1), as proved in Appendix
B.1. Thereby, I(z1; a2) = I(m1; a2) shows that z1 contains information about a2 only if it is
induced by correlations regarding its attribute or mode. Further, I(z1; a2|m1) = 0 shows that z1
contains no additional information about a2 knowing its mode.

Scope of Applicability: Key Assumptions and Generalizations. Our theoretical results are based
on the data generation process of Definition 1, relying on the causal structure (Assumption 1 ,
attributes as elementary ingredients) and not restricted to specific functional forms or parameteriza-
tions. They naturally extend to (1) multiple attributes (K > 2), where the extension mainly involves
replacing single variables a2, z2 with joint variables a−k, z−k (Equation 7 and Corollaries 2, 2.1,
2.2, see Appendix B.4); (2) uni-modal distributions with attribute correlations, where only one
mode exists under each attriubute value (Assumption 2 relaxation), and mode-based CMI degrades
to attribute-based CMI; and (3) uncorrelated data as correlation strengths vanish (Assumption 3
relaxation). Although our results strictly rely on the elementary-ingredient assumption, they extend
to arbitrary parameterizations, numbers of attributes/modes, and correlation types/strengths.

Theoretical Contributions. We prove the sufficiency of CMI minimization for supervised disen-
tanglement, which has only been validated on linear regression examples (Funke et al., 2022). This
is the first attempt to establish sufficient conditions for disentanglement under correlations, unlike
necessary conditions before (Wang & Jordan, 2024; Funke et al., 2022). Our results generalize to
multiple attributes and various cases, showing that one independence constraint is sufficient for the
supervised DRL of one attribute.

4 METHOD

Framework. We show the framework of SD-HC for disentangling a certain attribute ak with hidden
correlations in Figure 4, which consists of encoder F for learning representations F (x) = z =

Data

Encoder

Representations

Predictors Discriminator

…
…

…
…

… … batch
shuffle

… …

Figure 4: SD-HC Framework for disentangling a certain ak, k ∈ {1, ...,K} with underlying modes.
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(z1, z2, ...,zK), zi ∈ RD, i = 1, ...,K, predictors {Ci}Ki=1 for predicting each attribute, predictor
Cm

k for predicting mode mk, and discriminator Dk for minimizing mode-based CMI. Our method
builds on mode labels mk estimated prior to training (see Section 5.1), which is an external step that
can be tailored to the data. SD-HC is architecture-agnostic and can be used in various applications.

The framework can be expanded to disentangle multiple attributes by adding one independence
constraint to disentangle each attribute. The form of independence constraints depends on the cor-
relation types, i.e., attribute-based CMI for attribute correlations or mode-based CMI for hidden
correlations. For supervised constraints, I(zi; ai) = H(ai), i = 1, ...,K are always required, along
with one additional constraint I(zi;mi) = H(mi) for each attribute ai with underlying modes. For
additional constraints, discriminators and mode predictors should be added accordingly.

Losses. The losses are strictly designed according to the sufficient conditions for disentanglement
in Proposition 2. As commonly done in adversarial training (Chen et al., 2023), optimizations w.r.t.
different losses are performed alternatively. See Appendix F for the detailed training process.

(1) To enforce informativeness constraints such as I(zk; ak) = H(ak), since maximizing mutual
information between representations and their labels equals minimizing the standard cross-entropy
(Boudiaf et al., 2020), we minimize supervised loss Lc with attribute and mode prediction losses
Lac,Lmc as follows:

Lc = Lac + wm · Lmc, Lac = Ex[
∑K

i=1lce(Ci(zi), ai)], Lmc = Ex[lce(C
m
k (zk),mk)] (4)

where wm is the weight of mode prediction loss, and lce(·) denotes cross entropy function.

(2) To minimize mode-based CMI I(zk; z−k|mk), since I(zk; z−k|mk) = 0 is equivalent to
p(zk, z−k|mk) = p(zk|mk)p(z−k|mk), we minimize CMI by matching the joint distribution
p(zk, z−k|mk) and the marginal distribution p(zk|mk)p(z−k|mk) with adversarial training (Bel-
ghazi et al., 2018). For mode µ, representations (z1, z2) are sampled from their joint and marginal
distributions by the following procedure: first, we select data in the mini-batch under mk = µ;
the joint representation pairs are formulated by concatenating z1, z2 of the same sample, and the
marginal representation pairs are formulated by concatenating zk with z−k jointly shuffled within
this mode (Funke et al., 2022; Dunion et al., 2023). Given the sampled representation pairs, Jensen-
Shannon Divergence is used to measure the discrepancy between the two distributions for stability
(Hjelm et al., 2019). Discrimination loss Ld is formulated as follows, where lbce(·) denotes binary
cross entropy function:

Ld = Emk
[E(zk,z−k)|mk

[lbce(D(zk, z−k,mk), 1)] + Ezk|mk,z−k|mk
[lbce(D(zk, z−k,mk), 0)]]

(5)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate on toy data and seven real-world datasets, namely Colored MNIST
(CMNIST) constructed from MNIST (Arjovsky et al., 2019), Colored Fashion-MNIST (CFashion-
MNIST) constructed from Fashion-MNIST (Xiao et al., 2017), Canine-Background (Canine-BG)
constructed from ImageNet (Deng et al., 2009), UCI-HAR (Anguita et al., 2013), RealWorld
(Sztyler & Stuckenschmidt, 2016), HHAR (Stisen et al., 2015), and MFD (Lessmeier et al., 2016).
We define attributes a1, a2 as the generative factors of dimensions x1,x2 on toy data, parity (“even”
or “odd”) and color of digits on CMNIST, the style (“sporty” or “chic”) and color of clothing on
CFashion-MNIST, the functional categories and image backgrounds of dogs on Canine-BG, fault
type and operating condition on MFD, and activity and user ID on other wearable human activity
recognition (WHAR) datasets. The task is to learn disentangled representations for a1 with underly-
ing modes, which correspond to digits and items on CMNIST and CFashion-MNIST, respectively,
e.g., digit “2” under parity “even”, item “sneaker” under style “sporty”, and breed “silky terrier”
under functional category “pet”. See Appendix G for details.

Evaluation Protocols. On toy data, CMNIST, CFashion-MNIST, and Canine-BG with constructed
modes, correlation shifts are introduced by sampling (Roth et al., 2023). We train on correlated
data and evaluate on 3 test sets with increasing train-test correlation shifts, namely test 1 (same cor-
relations), test 2 (no correlations), and test 3 (anticorrelations). For CMNIST, CFashion-MNIST,
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Table 1: Comparison with baselines (mean±std, in percentage). “*” indicates SD-HC is statistically
superior to baselines by pairwise t-test at a 95% significance level. The best and runner-up results are
bold and underlined, respectively. Improvements by SD-HC are computed over the best baseline.

Method CMNIST CFashion-MNIST Canine-BG UCI-HAR RealWorld HHAR MFD
Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

BASE 76.8 ±0.8* 76.8 ±0.8* 74.8 ±0.9* 74.8 ±0.9* 62.1 ±7.9* 62.0 ±8.3* 71.2 ±2.8* 69.7 ±3.6* 64.6 ±1.4* 65.4 ±1.4* 80.8 ±1.6* 80.9 ±2.0* 72.7 ±1.6* 76.3 ±0.9*
MMD 58.2 ±6.9* 52.8 ±11.7* 65.8 ±2.9* 65.6 ±3.1* 56.5 ±6.1* 46.3 ±13.1* 70.3 ±3.7* 66.2 ±3.5* 66.0 ±1.9* 65.2 ±2.3* 80.9 ±1.2* 80.5 ±1.7* 78.2 ±1.9* 79.1 ±1.6*
DTS 61.5 ±2.2* 61.5 ±2.2* 58.4 ±3.2* 58.4 ±3.2* 61.3 ±5.0* 61.3 ±5.5* 72.8 ±3.3* 70.1 ±2.6* 64.4 ±2.3* 64.9 ±1.5* 79.8 ±2.4* 79.7 ±1.7* 67.0 ±2.2* 67.4 ±1.5*

IDE-VC 53.9 ±2.2* 53.3 ±2.7* 67.5 ±0.9* 67.4 ±1.0* 58.5 ±4.5* 58.3 ±5.0* 73.6 ±3.1* 73.2 ±3.4* 65.2 ±1.3* 65.0 ±1.7* 80.7 ±2.0* 80.6 ±1.4* 74.1 ±1.8* 76.3 ±1.1*
MI 59.6 ±1.4* 59.0 ±1.8* 54.2 ±3.4* 53.5 ±4.8* 64.4 ±6.0* 62.4 ±7.0* 74.9 ±2.1* 74.5 ±2.7* 66.0 ±1.8* 65.5 ±1.6* 80.9 ±1.7* 80.7 ±2.1* 76.3 ±1.2* 77.6 ±1.6*

A-CMI 61.1 ±3.9* 60.0 ±4.4* 58.2 ±4.2* 52.4 ±4.5* 58.6 ±5.0* 58.6 ±5.5* 71.4 ±3.4* 70.0 ±3.0* 65.4 ±1.5* 65.5 ±1.2* 80.2 ±1.8* 80.3 ±2.3* 78.8 ±1.4* 79.8 ±0.7*
HFS 63.5 ±0.8* 63.1 ±0.8* 57.9 ±3.7* 56.7 ±3.7* 57.1 ±1.4* 57.0 ±1.7* 67.1 ±3.5* 65.1 ±4.0* 48.9 ±1.8* 39.8 ±1.5* 78.2 ±1.2* 78.3 ±1.5* 75.4 ±1.7* 71.0 ±1.3*

SD-HC 82.9 ±1.1 82.9 ±0.8 79.4 ±5.3 79.4 ±5.3 75.2 ±3.5 75.1 ±3.8 83.0 ±3.0 83.3 ±3.6 69.8 ±1.9 69.9 ±1.4 84.5 ±2.3 84.2 ±1.5 82.5 ±2.0 82.5 ±1.5

Improvement ↑6.1 % ↑6.1 % ↑4.6 % ↑4.6 % ↑10.8 % ↑12.7 % ↑8.1 % ↑8.8 % ↑3.8 % ↑4.4 % ↑3.6 % ↑3.3 % ↑3.7 % ↑2.7 %

and Canine-BG in Table 1, 2, we train under both attribute correlations and hidden correlations
and report the results on test 3 (see Appendix J for full results). For other analyses, we train un-
der corh = I(m1; a2|a1) > 0 to focus on hidden correlations. On other datasets with unknown
modes, we construct out-of-distribution (OOD) tasks under natural correlations. By leave-one-
group-out validation based on a2 (user ID or operating condition), training and test sets involve
non-overlapping values of a2, inducing representation distribution shifts and test-time changes in
hidden correlations due to confounding on disjoint a2 values, e.g., different training/test users with
distinct behaviors and correlations with activities. We focus on comparing the attribute prediction
performance of a1 under correlation shifts or distribution shifts, evaluated by accuracy (Acc.) and
macro F1 score (Mac. F1), Following (Funke et al., 2022). High performance under train-test shifts
can be regarded as evidence of disentanglement, as only disentangled representations can support
the robust prediction of attributes under various train-test shifts. For statistical tests, each experiment
is repeated using 5 varying seeds. See details in Appendix G.

Mode Label Acquisition. For SD-HC, we estimate mode labels with an off-the-shelf instantiation:
pre-training encoder with the prediction loss of a1 and running k-means on the representations z1
per attribute value α, which requires no extra loss or sub-network. See Appendix F for the detailed
algorithm. The number of modes Nm is shared across α and tuned as a hyperparameter. Extensive
analysis in Appendix A demonstrates insensitivity to a range of Nm choices, substantial gains from
only 2% weak mode supervision, and strong cluster structure on complex time-series datasets with
up to 48 modes, demonstrating effectiveness compared to other commonly adopted pre-training
methods.

Baselines and Implementations. We compare with typical DRL methods (MMD (Lin et al., 2020),
DTS (Li et al., 2022), IDE-VC (Yuan et al., 2021), and MI (Cheng et al., 2022)), and the state-of-
the-art DRL methods under correlations (A-CMI (Funke et al., 2022) and HFS (Roth et al., 2023)).
For reference, we include BASE trained with only supervised losses. See Appendix I, G, E, H for
details of baselines, implementations, network architectures, and hyperparameters.

5.2 COMPARISON WITH BASELINE DRL METHODS

The comparison with baseline DRL methods is shown in Table 1, from which we observe:

(1) SD-HC consistently shows superiority over the compared baselines, outperforming the best base-
line by an average of 5.8% and 6.1% in accuracy and macro F1 score, respectively. This indicates
that unsupervised clustering can capture underlying modes on real-world data to facilitate DRL,
enabling SD-HC to better disentangle representations by improving generalization ability while pre-
serving predictive ability. Under introduced correlations, the significant advantage of SD-HC on
CMNIST and Canine-BG indicates better generalization under the shifts of attribute correlations
and hidden correlations. Under natural correlations, the significant advantage on UCI-HAR indi-
cates better generalization on real-world OOD data with complex multi-modal distributions and
hidden correlations.

(2) Despite considering correlations, A-CMI and HFS still fail to improve over BASE in some cases.
A-CMI deals with attribute correlations, but fails under hidden correlations due to losing important
mode information for attribute prediction. HFS deals with general correlations, yet it is a necessary
condition for disentanglement and cannot guarantee disentanglement (Wang & Jordan, 2024).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison with variants (mean±std). The notations follow Table 1.

Method CMNIST CFashion-MNIST Canine-DG UCI-HAR RealWorld HHAR MFD
Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

SD-HC-MC 76.7 ±1.5* 76.7 ±1.5* 73.6 ±1.3* 73.6 ±1.3* 67.2 ±3.5* 66.9 ±3.7* 80.2 ±3.3* 79.7 ±4.4* 68.4 ±0.8 68.0 ±0.9 83.8 ±1.4 83.2 ±1.5 81.1 ±2.1 80.2 ±2.3*
SD-HC-MP 77.8 ±0.9* 77.8 ±1.0* 76.3 ±2.0* 76.3 ±2.0* 70.2 ±3.6* 70.2 ±3.6* 77.6 ±5.3* 77.5 ±4.5* 63.7 ±0.9* 63.3 ±0.8* 83.5 ±1.2 83.4 ±1.2 78.4 ±2.6* 80.1 ±2.5*
SD-HC-A 77.1 ±0.9* 77.0 ±0.9* 76.1 ±1.6* 76.1 ±1.6* 70.5 ±3.5* 70.4 ±3.6* 82.2 ±2.3 82.3 ±2.7 63.9 ±1.6* 63.4 ±1.4* 81.9 ±1.6* 81.3 ±2.1* 81.5 ±1.6 81.4 ±1.1

SD-HC-MG 79.7 ±1.2* 79.7 ±1.2* 74.3 ±1.5* 74.3 ±1.5* 67.9 ±3.4* 67.6 ±3.5* 82.2 ±2.0 82.8 ±2.9 68.4 ±1.5 68.8 ±2.0 80.6 ±1.7* 80.2 ±2.3* 80.3 ±1.5* 80.4 ±1.8*
SD-HC-J 76.0 ±0.9* 75.9 ±1.2* 76.3 ±2.5* 76.2 ±2.2* 70.2 ±3.5* 69.9 ±3.6* 79.4 ±1.6* 79.1 ±1.6* 66.1 ±0.8* 65.2 ±0.8* 80.5 ±0.7* 80.4 ±0.8* 79.6 ±0.9* 80.0 ±0.5*

SD-HC-ID 80.2 ±1.5* 80.2 ±15.0* 74.6 ±1.0* 74.6 ±1.0* 71.9 ±3.7* 71.5 ±3.8* 77.6 ±1.8* 76.8 ±2.3* 68.3 ±1.2 67.8 ±1.1 77.2 ±1.9* 75.5 ±1.5* 80.6 ±1.7* 80.9 ±1.2

SD-HC-SD 78.3 ±1.0* 78.3 ±1.0* 74.9 ±1.6* 74.9 ±1.6* 71.8 ±3.6* 71.7 ±3.6* 77.4 ±1.5* 76.8 ±1.8* 66.2 ±1.3* 66.6 ±1.8* 81.0 ±2.4* 81.2 ±1.8* 79.2 ±1.8* 79.2 ±1.3*
SD-HC 82.9 ±1.1 82.9 ±0.8 79.4 ±5.3 79.4 ±5.3 75.2 ±3.5* 75.1 ±3.8* 83.0 ±3.0 83.3 ±3.6 69.8 ±1.9 69.9 ±1.4 84.5 ±2.3 84.2 ±1.5 82.5 ±2.0 82.5 ±1.5

(3) MMD, DTS, IDE-VC, and MI fail to improve over BASE in some cases, because they overlook
correlations and might hurt the predictive ability of representations. Their performance degradation
from BASE is especially severe on CMNIST and CFashion-MNIST under large correlation shifts.

5.3 COMPARISON WITH VARIANTS

We compare with the following variants: SD-HC-MP and SD-HC-MC remove the discrimina-
tion loss and mode prediction loss, respectively; SD-HC-A additionally minimizes attribute-based
CMI for a2; SD-HC-MG uses Marigold (Mortensen et al., 2023) instead of k-means for cluster-
ing in high-dimensional spaces; SD-HC-J uses iterative k-means instead of pre-trained kmeans to
jointly perform clustering and disentanglement, updating mode labels every few epochs; SD-HC-ID
and SD-HC-SD use individual discriminators and one shared discriminator for modes, respectively,
while SD-HC shares discriminator parameters among the modes under the same attribute value. See
details in Appendix E. Table 2 shows that:

(1) SD-HC-MC and SD-HC-MP consistently underperform SD-HC, showing that both discrimina-
tion loss and mode prediction loss are crucial for achieving disentanglement. This is in line with the
sufficient condition for disentanglement in Proposition 2: While mode prediction loss guides the rep-
resentations to preserve mode information, discrimination loss enforces conditional independence,
removing redundant information about other attributes.

(2) SD-HC-A does not improve over SD-HC, probably because one independence constraint is suffi-
cient for disentangling ak, as shown in Proposition 2. Imposing additional independence constraints
requires additional adversarial training steps, which might affect training stability.

(3) SD-HC-MG generally does not improve over SD-HC, indicating that k-means is effective for
our representations of 128 or 512 dimensions. Marigold could be considered for representations of
higher dimensions. SD-HC-J consistently underperforms SD-HC, likely due to error accumulation
in clustering updates and training instability in CMI minimization from changing mode labels. This
indicates that using pretrained mode labels could provide more stable mode supervision.

(4) SD-HC-ID and SD-HC-SD consistently underperform SD-HC, indicating inefficient modeling of
modes. SD-HC-SD uses excessive parameter sharing across all modes, which may limit the ability
to capture distinctions among modes. SD-HC-ID removes parameter sharing, which might fail to
leverage the commonality among modes. In SD-HC, moderate parameter sharing is beneficial, as
modes under the same attribute value share similarities while modes under different attribute values
are distinct, e.g., different walking modes share similar motion patterns, which differ substantially
from the patterns of standing.

5.4 ROBUSTNESS AGAINST NOISE AND CORRELATIONS VERSUS FULL MODE SUPERVISION

Under varying noise levels σ and hidden correlations corh, we compare with BASE, A-CMI, and
SD-HC-T that minimizes mode-based CMI with ground-truth mode labels. Figure 5 shows that:

(1) In Figure 5(a)(c), test 1, BASE performs well under large noise and strong hidden correlations:
by over-encoding a2, it compensates for noise-induced information loss, and when the hidden cor-
relation is strong, it recovers more information. As the correlation shift enlarges from test 1 to 3,
over-encoding a2 turns into a disadvantage due to poor generalization. In Figure 5(c)(d), A-CMI
performs comparably to SD-HC under corh = 0; yet its performance decreases as corh increases,
because A-CMI does not allow representations to encode shared information induced by hidden cor-
relations, and loses more mode information as hidden correlation increases, reflecting the general
behavior of DRL methods that overlook hidden correlations.
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Figure 5: Comparison under varying noise level and hidden correlation on toy and CMNIST.

(2) SD-HC generally outperforms baselines, demonstrating superior robustness against noise and
correlations. In Figure 5(b) test 3, SD-HC performs similarly to SD-HC-T at σ = 0; as noise level
increases, SD-HC underperforms SD-HC-T with a stabilizing performance gap. This is due to the
clustering performance decline with increasing noise (Appendix A.1). The stabilizing gap suggests
that the inductive bias of unsupervised clustering leads to a stable error margin that does not widen
as task difficulty increases. Notably, the performance of SD-HC-T also decreases with increasing
noise, confirming that the performance drop is due to intrinsic mode ambiguity, rather than clustering
errors. Meanwhile, SD-HC consistently outperforms the baselines, indicating its robust advantage.

5.5 METHOD INVESTIGATIONS

Representation Distribution. The activity representation distributions on the training set of
RealWorld are visualized by t-SNE in Figure 7, which shows that: (1) BASE representa-
tions are separated within each activity, probably due to over-encoding user ID and learning
irrelevant personalized user patterns. (2) A-CMI representations of different walking modes
and different activities are mixed, indicating that different activities are confused due to the
loss of mode information. (3) SD-HC representations show compactness within each activ-
ity, separation between different activities, and partition of different walking modes, indicat-
ing Independence from user ID and Informativeness of activity by encoding mode information.
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st

 3

Figure 6: Toy decision boundary. Clusters cen-
tered at x1 = 0, 1, ...5 are from different modes.

Toy Decision Boundary. On toy data, the de-
cision boundaries and a1 prediction accuracy
are shown in Figure 6, where: (1) The upper
right boundaries of BASE surround the clus-
ters at x2 = 1, and its performance decreases
as the correlation shift enlarges from test 1 to
3, indicating that BASE over-encodes a2 and
lacks generalization ability. (2) The decision
boundaries of A-CMI span across the clusters
at x2 = 0, 1 without excluding either value,
but fail to separate interleaving clusters of dif-
ferent modes, and its performance is low but
robust across 3 test sets, indicating that A-CMI
does not over-encode a2, but loses important
mode information. (3) The decision boundaries
of SD-HC-T conform to vertical lines x1 =
b, b ∈ [0, 5] that distinguish interleaving clus-
ters of different modes, and SD-HC-T shows
robustness and superiority across 3 test sets, indicating that SD-HC-T can learn mode information
about a1 (Informativeness), and exclude irrelevant information about a2 (Independence).
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(a) BASE (b) A-CMI

walking mode 0
walking mode 1
walking mode 2
climbingdown
running
climbingup

(c) SD-HC

Figure 7: Activity representation distributions on RealWorld. (a), (b), and (c) show the results of four
similar activities in BASE, A-CMI, and SD-HC. While activities “walking” and “climbing down”
are well distinguished in SD-HC, they are confused due to losing mode information in A-CMI.

Table 3: Disentanglement metrics. The
notations follow Table 1.

Method MNIST Fashion-CMNIST

MI ↓ DCI-I ↓ MI ↓ DCI-I ↓
BASE 0.548 0.169 0.645 0.158
MMD 0.219 0.386 0.202 0.210
DTS 0.328 0.349 0.339 0.290

IDE-VC 0.266 0.412 0.289 0.206
MI 0.391 0.372 0.423 0.377

A-CMI 0.281 0.332 0.256 0.353
HFS 0.482 0.275 0.491 0.274

SD-HC 0.212 0.141 0.261 0.137

Disentanglement Metrics. MI and DCI-I (Eastwood &
Williams, 2018) are used as disentanglement metrics un-
der correlations, which are evaluated on the uncorrelated
test set (test 2) using models trained on correlated data
(Funke et al., 2022). As shown in Table 3, DRL methods
generally have much lower MI than BASE, indicating In-
dependence, except for HFS that allows representation
correlations; SD-HC has the lowest DCI-I, indicating In-
formativeness due to encoding mode information, while
DRL baselines have higher DCI-I than BASE due to hurt-
ing the predictive ability of representations.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel supervised DRL method under hidden correlations, SD-HC, which
uses mode-based CMI minimization to achieve disentanglement for certain attributes with under-
lying modes and hidden correlations. Theoretically, we prove its sufficiency and show the general
sufficiency of CMI minimization for disentanglement, demonstrating broad significance. Extensive
experiments demonstrate the superiority of SD-HC for robust attribute prediction under varying cor-
relation shifts, noises, and OOD tasks, confirming its practical value in real-world scenarios. Despite
the advantage of SD-HC over baselines that overlook hidden correlations, we still observe a perfor-
mance gap on noisy data between SD-HC and SD-HC-T with ground-truth mode labels, which is
likely due to clustering errors in the pre-training stage. In future work, we plan to explore more
powerful clustering approaches for discovering modes, e.g., more sophisticated pre-training strate-
gies or joint training of clustering and disentanglement with strategies that mitigate clustering errors
and preserve stability.

7 ETHICS STATEMENT

Our work focuses solely on scientific problems and does not involve human subjects, animals, or
environmentally sensitive materials. We foresee no ethical risks or conflicts of interest.

8 REPRODUCIBILITY STATEMENT

We have rigorously formalized the model architecture, loss functions, and evaluation metrics through
illustrations, equations, and descriptions in the main text. We provide the reproducibility details
in the Appendix, including network architectures (Appendix E), training algorithm (Appendix F),
dataset descriptions (Appendix G), and hyperparameters (Appendix H). We provide our source code
in an anonymous link: https://anonymous.4open.science/r/SD-HC-1FAD, which
will be publicly available upon acceptance.
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9 USE OF LLMS

The authors use LLM solely as a general-purpose assistive tool for grammar and format refinement.
LLM does not contribute to research ideation or experimental design. The authors take full respon-
sibility for the content of this paper.
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A ADDITIONAL MODEL INVESTIGATION

A.1 CLUSTERING EVALUATION

Clustering Metrics. We evaluate the clustering performance with two sets of metrics. For CMNIST
and CFashion-MNIST datasets with ground-truth mode labels, we use clustering accuracy (Acc.c),
Adjusted Rand Index (ARI), and Normalized Mutual Information (NMI) to measure the alignment
between estimated mode labels and true mode labels. For other datasets with unknown modes,
we use Silhouette Score (Sil.), Davies-Bouldin Index (DBI), and Calinski-Harabasz Index (CHI)
to measure the intra-cluster compactness and inter-cluster separation of the cluster structure in the
representation distribution. The metrics are summarized as follows:

• Clustering Accuracy (Acc.c): Range [0, 1]; higher is better, with 1 indicating perfect align-
ment between estimated and true labels.

• Adjusted Rand Index (ARI): Range [−1, 1] (often [0, 1] in practice); higher is better, with
1 indicating perfect alignment between estimated and true labels.

• Normalized Mutual Information (NMI): Range [0, 1]; higher is better, with 1 indicating
perfect alignment between estimated and true labels.

• Silhouette Score (Sil.): Range [−1, 1]; higher values mean better clustering (1 is the best),
0 indicates overlapping clusters, and negative values suggest samples are closer to another
cluster than their own.

• Davies-Bouldin Index (DBI): Range [0,∞); lower values indicate better clustering with
well-separated, compact clusters, with 0 being the best.

• Calinski-Harabasz Index (CHI): Range [0,∞); higher values indicate better defined and
more separated clusters.

Clustering Comparison with Different Pre-training Methods. To investigate different pre-
training methods, we compare our off-the-shelf instantiation (pre-training BASE with supervised
attribute prediction losses only) with other commonly used pre-training methods in clustering
pipelines, i.e., AE (autoencoder with attribute prediction losses), InfoNCE (BASE with attribute
prediction losses and InfoNCE contrastive loss), β-VAE, and β-TCVAE (widely used variational
autoencoders). The following tendencies can be observed:

(1) In general, Table 4 and 5 show that the pipeline of pre-training and k-means clustering achieves
a good clustering performance, with high accuracies on image datasets and a clear indication of
cluster structures on time series datasets. Pre-training methods perform differently across datasets,
suggesting that the pre-training strategy could be tailored to the specific data at hand.

Table 4: Comparison of pre-training methods on CMNIST and CFashion-MNIST (mean±std). Clus-
tering metrics are calculated by comparing to ground-truth mode labels.

Method CMNIST CFashion-MNIST
Acc.c ↑ ARI ↑ NMI ↑ Acc.c ↑ ARI ↑ NMI ↑

BASE 0.758 0.318 0.286 0.886 0.611 0.561
AE 0.822 0.414 0.374 0.916 0.695 0.655

InfoNCE 0.779 0.332 0.276 0.855 0.503 0.460
β-VAE 0.877 0.568 0.489 0.648 0.088 0.208

β-TCVAE 0.852 0.560 0.482 0.670 0.115 0.235

Table 5: Comparison of pre-training methods on UCI-HAR, RealWorld, HHAR, and MFD
(mean±std). Without access to ground-truth mode labels, clustering metrics are calculated by mea-
suring intra-cluster compactness and inter-cluster separation in the representation distribution.

Method UCI-HAR RealWorld HHAR MFD
Sil. ↑ DBI ↓ CHI ↑ Sil. ↑ DBI ↓ CHI ↑ Sil. ↑ DBI ↓ CHI ↑ Sil. ↑ DBI ↓ CHI ↑

BASE 0.46 1.03 1798.26 0.36 1.32 1521.26 0.33 1.33 644.44 0.55 0.69 4769.37
AE 0.47 1.02 1499.26 0.39 1.27 1644.49 0.24 1.91 424.15 0.51 0.79 3724.30

InfoNCE 0.47 1.04 1540.18 0.37 1.26 1490.11 0.33 1.33 691.70 0.54 0.73 3910.93
β-VAE 0.47 1.59 418.85 0.43 1.12 1962.74 0.24 1.82 422.83 0.54 0.77 5251.03

β-TCVAE 0.47 1.60 418.03 0.43 1.13 1987.38 0.24 1.88 430.44 0.55 0.77 4130.14
Total # Modes 48 24 12 6
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Figure 8: Clustering performance. (a) and (b) show the ARI on toy and CMNIST under varying
noise levels. (c) and (d) show the true and estimated cluster assignments under a1 = 0 on the raw
toy data and the CMNIST representations of BASE by t-SNE (Maaten, L. V. D. and Hinton, G.,
2008).
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Figure 9: 3-channel accelerometer signals of three walking modes (20 random samples per mode
with xyz channels). The x-axis indicates time steps, and the y-axis indicates normalized signals.

(2) Table 5 shows that time series datasets exhibit positive Silhouette Scores, low DBI values, and
high CHI values, indicating the presence of underlying mode structures in each dataset. We show the
total number of modes in each dataset, which is determined by hyperparameter tuning (analyzed in
Appendix A.3). The valid mode structure under large numbers of modes aligns with the observation
that time series attributes often display complex patterns, which may be induced by the presence of
underlying modes.

The Impact of Noise on Clustering Performance. To complete the robustness analysis under
varying noise levels in Section 5.4, we show the clustering performance under varying noise levels
on toy and CMNIST datasets. The clustering quality of modes is evaluated by Adjusted Rand Index
(ARI ∈ [0, 1]), with higher ARI indicating better alignment with ground truth. The results are shown
in Figure 8(a)(b), with each point corresponding to the mode labels used by SD-HC at the matching
setting in Figure 5(a)(b). We observe that: (1) ARI drops as the noise level increases, indicating the
degradation of clustering performance with increasing noise. (2) CMNIST shows lower ARI than
toy, as real data are typically more challenging for clustering. (3) The high ARI under moderate
noise indicates a good clustering, showing the effectiveness of our mode discovery pipeline when
the intrinsic mode structures are detectable.

Visualizations of the Discovered Modes. In addition, we visualize the discovered modes on the
data and representation distribution of toy and CMNIST datasets in Figure 8(c)(d), where the sim-
ilarity between estimated mode labels and true cluster assignments indicate a good clustering. We
also visualize the data of estimated modes on the training set of RealWorld. The results in Figure 9
show that the signals of the three walking modes differ in mean values and volatility, possibly due to
varying paces, strides, and postures in the walking activity. This justifies the presence of underlying
modes within complex time series data.

A.2 THE IMPACT OF MODE SUPERVISION

We control the supervision ratio τ to evaluate the impact of mode supervision: for τ = 0, mode
labels are obtained by unsupervised clustering; for 0 < τ ≤ 1, τ × 100% true mode labels are
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Figure 10: Comparison under varying supervision ratio on CFashion-MNIST.

provided as supervision, with the rest obtained by semi-supervised learning. The clustering quality
of modes is evaluated by Adjusted Rand Index (ARI ∈ [0, 1]), with higher ARI indicating better
alignment with ground truth. The ARI on the estimated mode labels and the a1 prediction accuracy
on test 3 (with the largest correlation shift) under varying τ are shown in Figure 10, where:

(1) Figure 10(b)(d) shows that unsupervised clustering (τ = 0) provides an advantage for SD-HC
over baselines, indicating that our mode discovery pipeline can discover useful mode information
for disentanglement. As the amount of supervision increases (τ > 0), ARI and accuracy sharply
increase and soon converge, indicating that a small portion (2%) of weakly supervised labels can
greatly enhance clustering and thus facilitate better disentanglement.

(2) Figure 10(b)(d) shows that, at τ = 0, SD-HC exhibits a wider gap from SD-HC-T on the
more complex CFashion-MNIST (6.9%) than on CMNIST (4.7%), suggesting that on complex data,
estimating useful mode labels for disentanglement may be more challenging, and weak supervision
may be beneficial. In practice, mode labels could be obtained via expert annotation, e.g., fine-level
activity annotations for human activity data (Chan et al., 2024).

A.3 PARAMETER SENSITIVITY

The Number of Modes Nm. The sensitivity to the number of modes Nm under each attribute value
is shown in Figure 11(a), which shows that: (1) SD-HC performs the best at the ground truth Nm = 2
on CMNIST, suggesting that prior knowledge about Nm would be beneficial. (2) SD-HC performs
badly at Nm = 1, where mode-based CMI degrades to attribute-based CMI, causing the loss of mode
information. (3) In general, SD-HC is not particularly sensitive to changes of Nm within a certain
range. On CMNIST, SD-HC performs comparably under Nm = 2, 3, 4, suggesting that SD-HC is
robust to the changes of Nm when it is slightly larger than the ground truth (Nm = 2). Probably
because as long as the samples within one estimated cluster belong to the same ground-truth mode,
SD-HC can preserve mode information to some extent.

In practice, hyperparameter tuning may come with high computational costs for large-scale datasets.
Alternatively, we offer practical guidance to reduce the computational costs by estimating the num-
ber of modes Nm in a data-driven manner. This requires expert knowledge to choose the suitable
method: For well-separated clusters, Elbow Method (Marutho et al., 2018) would be suitable for es-
timating Nm with k-means clustering; For complex and overlapping clusters, Bayesian Information
Criterion (Watanabe, 2013) would be suitable for estimating Nm with Gaussian Mixture Models for
clustering; In addition, during our pre-training stage, the number of modes can be estimated by split
and merge operations with deep clustering methods (Ronen et al., 2022).

The Weight of Mode Prediction Loss wm. The sensitivity to the weight parameter of mode pre-
diction loss, wm, is shown in Figure 11(b), which shows that: In general, SD-HC performs better
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Figure 12: Computational complexity comparison.

at a small value of wm. Theoretically, adding mode prediction loss benefits disentanglement. How-
ever, enforcing mode prediction with estimated mode labels will potentially introduce errors, as the
estimated mode labels do not match the ground-truth mode labels.

A.4 COMPUTATIONAL COMPLEXITY

Figure 12 shows the total numbers of parameters and the training durations of a single leave-one-
group-out validation process (without repetition) on UCI-HAR of SD-HC and the compared meth-
ods.

In Figure 12(a), we observe that A-CMI has the most parameters, which is because A-CMI has two
discriminators for minimizing conditional mutual information based on a1 and a2. This indicates
that our method is computationally efficient w.r.t. number of parameters compared to A-CMI, which
is advantageous for deployment in resource-constrained environments.

In Figure 12(b), we observe that the training durations of A-CMI and SD-HC are the longest. This
training overhead would not affect real-time applications, as DRL methods are designed to gener-
alize to unseen data, and can therefore be trained offline and deployed for real-time inference on
various incoming data. However, the increased training cost can still be a concern when scaling to
larger datasets.

To mitigate this issue, we design a more efficient variant, SD-HC-E. The long training duration of
SD-HC mainly arises from the adversarial training for minimizing mode-based CMI, which involves
a for-loop over modes under different attribute values and multiple discriminator update steps. For
acceleration, SD-HC-E leverages vectorization to parallelize the forward computation across modes
under different attribute values, and replaces the original adversarial loss with a Wasserstein GAN
loss with Gradient Penalty (WGAN-GP) and Spectral Normalization (SN) (Gulrajani et al., 2017;
Miyato et al., 2018) to ensure training stability with only a single discriminator update step per
batch. The results in Figure 12 show that this variant substantially reduces the training duration
without introducing any additional parameters. For large-scale datasets, applying this variant would
be more practical and computationally efficient.
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Table 6: Prediction accuracy on toy data with multiple attributes.

BASE a1 a2 a3 a4
test 1 0.965 0.871 0.999 0.999
test 2 0.757 0.697 0.997 0.998
test 3 0.539 0.585 0.997 0.994
A-CMI a1 a2 a3 a4
test 1 0.510 0.593 0.998 0.525
test 2 0.507 0.537 0.997 0.507
test 3 0.507 0.518 0.996 0.476
SD-HC a1 a2 a3 a4
test 1 0.994 0.797 0.998 0.999
test 2 0.870 0.740 0.998 1.000
test 3 0.752 0.741 0.997 0.999
SD-HC-T a1 a2 a3 a4
test 1 0.999 0.997 0.997 1.000
test 2 0.966 0.982 0.996 1.000
test 3 0.928 0.964 0.998 0.999

A.5 EXPERIMENTS ON MULTIPLE ATTRIBUTES WITH HIDDEN CORRELATIONS

We conduct experiments on a multi-attribute toy dataset to validate the effectiveness of SD-HC in a
more complex scenario.

Data Construction. We construct 4-dimensional toy data with 4 attributes (ai, 1 ≤ i ≤ 4), where 2
attributes (a1, a2) exhibit underlying modes. This setting allows us to observe the impact on complex
attributes with multi-modal distributions and simple attributes with uni-modal distributions. This
dataset extends the simple toy dataset used in the main paper. Similarly, each data axis is controlled
by one attribute, i.e., xi is affected by ai and unaffected by other attributes a−i. Here, a1 and a2
with underlying modes are constructed the same as the a1 in the simple toy data, with 3 modes
under each attribute value; a3 and a4 are constructed the same as the a2 in the simple toy data. The
mappings from attribute/mode labels to the corresponding data axis remain the same.

Experiment Settings. We use the same settings as the simple toy data, training on correlated
data and evaluating on three test sets: test 1 with the same correlations, test 2 without correla-
tions, and test 3 with anticorrelations. Complex attribute and hidden correlations are introduced
in the train data, e.g., I(a2; a4) = 0.07, I(a3; a4) = 0.13, I(m1; a2|a1) = 0.14, I(m1; a4|a1) =
0.36, I(m2; a3|a2) = 0.28. The task is to learn disentangled representations for each attribute. We
compare SD-HC with BASE, A-CMI, and SD-HC-T. For SD-HC(-T), we use mode-based condi-
tional mutual information (CMI) minimization for a1 and a2 with underlying modes, and attribute-
based CMI minimization for a3 and a4. For A-CMI, attribute-based CMI minimization is used for
all attributes.

Results and Discussions. The attribute prediction accuracy is reported in Table 6, showing that:

(1) A-CMI performs poorly on a4, even though a4 does not exhibit underlying modes and is easily
predicted by the BASE method. This is because, under hidden correlations I(m1; a4|a1), minimiz-
ing attribute-based CMI for a1 might degrade the representation quality for the correlated a4, as
indicated by Proposition 1.

(2) SD-HC-T outperforms SD-HC by a larger margin compared to the simple two-attribute toy
data, likely because: The increased complexity with more attributes makes mode discovery harder,
resulting in more errors in mode-based CMI and mode prediction losses. Reduced Informativeness
in one representation can impact the disentanglement of others, as indicated by our Proposition 2.
Thus, mode estimation errors for a1 and a2 not only harm the quality of their own representations,
but also affect the representations of other attributes when they are jointly disentangled.

(3) Still, SD-HC generally shows superiority compared to BASE and A-CMI. For attributes a1, a2
with underlying modes, SD-HC explicitly accounts for hidden correlations by discovering and lever-
aging modes, thus better preserving mode information. For the simple attributes a3, a4, even though
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they do not exhibit underlying modes, considering their hidden correlations with the modes of other
attributes helps maintain their predictive accuracy in joint disentanglement.

B PROOFS

We give the complete proof of the decomposition and propositions in the main paper using knowl-
edge of mutual information and entropy.

Note that we use formal definitions of mutual information, where separators semicolon “;” and
comma “,” should be distinguished from each other. Semicolon “;” separates groups of variables
whose mutual information with respect to each other is being measured, while comma “,” denotes
the joint distribution of the listed variables.

B.1 PROOF OF TOTAL HIDDEN CORRELATION

Total Hidden Correlation. I(m1; a2) = I(a1; a2) + I(m1; a2|a1)
Proof. Firstly, we prove I(m1; a2) = I(m1, a1; a2). Since each mode falls under one particular
attribute value, the value of attribute is fully determined given the modes, i.e., H(a1|m1) = 0.
Therefore, H(a1|m1) = H(a1|m1, a2) + I(a1; a2|m1) = 0, and followingly I(a1; a2|m1) = 0, as
both terms are non-negative. Hence H(a2|m1) = H(a2|m1, a1) + I(a1; a2|m1) = H(a2|m1, a1).
Therefore, we have:

I(m1, a1; a2) = H(a2)−H(a2|m1, a1)

= H(a2)−H(a2|m1)

= I(m1; a2)

Secondly, we prove I(m1, a1; a2) = I(a1; a2) + I(m1; a2|a1) by chain rule of mutual information:

I(m1, a1; a2) = H(a2)−H(a2|m1, a1)

= H(a2)−H(a2|a1) +H(a2|a1)−H(a2|m1, a1)

= I(a1; a2) + I(m1; a2|a1)

Finally, we reach I(m1; a2) = I(m1, a1; a2) = I(a1; a2) + I(m1; a2|a1)

B.2 PROOF OF PROPOSITION 1

Proposition 1. If I(m1; a2|a1) > 0, then enforcing I(z1; z2|a1) = 0 leads to at least one of
I(z1;m1) < H(m1) and I(z2; a2) < H(a2).

Proof. We prove by contradiction. Assuming I(z1;m1) = H(m1) and I(a2; z2) = H(a2) both
stand, we have H(m1|z1) = 0 and H(a2|z2) = 0.

Firstly, we prove that this leads to I(m1; a2; z1; z2|a1) > 0 with (1)(2)(3).

(1) Since H(m1|z1) = 0 and H(m1|z1) − H(m1|a1, z1) = I(m1; a1|z1) ≥ 0 by definition
of conditional mutual information, we have 0 ≤ H(m1|a1, z1) ≤ H(m1|z1) = 0, we have
H(m1|a1, z1) = 0. By definition, H(m1|a1, z1) = H(m1|a1, a2, z1) + I(m1; a2|a1, z1) = 0,
which gives I(m1; a2|a1, z1) = 0, as both terms are non-negative. Therefore:

I(m1; a2; z1|a1) = I(m1; a2|a1)− I(m1; a2|a1, z1)
= I(m1; a2|a1) > 0

(2) Similar to (1), since H(a2|z2) = 0 and 0 ≤ H(a2|a1, z2) ≤ H(a2|z2) = 0, we have
H(a2|a1, z2) = 0. By definition, H(a2|a1, z2) = H(a2|m1, a1, z2) + I(m1; a2|a1, z2) = 0,
which gives I(m1; a2|a1, z2) = 0, as both terms are non-negative. Therefore:

I(m1; a2; z2|a1) = I(m1; a2|a1)− I(m1; a2|a1, z2)
= I(m1; a2|a1) > 0
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(3) Given H(m1|z1) = 0, we have H(m1|z1) = H(m1|z1, z2) + I(m1; z2|z1) = 0 and thus
H(m1|z1, z2) = 0, as both terms are non-negative. Similar to (1) that yields I(m1; a2; z1|a1) =
I(m1; a2|a1) from H(m1|z1) = 0, we can get I(m1; a2; z1|a1, z2) = I(m1; a2|a1, z2) from
H(m1|z1, z2) = 0 by additionally conditioning on z2. Combined with I(m1; a2; z2|a1) > 0 in
(2), we have:

I(m1; a2; z1; z2|a1) = I(m1; a2; z1|a1)− I(m1; a2; z1|a1, z2)
= I(m1; a2|a1)− I(m1; a2|a1, z2)
= I(m1; a2; z2|a1) > 0

Secondly, we prove I(m1; a2; z1; z2|a1) ≤ 0 with (4)(5)(6).

(4) Given H(m1|a1, z1) = 0 in (1), we have H(m1|a1, z1) = H(m1|a1, z1, z2) +
I(m1; z2|a1, z1) = 0 and followingly, I(m1; z2|a1, z1) = 0, as both terms are non-negative. There-
fore:

I(m1; z1; z2|a1) = I(m1; z2|a1)− I(m1; z2|a1, z1)
= I(m1; z2|a1) ≥ 0

(5) Since I(z1; z2|a1) = 0, we have:
I(m1; z1; z2|a1) = I(z1; z2|a1)− I(z1; z2|m1, a1)

= −I(z1; z2|m1, a1) ≤ 0

(6) Combine I(m1; z1; z2|a1) ≥ 0 in (4) and I(m1; z1; z2|a1) ≤ 0 in (5), we have
I(m1; z1; z2|a1) = 0. Given H(m1|a1, z1) = 0 in (1) and H(m1|a1, z1) = H(m1|a1, z1, z2) +
I(m1; z2|a1, z1), we have H(m1|a1, z1, z2) = 0 as both terms are non-negative. Similar
to (4) that yields I(m1; z1; z2|a1) = I(m1; z2|a1) from H(m1|a1, z1) = 0, we can get
I(m1; z1; z2|a1, a2) = I(m1; z2|a1, a2) from H(m1|a1, z1, z2) = 0 by additionally condition-
ing on z2. Therefore:

I(m1; a2; z1; z2|a1) = I(m1; z1; z2|a1)− I(m1; z1; z2|a1, a2)
= −I(m1; z2|a1, a2) ≤ 0

This is contradictory with I(m1; a2; z1; z2|a1) > 0. Therefore, if I(m1; a2|a1) > 0 and
I(z1; z2|a1) = 0, then at least one of I(m1; z1) < H(m1) and I(a2; z2) < H(a2) must hold.

B.3 PROOF OF PROPOSITION 2

Proposition 2. Under the data generation process of Definition 1 (K = 2, k = 1), if I(z1;m1) =
H(m1), I(z2; a2) = H(a2), and I(z1; z2|m1) = 0, then p(z1|do(a2)) = p(z1), i.e., z1 is the
disentangled representation of a1.

Our proof for Proposition 2 is two-fold. First, from the MI terms in the proposition, a conditional
independence is derived using mutual information theory in Lemma 2.1; Second, using the derived
conditional independence and the assumption in the proposition, we arrive at post-interventional
invariance by do-calculus in Lemma 2.2.

B.3.1 PROOF OF LEMMA 2.1

Lemma 2.1. If I(z1;m1) = H(m1), I(z2; a2) = H(a2), and I(z1; z2|m1) = 0, then I(z1; a2) =
I(m1; a2) and I(z1; a2|m1) = 0.

Proof. First, we prove I(m1; a2) ≥ I(z1; z2) with (1)(2).

(1) Since H(a2|z2) = 0, we have H(a2|z2) = H(a2|z1, z2) + I(z1; a2|z2) = 0, and followingly
I(z1; a2|z2) = 0, as both terms are non-negative. Therefore, by definition of interaction informa-
tion, we have I(z1; z2; a2) = I(z1; a2) − I(z1; a2|z2) = I(z1; a2). Since I(z1; z2|m1) = 0, we
have I(z1; z2; a2|m1) = I(z1; z2|m1)− I(z1; z2|m1, a2) = −I(z1; z2|m1, a2). Therefore:

I(z1; z2;m1; a2) = I(z1; z2; a2)− I(z1; z2; a2|m1)

= I(z1; a2) + I(z1; z2|m1, a2)

≥ I(z1; a2)
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(2) i. Since H(a2|z2) = 0, we have H(a2|z2) = H(a2|m1, z2) + I(m1; a2|z2) = 0, and follow-
ingly I(m1; a2|z2) = 0, as both terms are non-negative.

ii. Since H(m1|z1) = 0, we have H(m1|z1) = H(m1|z1, z2) + I(m1; z2|z1) = 0, and
followingly H(m1|z1, z2) = 0, as both terms are non-negative. Therefore, H(m1|z1, z2) =
H(m1|z1, z2, a2) + I(m1; a2|z1, z2) = 0, and followingly I(m1; a2|z1, z2) = 0, as both terms
are non-negative.

iii. Given I(m1; a2|z2) = 0 in i. and I(m1; a2|z1, z2) = 0 in ii. as shown above, we have
I(m1; a2; z1|z2) = I(m1; a2|z2)− I(m1; a2|z1, z2) = 0.

iv. Since H(m1|z1) = 0, by definition of conditional mutual information, we have H(m1|z1) =
H(m1|z1, a2) + I(m1; a2|z1) = 0, and followingly I(m1; a2|z1) = 0, as both terms are non-
negative. Thus I(m1; a2; z1) = I(m1; a2)− I(m1; a2|z1) = I(m1; a2).

Given I(m1; a2; z1) = I(m1; a2) in iv. and I(m1; a2; z1|z2) = 0 in iii., we have:

I(z1; z2;m1; a2) = I(m1; a2; z1)− I(m1; a2; z1|z2)
= I(m1; a2)

Given (1)(2), we have I(m1; a2) = I(z1; z2;m1; a2) ≥ I(z1; a2)

(3) We prove I(z1; a2) ≥ I(m1; a2) as follows.

i. Since H(m1|z1) = 0, we have H(m1|z1) = H(m1|z1, a2)+ I(m1; a2|z1) = 0, and followingly
I(m1; a2|z1) = 0, as both terms are non-negative. Thus, by chain rule of mutual information, we
have:

I(m1, z1; a2) = I(z1; a2) + I(m1; a2|z1)
= I(z1; a2)

ii. We also have:

I(m1, z1; a2) = I(m1; a2) + I(z1; a2|m1)

≥ I(m1; a2)

Given I(m1, z1; a2) = I(z1; a2) in i. and , I(m1, z1; a2) ≥ I(m1; a2) in ii., we have I(z1; a2) ≥
I(m1; a2).

(4) Finally, given I(m1; a2) ≥ I(z1; a2) with (1)(2) and I(z1; a2) ≥ I(m1; a2) in (3), the equality
must hold that I(z1; a2) = I(m1; a2).

Moving forward, given I(m1, z1; a2) = I(z1; a2) = I(m1; a2) + I(z1; a2|m1) in (3) and
I(z1; a2) = I(m1; a2) at which we just arrived, we have I(z1; a2|m1) = 0.

B.3.2 PROOF OF LEMMA 2.2

Lemma 2.2. Under the data generation process of Definition 1 (K = 2, k = 1), if I(z1; a2|m1) =
0, then p(z1|do(a2)) = p(z1).

Proof. We prove this by applying Rule 3 of do-calculus based on the causal graph G in Figure 3(c)
(reproduced as below), which reflects the representation learning process. The rules of do-calculous
are elaborated in Appendix D.2, where ⊥⊥ indicates independence between variables, for arbitrary
disjoint sets of nodes X,Z,W , GX denotes the graph obtained by deleting all arrows pointing to
X-nodes from G, and Z(W ) denotes the subset of Z-nodes that are not ancestors of any W -node.

Specifically, we unfold the left-hand side of p(z1|do(a2)) = p(z1) and reach the right-hand side as:

p(z1|do(a2)) =
∑
m1

p(z1|do(a2),m1)p(m1|do(a2)) (i)

=
∑
m1

p(z1|m1)p(m1) (ii)

= p(z1) (iii)
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(a) (b) (c)

Figure 14: Causal graphs of representations under K > 2. (a) and (b): Data generation with the true
latent representations zl

k, z
l
−k, where Red arrows indicate the backdoor paths between them. (c):

Representation learning that produces the learned representations zk, z−k.

Figure 3(c) (repro-
duced). Causal graph of
representation learning.

where we arrive at (i) by chain rule of probability, and then arrive at (ii)
by using Rule 3 of do-calculus twice: First, given I(z1; a2|m1) = 0,
we have z1 ⊥⊥ a2|m1 in G, as the mutual information between variables
equals zero if and only if they are independent; for G

a2(m1)
= Ga2

(obtained by removing the edges pointing to a2 from confounders ca, cm
in G), this conditional independence still holds for the following reasons
(Pearl, 2009): For z1 and a2, such edge removal (1) leaves the direct
path a2 → x → z1 intact, not introducing any new pathway, and (2)
blocks the backdoor paths a2 ← cm → m1 → x→ z1 and a2 ← ca →
a1 → m1 → x → z1, thus further reducing potential dependencies
between z1 and a2; now we satisfy the condition of Rule 3 and apply
do-calculous as:

p(z1|do(a2),m1) = p(z1|m1) Rule 3 by z1 ⊥⊥ a2|m1 in Ga2
(representation learning)

Second, given the causal structure in Figure 3(c) based on the data generation process of Definition
1, we satisfy the condition of Rule 3 and apply do-calculous as:

p(m1|do(a2)) = p(m1) Rule 3 by m1 ⊥⊥ a2 in Ga2 (elementary ingredients)

Finally, we arrive at (iii) by chain rule of probability.

Discussions. Our proof mainly relies on two conditions: (1) there is no causal effect between m1 and
a2, which comes from the elementary ingredients assumption about attributes (Suter et al., 2019),
and (2) conditional independence I(z1; a2|m1) = 0, which is enforced upon z1 by representation
learning that minimizes mode-based CMI, as proved in Proposition 2. Thereby, we conclude that
for data attributes that are elementary ingredients, disentangled representations can be learned by
mode-based CMI minimization and supervised learning.

B.4 GENERALIZATION TO MULTIPLE ATTRIBUTES

Our theoretical results, including the necessary condition and the sufficient condition for disentan-
glement, can be generalized to multiple attributes. The extension mainly involves replacing m1, z1
with mk, zk, and replacing a2, z2 with the joint a−k, z−k, as the properties of mutual information
and causal graphs remain the same for joint variables.

The Necessary Condition for Disentanglement. Figure 3(a)(b) with two attributes is extended to
Figure 14(a)(b) with K attributes, where the true latent representations satisfy the conditional inde-
pendence as follows, yielding the necessary condition for disentanglement under hidden correlations
and attribute correlations:

I(zl
k; z

l
−k|mk) = 0 ⇒ If zk is the disentangled representation of ak, then I(zk; z−k|mk) = 0

(6)
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The Sufficient Condition for Disentanglement. We extend Proposition 2 to Corollary 2 for K > 2.
The constraint I(ak; zk) = H(ak) is added, which is originally implied in I(zk;mk) = H(mk),
because each mode falls under exactly one attribute value, making the attribute determined knowing
the mode. In other words, all information about ak is already contained in mk. In addition, the joint
constraint I(z−k; a−k) = H(a−k) is broken down for each i ̸= k into I(zi; ai) = H(ai), i ̸= k.
We also extend Lemma 2.1 and 2.2 to Corollary 2.1 and 2.2 for K > 2, with the causal graph of
representation learning depicted in Figure 14(c).

Corollary 2. Under the data generation process of Definition 1, if I(zi; ai) = H(ai) for i =
1, ...,K, I(zk;mk) = H(mk), and I(zk; z−k|mk) = 0, then p(zk|do(a−k)) = p(zk), i.e., zk is
the disentangled representation of ak.

Corollary 2.1. If I(zi; ai) = H(ai) for i = 1, ...,K, I(zk;mk) = H(mk), and I(zk; z−k|mk) =
0, then I(zk; a−k) = I(mk; a−k) and I(zk; a−k|mk) = 0.

Corollary 2.2. Under the data generation process of Definition 1, if I(zk; a−k|mk) = 0, then
p(zk|do(a−k)) = p(zk).

where −k indicates the set of attribute indices {j}j ̸=k.

Since the properties of mutual information and causal graphs remain the same for joint variables,
and the MI term formulations in Corollary 2 and the causal graph structures in Figure 14 remain the
same as those in Proposition 2 and Figure 3 after replacing the corresponding variables, the proofs
under two attributes naturally extend to multiple attributes.

C DATA GENERATION PROCESS UNDER ATTRIBUTE CORRELATIONS

Following (Suter et al., 2019), the data generation process under attribute correlations is formulated
in Definition 3. The causal graph of Definition 3 is depicted in Figure 15.

…

Figure 15: Causal graph
of data generation pro-
cess with attribute cor-
relations.

Definition 3. (Disentangled Causal Process). Consider a causal gener-
ative model p(x|a) for data x with K attributes a = (a1, a2, ..., aK)
as the generative factors, where a could be influenced by L confounders
c = (c1, ..., cL). This causal model is called disentangled if and only if
it can be described by a structural causal model (SCM) (Pearl, 2009) of
the form:

c← nc

ai ← hi(S
c
i ,ni), S

c
i ⊂ {c1, ..., cL}, i = 1, ...,K

x← g(a,nx)

(7)

with functions g, hi, jointly independent noise variables nc, nx, ni, and
confounder subsets Sc

i for i = 1, ...,K. Note that ∀i ̸= j, ai ̸→ aj .

D CAUSALITY

D.1 D-SEPARATION AND BACKDOOR PATHS

Overview of Causality. We provide a summary of notions in causal graphs relevant to the analysis
in Section 3.3, namely d-separation, blocking paths, and conditional independence. More details can
be found in (Pearl, 2009).

Causal graphs are directed acyclic graphs, where nodes represent random variables and directed
edges represent the causal relationships between two variables. The notion of d-separation forms
the link between blocking paths in the causal graph and dependencies between random variables. A
path in causal graphs is a sequence of consecutive edges. Consider two nodes X and Y , X and Y
are called d-separated by a set of nodes Z if all undirected paths from X to Y are blocked by Z.
Meanwhile, a path between X and Y is considered to be blocked by a set of nodes Z if at least one
of the following holds:

(1) The path contains a chain X →M → Y with the mediator set M , and a node in M is in Z.
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(2) The path contains a fork X ← U → Y with the confounder set U , and a node in U is in Z.

(3) The path contains a collider X → C ← Y with the collider node C, and neither C or its
descendant is in Z.

Finally, if X and Y are d-separated by the set Z, X and Y are conditionally independent given Z. A
backdoor path between X and Y is the non-causal path between X and Y that contains at least one
edge pointing at X or Y , i.e. the path that flows backward from X or Y . Backdoor paths introduce
dependence between variables, thus they need to be blocked by controlling a node on these paths as
in (1) and (2).

Causal Graph Analysis Under Hidden Correlations. Figure 3(b) contains three paths between
z1 and z2. (1) The path z1 → x ← z2 is blocked without conditioning on any variables, as long
as the collider x is uncontrolled. (2) The path z1 ← m1 ← cm → a2 → z2 is blocked if any node
in the confounder set {m1, c

m, a2} is controlled. Since cm is unobserved, controlling either m1 or
a2 blocks this path. (3) The path z1 ← m1 ← a1 ← ca → a2 → z2 is blocked if any node in the
confounder set {m1, a1, c

a, a2} is controlled. Since ca is unobserved, controlling one of m1, a1,
and a2 blocks this path. To simultaneously block all undirected paths between z1 and z2, we need
to control either m1 or a2, as controlling a1 does not block path (2). That is to say, z1 and z2 are
conditionally independent given either m1 or a2.

D.2 RULES OF do-CALCULUS

Let X , Y , Z, and W be arbitrary disjoint sets of nodes in a causal DAG G. do-calculus consists
of three inference rules that permit us to map interventional and observational distributions to each
other whenever certain conditions hold in the causal diagram G.

We denote by GX the graph obtained by deleting from G all arrows pointing to nodes in X . Like-
wise, we denote by GX the graph obtained by deleting from G all arrows emerging from nodes in
X . To represent the deletion of both incoming and outgoing arrows, we use the notation GXZ . The
following three rules are valid for every interventional distribution compatible with G (Pearl, 2016;
1995).

• Rule 1: Insertion/deletion of observations

P (y|do(x), z, w) = P (y|do(x), w), if Y ⊥⊥ Z|X,W in GX

• Rule 2: Action/observation exchange

P (y|do(x), do(z), w) = P (y|do(x), z, w), if Y ⊥⊥ Z|X,W in GXZ

• Rule 3: Insertion/deletion of actions

P (y|do(x), do(z), w) = P (y|do(x), w), if Y ⊥⊥ Z|X,W in G
XZ(W )

where ⊥⊥ indicates independence, and for G
XZ(W )

, Z(W ) denotes the set of Z-nodes that are not
ancestors of any W -node in GX .

E NETWORK ARCHITECTURES

The detailed architectures of different components in SD-HC and its variants are summarized in
Table 7. For independent control of each attribute, encoder F uses individual subnetworks for
each attribute with the same architectures. Predictors Ci, Cm

i share the same architectures as well.
Different architectures of discriminator Dk in SD-HC, SD-HC-A, SD-HC-ID, and SD-HC-SD are
described separately.

F TRAINING PROCESS

The training process of SD-HC under K = 2 (a1 as the attribute with underlying modes) is sum-
marized in Algorithm 1, where optimizations w.r.t. different losses are performed alternatively. The
algorithm can be generalized to multiple attributes accordingly.
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Table 7: Network architectures. “Discriminator(ain)” denotes discriminator with conditional input
ain. “Conv(ci, kj, sl)” denotes 1D convolution layer with i channels, kernel size j, and stride l.
“FC(i)” denotes fully connected layer with output dimension i. “BN(i)” denotes 1D batch normal-
ization layer with feature dimension i. “AvgPool(i)” denotes 1D adaptive pooling layer with output
dimension i. “LeakyReLU(α)” denotes LeakyReLU activations with scale α. Output dimension
dout is set according to each prediction task. N c

1 and N c
2 denote the number of values for a1 and a2,

respectively.

Component Method Dataset Architectures

Encoder subnetwork All Toy FC(16) → FC(16)
Encoder subnetwork All CMNIST,

CFashion-
MNIST

FC(128), BN(128) → FC(128), BN(128)

Encoder subnetwork All Canine-BG ResNet18
Encoder subnetwork All WHAR Conv(c128, k8, s2), BN(128) → Conv(c256, k5, s2), BN(256)

→ Conv(c128, k3, s1), BN(128), AvgPool(1)
Encoder subnetwork All MFD Conv(c64, k32, s6), BN(64) → Conv(c128, k8, s2), BN(128)

→ Conv(c128, k8, s2), BN(128), AvgPool(1)
Predictor All All FC(dout), Softmax
Discriminator(m1) SD-HC All Nc

1 × [FC(512), LeakyReLu(0.2) → FC(1), Sigmoid] for each
value of a1

Discriminator(-) SD-HC-A All Nc
2 × [FC(512), LeakyReLu(0.2) → FC(1), Sigmoid] for each

value of a2

Discriminator(-) SD-HC-ID All Nc
1 ×Nm× [FC(512), LeakyReLu(0.2) → FC(1), Sigmoid] for

each mode under each value of a1

Discriminator(a1, m1) SD-HC-SD All FC(512), LeakyReLu(0.2) → FC(1), Sigmoid

Algorithm 1 The training process of SD-HC under K = 2

1: Input: Training set D with data x and attributes labels a = (a1, a2), the number of modes Nm

under each value of a1, the number of epochs E1 and E2, and the number of steps Sd, Sf , and
Sc

2: Initialize encoder F ∗ and predictor C∗
1

3: for epoch = 1 to E1 do
4: for mini-batch (x, a1) in D do
5: Update F ∗ and C∗

1 by minimizing Lac in Equation 4
6: end for
7: end for
8: Under each value of a1, perform k-means clustering with the number of clusters Nm on the

output representations z1 of the trained encoder F ∗, and get the estimated mode labels m1

9: Initialize encoder F , predictors C1, C2, C
m
1 , and discriminator D1

10: for epoch = 1 to E2 do
11: for mini-batch (x,a) in D do
12: for step = 1 to Sc do
13: Update encoder F and predictors C1, C2 and Cm

1 by minimizing Lc in Equation 4
14: end for
15: for step = 1 to Sd do
16: Update discriminator D1 by minimizing Ld in Equation 5
17: end for
18: for step = 1 to Sf do
19: Update encoder F by maximizing Ld in Equation 5
20: end for
21: end for
22: end for
23: Output: Encoder F and predictor C1
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(a) Attribute setting (b) Noise and correlation

Figure 16: Data construction of toy dataset with noise level σ.

Table 8: Conditional probability p(a2|m1) on toy data for corh = 0.

p(a2|m1)
m1

0 1 2 3 4 5

a2
0 0.5 0.5 0.5 0.5 0.5 0.5

1 0.5 0.5 0.5 0.5 0.5 0.5

G DETAILS OF EXPERIMENTAL SETTINGS

G.1 DATASETS

Toy Dataset. As shown in Figure 16(a), our 2-dimensional toy data have two binary at-
tributes, with the primary attribute a1 having 3 modes under each attribute value, i.e., a1 =
0,m1 = 0, 1, 2 and a1 = 1,m1 = 3, 4, 5. Data are generated through linearly mapping
m1 and a2 to two-dimensional spaces and adding noises with noise level σ as x = m1 ·
[[0, 0], [2, 0], [4, 0], [1, 0], [3, 0], [5, 0]]+a2 ·[[0, 0], [0, 1]]+n, where vectors m1 and a2 represent the
one-hot encoded values of m1 and a2, respectively, and n ∼ N (0, σ2I) represents 2-dimensional
independently normally distributed noise with noise level σ. For x = (x1, x2), the primary attribute
a1 and mode m1 control dimension 1, i.e., x1, and attribute a2 controls dimension 2, i.e., x2. An
illustration of the generated data under different correlations and noise levels is given in Figure
16(b).

CMNIST. Colored MNIST (CMNIST) is constructed by coloring and occluding a subset of
MNIST (Arjovsky et al., 2019), as shown in Figure 17(a). Parity check identifies whether a digit is
even or odd with multiple digits under each parity value. Accordingly, attribute a1 is defined as the
parity of digits, i.e., a1 = 0, 1 indicates “even”, “odd”; attribute a2 is defined as the color of digits,
i.e., a2 = 0, 1 indicates “red”, “blue”, which is often correlated with digits, e.g., a player’s jersey
number may be associated with a specific color in sports. a1 has 2 modes under each attribute value,
i.e., digits 4, 2 under parity “even” and digits 3, 9 under parity “odd”. Digit noises are generated as
occlusion masks with occlusion ratio as the noise level σ (Chai et al., 2021), and coloring noises are
generated as a scalar multiplier to the RGB values of the digits.

CFashion-MNIST. Colored Fashion-MNIST (CFashion-MNIST) is constructed similarly as
CMNIST by coloring and occluding a subset of Fashion-MNIST (Xiao et al., 2017), as shown in
Figure 17(b). This is provided as a complex counterpart of CMNIST for comparison. The corre-
lation and noise settings are the same as CMNIST. Attribute a1 is defined as the fashion styles of
clothing, i.e., a1 = 0, 1 indicates “sporty”, “chic”; attribute a2 is defined as the color of clothing,
i.e., a2 = 0, 1 indicates “red”, “blue”. a1 has 2 modes under each attribute value, i.e., “sneaker” and
“pullover” under style “sporty”, and “sandle” and “dress” under style “chic”. As a natural scenario,
the color of clothing is often related to the fashion style and the specific clothing type.
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Table 9: Conditional probability p(a2|m1) on toy data for corh = 0.02.

p(a2|m1)
m1

0 1 2 3 4 5

a2
0 0.6 0.3 0.6 0.5 0.6 0.4

1 0.4 0.7 0.4 0.5 0.4 0.6

Table 10: Conditional probability p(a2|m1) on toy data for corh = 0.06.

p(a2|m1)
m1

0 1 2 3 4 5

a2
0 0.7 0.2 0.6 0.4 0.7 0.4

1 0.3 0.8 0.4 0.6 0.3 0.6

Table 11: Conditional probability p(a2|m1) on toy data for corh = 0.13.

p(a2|m1)
m1

0 1 2 3 4 5

a2
0 0.8 0.1 0.6 0.3 0.8 0.4

1 0.2 0.9 0.4 0.7 0.2 0.6

Table 12: Conditional probability p(a2|m1) on toy data for corh = 0.28.

p(a2|m1)
m1

0 1 2 3 4 5

a2
0 0.9 0 0.6 0.2 0.9 0.4

1 0.1 1 0.4 0.8 0.1 0.6

Table 13: Conditional probability p(a2|m1) on toy data for corh = 0.41.

p(a2|m1)
m1

0 1 2 3 4 5

a2
0 1 0 0.5 0.1 1 0.4

1 0 1 0.5 0.9 0 0.6

Table 14: Conditional probability p(a2|m1) on CMNIST and CFashion-MNIST under attribute cor-
relations and hidden correlations.

p(a2|m1)
m1

0 1 2 3

a2
0 0.8 0.05 0.2 0.95

1 0.2 0.95 0.8 0.05

Table 15: Conditional probability p(a2|m1) on CMNIST and CFashion-MNIST under only hidden
correlations.

p(a2|m1)
m1

0 1 2 3

a2
0 corrp 1 − corrp corrp 1 − corrp

1 1 − corrp corrp 1 − corrp corrp

Table 16: Conditional probability p(a2|m1) on Canine-BG under attribute correlations and hidden
correlations.

p(a2 | m1)
m1

0 1 2 3 4 5 6 7

a2
0 0.1 0.2 0.3 0.4 0.9 0.8 0.7 0.6

1 0.9 0.8 0.7 0.6 0.1 0.2 0.3 0.4
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(a) CMNIST (b) CFashion-MNIST

Figure 17: Data construction of CMNIST and CFashion-MNIST with noise level σ. The number of
samples differs across (m1, a2) combinations, exhibiting hidden correlations.

Figure 18: Data construction of Canine-BG.

Canine-BG. Canine-BG is constructed by combining canine images from ImageNet (Deng et al.,
2009) with environmental backgrounds from the Places dataset (Zhou et al., 2018) following
(Sagawa et al., 2020), as shown in Figure 18. Canines are combined with environments by the
following procedure: First, SAM (Kirillov et al., 2023) is used to obtain segmentation masks of the
canine image, and CLIP (Radford et al., 2021) is used to select the mask that best fits the seman-
tics of the dog breeds with the prompt “a photo of a {dog breed}”; then, the canine foregrounds
are combined with environment background to generate the images. Attribute a1 is defined as the
functional categories of canines, i.e., a1 = 0, 1 indicates “working dog” and “pet dog”; attribute a2
is defined as the environmental backgrounds, i.e., a2 = 0, 1 indicates “indoors” (“living room” en-
vironment from Places dataset) and “outdoors” (“forest” environment from Places dataset). a1 has 4
modes under each attribute value, i.e., “Australian terrier”, “Briard”, “Welsh springer spaniel”, and
“Kelpie” under category “working dog”, and “Silky terrier”, “Tibetan terrier”, “Blenheim spaniel”,
and “Toy terrier” under category “pet dog”. As a natural scenario, the environment of canines is
often correlated to the functional categories and the specific canine breeds, e.g., working dogs are
more likely to be outdoors. The correlation settings are shown in Table 16.

Time Series Datasets. UCI-HAR, RealWorld, and HHAR record wearable sensor data, from
which WHAR identifies activities with variations under each activity. Accordingly, a1 represents ac-
tivity, m1 represents unknown activity modes, and a2 represents user ID, which is often correlated
with activity due to personal behavior patterns. MFD record sensor data from bearing machines,
from which machine fault diagnosis identifies machine fault types with variations under each fault
type, e.g., different forms of damages. Accordingly, a1 represents fault type, m1 represents un-
known modes of fault types, and a2 represents operating conditions, which could be correlated with
machine faults.

We use acceleration signals from UCI-HAR, RealWorld, and HHAR datasets and vibration signals
from MFD dataset. After removing invalid values and normalizing the data by channel to be within

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

the range of [-1, 1], we pre-process the data by the sliding window strategy. For WHAR datasets with
multiple sensors, we use the 3-axis acceleration data from the waist for UCI-HAR, the acceleration
data from the chest for RealWorld, and the acceleration data from a Samsung smartphone for HHAR
following (Ragab et al., 2023). Table 17 summarizes the statistics of the preprocessed data used in
our experiments.

G.2 EVALUATION PROTOCOL

On toy, CMNIST, and CFashion-MNIST datasets, correlations are introduced by sampling, and the
three test sets are constructed as illustrated in Figure 19. On other datasets, we experiment under
natural correlations with leave-one-group-out validation.

train correlated test 1 correlated

test 2 uncorrelated test 3 anticorrelated

… …

… …

Figure 19: Train-test setup.

Toy Dataset. Since we focus on investigating the behavior of different methods under only hidden
correlations I(m1; a2|a1) > 0, data are set to be uniformly distributed under the values of m1,
a1, and a2, and attribute correlations do not exist, i.e., I(a1; a2) = 0. The hidden correlations
are introduced by setting p(a2|m1) to Table 8, 9, 10, 11, 12, 13 for hidden correlations corh =
0, 0.02, 0.06, 0.13, 0.28, 0.41, respectively.

CMNIST and CFashion-MNIST. Since we focus on investigating the behavior of different meth-
ods under various correlations, data are set to be uniformly distributed under the values of m1 and
a1. For the comparison with baselines and variants, we introduce attribute correlations and hidden
correlations by setting p(a2|m1) to Table 14. For additional analysis, we introduce hidden corre-
lations by setting p(a2|m1) according to Table 15, where we set corrp = 0.5, 0.6, 0.7, 0.8, 0.9 for
hidden correlations corh = 0, 0.02, 0.08, 0.19, 0.37, respectively.

Time Series Datasets. Leave-one-group-out validation is performed, where each group is selected
as the test group once, and the remaining groups serve as the training groups. Groups are obtained
by dividing the data by the value of attribute a2, where the number of values of a2 is equal for
different groups. The training and validation sets are obtained by splitting the data of the training
groups by 0.8:0.2. All data of the test group form the test set. All methods are trained on the training
set, tuned on the validation set, and tested on the test set.

G.3 IMPLEMENTATION DETAILS

All methods are implemented using PyTorch (Paszke et al., 2019). We experiment with Pytorch
1.10.0+cu113 and Python 3.8.13. Model optimization is performed using Adam (Kingma & Ba,
2015). Experiments are conducted on Linux servers with Intel(R) Core(TM) i9-12900K CPUs and
NVIDIA RTX 3090 GPUs.

H HYPERPARAMETERS

The general hyperparameters are set to the following values: The number of dimensions D for
representations zi is set to 512 for Canine-BG and 128 for other datasets. The mini-batch size is set
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Table 17: Time series dataset descriptions.

Dataset UCI-HAR RealWorld HHAR MFD

a1 activity activity activity incipient fault type
a2 user user user operating condition
# values of a1 6 8 6 3
# values of a2 30 15 9 4
# of groups 5 5 3 4
# channels 3 3 3 1
# samples 11711 36980 14772 10916
window length 128 150 128 5120
values of a1 walking, walking

upstairs, walking
downstairs, sitting,
standing, laying

climbing stairs
up, climbing stairs
down, jumping,
lying, standing,
sitting, running,
walking

biking, sitting,
standing, walking,
stair up, stair down

healthy, inner-
bearing damage,
outer-bearing dam-
age

Table 18: Hyperparameter search spaces and NNI settings.

Item Search space / setting

Hyperparameter

wm between [0.01, 10]
Sd [1, 3, 5, 7, 9]
Nm [2, 3, 4, 5, 6, 7, 8, 9, 10]
lc, ld, le [0.0001, 0.0003, 0.0005, 0.0007, 0.001]

NNI configuration Max trial number per GPU 1
Optimization algorithm Tree-structured Parzen Estimator

to 64 for toy data and 128 for other datasets. The number of epochs for pre-training, E1, and the
number of epochs for supervised DRL, E2, are set to 100 and 150, respectively. The numbers of
update steps Sf and Sc are set to 1.

Some other hyperparameters are tuned with Neural Network Intelligence (NNI)1. The search spaces
and NNI configurations are given in Table 18. The tuned hyperparameters are set to the following
values: The weight of mode prediction loss wm is set to 0.5, 0.2, 0.5, 0.1, 0.7, 0.1, 0.01, and
0.01 on toy, CMNIST, CFashion-MNIST, Canine-BG, UCI-HAR, RealWorld, HHAR, and MFD
for variants with mode prediction loss, respectively. The number of update steps Sd is set to 2,
15, 13, 9, 7, 7, 1, and 1 on toy, CMNIST, CFashion-MNIST, Canine-BG, UCI-HAR, RealWorld,
HHAR, and MFD, respectively. The number of modes Nm under each value of ak is set to 3, 2, 2,
4, 8, 3, 2, and 2 on toy, CMNIST, CFashion-MNIST, Canine-BG, UCI-HAR, RealWorld, HHAR,
and MFD, respectively. The initial learning rates of Adam (lc, ld, le) are set to (0.001, 0.0007,
0.001), (0.001, 0.0003, 0.001), (0.001, 0.0003, 0.001), (0.0007, 0.0003, 0.0005), (0.001, 0.0007,
0.0005), (0.001, 0.001, 0.001), (0.001, 0.0001, 0.001), and (0.001, 0.001, 0.0005) on toy, CMNIST,
CFashion-MNIST, Canine-BG, UCI-HAR, RealWorld, HHAR, and MFD, respectively.

I BASELINES

We focus on comparing different independence constraints, and leave out the other components in
the original baseline implementations, e.g., different architectures. For fair comparisons, all methods
share the same encoder structure and train with alternative update steps, which is the same as SD-
HC. The baselines are summarized below:

• MMD (Lin et al., 2020) minimizes the Maximum Mean Discrepancy between different
distributions in the subspace of one attribute under different values of another attribute.

• DTS (Li et al., 2022) adversarially trains attribute predictors to make one attribute unpre-
dictable from the representations of another.

1https://github.com/microsoft/nni
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Table 19: Full comparison with baselines on CMNIST dataset (mean±std, in percentage). The nota-
tions follow Table 1.

Method Test 1 (correlated) Test 2 (uncorrelated) Test 3 (anticorrelated)
Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

BASE 90.1 ±0.3 90.1 ±0.3 83.1 ±0.3* 83.1 ±0.3* 76.8 ±0.8* 76.8 ±0.8*
MMD 64.0 ±11.4* 58.9 ±16.0* 61.4 ±8.8* 56.2 ±13.3* 58.2 ±6.9* 52.8 ±11.7*
DTS 69.9 ±4.1* 69.9 ±4.1* 65.1 ±2.9* 65.1 ±2.9* 61.5 ±2.2* 61.5 ±2.2*

IDE-VC 63.2 ±3.1* 62.9 ±3.1* 58.8 ±2.5* 58.5 ±2.8* 53.9 ±2.2* 53.3 ±2.7*
MI 66.4 ±1.8* 66.0 ±1.8* 62.8 ±1.9* 62.4 ±1.9* 59.6 ±1.4* 59.0 ±1.8*

A-CMI 72.2 ±7.2* 71.2 ±8.1* 66.8 ±4.9* 65.8 ±5.8* 61.1 ±3.9* 60.0 ±4.4*
HFS 81.1 ±1.4* 80.9 ±1.4* 72.5 ±1.2* 72.3 ±1.2* 63.5 ±0.8* 63.1 ±0.8*

SD-HC (ours) 88.6 ±0.5 88.6 ±0.8 85.9 ±0.9 85.9 ±1.0 82.9 ±1.1 82.9 ±0.8

Improvement ↓ 1.5 % ↓ 1.5 % ↑2.8 % ↑2.8 % ↑6.1 % ↑6.1 %

Table 20: Full comparison with baselines on CFashion-MNIST dataset (mean±std, in percentage).
The notations follow Table 1.

Method Test 1 (correlated) Test 2 (uncorrelated) Test 3 (anticorrelated)
Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

BASE 93.6 ±0.3 93.6 ±0.3 84.2 ±0.8 84.2 ±0.8 74.8 ±0.9* 74.8 ±0.9*
MMD 91.7 ±0.3 91.7 ±0.3 79.0 ±1.3* 79.0 ±1.3* 65.8 ±2.9* 65.6 ±3.1*
DTS 83.6 ±7.7* 83.6 ±7.7* 71.0 ±5.0* 71.0 ±5.0* 58.4 ±3.2* 58.4 ±3.2*

IDE-VC 90.0 ±1.2 90.0 ±1.2 79.4 ±1.0* 79.4 ±1.0* 67.5 ±0.9* 67.4 ±1.0*
MI 70.6 ±9.8* 70.2 ±11.3* 62.3 ±5.5* 61.8 ±7.5* 54.2 ±3.4* 53.5 ±4.8*

A-CMI 72.0 ±11.3* 70.0 ±12.8* 64.7 ±6.1* 60.8 ±8.1* 58.2 ±4.2* 52.4 ±4.5*
HFS 86.2 ±3.4* 86.1 ±3.5* 72.6 ±1.7* 72.1 ±2.1* 57.9 ±3.7* 56.7 ±3.7*

SD-HC 93.3 ±5.1* 93.3 ±5.1* 86.3 ±4.6* 86.3 ±4.6* 79.4 ±5.3* 79.4 ±5.3*
Improvement ↓ 0.3 % ↓ 0.3 % ↑ 2.1 % ↑ 2.1 % ↑ 4.6 % ↑ 4.6 %

Table 21: Full comparison with baselines on Canine-BG dataset (mean±std, in percentage). The
notations follow Table 1.

Method Test 1 (correlated) Test 2 (uncorrelated) Test 3 (anticorrelated)
Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

BASE 85.6 ±5.3 85.6 ±6.3 72.0 ±5.5* 72.0 ±6.1* 62.1 ±7.9* 62.0 ±8.3*
MMD 56.4 ±3.7* 45.6 ±11.0* 56.7 ±4.9* 45.6 ±11.9* 56.5 ±6.1* 46.3 ±13.1*
DTS 77.9 ±4.0* 77.9 ±4.5* 71.4 ±3.5* 71.4 ±3.8* 61.3 ±5.0* 61.3 ±5.5*

IDE-VC 80.2 ±3.0* 80.2 ±3.5* 70.2 ±3.2* 70.0 ±3.6* 58.5 ±4.5* 58.3 ±5.0*
MI 69.0 ±6.0* 67.7 ±7.0* 67.7 ±5.5* 65.9 ±6.5* 64.4 ±6.0* 62.4 ±7.0*

A-CMI 76.8 ±4.5* 76.8 ±5.0* 68.1 ±4.0* 68.1 ±4.5* 58.6 ±5.0* 58.6 ±5.5*
Hausdorff 82.0 ±2.8* 81.9 ±2.9* 69.1 ±1.8* 69.0 ±2.0* 57.1 ±1.4* 57.0 ±1.7*

SD-HC 84.8 ±3.0 84.8 ±3.2 80.6 ±2.8 80.5 ±3.0 75.2 ±3.5 75.1 ±3.8

Improvement ↓ 0.8 % ↓ 0.8 % ↑ 8.6 % ↑ 8.5 % ↑ 10.8 % ↑ 12.7 %

• IDE-VC (Yuan et al., 2021) minimizes the unconditional MI between the representations
of different attributes by adversarially training a predictor that predicts the representations
of one attribute from those of another.

• MI (Cheng et al., 2022) and A-CMI (Funke et al., 2022) minimize the unconditional mutual
information and the attribute-based conditional mutual information between the representa-
tions of different attributes, respectively. These two methods minimize MI by adversarially
training an unconditional or conditional discriminator as the proposed method. We train
two discriminators for A-CMI to minimize conditional mutual information based on both
a1 and a2 as in (Funke et al., 2022).

• HFS (Roth et al., 2023) minimizes the Hausdorff distance between two representation sets
to factorize the supports of different representation subspaces, where we use Euclidean
distance as the distance measure between different representations from the same subspace.
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J FULL RESULTS ON CMNIST AND CFASHION-MNIST DATASET

The full comparisons with baselines on CMNIST, CFashion-MNIST, and Canine-BG datasets are
presented in Table 19, Table 20, and Table 21, respectively, from which we observe that the ad-
vantage of SD-HC increases as correlation shift increases from test 1 to test 3. Detailed method
behaviour of BASE, A-CMI, and SD-HC are analyzed in Section 5.4.
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