

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SUPervised DISENTANGLEMENT UNDER HIDDEN CORRELATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Disentangled representation learning (DRL) is a powerful paradigm for improving the generalization of representations. While recent DRL methods attempt to handle attribute correlations by enforcing conditional independence based on attributes, they overlook the realities of complex multi-modal data distributions and hidden correlations under attributes. We theoretically show that, under such hidden correlations, existing methods lose mode information and fail to achieve disentanglement. To address this gap, we introduce Supervised Disentanglement under Hidden Correlations (SD-HC), a framework that explicitly discovers data modes under attributes and minimizes mode-based conditional mutual information. Theoretically, we establish that SD-HC provides sufficient conditions for disentanglement in the presence of hidden correlations, preserving mode and attribute information. Empirically, SD-HC shows improved generalization compared to the state-of-the-art baselines across toy data and **seven** real-world datasets. Code is available at <https://anonymous.4open.science/r/SD-HC-1FAD>.

1 INTRODUCTION

Disentangled representation learning (DRL) aims to encode each data attribute in its corresponding representation subspace, which holds great promise in enhancing generalization to unseen scenarios (Matthes et al., 2023; Qian et al., 2021), enabling controllable generative modeling (Yuan et al., 2021), and improving fairness (Locatello et al., 2019a). In the supervised setting, each representation subspace is learned under the label supervision of its corresponding attribute, while being disentangled from other attributes.

Supervised DRL methods typically assume independence between attributes. In addition to supervised prediction, mutual information (MI) minimization (Kwon et al., 2020; Yuan et al., 2021; Su et al., 2022) is commonly adopted to achieve disentanglement by enforcing independence between the representations of different attributes. The independence assumption is often violated in real-world data, where correlations are prevalent. Taking human activities as an example, different users have different behavior patterns, and each user tends to engage in some activities more frequently than others, exhibiting correlations between activity and user identity (ID) attributes, as shown in Figure 1(a). For correlated attributes, enforcing representation independence causes at least one subspace to lose attribute information (Funke et al., 2022).

To disentangle correlated attributes, attribute-based conditional mutual information minimization (A-CMI) (Funke et al., 2022) enforces conditional representation independence that preserves attribute information. However, when a certain attribute takes a value, underlying variations related to this attribute may lead to a complex *multi-modal* data distribution, characterized by multiple

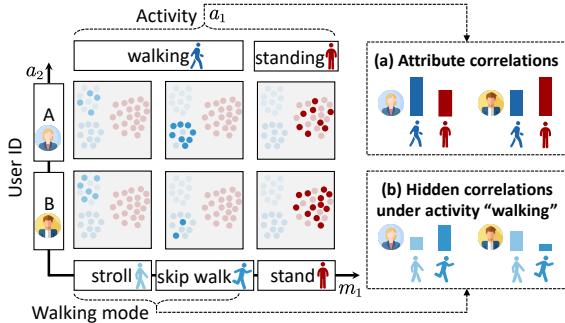


Figure 1: Correlated human activity data. The distributions of (a) “walking” / “standing” and (b) “stroll” / “skip walk” under “walking” differ between users, exhibiting correlations.

high-density regions, each referred to as a *mode*. The mode under this value of this attribute may be correlated with other attributes. Continuing with the human activity example, when activity attribute takes the value “walking”, variations in pace, stride, and posture may lead to different walking modes, the relaxed “stroll” and energetic “skip walk”; different users have more subtle differences in their behavior patterns, exhibiting correlations between walking mode and user ID attribute, as shown in Figure 1(b). In this case, A-CMI may cause the loss of mode information (as proved in Proposition 1), which is important for attribute prediction (Nie et al., 2020; Sugiyama, 2021; Li et al., 2017). The modes under different attribute values may form adjacent or interleaved cluster structures, where preserving such local structures benefits attribute prediction, e.g., the “skip walk” mode of walking resembles the activity “climbing down”, and explicitly encoding this easily confused mode helps to recognize the “walking” activity.

To address the above problem, we propose Supervised Disentanglement under Hidden Correlations (SD-HC). Instead of focusing on attribute correlations as existing works, we delve into the complex data distributions and hidden correlations under certain attributes. Our contributions are:

- We prove that mode-based CMI minimization is the *necessary and sufficient condition* for supervised disentanglement under hidden correlations and attribute correlations. While existing works have not established the sufficient condition for disentanglement under correlations, we show that CMI minimization can achieve disentanglement under various correlation types, establishing the first *sufficient condition*.
- We introduce a novel supervised DRL method under hidden correlations, SD-HC, designed as a model-agnostic framework that implements the sufficient conditions for disentanglement based on discovered data modes. By minimizing mode-based CMI, SD-HC disentangles attributes while preserving mode information that existing methods tend to lose.
- We extensively evaluate SD-HC on toy data and **seven** real-world datasets, demonstrating the superiority of SD-HC in attribute prediction tasks across distribution shifts and train-test correlation shifts. Comprehensive investigations validate the generalization ability and predictive ability of the learned representations.

2 RELATED WORK

Disentangled Representation Learning. DRL methods can be roughly divided into unsupervised, weakly-supervised, and supervised DRL. Unsupervised DRL learns independent representation dimensions that each correspond to an unknown attribute by self-supervision, e.g., variational auto-encoding (Higgins et al., 2016; Kim & Mnih, 2018; Chen et al., 2018) or contrastive learning (Zimmermann et al., 2021; Matthes et al., 2023). Yet, the feasibility of purely unsupervised disentanglement has been questioned (Locatello et al., 2019b), which prompts DRL with weak supervision (Shu et al., 2020), e.g., similarity (Chen & Batmanghelich, 2020) or grouping information (Bouchacourt et al., 2018). Supervised DRL learns one multi-dimensional representation subspace for each labeled attribute (Qian et al., 2021; Yuan et al., 2021). Generally, DRL methods assume attribute independence and enforce representation independence between different attributes for disentanglement. We study supervised DRL, which usually minimizes the MI between representations (Kwon et al., 2020; Yuan et al., 2021; Su et al., 2022), minimizes the Maximum Mean Discrepancy (MMD) between representation distributions (Li et al., 2018; Lin et al., 2020), or makes one attribute unpredictable from the representations of another by adversarial training (Qian et al., 2021; Li et al., 2022; Lee et al., 2021).

Disentanglement Under Attribute Correlations. Recent works show that independence constraints fail to disentangle correlated attributes, causing entanglement for unsupervised DRL (i.e., one dimension encodes several correlated attributes) (Träuble et al., 2021) or hurting the predictive ability of representations for supervised DRL (Funke et al., 2022). To disentangle correlated attributes for unsupervised DRL, adding weak supervision could correct the model (Träuble et al., 2021; Dittadi et al., 2021); using Hausdorff distance can relax independence constraints to encourage factorized supports instead of factorized distributions (Wang & Jordan, 2024; Roth et al., 2023). These methods can somewhat alleviate entanglement but do not guarantee disentanglement theoretically (Funke et al., 2022; Wang & Jordan, 2024).

108 More recently, conditional independence constraints have been introduced to disentangle correlated
 109 attributes. For supervised DRL, A-CMI (Funke et al., 2022) minimizes the CMI based on each at-
 110 tribute between its representation and the joint representations of other attributes, and proves this to
 111 be the *necessary* condition for disentanglement. For DRL in reinforcement learning (RL), CMID
 112 (Dunion et al., 2023) assumes RL agents act in a temporal Markov Decision Process, and mini-
 113 mizes the CMI based on observed action-representation histories to bypass unobserved current state
 114 features.

115 To the best of our knowledge, existing works have only established *necessary* conditions for DRL
 116 under correlations (Wang & Jordan, 2024; Funke et al., 2022), and the sufficiency of CMI minimiza-
 117 tion has only been validated on linear regression examples without formal proofs. We give the first
 118 *sufficient* conditions for DRL under correlations based on CMI, which hold for multiple attributes
 119 and varying types of correlations.

3 DISENTANGLING UNDER HIDDEN CORRELATIONS

3.1 PROBLEM FORMULATION

121 **Data Generation Process.** We assume data are generated according to the causal process in Defini-
 122 tion 1 (Figure 2) based on three key assumptions as listed below. The first is a standard assumption in
 123 DRL that must strictly hold (Suter et al., 2019; Wang & Jordan, 2024), while the others are specific
 124 to our method but can be relaxed, as discussed near the end of Section 3.3.

125 **Definition 1.** (Disentangled Causal Process). Consider a causal gener-
 126 ative model $p(\mathbf{x}|\mathbf{a})$ for data \mathbf{x} with K attributes $\mathbf{a} = (a_1, a_2, \dots, a_K)$. A
 127 certain attribute a_k is associated with a categorical mode variable m_k . At-
 128 tributes \mathbf{a} are influenced by L confounders $\mathbf{c}^a = (c_1^a, \dots, c_L^a)$. Conditioned
 129 on a_k , mode variable m_k and other attributes \mathbf{a}_{-k} are influenced by Q
 130 confounders $\mathbf{c}^m = (c_1^m, \dots, c_Q^m)$. This causal model is called disentangled
 131 if and only if it follows a structural causal model (SCM) (Pearl, 2009) of
 132 the form:

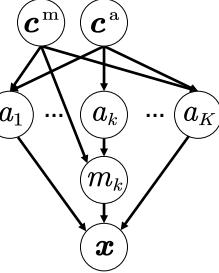
$$\begin{aligned} \mathbf{c}^a &\leftarrow \mathbf{n}^{ca}, \mathbf{c}^m \leftarrow \mathbf{n}^{cm} \\ a_j &\leftarrow h_j^a(S_j^a, S_j^m, \mathbf{n}_j^a), S_j^a \subset \{c_1^a, \dots, c_L^a\}, S_j^m \subset \{c_1^m, \dots, c_Q^m\}, j \neq k \\ a_k &\leftarrow h_k^a(S_k^a, \mathbf{n}_k^a), S_k^a \subset \{c_1^a, \dots, c_L^a\}, k \in \{1, \dots, K\} \\ m_k &\leftarrow h^m(a_k, \mathbf{c}^m, \mathbf{n}^m) \\ \mathbf{x} &\leftarrow g(\mathbf{a}_{-k}, m_k, \mathbf{n}^x) \end{aligned} \tag{1}$$

133 with functions g, h_i^a, h^m , jointly independent noises $\mathbf{n}^{ca}, \mathbf{n}^{cm}, \mathbf{n}_i^a, \mathbf{n}^m, \mathbf{n}^x$, and confounder subsets
 134 S_i^a, S_j^m , for $i = 1, \dots, K, j = 1, \dots, K, j \neq k$. $-k$ denotes the set of attribute indices $\{j\}_{j \neq k}$.

135 **Key Assumptions.** ① Each attribute is an *elementary ingredient* that has no causal effect on other
 136 attributes (Suter et al., 2019), i.e., interventions on one attribute do not influence others. ② For
 137 some value α of attribute a_k , $p(\mathbf{x}|a_k = \alpha)$ might be a *multi-modal distribution*, e.g., a Gaussian
 138 mixture. Each high-density region of the distribution corresponds to a cluster and is referred to as a
 139 *mode*. Modes are indexed sequentially by attribute value (e.g., 0 \sim 2 for $\alpha = 0$, 3 \sim 5 for $\alpha = 1$),
 140 and a categorical mode label m_k is assigned to each sample. ③ Correlations may arise from two
 141 confounder sets: \mathbf{c}^a induces *attribute correlations* $I(a_i; a_{i'})$, $i \neq i'$; \mathbf{c}^m induces *hidden correlations*
 142 $I(m_k; a_{-k}|a_k) = \sum_{\alpha} p_{a_k}(a_k = \alpha) I(m_k; a_{-k}|a_k = \alpha)$, i.e., the expectation of the correlation
 143 between the modes under $a_k = \alpha$ and other attributes a_{-k} . $I(\cdot; \cdot)$ denotes mutual information.

3.2 THE DEFINITIONS OF DISENTANGLING REPRESENTATIONS

144 The goal of supervised DRL is to learn disentangled representations \mathbf{z}_i for each labeled attribute a_i
 145 by a mapping $f(\mathbf{x}) = (\mathbf{z}_i)_{i=1}^K, \mathbf{z}_i \in \mathbb{R}^D$. Disentangled \mathbf{z}_i should (1) contain all information about
 146 a_i (**Informativeness**), including any mode information, i.e., $I(\mathbf{z}_i; a_i) = H(a_i)$ and $I(\mathbf{z}_i; m_i) =$
 147 $H(m_i)$, and (2) respect the causal generative structure by remaining invariant to interventions on
 148 another attribute $a_j, j \neq i$ (**Independence**), as in Definition 2 following (Suter et al., 2019).



149 Figure 2: Causal graph
 150 of data generation un-
 151 der hidden correlations
 152 regarding a certain a_k .

162 **Definition 2.** (Disentangled Representation). *Representation z is disentangled, if for $i = 1, \dots, K$:*

$$164 \quad p(z_i | \text{do}(a_{-i})) = p(z_i) \quad (2)$$

165 where a_{-i} indicates the joint variable of $\{a_j\}_{j \neq i}$, and $\text{do}(a_{-i})$ assigns values to a_{-i} by external
166 intervention outside the causal process and leaves a_i unchanged. Equation 2 requires that z_i depends
167 solely on a_i and is unaffected by changes in other attributes, reflecting post-interventional invariance.
168

169 **3.3 THEORETICAL GUARANTEES FOR DISENTANGLING WITH MODE-BASED CMI
170 MINIMIZATION**

172 We focus on the DRL of a certain attribute a_k with underlying modes. For simplicity, we take $K =$
173 $2, k = 1$ as an example. The causal graph of representation learning is shown in Figure 3c. While
174 this causal structure remain fixed, different learning objectives make z_k encode different information
175 from data, resulting in varying distributions of z_k . We prove that under the data generation process
176 of Definition 1, A-CMI fails under hidden correlations, while mode-based CMI minimization is
177 the necessary and sufficient condition for supervised disentanglement under various correlations.
178 Finally, our results are generalized to multiple attributes and simple cases.

179 **A-CMI Fails Under Hidden Correlations.** We show that enforcing attribute-based conditional
180 independence (A-CMI), $I(z_1; z_2 | a_1) = 0$, could hurt the predictive ability of representations, which
181 is formalized in Proposition 1 and proved in Appendix B.2.

182 **Proposition 1.** *If $I(m_1; a_2 | a_1) > 0$, then enforcing $I(z_1; z_2 | a_1) = 0$ leads to at least one of
183 $I(z_1; m_1) < H(m_1)$ and $I(z_2; a_2) < H(a_2)$.*

184 where $H(\cdot)$ denotes entropy, and the MI $I(\cdot; \cdot)$ between a representation and an attribute measures
185 the amount of information the representation contains about the attribute. $I(z_1; m_1) < H(m_1)$
186 indicates that z_1 loses mode information about m_1 , which is important for predicting a_1 , while
187 $I(z_2; a_2) < H(a_2)$ indicates that z_2 loses attribute information for predicting a_2 . Thus, minimizing
188 attribute-based CMI hurts the predictive ability of representations under hidden correlations.
189 This is an extension of Proposition 3.1 in (Funke et al., 2022), which proves that unconditional MI
190 minimization fails under attribute correlations.

191 **The Necessary Condition for Disentanglement.** A proper independence constraint should be a
192 necessary condition for disentanglement, preserving the predictive ability of representations (**Informative**
193 **ness**). To identify such constraint, we turn to the properties of the true *latent* representations
194 $z_i^l, i = 1, 2$. For example, on human activity data with activity attribute a_1 , z_1^l encodes the body
195 movements that characterize activities, which are unaffected by changes in user behavior patterns.

196 Based on Definition 1, we build the
197 causal graphs of data generation with
198 $z_i^l, i = 1, 2$. Since the disentangled z_i
199 aims to recover the true latent z_i^l and
200 retain its properties, we derive conditional
201 independence between the true *latent*
202 representations as a necessary condition
203 for disentanglement. As stated
204 by the causal graph theorems in
205 Appendix D.1, two variables X, Y are
206 conditionally independent given a variable
207 that blocks all *backdoor paths* between
208 them, i.e., the paths that flow backward
209 from X or Y . In Figure 3(a), we
210 consider only attribute correlations as A-
211 CMI, where a_1 blocks the only *backdoor path*
212 between z_1^l and z_2^l . In comparison,
213 we consider additional hidden
214 correlations in Figure 3(b), where m_1
215 blocks all *backdoor paths*, yet a_1 fails to
block the path via c^m (consistent with the failure of A-CMI
under hidden correlations). Thus, under hidden correlations and attribute correlations, the true la-
tent representations are conditionally independent based on m_1 , a property the learned disentangled

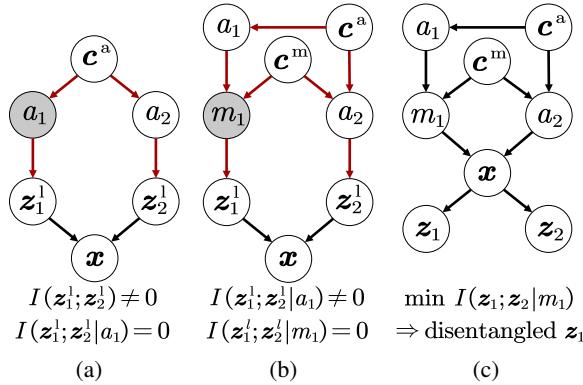


Figure 3: Causal graphs of representations. (a) and (b): Data generation with the true *latent* representations z_1^l, z_2^l , where Red arrows indicate the *backdoor paths* between them. (c): Representation learning that produces the *learned* representations z_1, z_2 .

216 representations must retain:

217

$$I(z_1^1; z_2^1 | m_1) = 0 \Rightarrow \text{If } z_1 \text{ is the disentangled representation of } a_1, \text{ then } I(z_1; z_2 | m_1) = 0 \quad (3)$$

218 **The Sufficient Condition for Disentanglement.** We further show that, assuming data are generated as in Definition 1, mode-based CMI minimization yields **Independence** and thus suffices for supervised disentanglement under various correlations, as formalized in Proposition 2.

219 **Proposition 2.** *Under the data generation process of Definition 1 ($K = 2, k = 1$), if $I(z_1; m_1) = H(m_1)$, $I(z_2; a_2) = H(a_2)$, and $I(z_1; z_2 | m_1) = 0$, then $p(z_1 | \text{do}(a_2)) = p(z_1)$, i.e., z_1 is the disentangled representation of a_1 .*

220 As the impact of external interventions cannot be directly evaluated (Wang & Jordan, 2024), we prove Proposition 2 in two steps. First, using mutual information theory, we show that mode-based CMI minimization leads to conditional independence $I(z_1; a_2 | m_1) = 0$, limiting the information z_1 contains about a_2 (Lemma 2.1, proof in Appendix B.3.1). Second, using do-calculus on the causal graph in Figure 3(c), we show that this conditional independence implies post-interventional invariance $p(z_1 | \text{do}(a_2)) = p(z_1)$ based on the data generation process of Definition 1 (Lemma 2.2, see Appendix B.3.2). Notably, Lemma 2.1 reveals the validity under attribute correlations and hidden correlations.

221 **Lemma 2.1.** *If $I(z_1; m_1) = H(m_1)$, $I(z_2; a_2) = H(a_2)$, and $I(z_1; z_2 | m_1) = 0$, then $I(z_1; a_2) = I(m_1; a_2)$ and $I(z_1; a_2 | m_1) = 0$.*

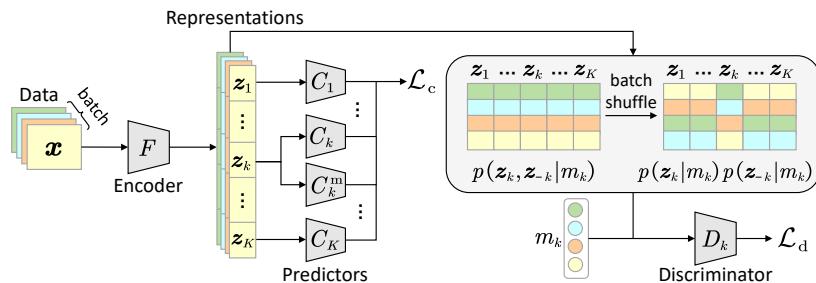
222 where $I(m_1; a_2)$ denotes the *total hidden correlations*, decomposing as the sum of attribute correlations and hidden correlations, i.e., $I(m_1; a_2) = I(a_1; a_2) + I(m_1; a_2 | a_1)$, as proved in Appendix B.1. Thereby, $I(z_1; a_2) = I(m_1; a_2)$ shows that z_1 contains information about a_2 only if it is induced by correlations regarding its attribute or mode. Further, $I(z_1; a_2 | m_1) = 0$ shows that z_1 contains no additional information about a_2 knowing its mode.

223 **Scope of Applicability: Key Assumptions and Generalizations.** Our theoretical results are based on the data generation process of Definition 1, relying on the causal structure (Assumption 1, attributes as elementary ingredients) and not restricted to specific functional forms or parameterizations. They naturally extend to (1) *multiple attributes* ($K > 2$), where the extension mainly involves replacing single variables a_2, z_2 with joint variables a_{-k}, z_{-k} (Equation 7 and Corollaries 2, 2.1, 2.2, see Appendix B.4); (2) *uni-modal distributions with attribute correlations*, where only one mode exists under each attribute value (Assumption 2 relaxation), and mode-based CMI degrades to attribute-based CMI; and (3) *uncorrelated data* as correlation strengths vanish (Assumption 3 relaxation). Although our results strictly rely on the elementary-ingredient assumption, they extend to arbitrary parameterizations, numbers of attributes/modes, and correlation types/strengths.

224 **Theoretical Contributions.** We prove the sufficiency of CMI minimization for supervised disentanglement, which has only been validated on linear regression examples (Funke et al., 2022). *This is the first attempt to establish sufficient conditions for disentanglement under correlations*, unlike necessary conditions before (Wang & Jordan, 2024; Funke et al., 2022). Our results generalize to multiple attributes and various cases, showing that *one independence constraint is sufficient for the supervised DRL of one attribute*.

225 4 METHOD

226 **Framework.** We show the framework of SD-HC for disentangling a certain attribute a_k with hidden correlations in Figure 4, which consists of encoder F for learning representations $F(\mathbf{x}) = \mathbf{z} =$



227 Figure 4: SD-HC Framework for disentangling a certain $a_k, k \in \{1, \dots, K\}$ with underlying modes.

($\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_K$), $\mathbf{z}_i \in \mathbb{R}^D$, $i = 1, \dots, K$, predictors $\{C_i\}_{i=1}^K$ for predicting each attribute, predictor C_k^m for predicting mode m_k , and discriminator D_k for minimizing mode-based CMI. Our method builds on mode labels m_k estimated prior to training (see Section 5.1), which is an external step that can be tailored to the data. SD-HC is architecture-agnostic and can be used in various applications.

The framework can be expanded to disentangle multiple attributes by adding one independence constraint to disentangle each attribute. The form of independence constraints depends on the correlation types, i.e., attribute-based CMI for attribute correlations or mode-based CMI for hidden correlations. For supervised constraints, $I(\mathbf{z}_i; a_i) = H(a_i)$, $i = 1, \dots, K$ are always required, along with one additional constraint $I(\mathbf{z}_i; m_i) = H(m_i)$ for each attribute a_i with underlying modes. For additional constraints, discriminators and mode predictors should be added accordingly.

Losses. The losses are strictly designed according to the sufficient conditions for disentanglement in Proposition 2. As commonly done in adversarial training (Chen et al., 2023), optimizations w.r.t. different losses are performed alternatively. See Appendix F for the detailed training process.

(1) To enforce informativeness constraints such as $I(\mathbf{z}_k; a_k) = H(a_k)$, since maximizing mutual information between representations and their labels equals minimizing the standard cross-entropy (Boudiaf et al., 2020), we minimize supervised loss \mathcal{L}_c with attribute and mode prediction losses $\mathcal{L}_{ac}, \mathcal{L}_{mc}$ as follows:

$$\mathcal{L}_c = \mathcal{L}_{ac} + w_m \cdot \mathcal{L}_{mc}, \quad \mathcal{L}_{ac} = \mathbb{E}_{\mathbf{x}}[\sum_{i=1}^K l_{ce}(C_i(\mathbf{z}_i), a_i)], \quad \mathcal{L}_{mc} = \mathbb{E}_{\mathbf{x}}[l_{ce}(C_k^m(\mathbf{z}_k), m_k)] \quad (4)$$

where w_m is the weight of mode prediction loss, and $l_{ce}(\cdot)$ denotes cross entropy function.

(2) To minimize mode-based CMI $I(\mathbf{z}_k; \mathbf{z}_{-k}|m_k)$, since $I(\mathbf{z}_k; \mathbf{z}_{-k}|m_k) = 0$ is equivalent to $p(\mathbf{z}_k, \mathbf{z}_{-k}|m_k) = p(\mathbf{z}_k|m_k)p(\mathbf{z}_{-k}|m_k)$, we minimize CMI by matching the joint distribution $p(\mathbf{z}_k, \mathbf{z}_{-k}|m_k)$ and the marginal distribution $p(\mathbf{z}_k|m_k)p(\mathbf{z}_{-k}|m_k)$ with adversarial training (Belghazi et al., 2018). For mode μ , representations $(\mathbf{z}_1, \mathbf{z}_2)$ are sampled from their joint and marginal distributions by the following procedure: first, we select data in the mini-batch under $m_k = \mu$; the joint representation pairs are formulated by concatenating $\mathbf{z}_1, \mathbf{z}_2$ of the same sample, and the marginal representation pairs are formulated by concatenating \mathbf{z}_k with \mathbf{z}_{-k} jointly shuffled within this mode (Funke et al., 2022; Dunion et al., 2023). Given the sampled representation pairs, Jensen-Shannon Divergence is used to measure the discrepancy between the two distributions for stability (Hjelm et al., 2019). Discrimination loss \mathcal{L}_d is formulated as follows, where $l_{bce}(\cdot)$ denotes binary cross entropy function:

$$\mathcal{L}_d = \mathbb{E}_{m_k}[\mathbb{E}_{(\mathbf{z}_k, \mathbf{z}_{-k})|m_k}[l_{bce}(D(\mathbf{z}_k, \mathbf{z}_{-k}, m_k), 1)] + \mathbb{E}_{\mathbf{z}_k|m_k, \mathbf{z}_{-k}|m_k}[l_{bce}(D(\mathbf{z}_k, \mathbf{z}_{-k}, m_k), 0)]] \quad (5)$$

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate on toy data and seven real-world datasets, namely Colored MNIST (CMNIST) constructed from MNIST (Arjovsky et al., 2019), Colored Fashion-MNIST (CFashion-MNIST) constructed from Fashion-MNIST (Xiao et al., 2017), Canine-Background (Canine-BG) constructed from ImageNet (Deng et al., 2009), UCI-HAR (Anguita et al., 2013), RealWorld (Sztyler & Stuckenschmidt, 2016), HHAR (Stisen et al., 2015), and MFD (Lessmeier et al., 2016). We define attributes a_1, a_2 as the generative factors of dimensions $\mathbf{x}_1, \mathbf{x}_2$ on toy data, parity (“even” or “odd”) and color of digits on CMNIST, the style (“sporty” or “chic”) and color of clothing on CFashion-MNIST, the functional categories and image backgrounds of dogs on Canine-BG, fault type and operating condition on MFD, and activity and user ID on other wearable human activity recognition (WHAR) datasets. The task is to learn disentangled representations for a_1 with underlying modes, which correspond to digits and items on CMNIST and CFashion-MNIST, respectively, e.g., digit “2” under parity “even”, item “sneaker” under style “sporty”, and breed “silky terrier” under functional category “pet”. See Appendix G for details.

Evaluation Protocols. On toy data, CMNIST, CFashion-MNIST, and Canine-BG with constructed modes, correlation shifts are introduced by sampling (Roth et al., 2023). We train on correlated data and evaluate on 3 test sets with increasing train-test correlation shifts, namely test 1 (same correlations), test 2 (no correlations), and test 3 (anticorrelations). For CMNIST, CFashion-MNIST,

324 Table 1: Comparison with baselines (mean \pm std, in percentage). “*” indicates SD-HC is statistically
 325 superior to baselines by pairwise t-test at a 95% significance level. The best and runner-up results are
 326 **bold** and underlined, respectively. Improvements by SD-HC are computed over the best baseline.

Method	CMNIST		CFashion-MNIST		Canine-BG		UCI-HAR		RealWorld		HHAR		MFD	
	Acc.	Mac. F1	Acc.	Mac. F1	Acc.	Mac. F1	Acc.	Mac. F1	Acc.	Mac. F1	Acc.	Mac. F1	Acc.	Mac. F1
BASE	76.8 $\pm 0.8^*$	76.8 $\pm 0.8^*$	74.8 $\pm 0.9^*$	74.8 $\pm 0.9^*$	<u>62.1</u> $\pm 7.9^*$	<u>62.0</u> $\pm 8.3^*$	71.2 $\pm 2.8^*$	<u>69.7</u> $\pm 3.6^*$	<u>64.6</u> $\pm 1.4^*$	<u>65.4</u> $\pm 1.4^*$	80.8 $\pm 1.6^*$	<u>80.9</u> $\pm 2.0^*$	72.7 $\pm 1.6^*$	76.3 $\pm 0.9^*$
MMD	58.2 $\pm 6.9^*$	52.8 $\pm 11.7^*$	65.8 $\pm 2.9^*$	<u>65.6</u> $\pm 3.1^*$	56.5 $\pm 6.1^*$	46.3 $\pm 13.4^*$	70.3 $\pm 3.7^*$	<u>66.2</u> $\pm 5.5^*$	<u>66.0</u> $\pm 1.9^*$	<u>65.2</u> $\pm 2.3^*$	80.9 $\pm 1.2^*$	80.5 $\pm 1.7^*$	78.2 $\pm 1.9^*$	79.1 $\pm 1.6^*$
DTS	61.5 $\pm 2.2^*$	61.5 $\pm 2.2^*$	58.4 $\pm 3.2^*$	58.4 $\pm 3.2^*$	<u>61.3</u> $\pm 5.0^*$	<u>61.3</u> $\pm 5.5^*$	72.8 $\pm 3.3^*$	70.1 $\pm 2.6^*$	64.4 $\pm 2.3^*$	64.9 $\pm 1.5^*$	79.8 $\pm 2.4^*$	79.7 $\pm 1.7^*$	67.0 $\pm 2.2^*$	67.4 $\pm 1.5^*$
IDE-VC	53.9 $\pm 2.9^*$	53.3 $\pm 2.7^*$	67.5 $\pm 0.9^*$	67.4 $\pm 1.0^*$	58.5 $\pm 4.5^*$	<u>58.3</u> $\pm 5.0^*$	73.6 $\pm 3.1^*$	<u>73.2</u> $\pm 3.4^*$	65.2 $\pm 1.3^*$	65.0 $\pm 1.1^*$	80.7 $\pm 2.0^*$	80.6 $\pm 1.4^*$	74.1 $\pm 1.8^*$	76.3 $\pm 1.1^*$
MI	59.6 $\pm 1.4^*$	59.0 $\pm 1.8^*$	54.2 $\pm 3.4^*$	53.5 $\pm 4.8^*$	<u>64.4</u> $\pm 6.0^*$	62.4 $\pm 7.0^*$	74.9 $\pm 2.1^*$	<u>74.5</u> $\pm 2.7^*$	<u>66.0</u> $\pm 1.8^*$	<u>65.5</u> $\pm 1.0^*$	80.9 $\pm 1.7^*$	80.7 $\pm 2.1^*$	76.3 $\pm 1.2^*$	77.6 $\pm 1.6^*$
A-CMI	61.1 $\pm 3.9^*$	60.0 $\pm 4.4^*$	58.2 $\pm 4.4^*$	52.4 $\pm 4.5^*$	<u>58.6</u> $\pm 5.0^*$	<u>58.6</u> $\pm 5.5^*$	71.4 $\pm 3.4^*$	70.0 $\pm 3.0^*$	<u>65.4</u> $\pm 1.5^*$	<u>65.5</u> $\pm 1.9^*$	80.2 $\pm 1.8^*$	80.3 $\pm 2.3^*$	78.8 $\pm 1.4^*$	79.8 $\pm 0.7^*$
HFS	63.5 $\pm 0.8^*$	63.1 $\pm 0.8^*$	57.9 $\pm 3.7^*$	56.7 $\pm 3.7^*$	<u>57.1</u> $\pm 1.4^*$	<u>57.0</u> $\pm 1.7^*$	67.1 $\pm 3.5^*$	65.1 $\pm 4.0^*$	48.9 $\pm 1.8^*$	39.8 $\pm 1.5^*$	78.2 $\pm 1.2^*$	78.3 $\pm 1.5^*$	75.4 $\pm 1.7^*$	71.0 $\pm 1.3^*$
SD-HC	82.9 ± 1.1	82.9 ± 0.8	79.4 ± 5.3	79.4 ± 5.3	75.2 ± 3.5	75.1 ± 3.8	83.0 ± 3.0	83.3 ± 3.6	69.8 ± 1.9	69.9 ± 1.4	84.5 ± 2.3	84.2 ± 1.5	82.5 ± 2.0	82.5 ± 1.5
Improvement	↑6.1 %	↑6.1 %	↑4.6 %	↑4.6 %	↑10.8 %	↑12.7 %	↑8.1 %	↑8.8 %	↑3.8 %	↑4.4 %	↑3.6 %	↑3.3 %	↑3.7 %	↑2.7 %

334
 335 and **Canine-BG** in Table 1, 2, we train under both attribute correlations and hidden correlations
 336 and report the results on test 3 (see Appendix J for full results). For other analyses, we train under
 337 $cor_h = I(m_1; a_2|a_1) > 0$ to focus on hidden correlations. *On other datasets with unknown*
 338 *modes, we construct out-of-distribution (OOD) tasks under natural correlations.* By leave-one-
 339 group-out validation based on a_2 (user ID or operating condition), training and test sets involve
 340 non-overlapping values of a_2 , inducing representation distribution shifts and test-time changes in
 341 hidden correlations due to confounding on disjoint a_2 values, e.g., different training/test users with
 342 distinct behaviors and correlations with activities. *We focus on comparing the attribute prediction*
 343 *performance of a_1 under correlation shifts or distribution shifts, evaluated by accuracy (Acc.) and*
 344 *macro F1 score (Mac. F1), Following (Funke et al., 2022).* High performance under train-test shifts
 345 *can be regarded as evidence of disentanglement, as only disentangled representations can support*
 346 *the robust prediction of attributes under various train-test shifts.* For statistical tests, each experiment
 347 is repeated using 5 varying seeds. See details in Appendix G.

348 **Mode Label Acquisition.** For SD-HC, we estimate mode labels with an off-the-shelf instantiation:
 349 pre-training encoder with the prediction loss of a_1 and running k-means on the representations z_1
 350 per attribute value α , which requires no extra loss or sub-network. *See Appendix F for the detailed*
 351 *algorithm.* The number of modes N_m is shared across α and tuned as a hyperparameter. Extensive
 352 analysis in Appendix A demonstrates insensitivity to a range of N_m choices, substantial gains from
 353 only 2% weak mode supervision, and strong cluster structure on complex time-series datasets with
 354 up to 48 modes, demonstrating effectiveness compared to other commonly adopted pre-training
 355 methods.

356 **Baselines and Implementations.** We compare with typical DRL methods (**MMD** (Lin et al., 2020),
 357 **DTS** (Li et al., 2022), **IDE-VC** (Yuan et al., 2021), and **MI** (Cheng et al., 2022)), and the state-of-
 358 the-art DRL methods under correlations (**A-CMI** (Funke et al., 2022) and **HFS** (Roth et al., 2023)).
 359 For reference, we include **BASE** trained with only supervised losses. See Appendix I, G, E, H for
 360 details of baselines, implementations, network architectures, and hyperparameters.

363 5.2 COMPARISON WITH BASELINE DRL METHODS

364 The comparison with baseline DRL methods is shown in Table 1, from which we observe:

365 (1) SD-HC consistently shows superiority over the compared baselines, *outperforming the best baseline*
 366 *by an average of 5.8% and 6.1% in accuracy and macro F1 score*, respectively. This indicates
 367 that unsupervised clustering can capture underlying modes on real-world data to facilitate DRL,
 368 enabling SD-HC to better disentangle representations by improving generalization ability while
 369 preserving predictive ability. *Under introduced correlations, the significant advantage of SD-HC on*
 370 *CMNIST and Canine-BG indicates better generalization under the shifts of attribute correlations*
 371 *and hidden correlations.* Under natural correlations, the significant advantage on UCI-HAR indicates
 372 better generalization on real-world OOD data with complex multi-modal distributions and
 373 hidden correlations.

374 (2) Despite considering correlations, A-CMI and HFS still fail to improve over BASE in some cases.
 375 A-CMI deals with attribute correlations, but fails under hidden correlations due to losing important
 376 mode information for attribute prediction. HFS deals with general correlations, yet it is a necessary
 377 condition for disentanglement and cannot guarantee disentanglement (Wang & Jordan, 2024).

378 Table 2: Comparison with variants (mean \pm std). The notations follow Table 1.
379

380 Method	CMNIST		CFashion-MNIST		Canine-DG		UCI-HAR		RealWorld		HHAR		MFD	
	381 Acc.	381 Mac. F1												
SD-HC-MC	76.7 \pm 1.5*	76.7 \pm 1.5*	73.6 \pm 1.3*	73.6 \pm 1.3*	67.2 \pm 3.5*	66.9 \pm 3.7*	80.2 \pm 3.3*	79.7 \pm 4.4*	68.4 \pm 0.8	68.0 \pm 0.9	83.8 \pm 1.4	83.2 \pm 1.5	81.1 \pm 2.1	80.2 \pm 2.3*
SD-HC-MP	77.8 \pm 0.9*	77.8 \pm 1.0*	76.3 \pm 2.0*	76.3 \pm 2.0*	70.2 \pm 3.6*	70.2 \pm 3.6*	77.6 \pm 3.8*	77.5 \pm 4.5*	63.7 \pm 0.9*	63.3 \pm 0.8*	83.5 \pm 1.2	83.4 \pm 1.2	78.4 \pm 2.6*	80.1 \pm 2.3*
SD-HC-A	77.1 \pm 0.9*	77.0 \pm 0.9*	76.1 \pm 1.6*	76.1 \pm 1.6*	70.5 \pm 3.5*	70.4 \pm 3.6*	82.2 \pm 2.2	82.3 \pm 2.7	63.9 \pm 1.6*	63.4 \pm 1.4*	81.9 \pm 1.6*	81.3 \pm 2.1*	81.5 \pm 1.6	81.4 \pm 1.1
SD-HC-MG	79.7 \pm 1.2*	79.7 \pm 1.2*	74.3 \pm 1.5*	74.3 \pm 1.5*	67.9 \pm 3.4*	67.6 \pm 3.5*	82.2 \pm 2.0	82.8 \pm 2.9	68.4 \pm 1.5	68.8 \pm 2.0	80.6 \pm 1.7*	80.2 \pm 2.3*	80.3 \pm 1.5*	80.4 \pm 1.8*
SD-HC-J	76.0 \pm 0.9*	75.9 \pm 1.2*	76.3 \pm 2.5*	76.2 \pm 2.2*	70.2 \pm 3.5*	69.9 \pm 3.6*	79.4 \pm 1.6*	79.1 \pm 1.6*	66.1 \pm 0.8*	65.2 \pm 0.8*	80.5 \pm 0.7*	80.4 \pm 0.8*	79.6 \pm 0.9*	80.0 \pm 0.5*
SD-HC-ID	80.2 \pm 1.5*	80.2 \pm 1.0*	74.6 \pm 1.0*	74.6 \pm 1.0*	71.9 \pm 3.7*	71.5 \pm 3.8*	77.6 \pm 1.8*	76.8 \pm 2.2*	68.3 \pm 1.2	67.8 \pm 1.1	77.2 \pm 1.9*	75.5 \pm 1.5*	80.6 \pm 1.7*	80.9 \pm 1.2
SD-HC-SD	78.3 \pm 1.0*	78.3 \pm 1.0*	74.9 \pm 1.6*	74.9 \pm 1.6*	71.8 \pm 3.6*	71.7 \pm 3.6*	77.4 \pm 1.5*	76.8 \pm 1.8*	66.2 \pm 1.3*	66.6 \pm 1.8*	81.0 \pm 2.4*	81.2 \pm 1.8*	79.2 \pm 1.8*	79.2 \pm 1.3*
SD-HC	82.9 \pm 1.1	82.9 \pm 0.8	79.4 \pm 3.3	79.4 \pm 3.3	75.2 \pm 3.5*	75.1 \pm 3.8*	83.0 \pm 3.0	83.3 \pm 3.6	69.8 \pm 1.9	69.9 \pm 1.4	84.5 \pm 2.3	84.2 \pm 1.5	82.5 \pm 2.0	82.5 \pm 1.5

(3) MMD, DTS, IDE-VC, and MI fail to improve over BASE in some cases, because they overlook correlations and might hurt the predictive ability of representations. Their performance degradation from BASE is especially severe on CMNIST and CFashion-MNIST under large correlation shifts.

391 5.3 COMPARISON WITH VARIANTS

We compare with the following variants: **SD-HC-MP** and **SD-HC-MC** remove the discrimination loss and mode prediction loss, respectively; **SD-HC-A** additionally minimizes attribute-based CMI for a_2 ; **SD-HC-MG** uses Marigold (Mortensen et al., 2023) instead of k-means for clustering in high-dimensional spaces; **SD-HC-J** uses iterative k-means instead of pre-trained kmeans to jointly perform clustering and disentanglement, updating mode labels every few epochs; **SD-HC-ID** and **SD-HC-SD** use individual discriminators and one shared discriminator for modes, respectively, while SD-HC shares discriminator parameters among the modes under the same attribute value. See details in Appendix E. Table 2 shows that:

- (1) SD-HC-MC and SD-HC-MP consistently underperform SD-HC, showing that both discrimination loss and mode prediction loss are crucial for achieving disentanglement. This is in line with the sufficient condition for disentanglement in Proposition 2: While mode prediction loss guides the representations to preserve mode information, discrimination loss enforces conditional independence, removing redundant information about other attributes.
- (2) SD-HC-A does not improve over SD-HC, probably because one independence constraint is sufficient for disentangling a_k , as shown in Proposition 2. Imposing additional independence constraints requires additional adversarial training steps, which might affect training stability.

(3) SD-HC-MG generally does not improve over SD-HC, indicating that k-means is effective for our representations of 128 or 512 dimensions. Marigold could be considered for representations of higher dimensions. SD-HC-J consistently underperforms SD-HC, likely due to error accumulation in clustering updates and training instability in CMI minimization from changing mode labels. This indicates that using pretrained mode labels could provide more stable mode supervision.

- (4) SD-HC-ID and SD-HC-SD consistently underperform SD-HC, indicating inefficient modeling of modes. SD-HC-SD uses excessive parameter sharing across all modes, which may limit the ability to capture distinctions among modes. SD-HC-ID removes parameter sharing, which might fail to leverage the commonality among modes. In SD-HC, moderate parameter sharing is beneficial, as modes under the same attribute value share similarities while modes under different attribute values are distinct, e.g., different walking modes share similar motion patterns, which differ substantially from the patterns of standing.

421 5.4 ROBUSTNESS AGAINST NOISE AND CORRELATIONS VERSUS FULL MODE SUPERVISION

422 Under varying noise levels σ and hidden correlations cor_h , we compare with BASE, A-CMI, and 424 **SD-HC-T** that minimizes mode-based CMI with *ground-truth* mode labels. Figure 5 shows that:

- (1) In Figure 5(a)(c), test 1, **BASE** performs well under large noise and strong hidden correlations: by over-encoding a_2 , it compensates for noise-induced information loss, and when the hidden correlation is strong, it recovers more information. As the correlation shift enlarges from test 1 to 3, over-encoding a_2 turns into a disadvantage due to poor generalization. In Figure 5(c)(d), **A-CMI** performs comparably to SD-HC under $cor_h = 0$; yet its performance decreases as cor_h increases, because A-CMI does not allow representations to encode shared information induced by hidden correlations, and loses more mode information as hidden correlation increases, reflecting the general behavior of DRL methods that overlook hidden correlations.

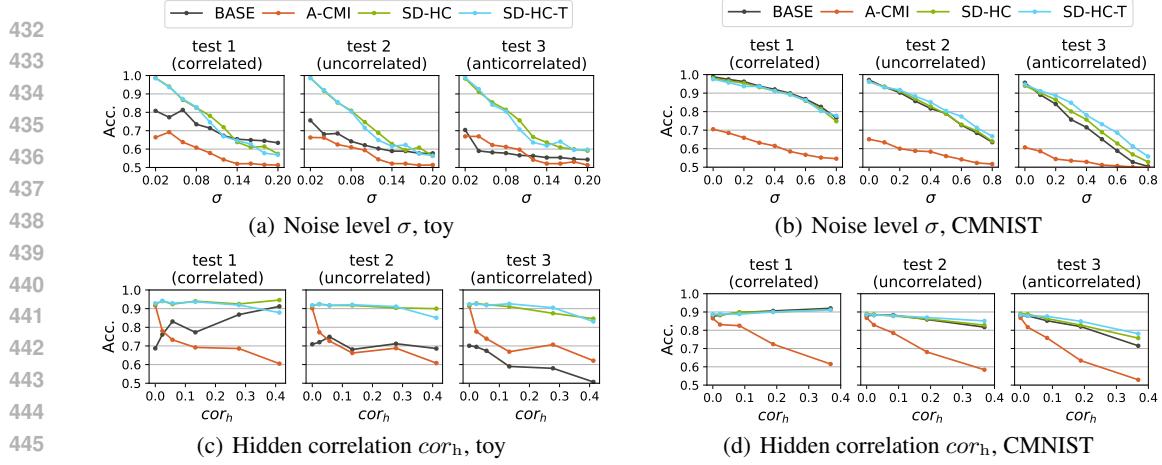


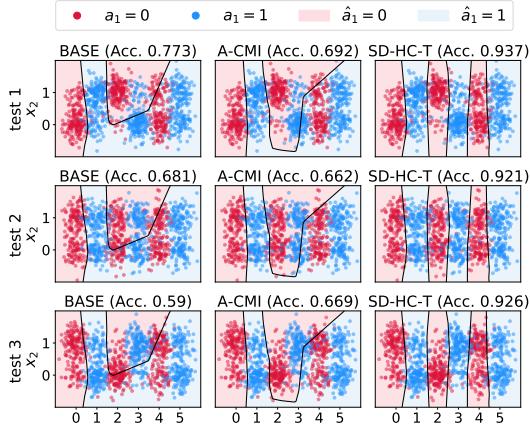
Figure 5: Comparison under varying noise level and hidden correlation on toy and CMNIST.

(2) SD-HC generally outperforms baselines, demonstrating superior robustness against noise and correlations. In Figure 5(b) test 3, SD-HC performs similarly to **SD-HC-T** at $\sigma = 0$; as noise level increases, SD-HC underperforms SD-HC-T with a stabilizing performance gap. This is due to the clustering performance decline with increasing noise (Appendix A.1). The **stabilizing** gap suggests that the inductive bias of unsupervised clustering leads to a stable error margin that does not widen as task difficulty increases. Notably, the performance of SD-HC-T also decreases with increasing noise, confirming that the performance drop is due to intrinsic mode ambiguity, rather than clustering errors. Meanwhile, SD-HC consistently outperforms the baselines, indicating its robust advantage.

5.5 METHOD INVESTIGATIONS

Representation Distribution. The activity representation distributions on the training set of RealWorld are visualized by t-SNE in Figure 7, which shows that: (1) **BASE** representations are separated within each activity, probably due to over-encoding user ID and learning irrelevant personalized user patterns. (2) **A-CMI** representations of different walking modes and different activities are mixed, indicating that different activities are confused due to the loss of mode information. (3) **SD-HC** representations show compactness within each activity, separation between different activities, and partition of different walking modes, indicating **Independence** from user ID and **Informativeness** of activity by encoding mode information.

Toy Decision Boundary. On toy data, the decision boundaries and a_1 prediction accuracy are shown in Figure 6, where: (1) The upper right boundaries of BASE surround the clusters at $x_2 = 1$, and its performance decreases as the correlation shift enlarges from test 1 to 3, indicating that BASE over-encodes a_2 and lacks generalization ability. (2) The decision boundaries of A-CMI span across the clusters at $x_2 = 0, 1$ without excluding either value, but fail to separate interleaving clusters of different modes, and its performance is low but robust across 3 test sets, indicating that A-CMI does not over-encode a_2 , but loses important mode information. (3) The decision boundaries of SD-HC-T conform to vertical lines $x_1 = b, b \in [0, 5]$ that distinguish interleaving clusters of different modes, and SD-HC-T shows robustness and superiority across 3 test sets, indicating that SD-HC-T can learn mode information about a_1 (**Informativeness**), and exclude irrelevant information about a_2 (**Independence**).

Figure 6: Toy decision boundary. Clusters centered at $x_1 = 0, 1, \dots, 5$ are from different modes.

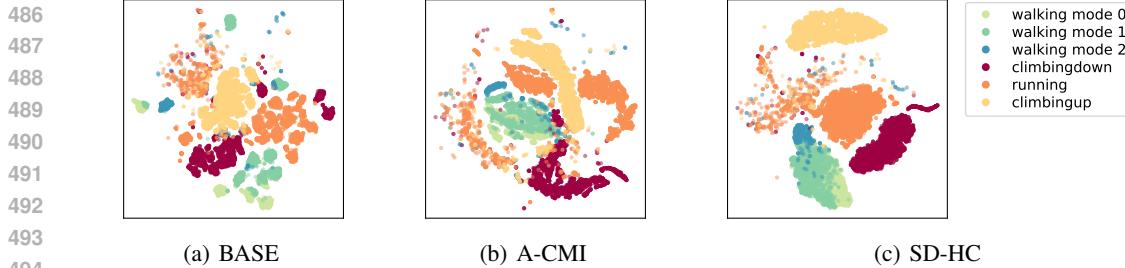


Figure 7: Activity representation distributions on RealWorld. (a), (b), and (c) show the results of four similar activities in BASE, A-CMI, and SD-HC. While activities “walking” and “climbing down” are well distinguished in SD-HC, they are confused due to losing mode information in A-CMI.

Disentanglement Metrics. MI and DCI-I (Eastwood & Williams, 2018) are used as disentanglement metrics under correlations, which are evaluated on the uncorrelated test set (test 2) using models trained on correlated data (Funke et al., 2022). As shown in Table 3, DRL methods generally have much lower MI than BASE, indicating **Independence**, except for HFS that allows representation correlations; SD-HC has the lowest DCI-I, indicating **Informativeness** due to encoding mode information, while DRL baselines have higher DCI-I than BASE due to hurting the predictive ability of representations.

Table 3: Disentanglement metrics. The notations follow Table 1.

Method	MNIST		Fashion-CMNIST	
	MI ↓	DCI-I ↓	MI ↓	DCI-I ↓
BASE	0.548	0.169	0.645	0.158
MMD	<u>0.219</u>	0.386	0.202	0.210
DTS	0.328	0.349	0.339	0.290
IDE-VC	0.266	0.412	0.289	0.206
MI	0.391	0.372	0.423	0.377
A-CMI	0.281	0.332	<u>0.256</u>	0.353
HFS	0.482	0.275	0.491	0.274
SD-HC	0.212	0.141	0.261	0.137

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel supervised DRL method under hidden correlations, SD-HC, which uses mode-based CMI minimization to achieve disentanglement for certain attributes with underlying modes and hidden correlations. Theoretically, we prove its sufficiency and show the general sufficiency of CMI minimization for disentanglement, demonstrating broad significance. Extensive experiments demonstrate the superiority of SD-HC for robust attribute prediction under varying correlation shifts, noises, and OOD tasks, confirming its practical value in real-world scenarios. Despite the advantage of SD-HC over baselines that overlook hidden correlations, we still observe a performance gap on noisy data between SD-HC and SD-HC-T with ground-truth mode labels, which is likely due to clustering errors in the pre-training stage. In future work, we plan to explore more powerful clustering approaches for discovering modes, e.g., more sophisticated pre-training strategies or joint training of clustering and disentanglement with strategies that mitigate clustering errors and preserve stability.

7 ETHICS STATEMENT

Our work focuses solely on scientific problems and does not involve human subjects, animals, or environmentally sensitive materials. We foresee no ethical risks or conflicts of interest.

8 REPRODUCIBILITY STATEMENT

We have rigorously formalized the model architecture, loss functions, and evaluation metrics through illustrations, equations, and descriptions in the main text. We provide the reproducibility details in the Appendix, including network architectures (Appendix E), training algorithm (Appendix F), dataset descriptions (Appendix G), and hyperparameters (Appendix H). We provide our source code in an anonymous link: <https://anonymous.4open.science/r/SD-HC-1FAD>, which will be publicly available upon acceptance.

540 9 USE OF LLMs
541542 The authors use LLM solely as a general-purpose assistive tool for grammar and format refinement.
543 LLM **does not** contribute to research ideation or experimental design. The authors take full responsibility
544 for the content of this paper.
545546 REFERENCES
547548 Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra Perez, and Jorge Luis Reyes Ortiz. A
549 public domain dataset for human activity recognition using smartphones. In *Proceedings of the*
550 *International European Symposium on Artificial Neural Networks, Computational Intelligence*
551 *and Machine Learning*, pp. 437–442, 2013.552 Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
553 *arXiv preprint arXiv:1907.02893*, 2019.
554555 Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
556 Courville, and Devon Hjelm. Mutual information neural estimation. In *Proceedings of the International*
557 *Conference on Machine Learning*, volume 80, pp. 531–540, 2018.
558559 Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-level variational autoencoder:
560 Learning disentangled representations from grouped observations. *Proceedings of the AAAI Conference*
561 *on Artificial Intelligence*, 32(1), 2018.562 Malik Boudiaf, Jérôme Rony, Imtiaz Masud Ziko, Eric Granger, Marco Pedersoli, Pablo Piantanida,
563 and Ismail Ben Ayed. A unifying mutual information view of metric learning: Cross-entropy vs.
564 pairwise losses. In *Proceedings of the European Conference on Computer Vision*, pp. 548–564,
565 2020.
566567 Lucy Chai, Jonas Wulff, and Phillip Isola. Using latent space regression to analyze and leverage
568 compositionality in {gan}s. In *Proceedings of the International Conference on Learning Representations*,
569 2021.570 Shing Chan, Hang Yuan, Catherine Tong, Aidan Acquah, Abram Schonfeldt, Jonathan Gershuny,
571 and Aiden Doherty. Capture-24: A large dataset of wrist-worn activity tracker data collected in
572 the wild for human activity recognition. *Scientific Data*, 11(1135), 2024.
573574 Junxiang Chen and Kayhan Batmanghelich. Weakly supervised disentanglement by pairwise similarities.
575 *Proceedings of the AAAI Conference on Artificial Intelligence*, 34(04):3495–3502, 2020.
576577 Ling Chen, Rong Hu, Menghan Wu, and Xin Zhou. HMGAN: A hierarchical multi-modal generative
578 adversarial network model for wearable human activity recognition. *Proceedings of the ACM on*
579 *Interactive, Mobile, Wearable and Ubiquitous Technologies*, 7(3), 2023.580 Ricky T. Q. Chen, Xuechen Li, Roger Grosse, and David Duvenaud. Isolating sources of disentanglement
581 in VAEs. *Advances in Neural Information Processing Systems*, pp. 2615–2625, 2018.
582583 Mingyuan Cheng, Xinru Liao, Quan Liu, Bin Ma, Jian Xu, and Bo Zheng. Learning disentangled
584 representations for counterfactual regression via mutual information minimization. In *Proceedings of the International*
585 *ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 1802–1806, 2022.
586587 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
588 hierarchical image database. In *Proceedings of the IEEE Conference on Computer Vision and*
589 *Pattern Recognition*, pp. 248–255, 2009.
590591 Andrea Dittadi, Frederik Träuble, Francesco Locatello, Manuel Wuthrich, Vaibhav Agrawal, Ole
592 Winther, Stefan Bauer, and Bernhard Schölkopf. On the transfer of disentangled representations
593 in realistic settings. In *Proceedings of the International Conference on Learning Representations*,
2021.

594 Mhairi Dunion, Trevor McInroe, Kevin Sebastian Luck, Josiah P. Hanna, and Stefano V Albrecht.
 595 Conditional mutual information for disentangled representations in reinforcement learning. *Ad-*
 596 *vances in Neural Information Processing Systems*, 2023.

597

598 Cian Eastwood and Christopher K. I. Williams. A framework for the quantitative evaluation of
 599 disentangled representations. In *Proceedings of the International Conference on Learning Repre-*
 600 *sentations*, 2018.

601

602 Christina M. Funke, Paul Vicol, Kuan-Chieh Wang, Matthias Kümmerer, Richard Zemel, and
 603 Matthias Bethge. Disentanglement and generalization under correlation shifts. In *Proceedings of*
 604 *the Conference on Lifelong Learning Agents*, 2022.

605

606 Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Im-
 607 proved training of Wasserstein gans. In *Proceedings of the International Conference on Neural*
 608 *Information Processing Systems*, pp. 5769–5779, 2017.

609

610 Irina Higgins, Loïc Matthey, Arka Pal, Christopher P. Burgess, Xavier Glorot, Matthew M.
 611 Botvinick, Shakir Mohamed, and Alexander Lerchner. Beta-VAE: Learning basic visual con-
 612 cepts with a constrained variational framework. In *Proceedings of the International Conference*
 613 *on Learning Representations*, 2016.

614

615 R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
 616 Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
 617 and maximization. In *Proceedings of the International Conference on Learning Representations*,
 618 2019.

619

620 Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In *Proceedings of the International*
 621 *Conference on Machine Learning*, volume 80, pp. 2649–2658, 2018.

622

623 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Proceedings*
 624 *of the International Conference on Learning Representations*, 2015.

625

626 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 627 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Seg-
 628 ment anything. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 629 2023.

630

631 Yooohan Kwon, Soo-Whan Chung, and Hong-Goo Kang. Intra-class variation reduction of speaker
 632 representation in disentanglement framework. In *Proceedings of Interspeech*, 2020.

633

634 Sang-Hoon Lee, Ji-Hoon Kim, Hyunseung Chung, and Seong-Whan Lee. VoiceMixer: Adversarial
 635 voice style mixup. *Advances in Neural Information Processing Systems*, 34:294–308, 2021.

636

637 Christian Lessmeier, James Kuria Kimotho, Detmar Zimmer, and Walter Sextro. Condition mon-
 638 itoring of bearing damage in electromechanical drive systems by using motor current signals of
 639 electric motors: A benchmark data set for data-driven classification. In *Proceedings of the PHM*
 640 *Society European Conference*, 2016.

641

642 Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C. Kot. Domain generalization with adversarial
 643 feature learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 644 *Recognition*, pp. 5400–5409, 2018.

645

646 Xuelong Li, Mulin Chen, Feiping Nie, and Qi Wang. Locality adaptive discriminant analysis. In
 647 *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 2201–2207, 2017.

648

649 Yuening Li, Zhengzhang Chen, Daochen Zha, Mengnan Du, Jingchao Ni, Denghui Zhang, Haifeng
 650 Chen, and Xia Hu. Towards learning disentangled representations for time series. In *Proceedings*
 651 *of the SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 3270–3278, 2022.

652

653 Shan Lin, Chang-Tsun Li, and Alex Kot. Multi-domain adversarial feature generalization for person
 654 re-identification. *IEEE Transactions on Image Processing*, 30:1596–1607, 2020.

648 Francesco Locatello, Gabriele Abbati, Tom Rainforth, Stefan Bauer, Bernhard Schölkopf, and
 649 Olivier Bachem. On the fairness of disentangled representations. In *Proceedings of the Inter-*
 650 *national Conference on Neural Information Processing Systems*, 2019a.

651

652 Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
 653 Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learn-
 654 ing of disentangled representations. In *Proceedings of the International Conference on Machine*
 655 *Learning*, pp. 4114–4124, 2019b.

656 Maaten, L. V. D. and Hinton, G. Visualizing data using t-SNE. *Journal of Machine Learning*
 657 *Research*, 9:2579–2605, 2008.

658

659 Dhendra Marutho, Sunarna Hendra Handaka, Ekaprana Wijaya, et al. The determination of cluster
 660 number at k-mean using elbow method and purity evaluation on headline news. In *2018 inter-*
 661 *national seminar on application for technology of information and communication*, pp. 533–538.
 662 IEEE, 2018.

663 Stefan Matthes, Zhiwei Han, and Hao Shen. Towards a unified framework of contrastive learning
 664 for disentangled representations. *Advances in Neural Information Processing Systems*, 2023.

665

666 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
 667 for generative adversarial networks. In *Proceedings of the International Conference on Learning*
 668 *Representations*, 2018.

669 Kasper Overgaard Mortensen, Fatemeh Zardbani, Mohammad Ahsanul Haque, Steinn Ymir Agusts-
 670 son, Davide Mottin, Philip Hofmann, and Panagiotis Karras. Marigold: Efficient k-means clus-
 671 tering in high dimensions. *Proceedings of the VLDB Endowment*, 16(7):1740–1748, 2023.

672

673 Feiping Nie, Zheng Wang, Rong Wang, Zhen Wang, and Xuelong Li. Adaptive local linear discrim-
 674 inant analysis. *ACM Transactions on Knowledge Discovery from Data*, 14(1), 2020.

675

676 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 677 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 678 performance deep learning library. In *Proceedings of the International Conference on Neural*
 679 *Information Processing Systems*, pp. 8026–8037, 2019.

680 Judea Pearl. Causal diagrams for empirical research. *Biometrika*, 82(4):669–688, 1995.

681 Judea Pearl. *Causality*. Cambridge University Press, 2 edition, 2009.

682

683 Judea Pearl. *Causal inference in statistics: a primer*. John Wiley & Sons, 2016.

684

685 Hangwei Qian, Sinno Jialin Pan, and Chunyan Miao. Latent independent excitation for generaliz-
 686 able sensor-based cross-person activity recognition. In *Proceedings of the AAAI Conference on*
 687 *Artificial Intelligence*, volume 35, pp. 11921–11929, 2021.

688

689 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 690 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 691 Sutskever. Learning transferable visual models from natural language supervision. In *Proceed-
 692 ings of the International Conference on Machine Learning*, volume 139, pp. 8748–8763, 2021.

693 Mohamed Ragab, Emadeldeen Eldele, Wee Ling Tan, Chuan-Sheng Foo, Zhenghua Chen, Min Wu,
 694 Chee-Keong Kwoh, and Xiaoli Li. ADATIME: A benchmarking suite for domain adaptation on
 695 time series data. *ACM Transactions on Knowledge Discovery from Data*, 17(8), 2023.

696

697 Meitar Ronen, Shahaf E Finder, and Oren Freifeld. DeepDPM: Deep clustering with an unknown
 698 number of clusters. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 699 *Recognition*, pp. 9861–9870, 2022.

700 Karsten Roth, Mark Ibrahim, Zeynep Akata, Pascal Vincent, and Diane Bouchacourt. Disentangle-
 701 ment of correlated factors via hausdorff factorized support. In *Proceedings of the International*
 702 *Conference on Learning Representations*, 2023.

702 Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
 703 neural networks. In *Proceedings of the International Conference on Learning Representations*,
 704 2020.

705 Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, and Ben Poole. Weakly supervised disen-
 706 tanglement with guarantees. In *Proceedings of the International Conference on Learning Repre-*
 707 *sentations*, 2020.

709 Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow, Mikkel Baun Kjærgaard,
 710 Anind Dey, Tobias Sonne, and Mads Møller Jensen. Smart devices are different: Assessing and
 711 mitigating mobile sensing heterogeneities for activity recognition. In *Proceedings of the ACM*
 712 *Conference on Embedded Networked Sensor Systems*, pp. 127–140, 2015.

713 Jie Su, Zhenyu Wen, Tao Lin, and Yu Guan. Learning disentangled behaviour patterns for wearable-
 714 based human activity recognition. *Proceedings of the ACM on Interactive, Mobile, Wearable and*
 715 *Ubiquitous Technologies*, 6(1), 2022.

717 Masashi Sugiyama. Local fisher discriminant analysis for supervised dimensionality reduction. In
 718 *Proceedings of the International Conference on Machine Learning*, pp. 905–912, 2021.

719 Raphael Suter, Djordje Miladinovic, Bernhard Schölkopf, and Stefan Bauer. Robustly disentangled
 720 causal mechanisms: Validating deep representations for interventional robustness. In *Proceedings*
 721 *of the International Conference on Machine Learning*, volume 97, pp. 6056–6065, 2019.

723 Timo Szytler and Heiner Stuckenschmidt. On-body localization of wearable devices: An investiga-
 724 tion of position-aware activity recognition. In *Proceedings of the IEEE International Conference*
 725 *on Pervasive Computing and Communications*, pp. 1–9, 2016.

726 Frederik Träuble, Elliot Creager, Niki Kilbertus, Anirudh Goyal, Francesco Locatello, Bernhard
 727 Schölkopf, and Stefan Bauer. On disentangled representations learned from correlated data. In
 728 *Proceedings of the International Conference on Machine Learning*, pp. 10401–10412, 2021.

730 Yixin Wang and Michael I. Jordan. Desiderata for representation learning: A causal perspective.
 731 *Journal of Machine Learning Research*, 25(275):1–65, 2024.

732 Sumio Watanabe. A widely applicable bayesian information criterion. *The Journal of Machine*
 733 *Learning Research*, 14(1):867–897, 2013.

735 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A novel image dataset for bench-
 736 marking machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

737 Siyang Yuan, Pengyu Cheng, Ruiyi Zhang, Weituo Hao, Zhe Gan, and Lawrence Carin. Improving
 738 zero-shot voice style transfer via disentangled representation learning. In *Proceedings of the*
 739 *International Conference on Learning Representations*, 2021.

740 Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 mil-
 741 lion image database for scene recognition. *IEEE Transactions on Pattern Analysis and Machine*
 742 *Intelligence*, 40(6):1452–1464, 2018.

744 Roland S. Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel.
 745 Contrastive learning inverts the data generating process. In *Proceedings of the International*
 746 *Conference on Machine Learning*, volume 139, pp. 12979–12990, 2021.

747
 748
 749
 750
 751
 752
 753
 754
 755

756	CONTENTS	
757		
758		
759	1 Introduction	1
760		
761	2 Related Work	2
762		
763	3 Disentangling Under Hidden Correlations	3
764		
765	3.1 Problem Formulation	3
766	3.2 The Definitions of Disentangled Representations	3
767		
768	3.3 Theoretical Guarantees for Disentangling with Mode-Based CMI Minimization . . .	4
769		
770	4 Method	5
771		
772	5 Experiments	6
773		
774	5.1 Experimental Settings	6
775	5.2 Comparison with Baseline DRL Methods	7
776		
777	5.3 Comparison with Variants	8
778	5.4 Robustness Against Noise and Correlations Versus Full Mode Supervision	8
779		
780	5.5 Method Investigations	9
781		
782	6 Conclusions and Future Work	10
783		
784	7 Ethics Statement	10
785		
786	8 Reproducibility Statement	10
787		
788	9 Use of LLMs	11
789		
790	A Additional Model Investigation	17
791		
793	A.1 Clustering Evaluation	17
794	A.2 The Impact of Mode Supervision	18
795		
796	A.3 Parameter Sensitivity	19
797	A.4 Computational Complexity	20
798		
799	A.5 Experiments on Multiple Attributes with Hidden Correlations	21
800		
801	B Proofs	22
802		
803	B.1 Proof of Total Hidden Correlation	22
804	B.2 Proof of Proposition 1	22
805		
806	B.3 Proof of Proposition 2	23
807	B.3.1 Proof of Lemma 2.1	23
808	B.3.2 Proof of Lemma 2.2	24
809		
	B.4 Generalization to Multiple Attributes	25

810	C Data Generation Process Under Attribute Correlations	26
811		
812	D Causality	26
813	D.1 d-separation and Backdoor Paths	26
814	D.2 Rules of <i>do</i> -calculus	27
815		
816	E Network Architectures	27
817		
818	F Training Process	27
819		
820	G Details of Experimental Settings	29
821		
822	G.1 Datasets	29
823	G.2 Evaluation Protocol	32
824		
825	G.3 Implementation Details	32
826		
827	H Hyperparameters	32
828		
829	I Baselines	33
830		
831	J Full Results on CMNIST and CFashion-MNIST dataset	35
832		
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 **A ADDITIONAL MODEL INVESTIGATION**865 **A.1 CLUSTERING EVALUATION**

866 **Clustering Metrics.** We evaluate the clustering performance with two sets of metrics. For CMNIST
 867 and CFashion-MNIST datasets with ground-truth mode labels, we use clustering accuracy (Acc.^c),
 868 Adjusted Rand Index (ARI), and Normalized Mutual Information (NMI) to measure the alignment
 869 between estimated mode labels and true mode labels. For other datasets with unknown modes,
 870 we use Silhouette Score (Sil.), Davies-Bouldin Index (DBI), and Calinski-Harabasz Index (CHI)
 871 to measure the intra-cluster compactness and inter-cluster separation of the cluster structure in the
 872 representation distribution. The metrics are summarized as follows:
 873

- 874 • Clustering Accuracy (Acc.^c): Range [0, 1]; higher is better, with 1 indicating perfect alignment
 875 between estimated and true labels.
- 876 • Adjusted Rand Index (ARI): Range [−1, 1] (often [0, 1] in practice); higher is better, with
 877 1 indicating perfect alignment between estimated and true labels.
- 878 • Normalized Mutual Information (NMI): Range [0, 1]; higher is better, with 1 indicating
 879 perfect alignment between estimated and true labels.
- 880 • Silhouette Score (Sil.): Range [−1, 1]; higher values mean better clustering (1 is the best),
 881 0 indicates overlapping clusters, and negative values suggest samples are closer to another
 882 cluster than their own.
- 883 • Davies-Bouldin Index (DBI): Range [0, ∞); lower values indicate better clustering with
 884 well-separated, compact clusters, with 0 being the best.
- 885 • Calinski-Harabasz Index (CHI): Range [0, ∞); higher values indicate better defined and
 886 more separated clusters.

887 **Clustering Comparison with Different Pre-training Methods.** To investigate different pre-
 888 training methods, we compare our off-the-shelf instantiation (pre-training **BASE** with supervised
 889 attribute prediction losses only) with other commonly used pre-training methods in clustering
 890 pipelines, i.e., **AE** (autoencoder with attribute prediction losses), **InfoNCE** (BASE with attribute
 891 prediction losses and InfoNCE contrastive loss), **β -VAE**, and **β -TCVAE** (widely used variational
 892 autoencoders). The following tendencies can be observed:

893 (1) In general, Table 4 and 5 show that the pipeline of pre-training and k-means clustering achieves
 894 a good clustering performance, with high accuracies on image datasets and a clear indication of
 895 cluster structures on time series datasets. Pre-training methods perform differently across datasets,
 896 suggesting that the pre-training strategy could be tailored to the specific data at hand.

900 Table 4: Comparison of pre-training methods on CMNIST and CFashion-MNIST (mean±std). Clus-
 901 tering metrics are calculated by comparing to ground-truth mode labels.

902 Method	903 CMNIST			904 CFashion-MNIST		
	905 Acc. ^c ↑	906 ARI ↑	907 NMI ↑	908 Acc. ^c ↑	909 ARI ↑	910 NMI ↑
911 BASE	912 0.758	913 0.318	914 0.286	915 0.886	916 0.611	917 0.561
918 AE	919 0.822	920 0.414	921 0.374	922 0.916	923 0.695	924 0.655
925 InfoNCE	926 0.779	927 0.332	928 0.276	929 0.855	930 0.503	931 0.460
932 β-VAE	933 0.877	934 0.568	935 0.489	936 0.648	937 0.088	938 0.208
939 β-TCVAE	940 0.852	941 0.560	942 0.482	943 0.670	944 0.115	945 0.235

946 Table 5: Comparison of pre-training methods on UCI-HAR, RealWorld, HHAR, and MFD
 947 (mean±std). Without access to ground-truth mode labels, clustering metrics are calculated by mea-
 948 suring intra-cluster compactness and inter-cluster separation in the representation distribution.

949 Method	950 UCI-HAR			951 RealWorld			952 HHAR			953 MFD		
	954 Sil. ↑	955 DBI ↓	956 CHI ↑	957 Sil. ↑	958 DBI ↓	959 CHI ↑	960 Sil. ↑	961 DBI ↓	962 CHI ↑	963 Sil. ↑	964 DBI ↓	965 CHI ↑
966 BASE	967 0.46	968 1.03	969 1798.26	970 0.36	971 1.32	972 1521.26	973 0.33	974 1.33	975 644.44	976 0.55	977 0.69	978 4769.37
979 AE	980 0.47	981 1.02	982 1499.26	983 0.39	984 1.27	985 1644.49	986 0.24	987 1.91	988 424.15	989 0.51	990 0.79	991 3724.30
992 InfoNCE	993 0.47	994 1.04	995 1540.18	996 0.37	997 1.26	998 1490.11	999 0.33	1000 1.33	1001 691.70	1002 0.54	1003 0.73	1004 3910.93
1005 β-VAE	1006 0.47	1007 1.59	1008 418.85	1009 0.43	1010 1.12	1011 1962.74	1012 0.24	1013 1.82	1014 422.83	1015 0.54	1016 0.77	1017 5251.03
1018 β-TCVAE	1019 0.47	1020 1.60	1021 418.03	1022 0.43	1023 1.13	1024 1987.38	1025 0.24	1026 1.88	1027 430.44	1028 0.55	1029 0.77	1030 4130.14
1031 Total # Modes			1032 48	1033 24			1034 12	1035 6				

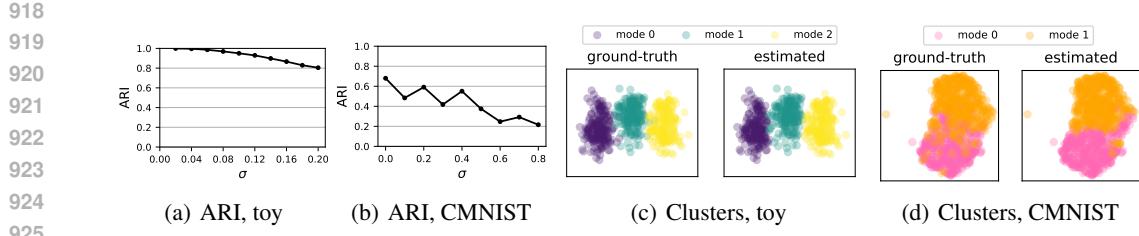


Figure 8: Clustering performance. (a) and (b) show the ARI on toy and CMNIST under varying noise levels. (c) and (d) show the true and estimated cluster assignments under $a_1 = 0$ on the raw toy data and the CMNIST representations of BASE by t-SNE (Maaten, L. V. D. and Hinton, G., 2008).

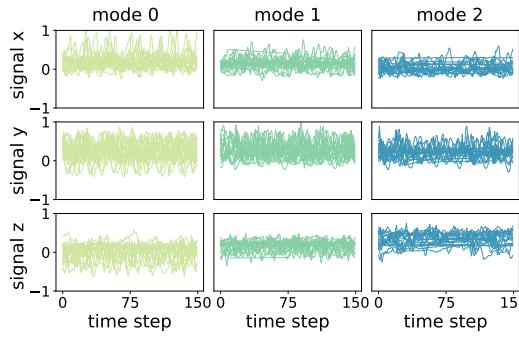


Figure 9: 3-channel accelerometer signals of three walking modes (20 random samples per mode with xyz channels). The x-axis indicates time steps, and the y-axis indicates normalized signals.

(2) Table 5 shows that time series datasets exhibit positive Silhouette Scores, low DBI values, and high CHI values, indicating the presence of underlying mode structures in each dataset. We show the total number of modes in each dataset, which is determined by hyperparameter tuning (analyzed in Appendix A.3). The valid mode structure under large numbers of modes aligns with the observation that time series attributes often display complex patterns, which may be induced by the presence of underlying modes.

The Impact of Noise on Clustering Performance. To complete the robustness analysis under varying noise levels in Section 5.4, we show the clustering performance under varying noise levels on toy and CMNIST datasets. The clustering quality of modes is evaluated by Adjusted Rand Index ($ARI \in [0, 1]$), with higher ARI indicating better alignment with ground truth. The results are shown in Figure 8(a)(b), with each point corresponding to the mode labels used by SD-HC at the matching setting in Figure 5(a)(b). We observe that: (1) ARI drops as the noise level increases, indicating the degradation of clustering performance with increasing noise. (2) CMNIST shows lower ARI than toy, as real data are typically more challenging for clustering. (3) The high ARI under moderate noise indicates a good clustering, showing the effectiveness of our mode discovery pipeline when the intrinsic mode structures are detectable.

Visualizations of the Discovered Modes. In addition, we visualize the discovered modes on the data and representation distribution of toy and CMNIST datasets in Figure 8(c)(d), where the similarity between estimated mode labels and true cluster assignments indicate a good clustering. We also visualize the data of estimated modes on the training set of RealWorld. The results in Figure 9 show that the signals of the three walking modes differ in mean values and volatility, possibly due to varying paces, strides, and postures in the walking activity. This justifies the presence of underlying modes within complex time series data.

A.2 THE IMPACT OF MODE SUPERVISION

We control the supervision ratio τ to evaluate the impact of mode supervision: for $\tau = 0$, mode labels are obtained by unsupervised clustering; for $0 < \tau \leq 1$, $\tau \times 100\%$ true mode labels are

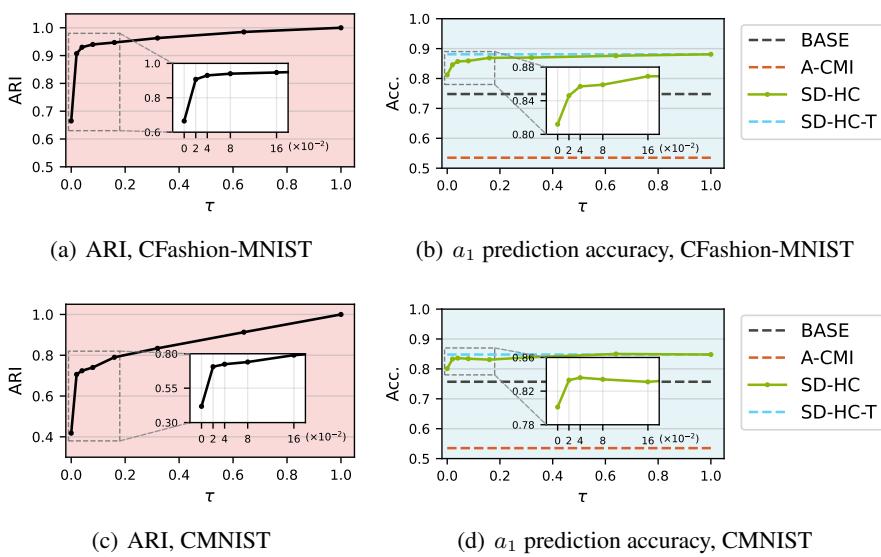


Figure 10: Comparison under varying supervision ratio on CFashion-MNIST.

provided as supervision, with the rest obtained by semi-supervised learning. The clustering quality of modes is evaluated by Adjusted Rand Index ($ARI \in [0, 1]$), with higher ARI indicating better alignment with ground truth. The ARI on the estimated mode labels and the a_1 prediction accuracy on test 3 (with the largest correlation shift) under varying τ are shown in Figure 10, where:

(1) Figure 10(b)(d) shows that unsupervised clustering ($\tau = 0$) provides an advantage for SD-HC over baselines, indicating that our mode discovery pipeline can discover useful mode information for disentanglement. As the amount of supervision increases ($\tau > 0$), ARI and accuracy sharply increase and soon converge, indicating that a small portion (2%) of weakly supervised labels can greatly enhance clustering and thus facilitate better disentanglement.

(2) Figure 10(b)(d) shows that, at $\tau = 0$, SD-HC exhibits a wider gap from SD-HC-T on the more complex CFashion-MNIST (6.9%) than on CMNIST (4.7%), suggesting that on complex data, estimating useful mode labels for disentanglement may be more challenging, and weak supervision may be beneficial. In practice, mode labels could be obtained via expert annotation, e.g., fine-level activity annotations for human activity data (Chan et al., 2024).

A.3 PARAMETER SENSITIVITY

The Number of Modes N_m . The sensitivity to the number of modes N_m under each attribute value is shown in Figure 11(a), which shows that: (1) SD-HC performs the best at the ground truth $N_m = 2$ on CMNIST, suggesting that prior knowledge about N_m would be beneficial. (2) SD-HC performs badly at $N_m = 1$, where mode-based CMI degrades to attribute-based CMI, causing the loss of mode information. (3) In general, SD-HC is not particularly sensitive to changes of N_m within a certain range. On CMNIST, SD-HC performs comparably under $N_m = 2, 3, 4$, suggesting that SD-HC is robust to the changes of N_m when it is slightly larger than the ground truth ($N_m = 2$). Probably because as long as the samples within one estimated cluster belong to the same ground-truth mode, SD-HC can preserve mode information to some extent.

In practice, hyperparameter tuning may come with high computational costs for large-scale datasets. Alternatively, we offer practical guidance to reduce the computational costs by estimating the number of modes N_m in a data-driven manner. This requires expert knowledge to choose the suitable method: For well-separated clusters, Elbow Method (Marutho et al., 2018) would be suitable for estimating N_m with k-means clustering; For complex and overlapping clusters, Bayesian Information Criterion (Watanabe, 2013) would be suitable for estimating N_m with Gaussian Mixture Models for clustering; In addition, during our pre-training stage, the number of modes can be estimated by split and merge operations with deep clustering methods (Ronen et al., 2022).

The Weight of Mode Prediction Loss w_m . The sensitivity to the weight parameter of mode prediction loss, w_m , is shown in Figure 11(b), which shows that: In general, SD-HC performs better

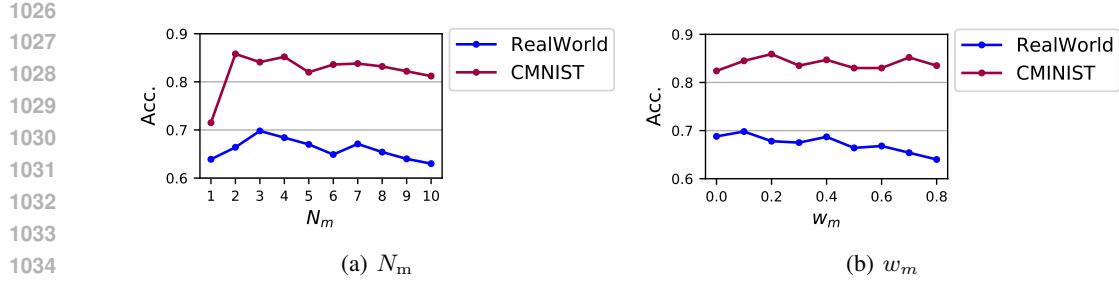


Figure 11: Hyperparameter sensitivity.

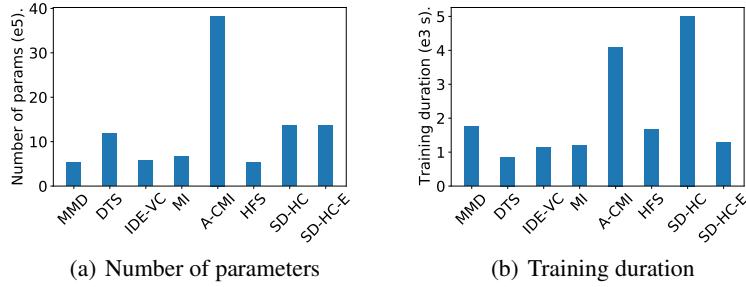


Figure 12: Computational complexity comparison.

at a small value of w_m . Theoretically, adding mode prediction loss benefits disentanglement. However, enforcing mode prediction with estimated mode labels will potentially introduce errors, as the estimated mode labels do not match the ground-truth mode labels.

A.4 COMPUTATIONAL COMPLEXITY

Figure 12 shows the total numbers of parameters and the training durations of a single leave-one-group-out validation process (without repetition) on UCI-HAR of SD-HC and the compared methods.

In Figure 12(a), we observe that A-CMI has the most parameters, which is because A-CMI has two discriminators for minimizing conditional mutual information based on a_1 and a_2 . This indicates that our method is computationally efficient w.r.t. number of parameters compared to A-CMI, which is advantageous for deployment in resource-constrained environments.

In Figure 12(b), we observe that the training durations of A-CMI and SD-HC are the longest. This training overhead would not affect real-time applications, as DRL methods are designed to generalize to unseen data, and can therefore be trained offline and deployed for real-time inference on various incoming data. However, the increased training cost can still be a concern when scaling to larger datasets.

To mitigate this issue, we design a more efficient variant, **SD-HC-E**. The long training duration of SD-HC mainly arises from the adversarial training for minimizing mode-based CMI, which involves a for-loop over modes under different attribute values and multiple discriminator update steps. For acceleration, SD-HC-E leverages vectorization to parallelize the forward computation across modes under different attribute values, and replaces the original adversarial loss with a Wasserstein GAN loss with Gradient Penalty (WGAN-GP) and Spectral Normalization (SN) (Gulrajani et al., 2017; Miyato et al., 2018) to ensure training stability with only a single discriminator update step per batch. The results in Figure 12 show that this variant substantially reduces the training duration without introducing any additional parameters. For large-scale datasets, applying this variant would be more practical and computationally efficient.

1080
1081
1082 Table 6: Prediction accuracy on toy data with multiple attributes.
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

BASE	a_1	a_2	a_3	a_4
test 1	0.965	0.871	0.999	0.999
test 2	0.757	0.697	0.997	0.998
test 3	0.539	0.585	0.997	0.994
A-CMI	a_1	a_2	a_3	a_4
test 1	0.510	0.593	0.998	0.525
test 2	0.507	0.537	0.997	0.507
test 3	0.507	0.518	0.996	0.476
SD-HC	a_1	a_2	a_3	a_4
test 1	0.994	0.797	0.998	0.999
test 2	0.870	0.740	0.998	1.000
test 3	0.752	0.741	0.997	0.999
SD-HC-T	a_1	a_2	a_3	a_4
test 1	0.999	0.997	0.997	1.000
test 2	0.966	0.982	0.996	1.000
test 3	0.928	0.964	0.998	0.999

1097
1098
1099 A.5 EXPERIMENTS ON MULTIPLE ATTRIBUTES WITH HIDDEN CORRELATIONS
11001101 We conduct experiments on a multi-attribute toy dataset to validate the effectiveness of SD-HC in a
1102 more complex scenario.
11031104 **Data Construction.** We construct 4-dimensional toy data with 4 attributes ($a_i, 1 \leq i \leq 4$), where 2
1105 attributes (a_1, a_2) exhibit underlying modes. This setting allows us to observe the impact on complex
1106 attributes with multi-modal distributions and simple attributes with uni-modal distributions. This
1107 dataset extends the simple toy dataset used in the main paper. Similarly, each data axis is controlled
1108 by one attribute, i.e., x_i is affected by a_i and unaffected by other attributes a_{-i} . Here, a_1 and a_2
1109 with underlying modes are constructed the same as the a_1 in the simple toy data, with 3 modes
1110 under each attribute value; a_3 and a_4 are constructed the same as the a_2 in the simple toy data. The
1111 mappings from attribute/mode labels to the corresponding data axis remain the same.
11121113 **Experiment Settings.** We use the same settings as the simple toy data, training on correlated
1114 data and evaluating on three test sets: test 1 with the same correlations, test 2 without correlations,
1115 and test 3 with anticorrelations. Complex attribute and hidden correlations are introduced
1116 in the train data, e.g., $I(a_2; a_4) = 0.07, I(a_3; a_4) = 0.13, I(m_1; a_2|a_1) = 0.14, I(m_1; a_4|a_1) =$
1117 $0.36, I(m_2; a_3|a_2) = 0.28$. The task is to learn disentangled representations for each attribute. We
1118 compare SD-HC with BASE, A-CMI, and SD-HC-T. For SD-HC(-T), we use mode-based conditional
1119 mutual information (CMI) minimization for a_1 and a_2 with underlying modes, and attribute-based CMI
1120 minimization for a_3 and a_4 . For A-CMI, attribute-based CMI minimization is used for
1121 all attributes.
11221123 **Results and Discussions.** The attribute prediction accuracy is reported in Table 6, showing that:
11241125 (1) **A-CMI** performs poorly on a_4 , even though a_4 does not exhibit underlying modes and is easily
1126 predicted by the BASE method. This is because, under hidden correlations $I(m_1; a_4|a_1)$, minimizing
1127 attribute-based CMI for a_1 might degrade the representation quality for the correlated a_4 , as
1128 indicated by Proposition 1.
11291130 (2) **SD-HC-T** outperforms SD-HC by a larger margin compared to the simple two-attribute toy
1131 data, likely because: The increased complexity with more attributes makes mode discovery harder,
1132 resulting in more errors in mode-based CMI and mode prediction losses. Reduced Informativeness
1133 in one representation can impact the disentanglement of others, as indicated by our Proposition 2.
1134 Thus, mode estimation errors for a_1 and a_2 not only harm the quality of their own representations,
1135 but also affect the representations of other attributes when they are jointly disentangled.
11361137 (3) Still, **SD-HC** generally shows **superiority** compared to BASE and A-CMI. For attributes a_1, a_2
1138 with underlying modes, SD-HC explicitly accounts for hidden correlations by discovering and lever-
1139 aging modes, thus better preserving mode information. For the simple attributes a_3, a_4 , even though
1140

1134 they do not exhibit underlying modes, considering their hidden correlations with the modes of other
 1135 attributes helps maintain their predictive accuracy in joint disentanglement.
 1136

1137 B PROOFS

1139 We give the complete proof of the decomposition and propositions in the main paper using knowl-
 1140 edge of mutual information and entropy.
 1141

1142 Note that we use formal definitions of mutual information, where separators **semicolon** “;” and
 1143 **comma** “,” should be distinguished from each other. Semicolon “;” separates groups of variables
 1144 whose mutual information with respect to each other is being measured, while comma “,” denotes
 1145 the joint distribution of the listed variables.
 1146

1147 B.1 PROOF OF TOTAL HIDDEN CORRELATION

1148 **Total Hidden Correlation.** $I(m_1; a_2) = I(a_1; a_2) + I(m_1; a_2|a_1)$

1149 *Proof.* Firstly, we prove $I(m_1; a_2) = I(m_1, a_1; a_2)$. Since each mode falls under one particular
 1150 attribute value, the value of attribute is fully determined given the modes, i.e., $H(a_1|m_1) = 0$.
 1151 Therefore, $H(a_1|m_1) = H(a_1|m_1, a_2) + I(a_1; a_2|m_1) = 0$, and followingly $I(a_1; a_2|m_1) = 0$, as
 1152 both terms are non-negative. Hence $H(a_2|m_1) = H(a_2|m_1, a_1) + I(a_1; a_2|m_1) = H(a_2|m_1, a_1)$.
 1153 Therefore, we have:
 1154

$$\begin{aligned} 1155 \quad I(m_1, a_1; a_2) &= H(a_2) - H(a_2|m_1, a_1) \\ 1156 &= H(a_2) - H(a_2|m_1) \\ 1157 &= I(m_1; a_2) \end{aligned}$$

1158 Secondly, we prove $I(m_1, a_1; a_2) = I(a_1; a_2) + I(m_1; a_2|a_1)$ by chain rule of mutual information:
 1159

$$\begin{aligned} 1160 \quad I(m_1, a_1; a_2) &= H(a_2) - H(a_2|m_1, a_1) \\ 1161 &= H(a_2) - H(a_2|a_1) + H(a_2|a_1) - H(a_2|m_1, a_1) \\ 1162 &= I(a_1; a_2) + I(m_1; a_2|a_1) \end{aligned}$$

1163 Finally, we reach $I(m_1; a_2) = I(m_1, a_1; a_2) = I(a_1; a_2) + I(m_1; a_2|a_1)$
 1164

1165 B.2 PROOF OF PROPOSITION 1

1166 **Proposition 1.** *If $I(m_1; a_2|a_1) > 0$, then enforcing $I(z_1; z_2|a_1) = 0$ leads to at least one of
 1167 $I(z_1; m_1) < H(m_1)$ and $I(z_2; a_2) < H(a_2)$.*

1168 *Proof.* We prove by contradiction. Assuming $I(z_1; m_1) = H(m_1)$ and $I(a_2; z_2) = H(a_2)$ both
 1169 stand, we have $H(m_1|z_1) = 0$ and $H(a_2|z_2) = 0$.
 1170

1171 Firstly, we prove that this leads to $I(m_1; a_2; z_1; z_2|a_1) > 0$ with (1)(2)(3).
 1172

1173 (1) Since $H(m_1|z_1) = 0$ and $H(m_1|z_1) - H(m_1|a_1, z_1) = I(m_1; a_1|z_1) \geq 0$ by definition
 1174 of conditional mutual information, we have $0 \leq H(m_1|a_1, z_1) \leq H(m_1|z_1) = 0$, we have
 1175 $H(m_1|a_1, z_1) = 0$. By definition, $H(m_1|a_1, z_1) = H(m_1|a_1, a_2, z_1) + I(m_1; a_2|a_1, z_1) = 0$,
 1176 which gives $I(m_1; a_2|a_1, z_1) = 0$, as both terms are non-negative. Therefore:
 1177

$$\begin{aligned} 1178 \quad I(m_1; a_2; z_1|a_1) &= I(m_1; a_2|a_1) - I(m_1; a_2|a_1, z_1) \\ 1179 &= I(m_1; a_2|a_1) > 0 \end{aligned}$$

1180 (2) Similar to (1), since $H(a_2|z_2) = 0$ and $0 \leq H(a_2|a_1, z_2) \leq H(a_2|z_2) = 0$, we have
 1181 $H(a_2|a_1, z_2) = 0$. By definition, $H(a_2|a_1, z_2) = H(a_2|m_1, a_1, z_2) + I(m_1; a_2|a_1, z_2) = 0$,
 1182 which gives $I(m_1; a_2|a_1, z_2) = 0$, as both terms are non-negative. Therefore:
 1183

$$\begin{aligned} 1184 \quad I(m_1; a_2; z_2|a_1) &= I(m_1; a_2|a_1) - I(m_1; a_2|a_1, z_2) \\ 1185 &= I(m_1; a_2|a_1) > 0 \end{aligned}$$

1188 (3) Given $H(m_1|z_1) = 0$, we have $H(m_1|z_1) = H(m_1|z_1, z_2) + I(m_1; z_2|z_1) = 0$ and thus
 1189 $H(m_1|z_1, z_2) = 0$, as both terms are non-negative. Similar to (1) that yields $I(m_1; a_2; z_1|a_1) =$
 1190 $I(m_1; a_2|a_1)$ from $H(m_1|z_1) = 0$, we can get $I(m_1; a_2; z_1|a_1, z_2) = I(m_1; a_2|a_1, z_2)$ from
 1191 $H(m_1|z_1, z_2) = 0$ by additionally conditioning on z_2 . Combined with $I(m_1; a_2; z_2|a_1) > 0$ in
 1192 (2), we have:

$$\begin{aligned} I(m_1; a_2; z_1; z_2|a_1) &= I(m_1; a_2; z_1|a_1) - I(m_1; a_2; z_1|a_1, z_2) \\ &= I(m_1; a_2|a_1) - I(m_1; a_2|a_1, z_2) \\ &= I(m_1; a_2; z_2|a_1) > 0 \end{aligned}$$

1197 Secondly, we prove $I(m_1; a_2; z_1; z_2|a_1) \leq 0$ with (4)(5)(6).

1199 (4) Given $H(m_1|a_1, z_1) = 0$ in (1), we have $H(m_1|a_1, z_1) = H(m_1|a_1, z_1, z_2) +$
 1200 $I(m_1; z_2|a_1, z_1) = 0$ and following, $I(m_1; z_2|a_1, z_1) = 0$, as both terms are non-negative. There-
 1201 fore:

$$\begin{aligned} I(m_1; z_1; z_2|a_1) &= I(m_1; z_2|a_1) - I(m_1; z_2|a_1, z_1) \\ &= I(m_1; z_2|a_1) \geq 0 \end{aligned}$$

1204 (5) Since $I(z_1; z_2|a_1) = 0$, we have:

$$\begin{aligned} I(m_1; z_1; z_2|a_1) &= I(z_1; z_2|a_1) - I(z_1; z_2|m_1, a_1) \\ &= -I(z_1; z_2|m_1, a_1) \leq 0 \end{aligned}$$

1209 (6) Combine $I(m_1; z_1; z_2|a_1) \geq 0$ in (4) and $I(m_1; z_1; z_2|a_1) \leq 0$ in (5), we have
 1210 $I(m_1; z_1; z_2|a_1) = 0$. Given $H(m_1|a_1, z_1) = 0$ in (1) and $H(m_1|a_1, z_1) = H(m_1|a_1, z_1, z_2) +$
 1211 $I(m_1; z_2|a_1, z_1)$, we have $H(m_1|a_1, z_1, z_2) = 0$ as both terms are non-negative. Similar
 1212 to (4) that yields $I(m_1; z_1; z_2|a_1) = I(m_1; z_2|a_1)$ from $H(m_1|a_1, z_1) = 0$, we can get
 1213 $I(m_1; z_1; z_2|a_1, a_2) = I(m_1; z_2|a_1, a_2)$ from $H(m_1|a_1, z_1, z_2) = 0$ by additionally condition-
 1214 ing on z_2 . Therefore:

$$\begin{aligned} I(m_1; a_2; z_1; z_2|a_1) &= I(m_1; z_1; z_2|a_1) - I(m_1; z_1; z_2|a_1, a_2) \\ &= -I(m_1; z_2|a_1, a_2) \leq 0 \end{aligned}$$

1217 This is contradictory with $I(m_1; a_2; z_1; z_2|a_1) > 0$. Therefore, if $I(m_1; a_2|a_1) > 0$ and
 1218 $I(z_1; z_2|a_1) = 0$, then at least one of $I(m_1; z_1) < H(m_1)$ and $I(a_2; z_2) < H(a_2)$ must hold.

1220 B.3 PROOF OF PROPOSITION 2

1222 **Proposition 2.** *Under the data generation process of Definition 1 ($K = 2, k = 1$), if $I(z_1; m_1) =$
 1223 $H(m_1)$, $I(z_2; a_2) = H(a_2)$, and $I(z_1; z_2|m_1) = 0$, then $p(z_1|\text{do}(a_2)) = p(z_1)$, i.e., z_1 is the
 1224 disentangled representation of a_1 .*

1225 Our proof for Proposition 2 is two-fold. First, from the MI terms in the proposition, a conditional
 1226 independence is derived using mutual information theory in Lemma 2.1; Second, using the derived
 1227 conditional independence and the assumption in the proposition, we arrive at post-interventional
 1228 invariance by do-calculus in Lemma 2.2.

1229 B.3.1 PROOF OF LEMMA 2.1

1231 **Lemma 2.1.** *If $I(z_1; m_1) = H(m_1)$, $I(z_2; a_2) = H(a_2)$, and $I(z_1; z_2|m_1) = 0$, then $I(z_1; a_2) =$
 1232 $I(m_1; a_2)$ and $I(z_1; a_2|m_1) = 0$.*

1233 *Proof.* First, we prove $I(m_1; a_2) \geq I(z_1; z_2)$ with (1)(2).

1235 (1) Since $H(a_2|z_2) = 0$, we have $H(a_2|z_2) = H(a_2|z_1, z_2) + I(z_1; a_2|z_2) = 0$, and followingly
 1236 $I(z_1; a_2|z_2) = 0$, as both terms are non-negative. Therefore, by definition of interaction infor-
 1237 mation, we have $I(z_1; z_2; a_2) = I(z_1; a_2) - I(z_1; a_2|z_2) = I(z_1; a_2)$. Since $I(z_1; z_2|m_1) = 0$, we
 1238 have $I(z_1; z_2; a_2|m_1) = I(z_1; z_2|m_1) - I(z_1; z_2|m_1, a_2) = -I(z_1; z_2|m_1, a_2)$. Therefore:

$$\begin{aligned} I(z_1; z_2; m_1; a_2) &= I(z_1; z_2; a_2) - I(z_1; z_2; a_2|m_1) \\ &= I(z_1; a_2) + I(z_1; z_2|m_1, a_2) \\ &\geq I(z_1; a_2) \end{aligned}$$

1242 (2) i. Since $H(a_2|\mathbf{z}_2) = 0$, we have $H(a_2|\mathbf{z}_2) = H(a_2|m_1, \mathbf{z}_2) + I(m_1; a_2|\mathbf{z}_2) = 0$, and follow-
 1243 ingly $I(m_1; a_2|\mathbf{z}_2) = 0$, as both terms are non-negative.

1244 ii. Since $H(m_1|\mathbf{z}_1) = 0$, we have $H(m_1|\mathbf{z}_1) = H(m_1|\mathbf{z}_1, \mathbf{z}_2) + I(m_1; \mathbf{z}_2|\mathbf{z}_1) = 0$, and
 1245 followingly $H(m_1|\mathbf{z}_1, \mathbf{z}_2) = 0$, as both terms are non-negative. Therefore, $H(m_1|\mathbf{z}_1, \mathbf{z}_2) =$
 1246 $H(m_1|\mathbf{z}_1, \mathbf{z}_2, a_2) + I(m_1; a_2|\mathbf{z}_1, \mathbf{z}_2) = 0$, and followingly $I(m_1; a_2|\mathbf{z}_1, \mathbf{z}_2) = 0$, as both terms
 1247 are non-negative.

1248 iii. Given $I(m_1; a_2|\mathbf{z}_2) = 0$ in i. and $I(m_1; a_2|\mathbf{z}_1, \mathbf{z}_2) = 0$ in ii. as shown above, we have
 1249 $I(m_1; a_2; \mathbf{z}_1|\mathbf{z}_2) = I(m_1; a_2|\mathbf{z}_2) - I(m_1; a_2|\mathbf{z}_1, \mathbf{z}_2) = 0$.

1250 iv. Since $H(m_1|\mathbf{z}_1) = 0$, by definition of conditional mutual information, we have $H(m_1|\mathbf{z}_1) =$
 1251 $H(m_1|\mathbf{z}_1, a_2) + I(m_1; a_2|\mathbf{z}_1) = 0$, and followingly $I(m_1; a_2|\mathbf{z}_1) = 0$, as both terms are non-
 1252 negative. Thus $I(m_1; a_2; \mathbf{z}_1) = I(m_1; a_2) - I(m_1; a_2|\mathbf{z}_1) = I(m_1; a_2)$.

1253 Given $I(m_1; a_2; \mathbf{z}_1) = I(m_1; a_2)$ in iv. and $I(m_1; a_2; \mathbf{z}_1|\mathbf{z}_2) = 0$ in iii., we have:

$$1254 \begin{aligned} I(\mathbf{z}_1; \mathbf{z}_2; m_1; a_2) &= I(m_1; a_2; \mathbf{z}_1) - I(m_1; a_2; \mathbf{z}_1|\mathbf{z}_2) \\ 1255 &= I(m_1; a_2) \end{aligned}$$

1256 Given (1)(2), we have $I(m_1; a_2) = I(\mathbf{z}_1; \mathbf{z}_2; m_1; a_2) \geq I(\mathbf{z}_1; a_2)$

1257 (3) We prove $I(\mathbf{z}_1; a_2) \geq I(m_1; a_2)$ as follows.

1258 i. Since $H(m_1|\mathbf{z}_1) = 0$, we have $H(m_1|\mathbf{z}_1) = H(m_1|\mathbf{z}_1, a_2) + I(m_1; a_2|\mathbf{z}_1) = 0$, and followingly
 1259 $I(m_1; a_2|\mathbf{z}_1) = 0$, as both terms are non-negative. Thus, by chain rule of mutual information, we
 1260 have:

$$1261 \begin{aligned} I(m_1, \mathbf{z}_1; a_2) &= I(\mathbf{z}_1; a_2) + I(m_1; a_2|\mathbf{z}_1) \\ 1262 &= I(\mathbf{z}_1; a_2) \end{aligned}$$

1263 ii. We also have:

$$1264 \begin{aligned} I(m_1, \mathbf{z}_1; a_2) &= I(m_1; a_2) + I(\mathbf{z}_1; a_2|m_1) \\ 1265 &\geq I(m_1; a_2) \end{aligned}$$

1266 Given $I(m_1, \mathbf{z}_1; a_2) = I(\mathbf{z}_1; a_2)$ in i. and, $I(m_1, \mathbf{z}_1; a_2) \geq I(m_1; a_2)$ in ii., we have $I(\mathbf{z}_1; a_2) \geq$
 1267 $I(m_1; a_2)$.

1268 (4) Finally, given $I(m_1; a_2) \geq I(\mathbf{z}_1; a_2)$ with (1)(2) and $I(\mathbf{z}_1; a_2) \geq I(m_1; a_2)$ in (3), the equality
 1269 must hold that $I(\mathbf{z}_1; a_2) = I(m_1; a_2)$.

1270 Moving forward, given $I(m_1, \mathbf{z}_1; a_2) = I(\mathbf{z}_1; a_2) = I(m_1; a_2) + I(\mathbf{z}_1; a_2|m_1)$ in (3) and
 1271 $I(\mathbf{z}_1; a_2) = I(m_1; a_2)$ at which we just arrived, we have $I(\mathbf{z}_1; a_2|m_1) = 0$.

1272 B.3.2 PROOF OF LEMMA 2.2

1273 **Lemma 2.2.** *Under the data generation process of Definition 1 ($K = 2, k = 1$), if $I(\mathbf{z}_1; a_2|m_1) =$
 1274 0, then $p(\mathbf{z}_1|\text{do}(a_2)) = p(\mathbf{z}_1)$.*

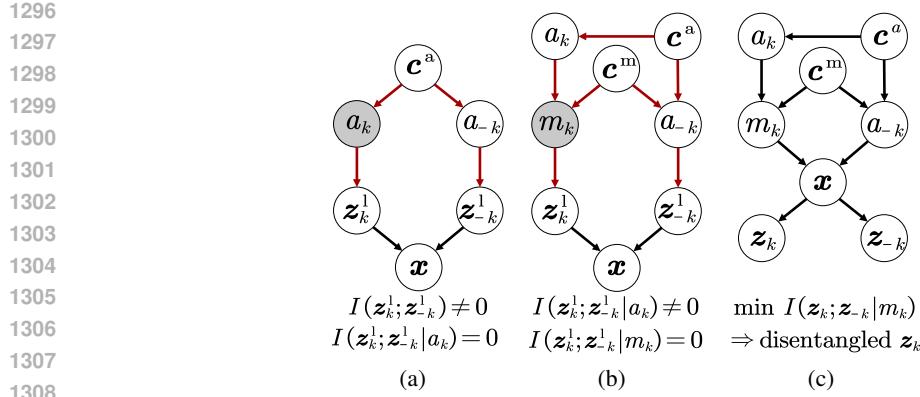
1275 *Proof.* We prove this by applying Rule 3 of do-calculus based on the causal graph G in Figure 3(c)
 1276 (reproduced as below), which reflects the representation learning process. The rules of do-calculus
 1277 are elaborated in Appendix D.2, where $\perp\!\!\!\perp$ indicates independence between variables, for arbitrary
 1278 disjoint sets of nodes X, Z, W , $G_{\overline{X}}$ denotes the graph obtained by deleting all arrows pointing to
 1279 X -nodes from G , and $Z(W)$ denotes the subset of Z -nodes that are not ancestors of any W -node.

1280 Specifically, we unfold the left-hand side of $p(\mathbf{z}_1|\text{do}(a_2)) = p(\mathbf{z}_1)$ and reach the right-hand side as:

$$1281 p(\mathbf{z}_1|\text{do}(a_2)) = \sum_{m_1} p(\mathbf{z}_1|\text{do}(a_2), m_1) p(m_1|\text{do}(a_2)) \quad (i)$$

$$1282 = \sum_{m_1} p(\mathbf{z}_1|m_1) p(m_1) \quad (ii)$$

$$1283 = p(\mathbf{z}_1) \quad (iii)$$



1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

Figure 14: Causal graphs of representations under $K > 2$. (a) and (b): Data generation with *the true latent representations* z_k^1, z_{-k}^1 , where Red arrows indicate the *backdoor paths* between them. (c): Representation learning that produces *the learned representations* z_k, z_{-k} .

where we arrive at (i) by chain rule of probability, and then arrive at (ii) by using Rule 3 of do-calculus twice: **First**, given $I(z_1; a_2 | m_1) = 0$, we have $z_1 \perp\!\!\!\perp a_2 | m_1$ in G , as the mutual information between variables equals zero if and only if they are independent; for $G_{\overline{a_2(m_1)}} = G_{\overline{a_2}}$ (obtained by removing the edges pointing to a_2 from confounders c^a, c^m in G), this conditional independence still holds for the following reasons (Pearl, 2009): For z_1 and a_2 , such edge removal (1) leaves the direct path $a_2 \rightarrow x \rightarrow z_1$ intact, not introducing any new pathway, and (2) blocks the backdoor paths $a_2 \leftarrow c^m \rightarrow m_1 \rightarrow x \rightarrow z_1$ and $a_2 \leftarrow c^a \rightarrow a_1 \rightarrow m_1 \rightarrow x \rightarrow z_1$, thus further reducing potential dependencies between z_1 and a_2 ; now we satisfy the condition of Rule 3 and apply do-calculus as:

$$p(z_1 | \text{do}(a_2), m_1) = p(z_1 | m_1) \quad \text{Rule 3 by } z_1 \perp\!\!\!\perp a_2 | m_1 \text{ in } G_{\overline{a_2}} \text{ (representation learning)}$$

Second, given the causal structure in Figure 3(c) based on the data generation process of Definition 1, we satisfy the condition of Rule 3 and apply do-calculus as:

$$p(m_1 | \text{do}(a_2)) = p(m_1) \quad \text{Rule 3 by } m_1 \perp\!\!\!\perp a_2 \text{ in } G_{\overline{a_2}} \text{ (elementary ingredients)}$$

Finally, we arrive at (iii) by chain rule of probability.

Discussions. Our proof mainly relies on two conditions: (1) there is no causal effect between m_1 and a_2 , which comes from the *elementary ingredients* assumption about attributes (Suter et al., 2019), and (2) conditional independence $I(z_1; a_2 | m_1) = 0$, which is enforced upon z_1 by representation learning that minimizes mode-based CMI, as proved in Proposition 2. Thereby, we conclude that *for data attributes that are elementary ingredients, disentangled representations can be learned by mode-based CMI minimization and supervised learning*.

B.4 GENERALIZATION TO MULTIPLE ATTRIBUTES

Our theoretical results, including the necessary condition and the sufficient condition for disentanglement, can be generalized to multiple attributes. The extension mainly involves replacing m_1, z_1 with m_k, z_k , and replacing a_2, z_2 with the joint a_{-k}, z_{-k} , as the properties of mutual information and causal graphs remain the same for joint variables.

The Necessary Condition for Disentanglement. Figure 3(a)(b) with two attributes is extended to Figure 14(a)(b) with K attributes, where the true latent representations satisfy the conditional independence as follows, yielding the necessary condition for disentanglement under hidden correlations and attribute correlations:

$$I(z_k^1; z_{-k}^1 | m_k) = 0 \Rightarrow \text{If } z_k \text{ is the disentangled representation of } a_k, \text{ then } I(z_k; z_{-k} | m_k) = 0 \quad (6)$$

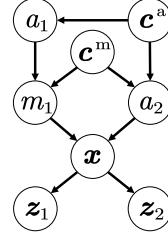


Figure 3(c) (reproduced). Causal graph of representation learning.

The Sufficient Condition for Disentanglement. We extend Proposition 2 to Corollary 2 for $K > 2$. The constraint $I(a_k; \mathbf{z}_k) = H(a_k)$ is added, which is originally implied in $I(\mathbf{z}_k; m_k) = H(m_k)$, because each mode falls under exactly one attribute value, making the attribute determined knowing the mode. In other words, all information about a_k is already contained in m_k . In addition, the joint constraint $I(\mathbf{z}_{-k}; a_{-k}) = H(a_{-k})$ is broken down for each $i \neq k$ into $I(\mathbf{z}_i; a_i) = H(a_i), i \neq k$. We also extend Lemma 2.1 and 2.2 to Corollary 2.1 and 2.2 for $K > 2$, with the causal graph of representation learning depicted in Figure 14(c).

Corollary 2. *Under the data generation process of Definition 1, if $I(\mathbf{z}_i; a_i) = H(a_i)$ for $i = 1, \dots, K$, $I(\mathbf{z}_k; m_k) = H(m_k)$, and $I(\mathbf{z}_k; \mathbf{z}_{-k}|m_k) = 0$, then $p(\mathbf{z}_k|\text{do}(a_{-k})) = p(\mathbf{z}_k)$, i.e., \mathbf{z}_k is the disentangled representation of a_k .*

Corollary 2.1. *If $I(\mathbf{z}_i; a_i) = H(a_i)$ for $i = 1, \dots, K$, $I(\mathbf{z}_k; m_k) = H(m_k)$, and $I(\mathbf{z}_k; \mathbf{z}_{-k}|m_k) = 0$, then $I(\mathbf{z}_k; a_{-k}) = I(m_k; a_{-k})$ and $I(\mathbf{z}_k; a_{-k}|m_k) = 0$.*

Corollary 2.2. *Under the data generation process of Definition 1, if $I(\mathbf{z}_k; a_{-k}|m_k) = 0$, then $p(\mathbf{z}_k|\text{do}(a_{-k})) = p(\mathbf{z}_k)$.*

where $-k$ indicates the set of attribute indices $\{j\}_{j \neq k}$.

Since the properties of mutual information and causal graphs remain the same for joint variables, and the MI term formulations in Corollary 2 and the causal graph structures in Figure 14 remain the same as those in Proposition 2 and Figure 3 after replacing the corresponding variables, the proofs under two attributes naturally extend to multiple attributes.

C DATA GENERATION PROCESS UNDER ATTRIBUTE CORRELATIONS

Following (Suter et al., 2019), the data generation process under attribute correlations is formulated in Definition 3. The causal graph of Definition 3 is depicted in Figure 15.

Definition 3. (Disentangled Causal Process). *Consider a causal generative model $p(\mathbf{x}|\mathbf{a})$ for data \mathbf{x} with K attributes $\mathbf{a} = (a_1, a_2, \dots, a_K)$ as the generative factors, where \mathbf{a} could be influenced by L confounders $\mathbf{c} = (c_1, \dots, c_L)$. This causal model is called disentangled if and only if it can be described by a structural causal model (SCM) (Pearl, 2009) of the form:*

$$\begin{aligned} \mathbf{c} &\leftarrow \mathbf{n}^c \\ a_i &\leftarrow h_i(S_i^c, \mathbf{n}_i), S_i^c \subset \{c_1, \dots, c_L\}, i = 1, \dots, K \\ \mathbf{x} &\leftarrow g(\mathbf{a}, \mathbf{n}^x) \end{aligned} \tag{7}$$

with functions g, h_i , jointly independent noise variables $\mathbf{n}^c, \mathbf{n}^x, \mathbf{n}_i$, and confounder subsets S_i^c for $i = 1, \dots, K$. Note that $\forall i \neq j, a_i \not\rightarrow a_j$.

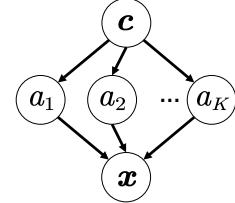


Figure 15: Causal graph of data generation process with attribute correlations.

D CAUSALITY

D.1 D-SEPARATION AND BACKDOOR PATHS

Overview of Causality. We provide a summary of notions in causal graphs relevant to the analysis in Section 3.3, namely d-separation, blocking paths, and conditional independence. More details can be found in (Pearl, 2009).

Causal graphs are directed acyclic graphs, where nodes represent random variables and directed edges represent the causal relationships between two variables. The notion of d-separation forms the link between blocking paths in the causal graph and dependencies between random variables. A *path* in causal graphs is a sequence of consecutive edges. Consider two nodes X and Y , X and Y are called *d-separated* by a set of nodes Z if all undirected paths from X to Y are *blocked* by Z . Meanwhile, a path between X and Y is considered to be *blocked* by a set of nodes Z if at least one of the following holds:

- (1) The path contains a chain $X \rightarrow M \rightarrow Y$ with the mediator set M , and a node in M is in Z .

1404 (2) The path contains a fork $X \leftarrow U \rightarrow Y$ with the confounder set U , and a node in U is in Z .
 1405
 1406 (3) The path contains a collider $X \rightarrow C \leftarrow Y$ with the collider node C , and neither C or its
 1407 descendant is in Z .

1408 Finally, if X and Y are d-separated by the set Z , X and Y are conditionally independent given Z . A
 1409 *backdoor path* between X and Y is the non-causal path between X and Y that contains at least one
 1410 edge pointing at X or Y , i.e. the path that flows backward from X or Y . Backdoor paths introduce
 1411 dependence between variables, thus they need to be blocked by controlling a node on these paths as
 1412 in (1) and (2).

1413 **Causal Graph Analysis Under Hidden Correlations.** Figure 3(b) contains three paths between
 1414 z_1 and z_2 . (1) The path $z_1 \rightarrow x \leftarrow z_2$ is blocked without conditioning on any variables, as long
 1415 as the collider x is uncontrolled. (2) The path $z_1 \leftarrow m_1 \leftarrow c^m \rightarrow a_2 \rightarrow z_2$ is blocked if any node
 1416 in the confounder set $\{m_1, c^m, a_2\}$ is controlled. Since c^m is unobserved, controlling either m_1 or
 1417 a_2 blocks this path. (3) The path $z_1 \leftarrow m_1 \leftarrow a_1 \leftarrow c^a \rightarrow a_2 \rightarrow z_2$ is blocked if any node in the
 1418 confounder set $\{m_1, a_1, c^a, a_2\}$ is controlled. Since c^a is unobserved, controlling one of m_1 , a_1 ,
 1419 and a_2 blocks this path. To simultaneously block all undirected paths between z_1 and z_2 , we need
 1420 to control either m_1 or a_2 , as controlling a_1 does not block path (2). That is to say, z_1 and z_2 are
 1421 conditionally independent given either m_1 or a_2 .

1423 D.2 RULES OF *do*-CALCULUS

1424 Let X , Y , Z , and W be arbitrary disjoint sets of nodes in a causal DAG G . *do*-calculus consists
 1425 of three inference rules that permit us to map interventional and observational distributions to each
 1426 other whenever certain conditions hold in the causal diagram G .

1427 We denote by $G_{\overline{X}}$ the graph obtained by deleting from G all arrows pointing to nodes in X . Likewise,
 1428 we denote by $G_{\underline{X}}$ the graph obtained by deleting from G all arrows emerging from nodes in X . To represent the deletion of both incoming and outgoing arrows, we use the notation $G_{\overline{X}\underline{Z}}$. The
 1429 following three rules are valid for every interventional distribution compatible with G (Pearl, 2016;
 1430 1995).

- 1431 • **Rule 1: Insertion/deletion of observations**

$$1432 P(y|do(x), z, w) = P(y|do(x), w), \quad \text{if } Y \perp\!\!\!\perp Z|X, W \text{ in } G_{\overline{X}}$$

- 1433 • **Rule 2: Action/observation exchange**

$$1434 P(y|do(x), do(z), w) = P(y|do(x), z, w), \quad \text{if } Y \perp\!\!\!\perp Z|X, W \text{ in } G_{\overline{X}\underline{Z}}$$

- 1435 • **Rule 3: Insertion/deletion of actions**

$$1436 P(y|do(x), do(z), w) = P(y|do(x), w), \quad \text{if } Y \perp\!\!\!\perp Z|X, W \text{ in } G_{\overline{X}\overline{Z(W)}}$$

1437 where $\perp\!\!\!\perp$ indicates independence, and for $G_{\overline{X}\overline{Z(W)}}$, $Z(W)$ denotes the set of Z -nodes that are not
 1438 ancestors of any W -node in $G_{\overline{X}}$.

1439 E NETWORK ARCHITECTURES

1440 The detailed architectures of different components in SD-HC and its variants are summarized in
 1441 Table 7. For independent control of each attribute, encoder F uses individual subnetworks for
 1442 each attribute with the same architectures. Predictors C_i , C_i^m share the same architectures as well.
 1443 Different architectures of discriminator D_k in SD-HC, SD-HC-A, SD-HC-ID, and SD-HC-SD are
 1444 described separately.

1445 F TRAINING PROCESS

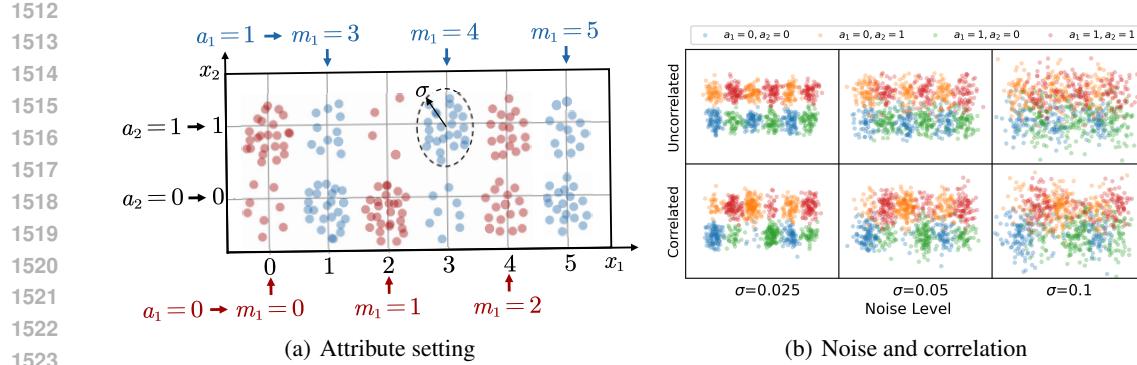
1446 The training process of SD-HC under $K = 2$ (a_1 as the attribute with underlying modes) is sum-
 1447 marized in Algorithm 1, where optimizations w.r.t. different losses are performed alternatively. The
 1448 algorithm can be generalized to multiple attributes accordingly.

1458 Table 7: Network architectures. “Discriminator(a_{in})” denotes discriminator with conditional input
 1459 a_{in} . “Conv(ci, kj, sl)” denotes 1D convolution layer with i channels, kernel size j , and stride l .
 1460 “FC(i)” denotes fully connected layer with output dimension i . “BN(i)” denotes 1D batch normal-
 1461 ization layer with feature dimension i . “AvgPool(i)” denotes 1D adaptive pooling layer with output
 1462 dimension i . “LeakyReLU(α)” denotes LeakyReLU activations with scale α . Output dimension
 1463 d_{out} is set according to each prediction task. N_1^c and N_2^c denote the number of values for a_1 and a_2 ,
 1464 respectively.

Component	Method	Dataset	Architectures
Encoder subnetwork	All	Toy	FC(16) \rightarrow FC(16)
Encoder subnetwork	All	CMNIST, CFashion- MNIST	FC(128), BN(128) \rightarrow FC(128), BN(128)
Encoder subnetwork	All	Canine-BG	ResNet18
Encoder subnetwork	All	WHAR	Conv(c128, k8, s2), BN(128) \rightarrow Conv(c256, k5, s2), BN(256) \rightarrow Conv(c128, k3, s1), BN(128), AvgPool(1)
Encoder subnetwork	All	MFD	Conv(c64, k32, s6), BN(64) \rightarrow Conv(c128, k8, s2), BN(128) \rightarrow Conv(c128, k8, s2), BN(128), AvgPool(1)
Predictor	All	All	FC(d_{out}), Softmax
Discriminator(m_1)	SD-HC	All	$N_1^c \times$ [FC(512), LeakyReLU(0.2) \rightarrow FC(1), Sigmoid] for each value of a_1
Discriminator(-)	SD-HC-A	All	$N_2^c \times$ [FC(512), LeakyReLU(0.2) \rightarrow FC(1), Sigmoid] for each value of a_2
Discriminator(-)	SD-HC-ID	All	$N_1^c \times N_m \times$ [FC(512), LeakyReLU(0.2) \rightarrow FC(1), Sigmoid] for each mode under each value of a_1
Discriminator(a_1, m_1)	SD-HC-SD	All	FC(512), LeakyReLU(0.2) \rightarrow FC(1), Sigmoid

1482 **Algorithm 1** The training process of SD-HC under $K = 2$

1483 1: **Input:** Training set \mathcal{D} with data x and attributes labels $a = (a_1, a_2)$, the number of modes N_m
 1484 under each value of a_1 , the number of epochs E_1 and E_2 , and the number of steps S_d , S_f , and
 1485 S_c
 1486 2: Initialize encoder F^* and predictor C_1^*
 1487 3: **for** $epoch = 1$ **to** E_1 **do**
 1488 4: **for** mini-batch (x, a_1) **in** \mathcal{D} **do**
 1489 5: Update F^* and C_1^* by minimizing \mathcal{L}_{ac} in Equation 4
 1490 6: **end for**
 1491 7: **end for**
 1492 8: Under each value of a_1 , perform k-means clustering with the number of clusters N_m on the
 1493 output representations z_1 of the trained encoder F^* , and get the estimated mode labels m_1
 1494 9: Initialize encoder F , predictors C_1, C_2, C_1^m , and discriminator D_1
 1495 10: **for** $epoch = 1$ **to** E_2 **do**
 1496 11: **for** mini-batch (x, a) **in** \mathcal{D} **do**
 1497 12: **for** $step = 1$ **to** S_c **do**
 1498 13: Update encoder F and predictors C_1, C_2 and C_1^m by minimizing \mathcal{L}_c in Equation 4
 1499 14: **end for**
 1500 15: **for** $step = 1$ **to** S_d **do**
 1501 16: Update discriminator D_1 by minimizing \mathcal{L}_d in Equation 5
 1502 17: **end for**
 1503 18: **for** $step = 1$ **to** S_f **do**
 1504 19: Update encoder F by maximizing \mathcal{L}_d in Equation 5
 1505 20: **end for**
 1506 21: **end for**
 1507 22: **end for**
 1508 23: **Output:** Encoder F and predictor C_1

Figure 16: Data construction of toy dataset with noise level σ .Table 8: Conditional probability $p(a_2|m_1)$ on toy data for $cor_h = 0$.

$p(a_2 m_1)$	m_1					
	0	1	2	3	4	5
a_2	0	0.5	0.5	0.5	0.5	0.5
	1	0.5	0.5	0.5	0.5	0.5

G DETAILS OF EXPERIMENTAL SETTINGS

G.1 DATASETS

Toy Dataset. As shown in Figure 16(a), our 2-dimensional toy data have two binary attributes, with the primary attribute a_1 having 3 modes under each attribute value, i.e., $a_1 = 0, m_1 = 0, 1, 2$ and $a_1 = 1, m_1 = 3, 4, 5$. Data are generated through linearly mapping m_1 and a_2 to two-dimensional spaces and adding noises with noise level σ as $\mathbf{x} = \mathbf{m}_1 \cdot [[0, 0], [2, 0], [4, 0], [1, 0], [3, 0], [5, 0]] + \mathbf{a}_2 \cdot [[0, 0], [0, 1]] + \mathbf{n}$, where vectors \mathbf{m}_1 and \mathbf{a}_2 represent the one-hot encoded values of m_1 and a_2 , respectively, and $\mathbf{n} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$ represents 2-dimensional independently normally distributed noise with noise level σ . For $\mathbf{x} = (x_1, x_2)$, the primary attribute a_1 and mode m_1 control dimension 1, i.e., x_1 , and attribute a_2 controls dimension 2, i.e., x_2 . An illustration of the generated data under different correlations and noise levels is given in Figure 16(b).

CMNIST. Colored MNIST (**CMNIST**) is constructed by coloring and occluding a subset of MNIST (Arjovsky et al., 2019), as shown in Figure 17(a). Parity check identifies whether a digit is even or odd with multiple digits under each parity value. Accordingly, attribute a_1 is defined as the parity of digits, i.e., $a_1 = 0, 1$ indicates “even”, “odd”; attribute a_2 is defined as the color of digits, i.e., $a_2 = 0, 1$ indicates “red”, “blue”, which is often correlated with digits, e.g., a player’s jersey number may be associated with a specific color in sports. a_1 has 2 modes under each attribute value, i.e., digits 4, 2 under parity “even” and digits 3, 9 under parity “odd”. Digit noises are generated as occlusion masks with occlusion ratio as the noise level σ (Chai et al., 2021), and coloring noises are generated as a scalar multiplier to the RGB values of the digits.

CFashion-MNIST. Colored Fashion-MNIST (**CFashion-MNIST**) is constructed similarly as CMNIST by coloring and occluding a subset of Fashion-MNIST (Xiao et al., 2017), as shown in Figure 17(b). This is provided as a complex counterpart of CMNIST for comparison. The correlation and noise settings are the same as CMNIST. Attribute a_1 is defined as the fashion styles of clothing, i.e., $a_1 = 0, 1$ indicates “sporty”, “chic”; attribute a_2 is defined as the color of clothing, i.e., $a_2 = 0, 1$ indicates “red”, “blue”. a_1 has 2 modes under each attribute value, i.e., “sneaker” and “pullover” under style “sporty”, and “sandle” and “dress” under style “chic”. As a natural scenario, the color of clothing is often related to the fashion style and the specific clothing type.

1566
1567Table 9: Conditional probability $p(a_2|m_1)$ on toy data for $cor_h = 0.02$.1568
1569
1570
1571
1572

$p(a_2 m_1)$		m_1					
		0	1	2	3	4	5
a_2	0	0.6	0.3	0.6	0.5	0.6	0.4
	1	0.4	0.7	0.4	0.5	0.4	0.6

1573

Table 10: Conditional probability $p(a_2|m_1)$ on toy data for $cor_h = 0.06$.1574
1575
1576
1577
1578

$p(a_2 m_1)$		m_1					
		0	1	2	3	4	5
a_2	0	0.7	0.2	0.6	0.4	0.7	0.4
	1	0.3	0.8	0.4	0.6	0.3	0.6

1579
1580Table 11: Conditional probability $p(a_2|m_1)$ on toy data for $cor_h = 0.13$.1581
1582
1583
1584
1585

$p(a_2 m_1)$		m_1					
		0	1	2	3	4	5
a_2	0	0.8	0.1	0.6	0.3	0.8	0.4
	1	0.2	0.9	0.4	0.7	0.2	0.6

1586
1587Table 12: Conditional probability $p(a_2|m_1)$ on toy data for $cor_h = 0.28$.1588
1589
1590
1591

$p(a_2 m_1)$		m_1					
		0	1	2	3	4	5
a_2	0	0.9	0	0.6	0.2	0.9	0.4
	1	0.1	1	0.4	0.8	0.1	0.6

1592
1593Table 13: Conditional probability $p(a_2|m_1)$ on toy data for $cor_h = 0.41$.1594
1595
1596
1597
1598

$p(a_2 m_1)$		m_1					
		0	1	2	3	4	5
a_2	0	1	0	0.5	0.1	1	0.4
	1	0	1	0.5	0.9	0	0.6

1599
1600Table 14: Conditional probability $p(a_2|m_1)$ on CMNIST and CFashion-MNIST under attribute correlations and hidden correlations.1601
1602
1603
1604
1605

$p(a_2 m_1)$		m_1			
		0	1	2	3
a_2	0	0.8	0.05	0.2	0.95
	1	0.2	0.95	0.8	0.05

1606
1607Table 15: Conditional probability $p(a_2|m_1)$ on CMNIST and CFashion-MNIST under only hidden correlations.1608
1609
1610
1611
1612

$p(a_2 m_1)$		m_1			
		0	1	2	3
a_2	0	$corr_p$	$1 - corr_p$	$corr_p$	$1 - corr_p$
	1	$1 - corr_p$	$corr_p$	$1 - corr_p$	$corr_p$

1613
1614Table 16: Conditional probability $p(a_2|m_1)$ on Canine-BG under attribute correlations and hidden correlations.1615
1616
1617
1618
1619

$p(a_2 m_1)$		m_1						
		0	1	2	3	4	5	6
a_2	0	0.1	0.2	0.3	0.4	0.9	0.8	0.7
	1	0.9	0.8	0.7	0.6	0.1	0.2	0.3

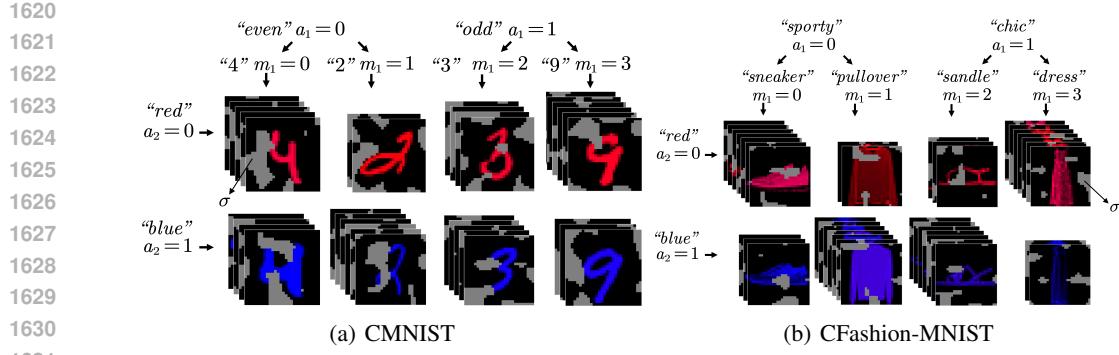


Figure 17: Data construction of CMNIST and CFashion-MNIST with noise level σ . The number of samples differs across (m_1, a_2) combinations, exhibiting hidden correlations.

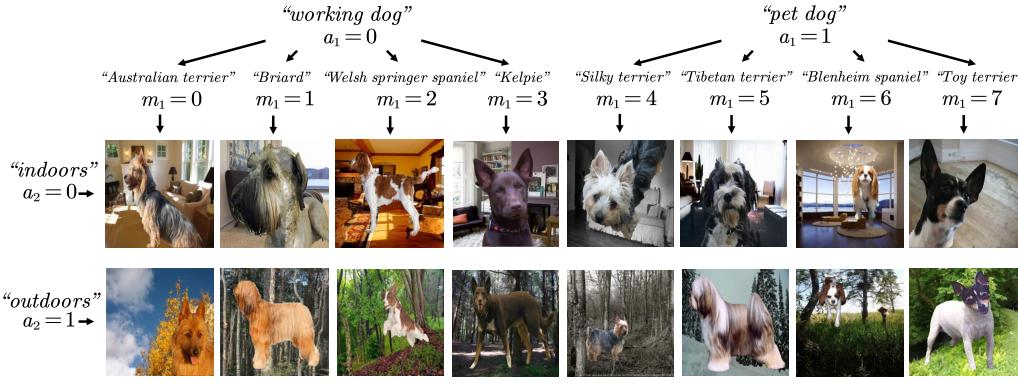


Figure 18: Data construction of Canine-BG.

Canine-BG. Canine-BG is constructed by combining canine images from ImageNet (Deng et al., 2009) with environmental backgrounds from the Places dataset (Zhou et al., 2018) following (Sagawa et al., 2020), as shown in Figure 18. Canines are combined with environments by the following procedure: First, SAM (Kirillov et al., 2023) is used to obtain segmentation masks of the canine image, and CLIP (Radford et al., 2021) is used to select the mask that best fits the semantics of the dog breeds with the prompt “a photo of a {dog breed}”; then, the canine foregrounds are combined with environment background to generate the images. Attribute a_1 is defined as the functional categories of canines, i.e., $a_1 = 0, 1$ indicates “working dog” and “pet dog”; attribute a_2 is defined as the environmental backgrounds, i.e., $a_2 = 0, 1$ indicates “indoors” (“living room” environment from Places dataset) and “outdoors” (“forest” environment from Places dataset). a_1 has 4 modes under each attribute value, i.e., “Australian terrier”, “Briard”, “Welsh springer spaniel”, and “Kelpie” under category “working dog”, and “Silky terrier”, “Tibetan terrier”, “Blenheim spaniel”, and “Toy terrier” under category “pet dog”. As a natural scenario, the environment of canines is often correlated to the functional categories and the specific canine breeds, e.g., working dogs are more likely to be outdoors. The correlation settings are shown in Table 16.

Time Series Datasets. **UCI-HAR**, **RealWorld**, and **HHAR** record wearable sensor data, from which WHAR identifies activities with variations under each activity. Accordingly, a_1 represents activity, m_1 represents unknown activity modes, and a_2 represents user ID, which is often correlated with activity due to personal behavior patterns. **MFD** record sensor data from bearing machines, from which machine fault diagnosis identifies machine fault types with variations under each fault type, e.g., different forms of damages. Accordingly, a_1 represents fault type, m_1 represents unknown modes of fault types, and a_2 represents operating conditions, which could be correlated with machine faults.

We use acceleration signals from UCI-HAR, RealWorld, and HHAR datasets and vibration signals from MFD dataset. After removing invalid values and normalizing the data by channel to be within

1674 the range of $[-1, 1]$, we pre-process the data by the sliding window strategy. For WHAR datasets with
 1675 multiple sensors, we use the 3-axis acceleration data from the waist for UCI-HAR, the acceleration
 1676 data from the chest for RealWorld, and the acceleration data from a Samsung smartphone for HHAR
 1677 following (Ragab et al., 2023). Table 17 summarizes the statistics of the preprocessed data used in
 1678 our experiments.

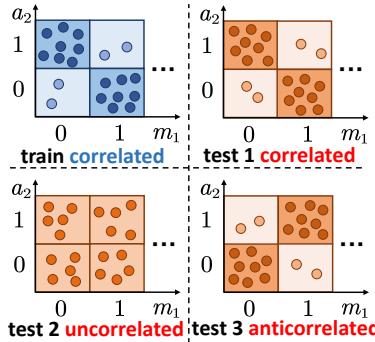
1679

1680 **G.2 EVALUATION PROTOCOL**

1681

1682 On toy, CMNIST, and CFashion-MNIST datasets, correlations are introduced by sampling, and the
 1683 three test sets are constructed as illustrated in Figure 19. On other datasets, we experiment under
 1684 natural correlations with leave-one-group-out validation.

1685

1697 Figure 19: Train-test setup.
1698

1699 **Toy Dataset.** Since we focus on investigating the behavior of different methods under only hidden
 1700 correlations $I(m_1; a_2|a_1) > 0$, data are set to be uniformly distributed under the values of m_1 ,
 1701 a_1 , and a_2 , and attribute correlations do not exist, i.e., $I(a_1; a_2) = 0$. The hidden correlations
 1702 are introduced by setting $p(a_2|m_1)$ to Table 8, 9, 10, 11, 12, 13 for hidden correlations $cor_h =$
 1703 $0, 0.02, 0.06, 0.13, 0.28, 0.41$, respectively.

1704

1705 **CMNIST and CFashion-MNIST.** Since we focus on investigating the behavior of different methods
 1706 under various correlations, data are set to be uniformly distributed under the values of m_1 and
 1707 a_1 . For the comparison with baselines and variants, we introduce attribute correlations and hidden
 1708 correlations by setting $p(a_2|m_1)$ to Table 14. For additional analysis, we introduce hidden correlations
 1709 by setting $p(a_2|m_1)$ according to Table 15, where we set $corr_p = 0.5, 0.6, 0.7, 0.8, 0.9$ for
 1710 hidden correlations $cor_h = 0, 0.02, 0.08, 0.19, 0.37$, respectively.

1711

1712 **Time Series Datasets.** Leave-one-group-out validation is performed, where each group is selected
 1713 as the test group once, and the remaining groups serve as the training groups. Groups are obtained
 1714 by dividing the data by the value of attribute a_2 , where the number of values of a_2 is equal for
 1715 different groups. The training and validation sets are obtained by splitting the data of the training
 1716 groups by 0.8:0.2. All data of the test group form the test set. All methods are trained on the training
 1717 set, tuned on the validation set, and tested on the test set.

1718

1719 **G.3 IMPLEMENTATION DETAILS**

1720

1721 All methods are implemented using PyTorch (Paszke et al., 2019). We experiment with Pytorch
 1722 1.10.0+cu113 and Python 3.8.13. Model optimization is performed using Adam (Kingma & Ba,
 1723 2015). Experiments are conducted on Linux servers with Intel(R) Core(TM) i9-12900K CPUs and
 NVIDIA RTX 3090 GPUs.

1724

1725

1726 **H HYPERPARAMETERS**

1727

1728 The general hyperparameters are set to the following values: The number of dimensions D for
 1729 representations z_i is set to 512 for Canine-BG and 128 for other datasets. The mini-batch size is set

Table 17: Time series dataset descriptions.

Dataset	UCI-HAR	RealWorld	HHAR	MFD
a_1	activity	activity	activity	incipient fault type
a_2	user	user	user	operating condition
# values of a_1	6	8	6	3
# values of a_2	30	15	9	4
# of groups	5	5	3	4
# channels	3	3	3	1
# samples	11711	36980	14772	10916
window length	128	150	128	5120
values of a_1	walking, walking upstairs, walking downstairs, sitting, standing, laying	climbing up, climbing stairs down, jumping, lying, standing, sitting, running, walking	biking, sitting, standing, walking, stair up, stair down	healthy, inner-bearing damage, outer-bearing damage

Table 18: Hyperparameter search spaces and NNI settings.

	Item	Search space / setting
Hyperparameter	w_m	between [0.01, 10]
	S_d	[1, 3, 5, 7, 9]
	N_m	[2, 3, 4, 5, 6, 7, 8, 9, 10]
	l_c, l_d, l_e	[0.0001, 0.0003, 0.0005, 0.0007, 0.001]
NNI configuration	Max trial number per GPU	1
	Optimization algorithm	Tree-structured Parzen Estimator

to 64 for toy data and 128 for other datasets. The number of epochs for pre-training, E_1 , and the number of epochs for supervised DRL, E_2 , are set to 100 and 150, respectively. The numbers of update steps S_f and S_c are set to 1.

Some other hyperparameters are tuned with Neural Network Intelligence (NNI)¹. The search spaces and NNI configurations are given in Table 18. The tuned hyperparameters are set to the following values: The weight of mode prediction loss w_m is set to 0.5, 0.2, 0.5, 0.1, 0.7, 0.1, 0.01, and 0.01 on toy, CMNIST, CFashion-MNIST, Canine-BG, UCI-HAR, RealWorld, HHAR, and MFD for variants with mode prediction loss, respectively. The number of update steps S_d is set to 2, 15, 13, 9, 7, 7, 1, and 1 on toy, CMNIST, CFashion-MNIST, Canine-BG, UCI-HAR, RealWorld, HHAR, and MFD, respectively. The number of modes N_m under each value of a_k is set to 3, 2, 2, 4, 8, 3, 2, and 2 on toy, CMNIST, CFashion-MNIST, Canine-BG, UCI-HAR, RealWorld, HHAR, and MFD, respectively. The initial learning rates of Adam (l_c, l_d, l_e) are set to (0.001, 0.0007, 0.001), (0.001, 0.0003, 0.001), (0.001, 0.0003, 0.001), (0.0007, 0.0003, 0.0005), (0.001, 0.0007, 0.0005), (0.001, 0.001, 0.001), (0.001, 0.0001, 0.001), and (0.001, 0.001, 0.0005) on toy, CMNIST, CFashion-MNIST, Canine-BG, UCI-HAR, RealWorld, HHAR, and MFD, respectively.

I BASELINES

We focus on comparing different independence constraints, and leave out the other components in the original baseline implementations, e.g., different architectures. For fair comparisons, all methods share the same encoder structure and train with alternative update steps, which is the same as SD-HC. The baselines are summarized below:

- **MMD** (Lin et al., 2020) minimizes the Maximum Mean Discrepancy between different distributions in the subspace of one attribute under different values of another attribute.
- **DTS** (Li et al., 2022) adversarially trains attribute predictors to make one attribute unpredictable from the representations of another.

¹<https://github.com/microsoft/nni>

1782 Table 19: Full comparison with baselines on CMNIST dataset (mean \pm std, in percentage). The nota-
1783 tions follow Table 1.
1784

Method	Test 1 (correlated)		Test 2 (uncorrelated)		Test 3 (anticorrelated)	
	Acc.	Mac. F1	Acc.	Mac. F1	Acc.	Mac. F1
BASE	90.1 ± 0.3	90.1 ± 0.3	83.1 $\pm 0.3^*$	83.1 $\pm 0.3^*$	76.8 $\pm 0.8^*$	76.8 $\pm 0.8^*$
MMD	64.0 $\pm 11.4^*$	58.9 $\pm 16.0^*$	61.4 $\pm 8.8^*$	56.2 $\pm 13.3^*$	58.2 $\pm 6.9^*$	52.8 $\pm 11.7^*$
DTS	69.9 $\pm 4.1^*$	69.9 $\pm 4.1^*$	65.1 $\pm 2.9^*$	65.1 $\pm 2.9^*$	61.5 $\pm 2.2^*$	61.5 $\pm 2.2^*$
IDE-VC	63.2 $\pm 3.1^*$	62.9 $\pm 3.1^*$	58.8 $\pm 2.5^*$	58.5 $\pm 2.8^*$	53.9 $\pm 2.2^*$	53.3 $\pm 2.7^*$
MI	66.4 $\pm 1.8^*$	66.0 $\pm 1.8^*$	62.8 $\pm 1.9^*$	62.4 $\pm 1.9^*$	59.6 $\pm 1.4^*$	59.0 $\pm 1.8^*$
A-CMI	72.2 $\pm 7.2^*$	71.2 $\pm 8.1^*$	66.8 $\pm 4.9^*$	65.8 $\pm 5.8^*$	61.1 $\pm 3.9^*$	60.0 $\pm 4.4^*$
HFS	81.1 $\pm 1.4^*$	80.9 $\pm 1.4^*$	72.5 $\pm 1.2^*$	72.3 $\pm 1.2^*$	63.5 $\pm 0.8^*$	63.1 $\pm 0.8^*$
SD-HC (ours)	88.6 ± 0.5	88.6 ± 0.8	85.9 ± 0.9	85.9 ± 1.0	82.9 ± 1.1	82.9 ± 0.8
Improvement	$\downarrow 1.5\%$	$\downarrow 1.5\%$	$\uparrow 2.8\%$	$\uparrow 2.8\%$	$\uparrow 6.1\%$	$\uparrow 6.1\%$

1795 Table 20: Full comparison with baselines on CFashion-MNIST dataset (mean \pm std, in percentage).
1796 The notations follow Table 1.
1797

Method	Test 1 (correlated)		Test 2 (uncorrelated)		Test 3 (anticorrelated)	
	Acc.	Mac. F1	Acc.	Mac. F1	Acc.	Mac. F1
BASE	93.6 ± 0.3	93.6 ± 0.3	84.2 ± 0.8	84.2 ± 0.8	74.8 $\pm 0.9^*$	74.8 $\pm 0.9^*$
MMD	91.7 ± 0.3	91.7 ± 0.3	79.0 $\pm 1.3^*$	79.0 $\pm 1.3^*$	65.8 $\pm 2.9^*$	65.6 $\pm 3.1^*$
DTS	83.6 $\pm 7.7^*$	83.6 $\pm 7.7^*$	71.0 $\pm 5.0^*$	71.0 $\pm 5.0^*$	58.4 $\pm 3.2^*$	58.4 $\pm 3.2^*$
IDE-VC	90.0 ± 1.2	90.0 ± 1.2	79.4 $\pm 1.0^*$	79.4 $\pm 1.0^*$	67.5 $\pm 0.9^*$	67.4 $\pm 1.0^*$
MI	70.6 $\pm 9.8^*$	70.2 $\pm 11.3^*$	62.3 $\pm 5.5^*$	61.8 $\pm 7.5^*$	54.2 $\pm 3.4^*$	53.5 $\pm 4.8^*$
A-CMI	72.0 $\pm 11.3^*$	70.0 $\pm 12.8^*$	64.7 $\pm 6.1^*$	60.8 $\pm 8.1^*$	58.2 $\pm 4.2^*$	52.4 $\pm 4.5^*$
HFS	86.2 $\pm 3.4^*$	86.1 $\pm 3.5^*$	72.6 $\pm 1.7^*$	72.1 $\pm 2.1^*$	57.9 $\pm 3.7^*$	56.7 $\pm 3.7^*$
SD-HC	93.3 $\pm 5.1^*$	93.3 $\pm 5.1^*$	86.3 $\pm 4.6^*$	86.3 $\pm 4.6^*$	79.4 $\pm 5.3^*$	79.4 $\pm 5.3^*$
Improvement	$\downarrow 0.3\%$	$\downarrow 0.3\%$	$\uparrow 2.1\%$	$\uparrow 2.1\%$	$\uparrow 4.6\%$	$\uparrow 4.6\%$

1809 Table 21: Full comparison with baselines on Canine-BG dataset (mean \pm std, in percentage). The
1810 notations follow Table 1.
1811

Method	Test 1 (correlated)		Test 2 (uncorrelated)		Test 3 (anticorrelated)	
	Acc.	Mac. F1	Acc.	Mac. F1	Acc.	Mac. F1
BASE	85.6 ± 5.3	85.6 ± 6.3	72.0 $\pm 5.5^*$	72.0 $\pm 6.1^*$	62.1 $\pm 7.9^*$	62.0 $\pm 8.3^*$
MMD	56.4 $\pm 3.7^*$	45.6 $\pm 11.0^*$	56.7 $\pm 4.9^*$	45.6 $\pm 11.9^*$	56.5 $\pm 6.1^*$	46.3 $\pm 13.1^*$
DTS	77.9 $\pm 4.0^*$	77.9 $\pm 4.5^*$	71.4 $\pm 3.5^*$	71.4 $\pm 3.8^*$	61.3 $\pm 5.0^*$	61.3 $\pm 5.5^*$
IDE-VC	80.2 $\pm 3.0^*$	80.2 $\pm 3.5^*$	70.2 $\pm 3.2^*$	70.0 $\pm 3.6^*$	58.5 $\pm 4.5^*$	58.3 $\pm 5.0^*$
MI	69.0 $\pm 6.0^*$	67.7 $\pm 7.0^*$	67.7 $\pm 5.5^*$	65.9 $\pm 6.5^*$	64.4 $\pm 6.0^*$	62.4 $\pm 7.0^*$
A-CMI	76.8 $\pm 4.5^*$	76.8 $\pm 5.0^*$	68.1 $\pm 4.0^*$	68.1 $\pm 4.5^*$	58.6 $\pm 5.0^*$	58.6 $\pm 5.5^*$
Hausdorff	82.0 $\pm 2.8^*$	81.9 $\pm 2.9^*$	69.1 $\pm 1.8^*$	69.0 $\pm 2.0^*$	57.1 $\pm 1.4^*$	57.0 $\pm 1.7^*$
SD-HC	84.8 ± 3.0	84.8 ± 3.2	80.6 ± 2.8	80.5 ± 3.0	75.2 ± 3.5	75.1 ± 3.8
Improvement	$\downarrow 0.8\%$	$\downarrow 0.8\%$	$\uparrow 8.6\%$	$\uparrow 8.5\%$	$\uparrow 10.8\%$	$\uparrow 12.7\%$

1824 • **IDE-VC** (Yuan et al., 2021) minimizes the unconditional MI between the representations
1825 of different attributes by adversarially training a predictor that predicts the representations
1826 of one attribute from those of another.

1827 • **MI** (Cheng et al., 2022) and **A-CMI** (Funke et al., 2022) minimize the unconditional mutual
1828 information and the attribute-based conditional mutual information between the representations
1829 of different attributes, respectively. These two methods minimize MI by adversarially
1830 training an unconditional or conditional discriminator as the proposed method. We train
1831 two discriminators for A-CMI to minimize conditional mutual information based on both
1832 a_1 and a_2 as in (Funke et al., 2022).

1833 • **HFS** (Roth et al., 2023) minimizes the Hausdorff distance between two representation sets
1834 to factorize the supports of different representation subspaces, where we use Euclidean
1835 distance as the distance measure between different representations from the same subspace.

1836 **J FULL RESULTS ON CMNIST AND CFASHION-MNIST DATASET**
18371838 The full comparisons with baselines on CMNIST, CFashion-MNIST, and Canine-BG datasets are
1839 presented in Table 19, Table 20, and Table 21, respectively, from which we observe that the ad-
1840 vantage of SD-HC increases as correlation shift increases from test 1 to test 3. [Detailed method](#)
1841 [behaviour of BASE, A-CMI, and SD-HC are analyzed in Section 5.4.](#)1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889