

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EVALUATING AND STEERING MODALITY PREFERENCES IN MULTIMODAL LARGE LANGUAGE MODEL

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal large language models (MLLMs) have achieved remarkable success on complex multimodal tasks. However, it remains insufficiently explored whether they exhibit *modality preference*, a tendency to favor one modality over another when processing multimodal contexts. To study this question, we introduce **MC²** benchmark, which constructs controlled evidence-conflict scenarios to systematically evaluate modality preference in decision-making. Extensive experiments reveal that all 20 tested MLLMs generally demonstrate clear modality preferences, and such preferences can serve as a useful indicator of downstream task performances of MLLMs. Further analysis shows that modality preference can be controlled by instruction guidance and captured within the latent representations of MLLMs. Built on these insights, we propose a probing and steering method based on representation engineering to explicitly control modality preference without requiring additional fine-tuning. This method effectively amplifies modality preference toward a desired direction and demonstrates promising improvements across multiple downstream applications, including multimodal visual understanding and multimodal machine translation.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs; Achiam et al., 2023; Team et al., 2023; Wang et al., 2024; Yin et al., 2024) have emerged as a powerful paradigm for processing and reasoning across heterogeneous data modalities (e.g., text, images, video). Recent advances demonstrate their exceptional capabilities on complex tasks with multimodal contexts, including autonomous web browsing (He et al., 2024), graphical user interface understanding (Hong et al., 2024b), and multimodal dialogue systems (Sun et al., 2022). Despite impressive performance, fundamental questions remain about their *modality preference*—whether MLLMs tend to rely more heavily on one modality than others, and to what extent they favor a specific modality when resolving multimodal inputs.

To investigate this, one line of work (Fu et al., 2024; Amara et al., 2024) compares model performance on unimodal input, providing either only text or only image input for the same question. Another line of research analyzes the relative contributions of textual and visual context, typically by removing one modality to observe the changes of the downstream performance (Park et al., 2025) or Shapley value (Alishahi et al., 2019; Parcalabescu & Frank, 2024; 2022). However, such settings inherently introduce bias, as *they isolate modalities, thus failing to reflect how models process inputs in realistic multimodal scenarios*, where information from different modalities naturally co-occur.

In this paper, we provide a controllable setup to study the modality preference in MLLMs. As shown in the left panel of Figure 1, we introduce a modality context conflict setting, where MLLMs are asked to answer a question based on a pair of contrasting evidence from different modalities. In this way, we can determine the modality preference based on the answer given by MLLMs.

To enable a rigorous and fair assessment, we use the perception-level tasks and isolate confounding factors including question comprehension, single-modality perception, and the internal knowledge of MLLMs. Therefore, we annotate and select perception-level tasks that demonstrate accurate question comprehension and reliable single-modality recognition. Building upon this, we introduce a semi-automated annotation framework to construct a refined Modality Context Conflict dataset, **MC²**, which covers eight perception-level tasks with 2,000 carefully selected samples. Using **MC²**,

Figure 1: Illustrations of evaluating modality preference. **Left:** Using multimodal conflict context pairs to evaluate modality preference. **Right:** Quantified scores for **Vision** and **Text** modalities, where a higher score indicates a stronger preference toward the corresponding modality. **Other** represents irrelevant predictions, which are discarded during the statistics.

we conduct a comprehensive analysis of modality preference across a diverse set of 20 representative MLLMs. Our study reveals several intriguing findings:

- Most MLLMs (except Qwen2.5-VL and InternVL3) display text preference, as shown in the right panel of Figure 1, and modality preference can serve as a useful indicator of downstream task performances.
- Internal attention patterns toward specific modalities give rise to modality preference, and the underlying factors can be traced to the training data recipe and the scale of the MLLMs.
- Modality preference can be modulated through explicit instruction guidance, and the direction of preference can be captured as geometrically separable patterns in the latent space.

Built on these, we propose a modality preference probing and steering method based on representation engineering (Zou et al., 2023) to explicitly amplify the modality preference without additional fine-tuning. Experimental results show that the proposed method leads to notable performance improvements on multimodal visual understanding and multimodal machine translation. Our main contributions are summarized as follows:

- We introduce **MC²** to comprehensively evaluate modality preferences in MLLMs and highlight the significance of modality preference in correlating the downstream task performance.
- Our analysis reveals that intrinsic modality preferences in MLLMs are steerable and identifiable through latent representation, providing insights into multimodal reasoning.
- We propose a training-free method that steers modality preference via representation-level intervention, enabling controllable preference adjustment and enhancing performance on downstream tasks.

2 RELATED WORK

2.1 MODALITY PREFERENCE

Existing studies on the modality preference of MLLMs can be broadly divided into two categories: 1) investigating the data-related factors that give rise to modality preference or bias, and 2) analyzing the intrinsic characteristics of modality preference within models.

Data factors influencing modality preference. Research on data-related factors (Guo et al., 2023; Chen et al., 2024; Leng et al., 2024) explores how properties of multimodal datasets give rise to and reinforce modality preference. In particular, many samples in multimodal datasets can be resolved correctly by relying on information from only a single modality. When prevalent in training

108 data, such samples bias the optimization dynamics, encouraging models to disproportionately rely
 109 on a single modality (Chen et al., 2024). Furthermore, their inclusion in evaluation benchmarks
 110 artificially inflates performance metrics, as models can exploit these unimodal shortcuts instead of
 111 performing genuine cross-modal integration (Leng et al., 2024; Winterbottom et al., 2020). While
 112 these studies establish data’s role in inducing preference, our work focuses on exploring the intrinsic
 113 modality preference inherent in MLLMs themselves, independent of specific data distributions.

114 **Evaluating the intrinsic modality preference in MLLMs.** Early studies (Peng et al., 2022; Yang
 115 et al., 2024; Wei et al., 2024) analyze modality preference or bias by examining how multimodal
 116 models optimize for multimodal inputs. Through such analyses, researchers observe that modality
 117 bias has a significant impact on both model optimization and downstream task performance (Peng
 118 et al., 2022; Ren et al., 2022; Zhang et al., 2024). While these works offer valuable insights,
 119 they typically require training models from scratch, which makes them impractical for large-scale
 120 multimodal systems. Recent studies have investigated intrinsic modality preference in MLLMs by
 121 evaluating model performance on unimodal inputs—using only text or only image for the same
 122 task (Fu et al., 2024; Amara et al., 2024)—and by applying Shapley value-based attribution methods
 123 to quantify the contribution of each modality (Alishahi et al., 2019; Parcalabescu & Frank, 2022;
 124 2024). However, in real-world multimodal applications, all modalities are indispensable for task
 125 resolution, making these frameworks *inadequate for determining truly modality preference*. Wu
 126 et al. (2025) evaluate the model’s ability to detect conflict under scenarios involving conflicting
 127 multimodal contexts. However, conflict detection is only one facet of multimodal reasoning and does
 128 not comprehensively reflect a model’s modality preference when processing multimodal contexts.

129 In this work, we simulate multimodal reasoning by examining the behavior of MLLMs in response
 130 to questions under scenarios involving conflicting multimodal contexts. Compared to prior work,
 131 we carefully control confounding variables such as input quality, question-understanding ability,
 132 and internal model knowledge, and construct a modality context conflict dataset, enabling a more
 133 rigorous evaluation of modality preference and uncovering new insights. Furthermore, we design a
 134 flexible method which can controllably steer the modality preference and demonstrate effectiveness
 135 across multiple downstream tasks.

136 2.2 REPRESENTATION ENGINEERING

137 Extensive research has shown that large language models (LLMs) encode interpretable concepts,
 138 such as sentiment, truthfulness, and stylistic attributes in representation space in LLMs (Liu et al.,
 139 2023b; Panickssery et al., 2023; Subramani et al., 2022; Turner et al., 2023). Building on this
 140 foundation, representation engineering has proven effective for editing, enhancing, or suppressing
 141 specific behaviors in LLMs (Greenblatt et al., 2023; Stolfo et al., 2024; Wu et al., 2024; Xu et al.,
 142 2024; Zou et al., 2023). In this work, we extend this paradigm to a novel setting: controlling
 143 modality preference in multimodal large language models (MLLMs). Instead of focusing on ab-
 144 stract properties, our method identifies and manipulates representation directions that are sensitive
 145 to modality preference, enabling flexible and targeted control over multimodal reasoning behavior.

147 3 THE MC² BENCHMARK

148 In this section, we introduce the design and methodology behind the construction of the **Multimodal**
 149 **Context Conflict** dataset, **MC²**, intended for evaluating modality preference. We outline the data
 150 design philosophy in Section 3.1, followed by the data construction pipeline in Section 3.2 and the
 151 question design and evaluation metric in Section 3.3.

152 3.1 DATA DESIGN PHILOSOPHY

153 **Modality preference is a fundamental behavioral tendency** to favor a modality over another, ir-
 154 respective of the specific modality content. Its evaluation is challenging, as it is often confounded
 155 by model’s internal knowledge and reasoning capabilities. To enable a **rigorous and fair assessment**,
 156 we isolate these confounding factors by using perception-level modality context conflict pairs
 157 instead of complex reasoning tasks. We elaborate on this design choice below: 1) As suggested
 158 by prior studies Wang et al. (2023); Wu et al. (2025), model decisions often rely on contextual
 159 information that aligns better with their internal knowledge. Therefore, in complex reasoning tasks

162 involving knowledge, “modality preference” becomes conflated with “knowledge alignment.” By
 163 using perception-level tasks, we can eliminate it. 2) To enable a fair comparison of modality
 164 preferences across MLLMs with varying reasoning capabilities and knowledge bases, it is essential
 165 to establish a common ground—a “lowest common denominator.” Perception-level tasks serve this
 166 purpose effectively, as all models exhibit baseline competence in such settings. Finally, we construct
 167 perception-level modality context conflict pairs to evaluate and compare the modality preference of
 168 different MLLMs.

169

170 3.2 SEMI-AUTOMATED DATA CONSTRUCTION PIPELINE

171

172 In this section, we introduce our semi-automated data construction pipeline, which follows a metic-
 173 ulous and iterative process to ensure the robustness and reliability of the dataset, in line with the
 174 design philosophy outlined in Section 3.1. The dataset is derived from the TDIUC (Kafle & Kanan,
 175 2017) dataset, sourced from MS-COCO (Lin et al., 2014), widely adopted in model development to
 176 ensure the evaluated models can recognize the images. We select the image as vision context c^v ,
 177 question q , and answer A^v based on the vision context and the image caption cap for each sample
 178 from TDIUC as the foundation for data annotation. The pipeline follows these steps:

179

180 Textual Context Construction. Given a sample including c^v , q , A^v and cap , we construct candidate
 181 contrastive textual contexts c^t that conflict with c^v specifically in relation to q but are aligned with
 182 the c^v and cap in terms of overall scene semantics. We prompt DeepSeekV3 (Liu et al., 2024a)
 183 and ChatGPT4o-mini (Hurst et al., 2024b) to generate a distractor answer A^t to q , together with c^t
 184 that plausibly supports A^t , using carefully crafted instructions. For each model, we generate two
 185 pairs of A^t and c^t to facilitate downstream data selection. To ensure that all evaluated MLLMs
 186 demonstrate strong recognition capabilities for both visual and textual contexts, we employ several
 187 basic MLLMs, such as LLaVA1.5-7B (Liu et al., 2024b) and QwenVL-7B (Bai et al., 2023), as
 188 judges to select samples that can be correctly understood with respect to c^v and c^t .

189

190 Human Verification. We incorporate manual inspection to ensure the high quality of the data
 191 annotation. Specifically, we verify the existence of conflicts between c^v and c^t and ensure that both
 192 contexts can correctly direct q to the corresponding answers, A^v and A^t . Each sample is cross-
 193 verified by three human annotators to ensure the reliability of the results, and when errors are found,
 194 annotators either correct or discard the sample entirely.

195

196 Iterative Refinement. The dataset undergoes multiple rounds of refinement through a feedback
 197 loop between textual context generation and human verification, which helps identify and rectify
 198 potential errors, thereby enhancing the dataset quality.

199

200 Modality Context Conflict Dataset. To this end, we construct **MC²**, a modality context conflict
 201 dataset including 2000 samples. The detailed instruction templates for textual context generation,
 202 the detailed manual annotation procedures, the data annotation format along with sample cases and
 203 dataset statistics are provided in Appendix B.

204

205

206 3.3 QUESTION DESIGN AND EVALUATION METRIC

207

208

209 Question Design. We reformulate the original questions with ChatGPT-4o-mini (Hurst et al.,
 210 2024a) into a binary-choice format. To further reduce potential *position bias* in multimodal inputs,
 211 we adopt a *consistent evaluation* strategy, similar to Liu et al. (2024d). Concretely, for each question,
 212 we construct two versions by swapping the order of the answer choices. A model’s prediction is
 213 regarded as *consistent* only if it selects the same answer in both versions for a sample; otherwise, it is
 214 labeled as *inconsistent*. Such inconsistent samples are discarded from the subsequent measurement
 215 of modality preference.

216

217

218 Evaluation Metric. Inspired by prior work on evaluating stylistic or knowledge-related preferences
 219 of LLMs and MLLMs through conflict-pair contexts (Li et al., 2024b; Xie et al., 2023; Liu et al.,
 220 2025), we extend this idea to evaluate the modality preference by designing a metric that captures
 221 how MLLMs respond to conflicting signals from different modalities. More importantly, through
 222 the careful design of our benchmark, we establish as a basis that the model can reliably understand
 223 both modalities in isolation. As shown in Table 17 and Table 18 in Appendix, all models achieve
 224 over 95% accuracy when provided with either textual or visual context.

Figure 2: Results of modality preference across different MLLMs. **Left:** Quantified scores for **Vision**, **Others** **Text** modalities using S_{vision} , S_{others} and S_{text} as well as **Vision Ratio**. **Right:** Trends of **Vision Ratio** with respect to model parameter size across different MLLMs.

Building on this, our metric evaluates modality preference by assessing how the model’s responses align with textual or visual input when the two provide conflicting signals. The model’s response is then categorized based on which modality it aligns with: 1) **Vision**: the response aligns with the visual context; 2) **Text**: the response aligns with the textual context; 3) **Others**: the responses are ambiguous, uncertain, or inconsistent with either modality, which are discarded from further analysis. Then, we naturally define the **Vision Ratio** to quantify the model’s preference toward the vision modality, defined as: $S_{vision}/(S_{vision} + S_{text})$, where S_{vision} or S_{text} denotes the score of the vision or text modality, computed as the proportion of samples whose responses are categorized as **Vision** or **Text** across the dataset. S_{others} is the proportion of samples whose responses are categorized as **Others**. Vision Ratio greater than 0.5 indicates that the model tends to favor visual context over text.

4 MODALITY PREFERENCES IN MLLMs

This section presents a systematic investigation into modality preference in MLLMs, structured around four key research questions: 1) *Which modality do MLLMs prioritize?* 2) *What factors drive these preferences?* 3) *Can the Vision Ratio provide guidance for downstream task performance?* 4) *Can modality preference be controlled?* This investigation helps uncover the underlying mechanisms of modality preference and enables us to apply these insights to downstream tasks.

4.1 WHICH MODALITY DO MLLMs PRIORITIZE?

We use the MC² benchmark to evaluate the modality preferences of 20 open-source MLLMs and the proprietary ChatGPT-4o-mini (Hurst et al., 2024a), detailed in Appendix C.1.

Different MLLMs exhibit different modality preferences. As described in Section 3.3, we quantify modality preference using **Vision Ratio**, with the results presented in the left panel of Figure 2 and detailed in Table 14. We observe that all MLLMs exhibit clear modality preference, with most models showing a strong preference for text; for instance, LLaVA1.5-7B attains only a 13.4% Vision Ratio. This aligns with the previous findings that MLLMs suffer from a severe language prior (Lee et al., 2024; Parcalabescu & Frank, 2024; Wu et al., 2025). Interestingly, the Qwen2.5VL and InternVL3 show a certain degree of preference towards the vision modality.

Larger MLLMs exhibit stronger preferences for the vision modality. We evaluate models from the LLaVA1.5, LLaVA-Next, Qwen2.5VL, InternVL3, and LLaVA-OneVision families to investigate the relationship between model size and modality preference. As shown in the right panel of Figure 2, we observe that for all model families, the preference for the vision modality increases with the model size. And the Qwen2.5VL and InternVL3 models exhibit a significant preference for the vision modality once the model size increases. However, LLaVA1.5, LLaVA-Next, and LLaVA-OneVision models maintain a noticeable preference for the text modality as their sizes increase.

270 To validate the reliable the evaluation, we conduct a sensitivity analysis for the sample number of
 271 evaluating modality preference in Appendix E.1.

272 **Vision Ratio aligns with human preference.** We further verify whether the Vision Ratio can
 273 serve as a human-level measure of modality preference in MLLMs. We randomly sample 100
 274 instances from MC² and compute the Vision Ratio of four representative models—Qwen2.5VL-
 275 7B, LLaVA-OneVision-7B, InternVL3-14B, and LLaVA1.5-7B. In addition, we craft prompts to
 276 elicit explicit reasoning chains from the models, specifically targeting their reliance on visual or
 277 textual information. To ensure labeling reliability, three expert annotators independently annotate
 278 the expressed modality preference for each response, with the final label determined by majority
 279 vote. The automatically obtained Vision Ratio scores ([56.3%, 24.6%, 52.3%, 13.9%]) are highly
 280 consistent with the ones given by human ([61.0%, 22.0%, 51.0%, 16.0%]), with an average discrep-
 281 ency of only 2.68%. This indicates that the Vision Ratio can act as a reliable, automated proxy for
 282 human assessment of modality preference.

293 Figure 3: Analysis of modality preferences. **Left:** Trends of Vision Ratio and multimodal Attention
 294 Ratio across different models. **Middle:** Vision Ratio with Respect to the Proportion of Multimodal
 295 Conflict-Context Training Data and different MLLMs. **Right:** Relationship between visual under-
 296 standing ability, quantified as the average accuracy across seven widely used benchmarks and the
 297 modality preference measured by Vision Ratio.

4.2 WHAT FACTORS DRIVE THESE PREFERENCES?

301 Given that different MLLMs display varying modality preferences, we examine two primary sources
 302 of such differences: *the internal attention distribution* and *the training factors*.

303 **Different allocation of attention across modalities.** We compute the mean attention scores over
 304 all token positions from both modalities and define the ratio of visual attention to total attention as
 305 the **Attention Ratio**. By analyzing Qwen2.5VL-7B and LLaVA-OneVision-7B, we observe that the
 306 trends of the Attention Ratio closely align with the Vision Ratio across models in the left panel of
 307 Figure 3. This alignment suggests that MLLMs distribute attention unevenly between modalities,
 308 which in turn contributes to their divergent modality preferences.

309 **Impact of model scale and training data recipe.** Through reviewing the technical reports of the
 310 evaluated MLLMs, we find that they all adopt a common architecture comprising a vision encoder,
 311 an alignment layer, and an LLM. Thus, we hypothesize that the observed preferences mainly arise
 312 from two factors: 1) Exposure to more multimodal contexts, especially with conflicting cases, drives
 313 more pronounced shifts in modality preference. 2) Larger LLMs are more capable of shifting their
 314 preference during training;

315 To examine these hypotheses, we construct a training dataset containing vision–text conflict con-
 316 texts and fine-tune Qwen2.5VL-7B/3B and LLaVA1.5-7B with varying proportions of samples with
 317 multimodal conflict contexts, adjusting their preferences toward text or vision. We then measured
 318 changes with the Vision Ratio. We optimize MLLMs in the opposite direction of their original
 319 preferences and measure changes using the Vision Ratio. As shown in the middle panel of Figure 3,
 320 increasing the proportion of multimodal contexts consistently leads to larger preference shifts, sup-
 321 porting **Hypothesis 1**. This suggests that multimodal inputs maybe create more challenging training
 322 conditions, leading to stronger shifts of preference. Furthermore, Qwen2.5VL-7B exhibits greater
 323 shifts than Qwen2.5VL-3B under the same conditions, supporting **Hypothesis 2**. This indicates that
 larger LLMs demonstrate stronger learning ability and adapt more effectively.

324 4.3 CAN THE VISION RATIO PROVIDE GUIDANCE FOR DOWNSTREAM TASK PERFORMANCE?
325

326 As a foundational behavioral prior, the identified modality preference can inform how a model
327 integrates information across modalities. As such, the findings can offer relevant insights into
328 the model’s behavior in deeper cross-modal understanding tasks. To demonstrate the correlation
329 between the modality preference and performance for downstream tasks, we evaluate the visual
330 understanding abilities of 10 representative MLLMs. Specifically, we compute the average accuracy
331 across 7 widely benchmarks including reasoning tasks, MMMU, and RealworldQA, as detailed in
332 the [Appendix C.2](#). We then compare the visual understanding abilities with their modality preference
333 measured by Vision Ratio using MC^2 , as shown in the right panel of Figure 3. The results reveal
334 a strong positive association between the Vision Ratio and visual understanding ability across the
335 evaluated MLLMs. Specifically, Spearman’s rank correlation (Sedgwick, 2014) reaches $\rho = 0.964$,
336 demonstrating that the Vision Ratio provides a highly reliable indicator of visual understanding task
337 performance.

338 4.4 CAN MODALITY PREFERENCE BE CONTROLLED?
339

340 We employ instruction guidance to investigate whether modality preference can be controlled, and
341 conduct a latent space representation analysis to examine the mechanisms, underlying the preference
342 adjustment. Details of the experimental design and results are provided in [Appendix C.3](#).
343

353 Figure 4: Analysis of modality preference under instruction-guidance. **Left:** Adjustment of modality
354 preference using instruction-guided control (Inst-vision vs. Inst-text). **Middle:** Representation shifts
355 under instruction-guided interventions. **Right:** layer-wise absolute difference and standard deviation
356 of hidden states between different instruction.
357

358 **Modality preference can be guided through instruction design.** We investigate the impact of
359 instruction design on modality preference, for instance, by explicitly directing the model to rely
360 on a specific modality when answering a question. Specifically, we evaluate the modality pre-
361 ference measured by Vision Ratio for four representative MLLMs including Qwen2.5VL-7B, LLaVA-
362 OneVision-7B, Qwen2VL-7B and InternVL3-14B under the text or vision preference instruction
363 (Inst-text, Inst-vision). As illustrated in the left panel of Figure 4, instructions that steer the model
364 toward a particular modality effectively shape its modality preference.

365 **Modality preference direction in representation space.** To further understand how the inter-
366 vention methods influence modality preference internally, we analyze the hidden representations
367 of the models. Specifically, we apply Principal Component Analysis (PCA; Abdi & Williams,
368 2010) to the hidden states to identify the dominant direction corresponding to modality preference
369 shifts. The middle panel of Figure 4 shows that instruction-based interventions drive clear shifts in
370 representations, aligning with the modality specified by the instruction. The PCA direction further
371 reveals that the model’s internal states are sensitive to modality control cues, which motivates us to
372 develop representation techniques for adjusting modality preference and to apply these insights to
373 downstream tasks in Section 5.

374 5 REPRESENTATION BASED MODALITY PREFERENCE STEERING
375

376 Inspired by the representation behavior discussed in Section 4.4, we propose to use the representa-
377 tion engineering (Zou et al., 2023) to steer the modality preference, controlling the model’s behav-

Figure 5: Overall framework of the proposed method. Modality Preference Probing collects the neural activity, computes and scales the direction of modality preference. Modality Preference Steering selects the target layer during the second inference and adds the scaled modality preference direction to the representation at the corresponding layer at each inference step.

ioral expression. As shown in Figure 5, the proposed framework consists of Modality Preference Probing (§5.1) and Modality Preference Steering (§5.2).

5.1 MODALITY PREFERENCE PROBING

We probe and collect neural activity that represents the direction of modality preference. Inspired by the pre-training Next Token Prediction objective of decoder-only MLLMs (Hurst et al., 2024a) and the method to extract classification features (Feucht et al., 2024), we collect neural activity from the last token in the input text. The process involves probing modality preference through two pairs of requests: one with a vision preference probing (e.g., ‘answer the question based on the vision context’) and another with a text preference probing (e.g., ‘answer the question based on the text context’). Let us denote these two inputs by q^v (based on the vision context) and q^t (based on the text context), and consider a set of N such pairs (q_i^v, q_i^t) , $i \in \{1, \dots, N\}$. Let $\mathbf{x}_{i,\ell}^v, \mathbf{x}_{i,\ell}^t \in \mathbb{R}^d$ be the hidden states on the two queries at the last token of the input at layer $\ell \in \{1, \dots, L\}$, where d is the dimension of the chosen MLLM. We identify the direction of modality preference by computing the difference in the hidden states between the paired inputs. More formally, we compute a vector $\mathbf{u}_\ell \in \mathbb{R}^d$ representing the direction towards the text modality at layer ℓ for a given query as:

$$\mathbf{u}_\ell^t = \frac{1}{N} \sum_i^N (\mathbf{x}_{i,\ell}^t - \mathbf{x}_{i,\ell}^v). \quad (1)$$

Averaging over different queries allows us to capture the activation values most closely associated with modality preference, independent of questions. As shown in the right panel of Figure 4, we compute the absolute values and standard deviations of the modality preference direction \mathbf{u}_ℓ^t across different samples. We observe that layers 20–23 exhibit both higher absolute values and lower variance, indicating that the preference direction is more prominent and stable in these layers. Based on this observation, we select the corresponding layer ℓ' of the model to control the direction of modality preference in Section 5.2. Similar patterns are observed for Qwen2VL-7B, Qwen2.5VL-7B, LLaVA-OneVision and InternVL3, as detailed in Appendix D.1.

5.2 MODALITY PREFERENCE STEERING

After obtaining the probing direction vector, we compute the steering vector by re-scaling the vector \mathbf{u}_ℓ^t with a weight $w \in \mathbb{R}_d$. The scaling process must carefully balance two objectives: 1) it must be strong enough to effectively steer the model’s modality preference, 2) it must preserve the model’s normal output behavior. In our preliminary experiments, we observe that setting the weight too large leads to repetitive and meaningless outputs, whereas a too small weight fails to obtain any noticeable change for modality preference. Unlike previous approaches (Zou et al., 2023; Stolfo

432 Table 1: Performance for steering Qwen2VL-
 433 7B and OneVision-7B towards vision modality
 434 and steering Qwen2.5VL-7B and InternVL3-8B to-
 435 wards text modality, measured by S_{vision} and S_{text} .

Preference	Model	MLLM	InstDesign	CoT	FewShot	Ours
Text↑	Qwen2.5VL-7B	35.4	37.7	55.6	61.1	63.6
	InternVL3-8B	20.9	31.6	36.7	38.2	42.8
Vision↑	Qwen2VL-7B	15.3	32.3	34.2	17.2	48.1
	OneVision-7B	37.5	52.8	53.1	49.8	57.1

Table 2: Multimodal translation results for Ambigcaps (Li et al., 2021). BLEU scores are reported for English (En) \leftrightarrow Turkish (Tr).

Method	En->Tr	Tr->En
Qwen2.5VL-7B	8.92	18.56
+Inst towards vision	8.21 (-0.71)	16.09 (-2.47)
+Inst towards text	9.45 (+0.53)	18.98 (+0.42)
+Ours	10.22 (+1.30)	19.89 (+1.33)

Table 3: Performance of the proposed method on the visual understanding benchmark, Phd (Liu et al., 2024c). we report the accuracy results on the phd-icc/phd-iac.

Model	Attribute	Sentiment	Positional	Counting	Object	Avg
Qwen2VL-7B	10.0 / 28.5	2.5 / 8.5	3.5 / 20.5	6.0 / 30.5	8.0 / 50.0	6.0 / 27.6
+InstDesign	14.5 / 34.5	2.5 / 13.0	1.5 / 26.0	5.5 / 39.0	25.0 / 60.0	9.8 / 34.5
+CoT	5.0 / 15.5	6.0 / 23.5	8.5 / 30.2	6.5 / 17.0	40.5 / 59.0	13.3 / 29.0
+FewShot	3.0 / 17.0	0.5 / 9.0	1.5 / 14.5	5.0 / 29.0	2.0 / 37.0	2.4 / 21.3
+Ours	10.0 / 34.4	11.0 / 16.5	14.0 / 28.3	5.0 / 37.4	51.5 / 64.0	18.4 / 36.1
OneVision-7B	11.5 / 20.5	1.5 / 5.0	1.5 / 16.5	6.5 / 28.5	11.0 / 52.0	6.4 / 24.5
+InstDesign	16.0 / 27.0	5.5 / 12.5	6.0 / 31.5	13.5 / 30.5	34.0 / 61.5	15.0 / 32.6
+CoT	17.3 / 28.4	6.2 / 12.9	7.8 / 33.2	13.8 / 30.9	34.5 / 62.1	15.9 / 33.1
+FewShot	17.0 / 28.0	6.0 / 13.0	7.2 / 32.8	13.9 / 31.0	34.8 / 62.3	16.2 / 33.4
+Ours	19.6 / 30.5	7.8 / 13.5	10.3 / 36.4	15.1 / 29.8	35.6 / 63.5	17.7 / 34.7

et al., 2024) that rely on exhaustive search over a validation set to determine the weight, we propose a principled method that aligns the mean of the probed direction distribution with the mean of the original distribution of hidden states. This strategy ensures that the steering remains effective without disrupting the model’s inherent generation capabilities. Formally, the weight is determined by aligning the mean of the probed direction with the central distribution of the original hidden states and the steering vector is computed by:

$$\mathbf{s}_\ell^t = w \mathbf{u}_\ell^t, \text{ where } w = \frac{1}{N} \sum_{i=1}^N \frac{\|\mathbf{x}_{i,\ell}^t\|}{\|\mathbf{u}_\ell^t\|} \quad (2)$$

Finally, during the second inference, we adjust the original hidden states at the selected steering layer ℓ' at each decoding step by adding $\mathbf{s}_{\ell'}^t$ to all tokens to steer the model’s response toward the text modality. Similarly, steering models towards vision modality is performed towards the opposite direction. In the final implementation, no additional data or labels are introduced. We only require two consecutive rounds of inference: the first for probing and the second for steering, effectively controlling the modality preference.

5.3 EXPERIMENTS

We verify the effectiveness of the method in controlling modality preference on MC² and downstream tasks across Qwen2VL-7B, Qwen2.5VL-7B, and LLaVA-OneVision-7B and InternVL3-8B. We consider widely used training-free approaches as baselines: *MLLM* refers to employing MLLM to directly reason in modality-conflicting contexts; *InstDesign* uses instructions to guide modality preference direction; *CoT* enables complex reasoning through intermediate steps; and *FewShot* uses four examples to guide the models. For detailed implementation and results, refer to Appendix D.

As shown in Table 1, the proposed method consistently outperforms the baseline approaches on MC² across both settings, demonstrating its effectiveness in adjusting modality preference.

We further assess the effectiveness of the proposed method on two types of downstream tasks: 1) multimodal machine translation (MMT) using AmbigCaps (Li et al., 2021), and 2) visual understanding on PhD (Liu et al., 2024c). The latter includes two subsets—PhD-ica, which contains irrelevant textual context, and PhD-icc, which introduces misleading or incorrect textual informa-

486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 18010
 18011
 18012
 18013
 18014
 18015
 18016
 18017
 18018
 18019
 18020
 18021
 18022
 18023
 18024
 18025
 18026
 18027
 18028
 18029
 18030
 18031
 18032
 18033
 18034
 18035
 18036
 18037
 18038
 18039
 18040
 18041
 18042
 18043
 18044
 18045
 18046
 18047
 18048
 18049
 18050
 18051
 18052
 18053
 18054
 18055
 18056
 18057
 18058
 18059
 18060
 18061
 18062
 18063
 18064
 18065
 18066
 18067
 18068
 18069
 18070
 18071
 18072
 18073
 18074
 18075
 18076
 18077
 18078
 18079
 18080
 18081
 18082
 18083
 18084
 18085
 18086
 18087
 18088
 18089
 18090
 18091
 18092
 18093
 18094
 18095
 18096
 18097
 18098
 18099
 180100
 180101
 180102
 180103
 180104
 180105
 180106
 180107
 180108
 180109
 180110
 180111
 180112
 180113
 180114
 180115
 180116
 180117
 180118
 180119
 180120
 180121
 180122
 180123
 180124
 180125
 180126
 180127
 180128
 180129
 180130
 180131
 180132
 180133
 180134
 180

540 REFERENCES
541

542 Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary reviews: 543 computational statistics*, 2(4):433–459, 2010.

544 Manoj Acharya, Kushal Kafle, and Christopher Kanan. Tallyqa: Answering complex counting 545 questions. In *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 8076– 546 8084, 2019.

547 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale- 548 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical 549 report. *arXiv preprint arXiv:2303.08774*, 2023.

550 Afra Alishahi, Grzegorz Chrupała, and Tal Linzen. Analyzing and interpreting neural networks for 551 nlp: A report on the first blackboxnlp workshop. *Natural Language Engineering*, 25(4):543–557, 552 2019.

553 Kenza Amara, Lukas Klein, Carsten Lüth, Paul Jäger, Hendrik Strobelt, and Mennatallah El-Assady. 554 Why context matters in vqa and reasoning: Semantic interventions for vlm input modalities. *arXiv 555 preprint arXiv:2410.01690*, 2024.

556 J Bai, S Bai, S Yang, S Wang, S Tan, P Wang, J Lin, C Zhou, and J Zhou. Qwen-vl: A frontier large 557 vision-language model with versatile abilities. *arxiv* 2023. *arXiv preprint arXiv:2308.12966*, 558 2023.

559 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, 560 Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 561 2025.

562 Fu Chaoyou, Chen Peixian, Shen Yunhang, Qin Yulei, Zhang Mengdan, Lin Xu, Yang Jinrui, Zheng 563 Xiawu, Li Ke, Sun Xing, et al. Mme: A comprehensive evaluation benchmark for multimodal 564 large language models. *arXiv preprint arXiv:2306.13394*, 3, 2023.

565 Meiqi Chen, Yixin Cao, Yan Zhang, and Chaochao Lu. Quantifying and mitigating unimodal biases 566 in multimodal large language models: A causal perspective. *arXiv preprint arXiv:2403.18346*, 567 2024.

568 Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm: 569 General language model pretraining with autoregressive blank infilling. In *Proceedings of the 570 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, 571 pp. 320–335, 2022.

572 Sheridan Feucht, David Atkinson, Byron C Wallace, and David Bau. Token erasure as a footprint 573 of implicit vocabulary items in LLMs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung 574 Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language 575 Processing*, pp. 9727–9739, Miami, Florida, USA, November 2024.

576 Deqing Fu, Ruohao Guo, Ghazal Khalighinejad, Ollie Liu, Bhuwan Dhingra, Dani Yogatama, Robin 577 Jia, and Willie Neiswanger. Isobench: Benchmarking multimodal foundation models on isomor- 578 phic representations. *arXiv preprint arXiv:2404.01266*, 2024.

579 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad 580 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd 581 of models. *arXiv preprint arXiv:2407.21783*, 2024.

582 Ryan Greenblatt, Buck Shlegeris, Kshitij Sachan, and Fabien Roger. Ai control: Improving safety 583 despite intentional subversion. *arXiv preprint arXiv:2312.06942*, 2023.

584 Yangyang Guo, Liqiang Nie, Harry Cheng, Zhiyong Cheng, Mohan Kankanhalli, and Alberto 585 Del Bimbo. On modality bias recognition and reduction. *ACM Transactions on Multimedia 586 Computing, Communications and Applications*, 19(3):1–22, 2023.

587 Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan, 588 and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models. 589 *arXiv preprint arXiv:2401.13919*, 2024.

594 Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng,
 595 Shiyu Huang, Junhui Ji, Zhao Xue, et al. Cogvlm2: Visual language models for image and video
 596 understanding. *arXiv preprint arXiv:2408.16500*, 2024a.

597 Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
 598 Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
 599 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 600 14281–14290, 2024b.

601 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 602 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 603 *arXiv:2410.21276*, 2024a.

604 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 605 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 606 *arXiv:2410.21276*, 2024b.

607 Kushal Kafle and Christopher Kanan. An analysis of visual question answering algorithms. In
 608 *Proceedings of the IEEE international conference on computer vision*, pp. 1965–1973, 2017.

609 Kang-il Lee, Minbeom Kim, Seunghyun Yoon, Minsung Kim, Dongryeol Lee, Hyukhun Koh, and
 610 Kyomin Jung. Vlind-bench: Measuring language priors in large vision-language models. *arXiv*
 611 *preprint arXiv:2406.08702*, 2024.

612 Sicong Leng, Yun Xing, Zesen Cheng, Yang Zhou, Hang Zhang, Xin Li, Deli Zhao, Shijian Lu,
 613 Chunyan Miao, and Lidong Bing. The curse of multi-modalities: Evaluating hallucinations of
 614 large multimodal models across language, visual, and audio. *arXiv preprint arXiv:2410.12787*,
 2024.

615 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 616 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 617 *arXiv:2408.03326*, 2024a.

618 Jiahuan Li, Yiqing Cao, Shujian Huang, and Jiajun Chen. Formality is favored: Unraveling the
 619 learning preferences of large language models on data with conflicting knowledge. *arXiv preprint*
 620 *arXiv:2410.04784*, 2024b.

621 Jiaoda Li, Duygu Ataman, and Rico Sennrich. Vision matters when it should: Sanity checking
 622 multimodal machine translation models. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia,
 623 and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods*
 624 *in Natural Language Processing*, pp. 8556–8562, Online and Punta Cana, Dominican Republic,
 625 November 2021. Association for Computational Linguistics.

626 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 627 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer*
 628 *vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6–12, 2014, pro-*
 629 *ceedings, part v 13*, pp. 740–755. Springer, 2014.

630 Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Chen Lin, Wenqi
 631 Shao, Keqin Chen, et al. Sphinx: The joint mixing of weights, tasks, and visual embeddings for
 632 multi-modal large language models. *arXiv preprint arXiv:2311.07575*, 2023.

633 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 634 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 635 *arXiv:2412.19437*, 2024a.

636 Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning. *Transactions of the Associa-*
 637 *tion for Computational Linguistics*, 11:635–651, 2023a.

638 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 639 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 640 (*CVPR*), pp. 26296–26306, June 2024b.

648 Jiazhen Liu, Yuhang Fu, Ruobing Xie, Runquan Xie, Xingwu Sun, Fengzong Lian, Zhanhui Kang,
 649 and Xirong Li. Phd: A chatgpt-prompted visual hallucination evaluation dataset. *arXiv preprint*
 650 *arXiv:2403.11116*, 2024c.

651

652 Sheng Liu, Haotian Ye, Lei Xing, and James Zou. In-context vectors: Making in context learning
 653 more effective and controllable through latent space steering. *arXiv preprint arXiv:2311.06668*,
 654 2023b.

655

656 Xiaoyuan Liu, Wenxuan Wang, Youliang Yuan, Jen-tse Huang, Qiuwei Liu, Pinjia He, and Zhaopeng
 657 Tu. Insight over sight: Exploring the vision-knowledge conflicts in multimodal LLMs. In
 658 Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Pro-
 ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 Papers)*, pp. 17825–17846, Vienna, Austria, July 2025. Association for Computational
 659 Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.872. URL
 660 <https://aclanthology.org/2025.acl-long.872/>.

661

662

663 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 664 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 665 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024d.

666

667 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 668 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating math reasoning in visual
 669 contexts with gpt-4v, bard, and other large multimodal models. *CoRR*, 2023.

670

671 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
 672 mark for question answering about charts with visual and logical reasoning. In *ACL Findings*,
 673 2022.

674

675 Nina Panickssery, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
 676 Turner. Steering llama 2 via contrastive activation addition, 2024. URL <https://arxiv.org/abs/2312.06681>, 2023.

677

678 Letitia Parcalabescu and Anette Frank. Mm-shap: A performance-agnostic metric for mea-
 679 suring multimodal contributions in vision and language models & tasks. *arXiv preprint*
 680 *arXiv:2212.08158*, 2022.

681

682 Letitia Parcalabescu and Anette Frank. Do vision & language decoders use images and text equally?
 683 how self-consistent are their explanations? *arXiv preprint arXiv:2404.18624*, 2024.

684

685 Jean Park, Kuk Jin Jang, Basam Alasaly, Sriharsha Mopidevi, Andrew Zolensky, Eric Eaton, Insup
 686 Lee, and Kevin Johnson. Assessing modality bias in video question answering benchmarks
 687 with multimodal large language models. In *Proceedings of the AAAI Conference on Artificial
 Intelligence*, volume 39, pp. 19821–19829, 2025.

688

689 Xiaokang Peng, Yake Wei, Andong Deng, Dong Wang, and Di Hu. Balanced multimodal learning
 690 via on-the-fly gradient modulation. In *Proceedings of the IEEE/CVF conference on computer
 691 vision and pattern recognition*, pp. 8238–8247, 2022.

692

693 Jiawei Ren, Mingyuan Zhang, Cunjun Yu, and Ziwei Liu. Balanced mse for imbalanced visual
 694 regression. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
 695 tion*, pp. 7926–7935, 2022.

696

697 Philip Sedgwick. Spearman’s rank correlation coefficient. *Bmj*, 349, 2014.

698

699 Alessandro Stolfo, Vidhisha Balachandran, Safoora Yousefi, Eric Horvitz, and Besmira Nushi. Im-
 700 proving instruction-following in language models through activation steering. *arXiv preprint*
 701 *arXiv:2410.12877*, 2024.

702

703 Nishant Subramani, Nivedita Suresh, and Matthew E Peters. Extracting latent steering vectors from
 704 pretrained language models, may 2022. URL <http://arxiv.org/abs/2205.05124>, 2022.

702 Qingfeng Sun, Yujing Wang, Can Xu, Kai Zheng, Yaming Yang, Huang Hu, Fei Xu, Jessica Zhang,
 703 Xiubo Geng, and Daxin Jiang. Multimodal dialogue response generation. In Smaranda Muresan,
 704 Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the*
 705 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2854–2866, Dublin,
 706 Ireland, May 2022. Association for Computational Linguistics.

707 Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
 708 Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
 709 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

710 Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini, and
 711 Monte MacDiarmid. Activation addition: Steering language models without optimization. *arXiv*
 712 *e-prints*, pp. arXiv–2308, 2023.

713 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 714 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 715 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

716 Yike Wang, Shangbin Feng, Heng Wang, Weijia Shi, Vidhisha Balachandran, Tianxing He, and
 717 Yulia Tsvetkov. Resolving knowledge conflicts in large language models. *arXiv preprint*
 718 *arXiv:2310.00935*, 2023.

719 Yake Wei, Ruoxuan Feng, Zihe Wang, and Di Hu. Enhancing multimodal cooperation via sample-
 720 level modality valuation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 721 *Pattern Recognition*, pp. 27338–27347, 2024.

722 Thomas Winterbottom, Sarah Xiao, Alistair McLean, and Noura Al Moubayed. On modality bias
 723 in the tvqa dataset. *arXiv preprint arXiv:2012.10210*, 2020.

724 Chen Henry Wu, Neil Kale, and Aditi Raghunathan. Why foundation models struggle with cross-
 725 modal context. In *ICLR 2025 Workshop on Foundation Models in the Wild*, 2025.

726 Muling Wu, Wenhao Liu, Xiaohua Wang, Tianlong Li, Changze Lv, Zixuan Ling, Jianhao Zhu,
 727 Cenyuan Zhang, Xiaoqing Zheng, and Xuanjing Huang. Advancing parameter efficiency in fine-
 728 tuning via representation editing. *arXiv preprint arXiv:2402.15179*, 2024.

729 X.AI. Grok-1.5 vision preview. <https://x.ai/blog/grok-1.5v>, 2024.

730 Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and Yu Su. Adaptive chameleon or stubborn
 731 sloth: Revealing the behavior of large language models in knowledge conflicts. In *The Twelfth*
 732 *International Conference on Learning Representations*, 2023.

733 Zhihao Xu, Ruixuan Huang, Changyu Chen, and Xiting Wang. Uncovering safety risks of large
 734 language models through concept activation vector. *Advances in Neural Information Processing*
 735 *Systems*, 37:116743–116782, 2024.

736 Zequn Yang, Yake Wei, Ce Liang, and Di Hu. Quantifying and enhancing multi-modal robustness
 737 with modality preference. *arXiv preprint arXiv:2402.06244*, 2024.

738 Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming Yan, Qi Qian, Ji Zhang, Fei Huang, and
 739 Jingren Zhou. mplug-owl3: Towards long image-sequence understanding in multi-modal large
 740 language models. *arXiv preprint arXiv:2408.04840*, 2024.

741 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey
 742 on multimodal large language models. *National Science Review*, pp. nwae403, 11 2024. ISSN
 743 2095-5138.

744 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens,
 745 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 746 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF*
 747 *Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

756 Jinghao Zhang, Guofan Liu, Qiang Liu, Shu Wu, and Liang Wang. Modality-balanced learning
757 for multimedia recommendation. In *Proceedings of the 32nd ACM International Conference on*
758 *Multimedia*, pp. 7551–7560, 2024.

759
760 Chen Zhe, Wu Jiannan, Wang Wenhui, Su Weijie, Chen Guo, Xing Sen, Zhong Muyan, Zhang
761 Qinglong, Zhu Xizhou, Lu Lewei, Li Bin, Luo Ping, Lu Tong, Qiao Yu, and Dai Jifeng. Internvl:
762 Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Pro-*
763 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24185–
764 24198, 2024.

765 Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
766 Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
767 top-down approach to ai transparency. *arXiv preprint arXiv:2310.01405*, 2023.

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

APPENDICES

All codes, data, and instructions for our MC^2 can be found in <https://anonymous.4open.science/r/Modality-Preference-8016>. MC^2 is released under a Creative Commons Attribution 4.0 License (CC BY 4.0).

Our supplementary materials are summarized as follows:

- Appendix A: Limitations, Social Impacts, Use of LLM and License of Assets.
- Appendix B: Dataset Construction
- Appendix C: Model Evaluation
- Appendix D: Method Applying
- [Appendix E: More Experiment Analysis](#)

A DISCUSSION

A.1 LIMITATIONS

This paper investigates the modality preference in multimodal large language models (MLLMs) using a controlled experiment setup with a modality conflict dataset. In constructing the dataset, we employs LLaVA1.5-7B and QwenVL-7B to filter samples and ensure that most models could answer questions correctly based on a single modality. However, this process requires multiple iterations and turned out to be time-consuming. Therefore, devising a more efficient and elegant method for sample selection may be of greater importance.

A.2 SOCIAL IMPACTS

The proposed MC^2 evaluates the modality preference of MLLMs. Understanding which modality a model prioritizes could be used to circumvent safety mechanisms (e.g., hiding harmful content in the favored modality), making it harder for filters to detect inappropriate content. Therefore, it is essential to incorporate effective safeguards in MLLMs to filter out any inappropriate materials.

A.3 USE OF LLM

In this work, we use the LLMs including GPT-4o-mini (Hurst et al., 2024a) and DeepSeekV3 (Liu et al., 2024a), and MLLMs including LLaVA1.5-7B (Liu et al., 2024b) and QwenVL-7B (Bai et al., 2023) to help annotate the text context in MC^2 , as detailed in Section B. We evaluate the modality preference of 20 open-source MLLMs and GPT-4o-mini (Hurst et al., 2024a), and steer the modality preference of Qwen2VL-7B (Wang et al., 2024), Qwen2.5VL-7B (Bai et al., 2025), and LLaVA-OneVision-7B (Li et al., 2024a) and InternVL3-8B (Zhe et al., 2024). Besides, we also utilize the LLMs to correct the grammatical errors.

A.4 LICENSE OF ASSETS

All images in MC^2 are publicly available from COCO (Lin et al., 2014). We release our benchmark under a Creative Commons Attribution 4.0 License (CC BY 4.0) to enhance global accessibility and foster innovation and collaboration in research.

B DATASET CONSTRUCTION

B.1 CONFLICT TEXT CONTEXT GENERATION

Details for data generation using LLMs To ensure reproducibility and transparency, we include the exact prompts used in our data generation process. These prompts were designed to generate the candidate textual contexts and corresponding answers using GPT-4o-mini (Hurst et al., 2024a) and

864 DeepSeekV3 (Liu et al., 2024a). Below, we provide representative examples of the prompts used
 865 during dataset construction given the caption of an image, question, the answer for the question
 866 based on image and the task type for the question. For the full list of prompts, please refer to the
 867 project repository.
 868
 869
 870

871 Conflict Context Generation for counting task using DeepSeekV3

873 Instruction:

874 # Given a description of an image and a corresponding counting type question with its an-
 875 swer, now you are required to generate a text context that points to an answer that fluctuates
 876 by 1 or 2 from the original answer. The context explicitly supports the new answer, providing
 877 clear evidence that aligns logically with the counting question. Only one alternative answer
 878 should be generated.

879 Caption: {caption}

880 Question: {question}

881 Answer: {answer based on vision context}

882 Output the new answer enclosed in <answer> </answer> and the context enclosed in <con-
 883 text> </context> tags.

884

885

886

887

888 Conflict Context Generation of for other tasks using DeepSeekV3

889 Instruction:

890 # Given the caption of an image and a corresponding {task-type} type question with its
 891 answer, now you are required to generate a text context as a premise that supports a new
 892 distractor answer for the question. The context should mimic the environment described in
 893 the caption but should not include {answer based on vision context}, while maintaining
 894 logical consistency within the context. Only one alternative answer should be generated.

895 Caption: {caption}

896 Question: {question}

897 Output the new answer enclosed in <answer> </answer> and the context enclosed in <con-
 898 text> </context> tags.

899

900

901

902

903 Conflict Context Generation for other tasks using GPT-4o-mini

904 Instruction:

905 # Given a caption of an image and a corresponding counting question with its answer, you
 906 are required to generate a single text context that provides an indirect premise leading to a
 907 new answer that fluctuates by 1 or 2 from the original answer. The context should build an
 908 indirect premise to the new answer. Carefully design this context. For this task, I want you
 909 to first describe the scene with a certain quantity and then introduce an increase or decrease
 910 in that quantity to imply the final answer and don't include the final answer. Only one
 911 alternative answer should be generated.

912 Caption: {caption}

913 Question: {question}

914 Answer: {answer based on vision context}

915 Task-type: {task-type}

916 Output the new answer enclosed in <answer> </answer> and the context enclosed in <con-
 917 text> </context> tags.

918
919

Conflict Context Generation for count task using GPT-4o-mini

920

Instruction:

921

Given the caption of an image and a corresponding question with its answer, now you are required to generate a text context as the indirect premise of a new answer for the question, which belongs to the same category as the original answer. The context should support the new answer, include the caption while maintaining logical consistency within the context and don't include the final answer. Only one alternative answer should be generated.

922

Caption: {caption}

923

Question: {question}

924

Answer: {answer}

925

Task-type: {task-type}

926

Output the new answer enclosed in <answer> </answer> and the context enclosed in <context> </context> tags.

927

928

929

930

931

932

933

Human Verification Although the text contexts and answers generated by strong LLMs—filtered through judge MLLMs such as LLava1.5-7B (Liu et al., 2024b) and QwenVL-7B (Bai et al., 2023)—generally yield reliable results, we further incorporate manual inspection to ensure the high quality of data annotations. Specifically, we verify that the visual and textual contexts are indeed in conflict, and that each modality independently supports the corresponding answer to the given question. This involves a two-stage manual review process:

934

- **Modality-Answer Alignment.** First, for each context from different modalities (image and text), annotators assess whether it independently provides sufficient information to correctly answer the question. This step is particularly important because the original VQA answers in the TDIUC (Kafle & Kanan, 2017) dataset may contain error annotations, and the LLM-generated contexts and answers may occasionally be inconsistent.
- **Conflict Verification.** Next, annotators examine whether the visual and textual contexts are semantically inconsistent with respect to the question. That is, the two modalities should lead to different correct answers when considered separately. Samples where both modalities lead to the same answer are discarded, as they do not reflect a true modality conflict.

935

936

937

938

939

940

Samples that do not meet either verification criterion are flagged for further review. Depending on the nature and severity of the issue, we take one of the following actions: revise the prompt to improve clarity, regenerate the problematic part of the sample (e.g., the question or context), or discard the sample entirely if it cannot be reasonably corrected.

941

942

943

944

945

946

947

948

949

To ensure consistency and reduce subjectivity, each category (i.e., vision-aligned, text-aligned, and conflict) is independently verified by three trained annotators. Disagreements are resolved through discussion or majority voting. In addition, we conduct random spot-checks throughout the dataset to ensure the consistency and reliability of the annotations.

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

B.2 DATA STATISTICS

966

967

968

969

970

971

Table 4: Average text context length across different task types in the MC² dataset.

statistics	Sport	Attribute	Sentiment	Positional	Counting	Color	Activity	Object	Avg
Text Length	52.48	33.50	39.69	31.53	37.12	31.15	49.68	39.71	39.36

¹We use the spaCy library in Python, available at <https://pypi.org/project/spacy/>.

972 B.3 ILLUSTRATIVE SAMPLES FROM THE MC² BENCHMARK
973974 To provide an intuitive understanding of the MC² benchmark and the nature of modality conflict, we
975 present a few representative samples covering different task types as shown in Figure 7, Figure 8,
976 Figure 9 and Figure 10.977 **<image> is a placeholder for below image**
978979 **<image> is a placeholder for below image**
980991 **User: <image> Conflict Text Context:** *Three sheep are peacefully eating grass*, surrounded by lush
992 greenery. Their heads are lowered as they nibble on the fresh blades, completely undisturbed. **Question:**
993 What are the cows in the back doing?
994995 **Assistant: <output>**
996 **vision-based Answer:** *running*
997 **Text-based Answer:** *eating*998 **User: <image> Conflict Text Context:** In the photo, there are three boys playing Frisbee, and one more
999 boy is partially visible in the corner, bending down to tie his shoelaces, *making a total of four people*.
1000 **Question:** How many people are in the photo?
10011002 **Assistant: <output>**
1003 **vision-based Answer:** *five*
1004 **Text-based Answer:** *four*1005
1006 Figure 7: Illustration of using modality context conflict pairs to investigate modality preference in
1007 activity recognition (Left) and counting tasks (Right). The highlighted areas indicate the points of
1008 conflict between visual and textual contexts.
10091010 C MODEL EVALUATION
1011

1012 C.1 EVALUATION DETAIL FOR MODALITY PREFERENCE

1013 We assess open-source multimodal large language models (MLLMs) with different parameter sizes,
1014 including LLaVA1.5-7B/13B (Liu et al., 2024b), LLama3.2-11B-Vision-Instruct (Grattafiori et al.,
1015 2024), LLaVA-OneVision-7B/72B (Li et al., 2024a), CogVLM2-19B (Hong et al., 2024a), mPLUG-
1016 Owl3-24-07 (Ye et al., 2024), Qwen2VL-7B (Wang et al., 2024), GLM-4V-9B (Du et al., 2022),
1017 SPHINX-V2-1K (Lin et al., 2023), InternVL3-9B/14B/38B/78B (Zhe et al., 2024), LLaVA-next-
1018 7B/13B/34B (Liu et al., 2024b) and Qwen2.5VL-7B/32B/72B (Bai et al., 2025). All the open-source
1019 models are evaluated using NVIDIA A100 or A800 GPUs. We also evaluate the proprietary model,
1020 GPT-4o-mini (Hurst et al., 2024a) via the official API.
10211022 **Details of single-modality context evaluation** Before evaluating modality preference, we first
1023 assess the ability of MLLMs to answer questions accurately given a single-modality context in the
1024 MC² dataset. Specifically, we evaluate the models' accuracy in answering based on text context
1025 and based on vision context (based on the image). As shown in Table 17 and Table 18, all models
achieve over 95% accuracy when provided with either textual or visual context. This indicates that
question understanding and the understanding of single-modality context do not affect the modality
preference evaluation. Therefore, we have excluded this confounding factor from the analysis.1026 **Details of results for modality preference evaluation** We provide the results of modality pref-
1027 erence for several models in the left panel of Figure 2 in the main text. More detailed modality
1028 preference evaluation results are presented in Table 14.

1026
1027
1028 **<image> is a placeholder for below image**
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

1041 **User: <image> Conflict Text Context:** *The birthday*
1042 *cake was designed to look like a sleek police car*,
1043 complete with edible flashing lights and a fondant badge on the side. **Question:** What is the cake in
1044 the shape of?
Assistant: <output>
vision-based Answer: fire truck
Text-based Answer: police car

<image> is a placeholder for below image

User: <image> Conflict Text Context: *Two wildebeests are standing in a dry*, grass-less savanna, their dark coats contrasting with the dusty ground. The area is sparse, with only a few scattered shrubs visible in the background. **Question:** What animal is shown?

Assistant: <output>
vision-based Answer: zebras
Text-based Answer: wildebeests

Figure 8: Illustration of using modality context conflict pairs to investigate modality preference in attribute recognition (Left) and object recognition tasks (Right). The highlighted areas indicate the points of conflict between visual and textual contexts.

1049
1050
1051
1052
1053
1054

<image> is a placeholder for below image

1055 **User: <image> Conflict Text Context:** A large
1056 brown clock tower mounted in the face of *a building*
1057 *overlooks a vibrant park filled with lush green trees*.
1058 The contrast between the brown tower and the sur-
1059 rounding greenery creates a picturesque scene. **Ques-
1060 tion:** What color are the trees?
Assistant: <output>
vision-based Answer: white
Text-based Answer: green

<image> is a placeholder for below image

User: <image> Conflict Text Context: A white bus
1061 with a large rack on the front is parked by the beach,
1062 designed to *carry equipment for surfing*. The rack is
1063 sturdy and spacious, perfect for securing bulky items.
1064 **Question:** What can you hang on the rack on the
1065 front of the bus?
Assistant: <output>

vision-based Answer: bikes
Text-based Answer: surfboards

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 9: Illustration of using modality context conflict pairs to investigate modality preference in color recognition (Left) and positional reasoning (Right) tasks. The highlighted areas indicate the points of conflict between visual and textual contexts.

1080 <image> is a placeholder for below image

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094 **User: <image> Conflict Text Context:** A girl sitting
 1095 at a counter with a piece of pizza, staring blankly at
 1096 the wall while the pizza grows cold in front of her.
 1097 The room is quiet, and *she seems uninterested in her*
 1098 *surroundings*. **Question:** What is the girl on the right
 1099 feeling in the image?

1100 **Assistant:** <output>

1101 **vision-based Answer:** *happy*

1102 **Text-based Answer:** *bored*

<image> is a placeholder for below image

1103 **User: <image> Conflict Text Context:** The young
 1104 girl is running swiftly across the field, *dribbling a*
 1105 *soccer ball with precision* as she maneuvers past
 1106 imaginary opponents. Her focus is on scoring a goal,
 1107 and she practices her footwork with determination.
 1108 **Question:** What sport is depicted in the picture?

1109 **Assistant:** <output>

1110 **vision-based Answer:** *tennis*

1111 **Text-based Answer:** *soccer*

1102 Figure 10: Illustration of using modality context conflict pairs to investigate modality preference in
 1103 sentiment understanding and object recognition tasks. The highlighted areas indicate the points of
 1104 conflict between visual and textual contexts.

1105

1106

1107 C.2 CAN THE VISION RATIO PROVIDE GUIDANCE FOR DOWNSTREAM TASK PERFORMANCE?

1108

1109 We evaluate the performance of Qwen2.5VL-7B, Qwen2.5VL-72B, InternVL3-9B, InternVL3-14B,
 1110 InternVL3-38B, InternVL3-78B, LLaVA-OneVision-7B, LLaVA-OneVision-72B, LLava-next-7B,
 1111 LLava-next-13B on 7 general multimodal understanding benchmarks including MMMU (Yue et al.,
 1112 2024), MME (Chaoyou et al., 2023), MMBench (Liu et al., 2024d), RealwordQA (X.AI, 2024),
 1113 MMStar (Masry et al., 2022), InfoVQA (X.AI, 2024) and ChartQA (Masry et al., 2022). We
 1114 compute the average score on all datasets, where MME score is normalized between 0-1, as shown
 1115 in Table 5.

1116

Model	MMMU	MME	MMBench	RealworldQA	MMStar	HallBench	InfoVQA	ChartQA	Avg	Vision Ratio
Qwen2.5VL-7B	58.6	83.8	83.5	68.5	63.9	52.9	82.6	87.3	75.5	59.6
Qwen2.5VL-72B	70.2	87.4	88.6	75.7	70.8	55.2	87.3	89.5	81.4	78.6
InternVL3-9B	57.7	84.7	83.4	70.5	66.3	51.2	79.6	86.2	75.5	41.2
InternVL3-14B	67.1	88.5	85.6	70.7	68.8	55.1	83.6	87.3	78.8	55.0
InternVL3-38B	70.1	90.1	87.6	75.6	71.5	57.1	85.0	89.2	81.3	62.4
InternVL3-78B	72.2	91.1	89.0	78.0	72.5	59.1	86.5	89.7	82.7	81.5
LLaVA-OneVision-7B	47.9	71.2	83.2	66.3	61.7	31.6	68.8	80.0	68.4	26.3
LLaVA-OneVision-72B	55.7	80.8	85.8	71.9	65.8	49.0	74.9	83.7	74.1	30.1
Qwen2VL-7B	54.1	83.1	83.0	70.1	60.7	50.6	76.5	83.0	72.9	16.3
LLaVA-Next-7B	37.6	63.2	69.2	57.8	37.6	27.6	31.6	51.9	49.8	8.5
LLaVA-Next-13B	37.3	62.3	70.0	57.6	40.4	31.8	34.9	59.0	51.6	9.7
LLaVA-1.5-7B	35.7	64.6	69.2	54.8	33.1	27.6	22.4	17.8	42.5	13.4
LLaVA-1.5-13B	37.0	63.6	66.5	55.3	34.3	24.5	24.9	18.5	42.9	15.0

1126

1127

Table 5: Performance comparison across benchmarks for different models measured by accuracy
 (%) and Vision Ratio score (%).

1128

1129

1130

1131

C.3 THE DETAILS FOR CONTROLLING MODALITY PREFERENCE

1132

1133

More results for controlling modality preference through instruction design. In the left panel of Figure 4, we provide the Vision Ratio results for LLaVA-OneVision-7B, Qwen2.5VL-7B, Qwen2VL-7B and InternVL3-8B. We also present more results on controlling modality preference

Figure 11: Layer-wise absolute difference and standard deviation of hidden states between image-guided and text-guided instruction for LLaVA-OneVision-7B, Qwen2VL-7B and InternVL3-8B models from left to right.

through instruction design for preference towards the vision modality and the text modality in Table 15 and Table 16. For each setting, we report the results measured by S_{vision} , vision-based accuracy and S_{text} , text-based accuracy.

The details of PCA Analysis In Section 4.4, we use the PCA analysis regarding the Modality Preference Direction in Representation Space. Here, we provide a more detailed description of the setup. We extract the model’s hidden representations from the last token of the input across different layers. Then, we apply the PCA method to reduce the dimensionality to two dimensions for visualization. The following settings were visualized:

1. The model states under the original modality context input in conflicting scenarios.
2. The model states when there is image noise or textual syntax errors.
3. The model states when specific instructions biased towards image or text are added.

To improve PCA dimensionality reduction efficiency, we selected 500 samples for each setting. Additionally, we calculated the center position after dimensionality reduction for each setting. The center (or centroid) of the samples is computed by taking the mean of the reduced-dimensional points across all the samples.

D METHOD APPLYING

D.1 DETAILS FOR PATTERN OF HIDDEN STATES

In the main text, we visualize the layer-wise absolute difference and standard deviation of the hidden states for Qwen2.5VL-7B. As shown in Figure 11, we present the visualization of hidden states for LLaVA-OneVision-7B, Qwen2VL-7B, and InternVL3-8B. For each model, we selected layers with large absolute differences and small standard deviations. This means we identified the layers that showed stable and significant differences between instructions with modality preference towards vision context and text context, which are then used to steer and adjust the model’s modality preference.

D.2 EVALUATION OF VISUAL UNDERSTANDING AND MULTIMODAL MULTIMODAL MACHINE TRANSLATION

PhD (Liu et al., 2024c) is a visual understanding benchmark and includes two subsets—PhD-ica, which contains irrelevant textual context, and PhD-icc, which introduces misleading or incorrect textual information—both of which increase the risk of hallucination. For testing convenience, we randomly selected 1,000 samples from the original PhD-cc and PhD-ica datasets for evaluation. By steering the model’s modality preference toward the vision modality, we strengthen its visual understanding ability and mitigate vision hallucinations in MLLMs.

Ambigcaps (Li et al., 2021) benchmark explores the role of datasets in stimulating the leverage of the visual modality and proposes methods to highlight the importance of visual signals in the

1188 datasets. We evaluate the multimodal machine translation (MMT) task on this dataset using the
 1189 Qwen2.5VL-7B model. Multimodal contexts in MMT are both complementary and contradictory:
 1190 the visual information provides helpful context for translation, but the potential for conflicting,
 1191 non-visual signals can interfere with grounding the source language. Consequently, the proposed
 1192 method is designed to steer the modality preference toward the text modality to ensure robustness
 1193 against these visual-textual conflicts. Conversely, when guided toward the text modality, the model
 1194 places greater emphasis on the source language, leading to more accurate grounding in multimodal
 1195 machine translation. This adjustment prevents the model from over-relying on visual content and
 1196 from introducing spurious objects or extraneous details into the translation output.

E MORE EXPERIMENT ANALYSIS

E.1 THE SENSITIVITY ANALYSIS FOR THE EVALUATION OF MODALITY PREFERENCE

To verify whether the current **2k-sample scale** of MC^2 is sufficient to ensure the stability of both the preference evaluation and steering results, we conduct a sensitivity analysis by randomly selecting a specified quantity of samples from each category for assessment. As shown in Table 6, we calculate the Vision Ratio for LLaVA-OneVision-7B and Qwen2.5VL-7B. Results demonstrate that as the sample size increases per category, the Vision Ratio begins to stabilize around 150 samples. These experiments suggest that the current dataset size for each task is sufficient to ensure the stability of evaluation of modality preference. In the future, we would like to expand MC2 with a wider variety of tasks (e.g., texture recognition) and modalities (e.g., Audio), further enhancing its comprehensiveness and generalizability.

Table 6: The sensitivity analysis for the evaluation of modality preference. We randomly select a specified quantity of samples from each category for assessment, measured by Vision Ratio.

Model	25	50	75	100	125	150	175	200	225	250
LLaVA-OneVision-7B	29.2	28.0	29.1	29.6	28.1	26.4	26.6	26.7	26.7	26.3
Qwen2.5VL-7B	56.7	59.4	60.2	59.9	60.4	59.8	60.2	59.7	59.8	59.6

E.2 MORE RESULTS FOR DOWNSTREAM TASKS

E.2.1 MORE RESULTS FOR PHD DATASET

We evaluate the performance of Phd dataset using the proposed method for LLaVA-1.6-7B and the results are in Table 7. We observe that LLaVA-1.6-7B, due to its **severe text preference**, only achieves an average ACC score of 0.7 on the PHD-icc subset. Applying our method significantly boosts the model’s performance across the two subsets, thereby demonstrating the cross-model generalization of our approach.

E.2.2 MORE RESULTS FOR REASONING AND GROUNDING TASKS

We extend our evaluation to include additional multimodal reasoning (MathVista Lu et al. (2023)) and grounding tasks (TallyQA Acharya et al. (2019) and VSR Liu et al. (2023a)). We acknowledge that CoT generation often introduces vision hallucination, degrading performance. For our assessment, we randomly sample a , b , and c instances from the three respective original datasets that are susceptible to reasoning CoT interference. We show that the proposed steering method increases reliance on the original visual information by steering image preference, which prevents the final decision from being misled by potential vision hallucination in the reasoning CoT. The

1242 Table 7: Performance of the proposed method on the visual understanding benchmark, Phd using
 1243 LLaVA-1.6-7B.

Phd	Method	Attribute	Sentiment	Positional	Counting	Object	Avg
Phd-icc	LLaVA-1.6-7B	0.5	0.0	0.0	1.5	1.5	0.7
	InstDesign	2.0	0.5	0.5	1.5	9.5	2.8
	Ours	3.5	1.5	1.0	3.0	15.0	4.8
Phd-iac	LLaVA-1.6-7B	5.5	8.0	4.0	10.5	29.0	11.4
	InstDesign	7.5	12.5	14.5	15.5	44.5	18.9
	Ours	11.5	20.0	20.5	22.0	51.0	25.0

1244
 1245 results for Qwen2.5VL-7B are detailed in Table 8. We observe that the proposed method consistently outperforms both the CoT and the InstDesign baselines across all tasks. This demonstrates the effectiveness of generalizing our approach to more complex reasoning and grounding tasks by mitigating post-CoT hallucination.

1246 Table 8: Performance of the proposed method on the reasoning and grounding tasks measured by
 1247 accuracy for Qwen2.5VL-7B.

Dataset	CoT	InstDesign	Ours
MathVista	50.0	59.0	60.3
TallyQA	61.6	74.4	75.6
VSR	45.6	51.3	53.2

E.3 ABLATION STUDY

1248 In this section, we conduct the detailed ablation study to analyze the proposed method.

E.3.1 THE NUMBER OF PROBING SAMPLES

1249 We compute the preference direction in Equation 1 using varied sample sizes but test the steering
 1250 performance on the complete MC^2 dataset. We report the S_{Vision} and S_{Text} results for LLaVA-
 1251 OneVision-7B and Qwen2.5VL-7B in Table 9. We observe that steering performance remains stable
 1252 even when the steering vector is derived from a limited number of samples.

1253 Table 9: The ablation study for the varied sample number of computing the preference direction.

Model	25	50	75	100	125	150	175	200	225	250
LLaVA-OneVision-7B	56.0	55.9	56.3	57.1	57.0	57.3	57.3	57.4	57.2	57.1
Qwen2.5VL-7B	62.2	62.2	61.7	62.6	64.0	62.8	62.7	63.1	62.8	63.6

E.3.2 THE DIVERSITY OF PROBING SAMPLES

1254 To study the impact of data diversity for probing task, we experiment by using **only a single task**
 1255 for probing and applying the resulting vector to steer **all other tasks**. We report the S_{Vision} and
 1256 S_{Text} for LLaVA-OneVision-7B and Qwen2.5VL-7B for entire dataset in Table 10. We observe that
 1257 LLaVA-OneVision-7B achieves competitive performance compared to our initial implementation
 1258 for using nearly each probing task, with Qwen2.5VL-7B showing similar success on over half the
 1259 tasks. Further analysis finds that the most effective single-probing tasks are those where the initial
 1260 modality preference change was **more pronounced**.

1296 Table 10: The ablation study for the varied diversities of computing the preference direction.
1297

Model	Sport	Attribute	Sentiment	Positional	Counting	Color	Activity	Object	Ours
LLaVA-OneVision-7B	58.6	55.8	59.3	57.8	59.0	53.4	58.5	58.6	57.1
Qwen2.5VL-7B	64.1	59.5	70.0	51.9	47.4	65.5	63.0	60.6	63.6

1301

1302

1303 E.3.3 DIFFERENT STEERING INTENSITIES

1304 To investigate the performance with varied steering intensities, we introduce a scaling coefficient
1305 λ to the steering weight w in Equation 2 to change the steering intensity and conduct a test on
1306 MC^2 for both LLaVA-OneVision-7B and Qwen2.5-VL-7B, reporting the S_{Vision} or S_{Text} scores
1307 in Table 11. We observe that performance drops for both models with decreased steering intensity,
1308 indicating **insufficient steering**. As intensity increases, the performance of LLaVA-OneVision-
1309 7B significantly drops, exhibiting clear **over-steering** at $\lambda = 2.0$ which leads to destruction of
1310 language capabilities. Conversely, for Qwen2.5VL-7B, the steering effect continues to enhance up
1311 to $\lambda = 1.75$, only significantly degrading beyond $\lambda = 2.0$, demonstrating a wider **safe steering**
1312 **margin** in its representation space.

1313

1314

Table 11: The ablation study for the varied steering intensities.

Model	0.125	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.0	2.25	2.5	2.75	3.0
LLaVA-OneVision-7B	40.2	45.5	51.8	52.6	57.1	56.5	32.6	12.1	3.9	0.1	0.0	0.0	0.0
Qwen2.5VL-7B	40.8	44.1	49.4	53.2	63.6	72.3	76.0	70.7	45.8	15.2	16.2	12.5	7.8

1315

1316

1317

1318

1319

1320

1321

1322

E.4 DETAILS FOR THE APPLICATION OF THE PROPOSED METHOD

1323

1324

E.4.1 DETAILS OF IN-DEPTH ANALYSIS FOR STEERING METHOD

1325

1326 We provide the detailed description of the case for in-depth analysis for steering method in Figure 6
1327 in Section 5.4. Besides, we also provide more attention analysis for the case in the different layers
1328 in Figure 13, 14, 15, 16, 17 and 18. We observe that across all subsequent layers following steering
1329 modality preference towards text at the 21 th layer, our method significantly increases the model’s
1330 attention weight toward the text modality, surpassing the corresponding vision attention weight. This
1331 change clearly demonstrates that the steering mechanism successfully alters the modality preference
1332 by enhancing the model’s dependency on the text modality.

1333

1334

E.4.2 LATENCY AND MEMORY

1335

1336

1337 The proposed method consists of two phases, probing and steering. The probing phase is conducted
1338 offline and the resulting steering vector is cached for reuse. During the actual steering phase, we
1339 simply load this cached steering vector, which incurs minimal memory overhead and does not add
1340 meaningful computational cost to the inference process. We measure the single-sample inference
1341 latency (seconds) (without Flash-Attention acceleration and batch inference) for our method
1342 compared to the MLLM baseline (MLLM-only) in Table 12. The results show that the steering phase
1343 introduces negligible latency compared to the MLLM-only baseline, and the overhead is confined
1344 to the initial offline probing stage. Furthermore, all three methods require nearly identical memory
1345 requirements.

1346

E.4.3 THE PREREQUISITES FOR IMPLEMENTATION OF THE PROPOSED METHOD

1347

1348

1349

1347 Based on Representation Engineering Greenblatt et al. (2023); Xu et al. (2024), the proposed method
1348 requires capturing an **explicit modality preference direction vector** to realize behavioral adjust-
1349 ment. The approach succeeds when such a vector can be reliably extracted, as seen in models
like Qwen2.5VL-7B. However, the method fails in cases such as LLaVA-1.5-7B, primarily due to

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378

<image> is a placeholder for below image

Figure 12: The highlighted areas indicate the points of conflict between visual and textual contexts.

User: <image> Text Context: The table was adorned with a vibrant bouquet of flowers and a charming ceramic sheep, while the surrounding chairs, crafted from smooth, *polished wood*, complemented the rustic yet elegant setting. In case there is an inconsistency between the text context and the image content, you should follow the text context rather than the image content. **Question:** What is the chairs made of? A. wicker B. wood

Assistant: <output>

Vision-based answer: *wicker*

Text-based answer: *wood*

InstDesign answer: A.wicker X

The proposed steering method answer: B. wood. ✓

1389

Figure 13: The attention scores of the generated token toward the vision and text contexts using InstDesign (Left) and the proposed method (Right) in the 23th layer.

1398
1399
1400
1401
1402
1403

its limited ability to follow instructions for preference adjustment, which prevents the capture of a meaningful direction vector. Besides, we observe a localized performance drop in the Attribute subset of the Phd-icc benchmark in Table 3. We attribute this to the limitation of applying a single

Figure 14: The attention scores of the generated token toward the vision and text contexts using InstDesign (Left) and the proposed method (Right) in the 24th layer.

Figure 15: The attention scores of the generated token toward the vision and text contexts using InstDesign (Left) and the proposed method (Right) in the 25th layer.

global steering vector, which may fail to accommodate **instance-level granularity**—where fine-grained, sample-specific features are required for optimal alignment. Despite these isolated cases, the overall benchmark performance improves, underscoring the effectiveness of our approach, especially considering that it requires no external data or fine-tuning.

E.5 THE FURTHER EXPERIMENT WITHOUT MODALITY PREFERENCE PRIOR

Our current approach intentionally select the steering direction based on known task requirements. This design has been proven to be pragmatic and effective for many real-world applications where the optimal modality is clear. In addition, our method can be readily integrated with a training-free priority detection method to enable dynamic preference selection. To demonstrate this, we conduct the following experiment:

Dataset Construction: We modify MC^2 dataset by degrading the quality of one modality context so that only one modality is reliable, and the ground-truth answer aligns with it. We use QA accuracy to measure model performance on this new dataset.

Task Design: 1) Each sample requires a specific reliable modality. 2) All samples share the same reliable modality in a task. Each task contains 200 samples.

Solution: We apply a causal analysis approach Parcalabescu & Frank (2024) to identify the reliable modality. For each sample, we first measure the change of predicted answer probability when removing either the image or the text context. The larger the drop, the more important that modality is for the given sample. For Task1, we determine the reliable modality for a specific sample by comparing the probability drops. For Task2, by aggregating the reliable modalities across all samples via majority voting, we determine the preferred modality for the specific task.

Results: For the identification of reliable modality, we achieve an accuracy of 85.3% for all samples in Task1; we reach 100% accuracy for task-level identification in Task2 (thus, performance on Task 2 is equivalent to knowing the steering preference in advance). Next, we evaluate the performance of the proposed method on Task1, measured by QA accuracy in Table 13.

The results show that steering with predicted preference yields significant gains over base models and closely matches the performance of the “preference prior” setting. This confirms that our method can be simply adapted to autonomously prioritize modalities based on input quality or task needs.

Figure 16: The attention scores of the generated token toward the vision and text contexts using InstDesign (Left) and the proposed method (Right) in the 26th layer.

Figure 17: The attention scores of the generated token toward the vision and text contexts using InstDesign (Left) and the proposed method (Right) in the 27th layer.

Figure 18: The attention scores of the generated token toward the vision and text contexts using InstDesign (Left) and the proposed method (Right) in the 28th layer.

Table 12: The comparison of inference time between MLLM-only and the proposed method including probing and steering phases.

Dataset	MC2	Phd-icc
MLLM-only	1.99	1.84
Probing (Offline)	2.21	2.12
Steering	2.00	1.84

Table 13: The performance of the proposed method on the revised MC^2 without modality preference prior measured by Accuracy.

Method	Task1
OneVision-only	25.4
+Steering with preference prior	40.7
+Steering with predicted preference	37.5
Qwen2.5VL-7B-only	49.1
+Steering with preference prior	62.7
+Steering with predicted preference	58.2

1512	Model	Sport	Attribute	Sentiment	Positional	Counting	Color	Activity	Object	Avg
1513	LLaMAVision-11B	31.2/52.4	20.4/69.6	2.0/93.2	21.2/66.8	4.0/93.2	35.2/47.2	10.0/82.4	38.8/42.8	20.4/68.4
1514	LLaVA1.5-7B	20.0/59.6	8.0/88.0	2.0/86.0	8.8/75.2	1.2/96.0	10.8/82.0	9.6/78.8	35.2/52.0	11.9/77.2
1515	LLaVA1.5-13B	34.4/59.6	8.8/89.6	4.8/88.0	12.0/84.8	1.6/96.4	12.8/82.0	9.6/87.6	31.2/62.8	14.4/81.3
1516	OneVision-7B	32.0/36.4	21.6/54.8	2.8/94.4	24.8/56.4	2.4/86.4	30.0/38.0	11.6/71.2	42.4/31.2	20.9/58.6
1517	Owl3-24-07	60.8/31.6	16.4/72.4	10.8/85.6	22.0/69.6	8.4/88.0	28.4/60.4	17.2/71.2	60.0/29.6	28.0/63.5
1518	Qwen2VL-7B	26.4/58.0	12.4/82.8	0.8/95.6	13.2/80.4	4.0/93.6	16.0/78.8	11.6/83.6	38.0/54.0	15.3/78.3
1519	Qwen2.5VL-7B	65.6/12.8	45.2/46.0	18.0/68.8	46.4/38.0	51.6/39.6	70.8/20.0	42.0/43.6	77.6/14.0	52.2/35.4
1520	GLM-4V-9B	42.0/42.4	32.4/59.2	8.8/81.6	28.0/62.4	15.2/74.4	56.8/32.8	23.3/66.0	54.0/32.8	32.6/56.5
1521	SPHINX-V2-1K	39.6/50.8	14.8/82.4	1.2/98.4	16.8/77.6	9.2/85.6	23.2/69.2	24.4/67.2	59.2/32.4	23.6/70.5
1522	InternVL3-9B	45.2/35.2	21.2/68.0	20.8/62.4	27.2/54.4	23.2/50.4	38.0/40.4	19.6/63.2	76.8/14.8	34.0/48.6
1523	InternVL3-14B	72.8/8.8	30.8/48.4	25.2/60.0	33.2/52.0	37.2/47.2	58.0/21.2	24.8/52.8	84.4/9.6	45.8/37.5
1524	CogVLM2-19B	44.0/39.6	29.2/56.0	8.8/75.6	19.2/54.8	8.0/73.2	31.6/43.2	25.2/60.8	59.2/28.4	28.2/54.0
1525	InternVL3-38B	75.2/9.6	45.2/33.6	19.6/60.8	44.0/42.0	41.6/40.0	48.4/29.6	50.4/23.2	84.4/8.0	51.1/30.8
1526	InternVL3-78B	92.4/3.2	46.0/28.8	66.4/18.4	41.6/37.2	69.6/13.2	76.4/8.8	74.4/12.8	89.6/4.0	69.5/15.8
1527	Qwen2.5-VL-32B	85.6/10.40	49.20/39.20	49.60/42.80	52/37.60	52/42	70.80/20	57.20/35.20	86.80/10.40	62.90/29.70
1528	Qwen2.5VL-72B	93.6/4.4	59.2/27.2	50.0/41.2	73.6/19.2	63.6/29.2	83.6/9.6	74.0/21.2	89.2/8.0	73.4/20.0
1529	OneVision-72B	47.2/46.0	20.0/70.8	4.0/93.6	22.8/67.2	12.8/83.2	21.6/60.8	20.8/70.8	71.6/21.2	27.6/64.2
1530	LLaVA1.6-7B	10.8/74.4	5.2/85.2	0.8/93.2	3.6/79.6	0.4/90.8	6.0/76.0	4.8/73.6	26.0/46.8	7.2/77.5
1531	LLaVA1.6-13B	16.0/66.4	7.2/90.4	0.8/92.0	6.4/91.6	2.4/95.6	6.8/88.0	10.0/84.4	22.4/63.2	9.0/84.0
1532	LLaVA1.6-34B	34.8/42.4	12.0/81.6	6.8/85.6	16.8/76.0	11.2/83.2	25.2/60.8	14.0/76.0	60.0/31.6	22.6/67.2
1533	GPT-4o-mini	94.4/3.2	35.6/47.6	60.4/28.4	22.0/58.9	19.4/59.2	34.8/36.4	71.2/20.4	78.4/12.8	52.0/33.4

Table 14: Accuracy of question answering in the MC^2 dataset when both textual and visual contexts are provided but the instruction does not specify which modality context should be used. Values are reported as vision-based accuracy/text-based accuracy for each model.

1534	Model	Sport	Attribute	Sentiment	Positional	Counting	Color	Activity	Object	Avg
1535	OneVision-7B	55.6/16.4	31.2/37.2	12.0/76.8	30.8/42.4	3.2/77.6	36.4/18.4	22.4/47.6	61.2/16.4	31.6/41.6
1536	Qwen2VL-7B	60.8/26.8	24.0/69.2	20.0/69.6	20.4/74.0	10.8/80.0	32.0/52.0	27.2/61.6	63.2/28.8	32.3/57.8
1537	Qwen2.5VL-7B	77.6/14.4	43.2/46.8	18.4/72.8	43.2/40.4	35.6/55.6	58.8/24.4	53.6/35.6	81.2/11.6	51.4/37.7
1538	CogVLM2-19B	73.2/13.2	47.6/32.4	35.6/28.4	26.8/45.2	14.0/40.0	61.6/17.6	56.0/28.0	76.0/15.2	48.9/27.5
1539	InternLM-XC2.5-7B	84.0/9.6	46.4/42.8	74.0/18.4	36.0/52.4	22.8/66.0	63.6/20.8	74.0/18.4	76.4/15.6	59.7/30.5
1540	GLM-4V-9B	75.2/18.4	48.8/39.6	28.8/54.0	33.6/55.6	38.4/54.0	76.4/16.4	48.4/38.8	80.0/11.6	53.7/36.1
1541	SPHINX-V2-1K	52.4/38.4	16.4/78.8	2.0/97.2	20.8/72.8	13.6/80.8	30.0/58.8	40.8/52.8	64.8/29.2	30.1/63.6
1542	InternVL3-9B	96.0/2.0	67.2/18.8	82.8/13.2	54.8/26.4	55.6/21.2	84.4/7.6	82.8/6.4	91.6/4.0	76.9/12.4
1543	InternVL3-14B	98.4/0.8	86.0/4.4	87.6/7.6	71.6/12.8	78.0/6.8	97.2/0.8	90.8/3.2	96.4/1.6	88.2/4.8
1544	LLaVA1.6-7B	33.2/54.0	6.8/80.8	6.0/82.4	6.4/79.6	2.8/90.4	10.8/70.0	13.6/69.2	48.4/40.8	16.0/70.9
1545	LLaVA1.6-13B	41.6/40.4	10.4/85.2	4.0/62.8	8.4/83.6	5.6/92.8	14.4/70.8	24.8/58.0	45.2/41.2	19.3/66.9
1546	LLaVA1.6-34B	84.8/12.0	48.0/36.4	62.8/24.0	34.0/52.0	38.8/44.4	76.4/14.4	62.0/18.4	80.4/12.4	60.9/26.8

Table 15: Accuracy of question answering in the MC^2 dataset when both textual and visual contexts are provided and the instruction explicitly directs the model to answer based on visual modality context. Values are reported as vision-based accuracy/text-based accuracy for each model.

1551	Model	Sport	Attribute	Sentiment	Positional	Counting	Color	Activity	Object	Avg
1552	OneVision-7B	45.6/16.4	22.4/37.2	5.6/76.8	27.2/42.4	1.6/77.6	28.8/18.4	16.8/47.6	56.0/16.4	25.5/41.6
1553	Qwen2VL-7B	51.6/34.8	14.8/78.4	6.8/88.0	15.6/79.6	4.0/90.8	18.0/70.8	19.2/72.8	57.6/36.0	23.4/68.9
1554	Qwen2.5VL-7B	77.6/14.4	43.2/46.8	18.4/72.8	43.2/40.4	35.6/55.6	58.8/24.4	53.6/35.6	81.2/11.6	51.4/37.7
1555	CogVLM2-19B	53.6/29.6	28.4/47.6	10.4/56.8	17.6/56.8	6.0/62.0	36.0/35.2	34.0/39.6	67.2/19.6	31.6/43.4
1556	GLM-4V-9B	53.2/32.8	30.4/61.2	6.0/85.6	23.2/68.0	20.0/70.0	52.4/35.6	28.0/60.8	68.0/22.0	35.2/54.5
1557	SPHINX-V2-1K	48.4/41.2	14.4/81.6	2.0/98.0	19.2/77.6	11.2/84.0	27.2/67.2	30.8/65.2	63.2/30.8	27.1/68.2
1558	InternVL3-9B	41.2/27.2	13.6/71.6	22.4/60.8	16.8/64.0	18.0/60.4	25.6/46.4	29.2/49.2	62.4/17.6	28.6/49.6
1559	InternVL3-14B	28.4/44.8	14.0/68.4	3.6/82.4	21.2/54.8	28.0/43.2	24.8/50.0	17.2/58.8	55.2/19.6	24.0/52.8

Table 16: Accuracy of question answering in the MC^2 dataset when both textual and visual contexts are provided and the instruction explicitly directs the model to answer based on the textual modality. Values are reported as vision-based accuracy/text-based accuracy for each model.

1566

1567

1568

1569

1570

Model	Sport	Attribute	Sentiment	Positional	Counting	Color	Activity	Object	Avg
LLaMAVision	97.6	97.2	99.6	99.2	97.2	96.0	97.6	97.6	97.8
LLaVA1.5-7B	98.0	98.0	100.0	97.6	98.4	99.2	97.6	97.6	98.3
LLaVA1.5-13B	97.2	97.6	99.6	97.6	97.6	98.8	95.2	99.2	97.9
OneVision-7B	98.0	95.2	100.0	98.4	98.0	98.8	98.0	100.0	98.3
Owl3	97.6	97.2	99.6	98.8	98.8	99.2	99.2	100.0	98.8
Qwen2VL-7B	98.8	96.4	99.6	99.6	98.8	100.0	98.8	100.0	99.0
Qwen2.5VL-7B	99.2	97.6	100.0	99.6	96.8	98.8	98.4	99.2	98.7
CogVLM2-19B	98.0	95.2	99.2	96.0	94.8	98.4	98.0	99.6	97.4
GLM-4V-9B	98.4	95.2	99.6	97.2	98.8	98.4	99.6	99.6	98.4
SPHINX-V2-1K	98.4	97.6	99.2	98.8	98.0	99.2	98.4	99.6	98.7
InternVL3-9B	97.6	98.0	99.6	99.2	95.6	96.8	98.8	99.2	98.1
InternVL3-14B	98.4	98.4	100.0	99.2	95.6	98.4	98.8	99.6	98.5
InternVL3-38B	97.6	96.8	100.0	98.8	96.0	97.2	98.4	100.0	98.1
InternVL3-78B	97.2	97.6	100.0	98.0	96.4	96.8	98.0	100.0	98.0
Qwen2.5VL-72B	99.6	98.4	96.8	100.0	97.2	100.0	99.6	99.2	98.9
OneVision-72B	100.0	97.6	97.6	99.6	96.4	100.0	100.0	98.8	98.7
GPT-4o-mini	97.6	97.2	99.6	98.6	97.4	98.4	98.4	100.0	98.4

1587

1588

Table 17: Accuracy of question answering in the MC^2 dataset when only unimodal textual context is provided.

1589

1590

1591

1592

1593

1594

1595

1596

Model	Sport	Attribute	Sentiment	Positional	Counting	Color	Activity	Object	Avg
LLaMAVision	100.0	98.8	92.8	98.4	96.4	99.2	98.8	97.2	97.7
LLaVA1.5-7B	99.6	98.0	96.4	100.0	97.6	99.6	98.8	98.4	98.5
LLaVA1.5-13B	99.6	95.2	94.4	97.6	95.2	98.4	96.4	98.4	96.9
OneVision-7B	100.0	97.2	97.2	98.4	84.4	99.6	97.2	98.8	96.6
Owl3	99.2	94.0	94.0	97.2	88.4	96.8	97.2	99.2	95.8
Qwen2VL-7B	99.6	98.8	95.6	98.4	96.4	100.0	99.6	98.4	98.3
Qwen2.5VL-7B	99.6	98.8	98.0	100.0	99.2	100.0	100.0	98.8	99.3
CogVLM2-19B	99.6	99.2	91.2	96.8	91.6	98.8	98.4	98.8	96.8
GLM-4V-9B	99.6	99.2	98.0	99.2	97.6	100.0	99.2	99.6	99.1
SPHINX-V2-1K	98.8	97.6	99.2	92.8	98.0	99.6	96.8	99.2	97.8
InternVL3-9B	98.8	95.6	95.6	96.8	90.0	100.0	98.0	98.0	96.6
InternVL3-14B	99.2	96.4	96.4	98.4	92.4	98.8	97.2	98.4	97.1
InternVL3-38B	100.0	98.0	97.2	100.0	94.4	99.6	99.2	98.8	98.4
InternVL3-78B	99.2	99.6	96.8	98.8	96.0	100.0	99.2	98.4	98.5
Qwen2.5VL-72B	97.2	97.2	100.0	99.2	97.2	98.4	98.4	99.6	98.4
OneVision-72B	100.0	97.6	97.6	99.6	96.4	100.0	100.0	98.8	98.7
GPT-4o-mini	100.0	92.0	95.6	100.0	100.0	96.0	96.4	96.0	97.0

1614

1615

Table 18: Accuracy of question answering in the MC^2 dataset when only unimodal visual context is provided.

1616

1617

1618

1619