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ABSTRACT

Multimodal large language models (MLLMs) have achieved remarkable suc-
cess on complex multimodal tasks. However, it remains insufficiently explored
whether they exhibit modality preference, a tendency to favor one modality
over another when processing multimodal contexts. To study this question, we
introduce MC2 benchmark, which constructs controlled evidence-conflict scenar-
ios to systematically evaluate modality preference in decision-making. Exten-
sive experiments reveal that all 20 tested MLLMs generally demonstrate clear
modality preferences, and such preferences can serve as a useful indicator of
downstream task performances of MLLMs. Further analysis shows that modality
preference can be controlled by instruction guidance and captured within the latent
representations of MLLMs. Built on these insights, we propose a probing and
steering method based on representation engineering to explicitly control modality
preference without requiring additional fine-tuning. This method effectively am-
plifies modality preference toward a desired direction and demonstrates promising
improvements across multiple downstream applications, including multimodal vi-
sual understanding and multimodal machine translation.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs; Achiam et al., 2023; Team et al., 2023; Wang et al.,
2024; Yin et al., 2024) have emerged as a powerful paradigm for processing and reasoning across
heterogeneous data modalities (e.g., text, images, video). Recent advances demonstrate their excep-
tional capabilities on complex tasks with multimodal contexts, including autonomous web brows-
ing (He et al., 2024), graphical user interface understanding (Hong et al., 2024b), and multimodal
dialogue systems (Sun et al., 2022). Despite impressive performance, fundamental questions remain
about their modality preference—whether MLLMs tend to rely more heavily on one modality than
others, and to what extent they favor a specific modality when resolving multimodal inputs.

To investigate this, one line of work (Fu et al., 2024; Amara et al., 2024) compares model
performance on unimodal input, providing either only text or only image input for the same question.
Another line of research analyzes the relative contributions of textual and visual context, typically
by removing one modality to observe the changes of the downstream performance (Park et al., 2025)
or Shapley value (Alishahi et al., 2019; Parcalabescu & Frank, 2024; 2022). However, such settings
inherently introduce bias, as they isolate modalities, thus failing to reflect how models process inputs
in realistic multimodal scenarios, where information from different modalities naturally co-occur.

In this paper, we provide a controllable setup to study the modality preference in MLLMs. As shown
in the left panel of Figure 1, we introduce a modality context conflict setting, where MLLMs are
asked to answer a question based on a pair of contrasting evidence from different modalities. In this
way, we can determine the modality preference based on the answer given by MLLMs.

To enable a rigorous and fair assessment, we use the perception-level tasks and isolate confounding
factors including question comprehension, single-modality perception, and the internal knowledge
of MLLMs. Therefore, we annotate and select perception-level tasks that demonstrate accurate
question comprehension and reliable single-modality recognition. Building upon this, we introduce
a semi-automated annotation framework to construct a refined Modality Context Conflict dataset,
MC2, which covers eight perception-level tasks with 2,000 carefully selected samples. Using MC2,
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There are three boys 
playing Frisbee, one more 
boy is partially visible in 
the corner, bending down 
to tie his shoelaces, making 
a total of four people.

How many people are there?

Five people.   [Vision Matters] 

Four people.   [Text Matters]

Vision Context Textual Context
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28.2 17.8 54.0

7.2 15.3 77.5

Vision (%) Other (%) Text (%)

Figure 1: Illustrations of evaluating modality preference. Left: Using multimodal conflict context
pairs to evaluate modality preference. Right: Quantified scores for Vision and Text modalities,
where a higher score indicates a stronger preference toward the corresponding modality. Other
represents irrelevant predictions, which are discarded during the statistics.

we conduct a comprehensive analysis of modality preference across a diverse set of 20 representative
MLLMs. Our study reveals several intriguing findings:

• Most MLLMs (except Qwen2.5-VL and InternVL3) display text preference, as shown in the
right panel of Figure 1, and modality preference can serve as a useful indicator of downstream
task performances.

• Internal attention patterns toward specific modalities give rise to modality preference, and the
underlying factors can be traced to the training data recipe and the scale of the MLLMs.

• Modality preference can be modulated through explicit instruction guidance, and the direction
of preference can be captured as geometrically separable patterns in the latent space.

Built on these, we propose a modality preference probing and steering method based on representa-
tion engineering (Zou et al., 2023) to explicitly amplify the modality preference without additional
fine-tuning. Experimental results show that the proposed method leads to notable performance
improvements on multimodal visual understanding and multimodal machine translation. Our main
contributions are summarized as follows:

• We introduce MC2 to comprehensively evaluate modality preferences in MLLMs and highlight
the significance of modality preference in correlating the downstream task performance.

• Our analysis reveals that intrinsic modality preferences in MLLMs are steerable and identifiable
through latent representation, providing insights into multimodal reasoning.

• We propose a training-free method that steers modality preference via representation-level in-
tervention, enabling controllable preference adjustment and enhancing performance on down-
stream tasks.

2 RELATED WORK

2.1 MODALITY PREFERENCE

Existing studies on the modality preference of MLLMs can be broadly divided into two categories:
1) investigating the data-related factors that give rise to modality preference or bias, and 2) analyzing
the intrinsic characteristics of modality preference within models.

Data factors influencing modality preference. Research on data-related factors (Guo et al., 2023;
Chen et al., 2024; Leng et al., 2024) explores how properties of multimodal datasets give rise to
and reinforce modality preference. In particular, many samples in multimodal datasets can be
resolved correctly by relying on information from only a single modality. When prevalent in training

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

data, such samples bias the optimization dynamics, encouraging models to disproportionately rely
on a single modality (Chen et al., 2024). Furthermore, their inclusion in evaluation benchmarks
artificially inflates performance metrics, as models can exploit these unimodal shortcuts instead of
performing genuine cross-modal integration (Leng et al., 2024; Winterbottom et al., 2020). While
these studies establish data’s role in inducing preference, our work focuses on exploring the intrinsic
modality preference inherent in MLLMs themselves, independent of specific data distributions.

Evaluating the intrinsic modality preference in MLLMs. Early studies (Peng et al., 2022; Yang
et al., 2024; Wei et al., 2024) analyze modality preference or bias by examining how multimodal
models optimize for multimodal inputs. Through such analyses, researchers observe that modality
bias has a significant impact on both model optimization and downstream task performance (Peng
et al., 2022; Ren et al., 2022; Zhang et al., 2024). While these works offer valuable insights,
they typically require training models from scratch, which makes them impractical for large-scale
multimodal systems. Recent studies have investigated intrinsic modality preference in MLLMs by
evaluating model performance on unimodal inputs—using only text or only image for the same
task (Fu et al., 2024; Amara et al., 2024)—and by applying Shapley value-based attribution methods
to quantify the contribution of each modality (Alishahi et al., 2019; Parcalabescu & Frank, 2022;
2024). However, in real-world multimodal applications, all modalities are indispensable for task
resolution, making these frameworks inadequate for determining truly modality preference. Wu
et al. (2025) evaluate the model’s ability to detect conflict under scenarios involving conflicting
multimodal contexts. However, conflict detection is only one facet of multimodal reasoning and does
not comprehensively reflect a model’s modality preference when processing multimodal contexts.

In this work, we simulate multimodal reasoning by examining the behavior of MLLMs in response
to questions under scenarios involving conflicting multimodal contexts. Compared to prior work,
we carefully control confounding variables such as input quality, question-understanding ability,
and internal model knowledge, and construct a modality context conflict dataset, enabling a more
rigorous evaluation of modality preference and uncovering new insights. Furthermore, we design a
flexible method which can controllably steer the modality preference and demonstrate effectiveness
across multiple downstream tasks.

2.2 REPRESENTATION ENGINEERING

Extensive research has shown that large language models (LLMs) encode interpretable concepts,
such as sentiment, truthfulness, and stylistic attributes in representation space in LLMs (Liu et al.,
2023b; Panickssery et al., 2023; Subramani et al., 2022; Turner et al., 2023). Building on this
foundation, representation engineering has proven effective for editing, enhancing, or suppressing
specific behaviors in LLMs (Greenblatt et al., 2023; Stolfo et al., 2024; Wu et al., 2024; Xu et al.,
2024; Zou et al., 2023). In this work, we extend this paradigm to a novel setting: controlling
modality preference in multimodal large language models (MLLMs). Instead of focusing on ab-
stract properties, our method identifies and manipulates representation directions that are sensitive
to modality preference, enabling flexible and targeted control over multimodal reasoning behavior.

3 THE MC2 BENCHMARK

In this section, we introduce the design and methodology behind the construction of the Multimodal
Context Conflict dataset, MC2, intended for evaluating modality preference. We outline the data
design philosophy in Section 3.1, followed by the data construction pipeline in Section 3.2 and the
question design and evaluation metric in Section 3.3.

3.1 DATA DESIGN PHILOSOPHY

Modality preference is a fundamental behavioral tendency to favor a modality over another, ir-
respective of the specific modality content. Its evaluation is challenging, as it is often confounded
by model’s internal knowledge and reasoning capabilities. To enable a rigorous and fair assess-
ment, we isolate these confounding factors by using perception-level modality context conflict pairs
instead of complex reasoning tasks. We elaborate on this design choice below: 1) As suggested
by prior studies Wang et al. (2023); Wu et al. (2025), model decisions often rely on contextual
information that aligns better with their internal knowledge. Therefore, in complex reasoning tasks
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involving knowledge, “modality preference" becomes conflated with “knowledge alignment.” By
using perception-level tasks, we can eliminate it. 2) To enable a fair comparison of modality
preferences across MLLMs with varying reasoning capabilities and knowledge bases, it is essential
to establish a common ground—a “lowest common denominator.” Perception-level tasks serve this
purpose effectively, as all models exhibit baseline competence in such settings. Finally, we construct
perception-level modality context conflict pairs to evaluate and compare the modality preference of
different MLLMs.

3.2 SEMI-AUTOMATED DATA CONSTRUCTION PIPELINE

In this section, we introduce our semi-automated data construction pipeline, which follows a metic-
ulous and iterative process to ensure the robustness and reliability of the dataset, in line with the
design philosophy outlined in Section 3.1. The dataset is derived from the TDIUC (Kafle & Kanan,
2017) dataset, sourced from MS-COCO (Lin et al., 2014), widely adopted in model development to
ensure the evaluated models can recognize the images. We select the image as vision context cv ,
question q, and answer Av based on the vision context and the image caption cap for each sample
from TDIUC as the foundation for data annotation. The pipeline follows these steps:

Textual Context Construction. Given a sample including cv , q, Av and cap, we construct candidate
contrastive textual contexts ct that conflict with cv specifically in relation to q but are aligned with
the cv and cap in terms of overall scene semantics. We prompt DeepSeekV3 (Liu et al., 2024a)
and ChatGPT4o-mini (Hurst et al., 2024b) to generate a distractor answer At to q, together with ct

that plausibly supports At, using carefully crafted instructions. For each model, we generate two
pairs of At and ct to facilitate downstream data selection. To ensure that all evaluated MLLMs
demonstrate strong recognition capabilities for both visual and textual contexts, we employ several
basic MLLMs, such as LLaVA1.5-7B (Liu et al., 2024b) and QwenVL-7B (Bai et al., 2023), as
judges to select samples that can be correctly understood with respect to cv and ct.

Human Verification. We incorporate manual inspection to ensure the high quality of the data
annotation. Specifically, we verify the existence of conflicts between cv and ct and ensure that both
contexts can correctly direct q to the corresponding answers, Av and At. Each sample is cross-
verified by three human annotators to ensure the reliability of the results, and when errors are found,
annotators either correct or discard the sample entirely.

Iterative Refinement. The dataset undergoes multiple rounds of refinement through a feedback
loop between textual context generation and human verification, which helps identify and rectify
potential errors, thereby enhancing the dataset quality.

Modality Context Conflict Dataset. To this end, we construct MC2, a modality context conflict
dataset including 2000 samples. The detailed instruction templates for textual context generation,
the detailed manual annotation procedures, the data annotation format along with sample cases and
dataset statistics are provided in Appendix B.

3.3 QUESTION DESIGN AND EVALUATION METRIC

Question Design. We reformulate the original questions with ChatGPT-4o-mini (Hurst et al.,
2024a) into a binary-choice format. To further reduce potential position bias in multimodal inputs,
we adopt a consistent evaluation strategy, similar to Liu et al. (2024d). Concretely, for each question,
we construct two versions by swapping the order of the answer choices. A model’s prediction is
regarded as consistent only if it selects the same answer in both versions for a sample; otherwise, it is
labeled as inconsistent. Such inconsistent samples are discarded from the subsequent measurement
of modality preference.

Evaluation Metric. Inspired by prior work on evaluating stylistic or knowledge-related preferences
of LLMs and MLLMs through conflict-pair contexts (Li et al., 2024b; Xie et al., 2023; Liu et al.,
2025), we extend this idea to evaluate the modality preference by designing a metric that captures
how MLLMs respond to conflicting signals from different modalities. More importantly, through
the careful design of our benchmark, we establish as a basis that the model can reliably understand
both modalities in isolation. As shown in Table 17 and Table 18 in Appendix, all models achieve
over 95% accuracy when provided with either textual or visual context.
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Figure 2: Results of modality preference across different MLLMs. Left: Quantified scores for
Vision, Others Text modalities using Svision, Sothers and Stext as well as Vision Ratio. Right:
Trends of Vision Ratio with respect to model parameter size across different MLLMs.

Building on this, our metric evaluates modality preference by assessing how the model’s responses
align with textual or visual input when the two provide conflicting signals. The model’s response
is then categorized based on which modality it aligns with: 1) Vision: the response aligns with
the visual context; 2) Text: the response aligns with the textual context; 3) Others: the responses
are ambiguous, uncertain, or inconsistent with either modality, which are discarded from further
analysis. Then, we naturally define the Vision Ratio to quantify the model’s preference toward the
vision modality, defined as: Svision/(Svision + Stext), where Svision or Stext denotes the score of the
vision or text modality, computed as the proportion of samples whose responses are categorized
as Vision or Text across the dataset. Sothers is the proportion of samples whose responses are
categorized as Others. Vision Ratio greater than 0.5 indicates that the model tends to favor visual
context over text.

4 MODALITY PREFERENCES IN MLLMS

This section presents a systematic investigation into modality preference in MLLMs, structured
around four key research questions: 1) Which modality do MLLMs prioritize? 2) What factors drive
these preferences? 3) Can the Vision Ratio provide guidance for downstream task performance?
4) Can modality preference be controlled? This investigation helps uncover the underlying mecha-
nisms of modality preference and enables us to apply these insights to downstream tasks.

4.1 WHICH MODALITY DO MLLMS PRIORITIZE?

We use the MC2 benchmark to evaluate the modality preferences of 20 open-source MLLMs and
the proprietary ChatGPT-4o-mini (Hurst et al., 2024a), detailed in Appendix C.1.

Different MLLMs exhibit different modality preferences. As described in Section 3.3, we quan-
tify modality preference using Vision Ratio, with the results presented in the left panel of Figure 2
and detailed in Table 14. We observe that all MLLMs exhibit clear modality preference, with most
models showing a strong preference for text; for instance, LLaVA1.5-7B attains only a 13.4% Vision
Ratio. This aligns with the previous findings that MLLMs suffer from a severe language prior (Lee
et al., 2024; Parcalabescu & Frank, 2024; Wu et al., 2025). Interestingly, the Qwen2.5VL and
InternVL3 show a certain degree of preference towards the vision modality.

Larger MLLMs exhibit stronger preferences for the vision modality. We evaluate models from
the LLaVA1.5, LLaVA-Next, Qwen2.5VL, InternVL3, and LLaVA-OneVision families to investi-
gate the relationship between model size and modality preference. As shown in the right panel of
Figure 2, we observe that for all model families, the preference for the vision modality increases
with the model size. And the Qwen2.5VL and InternVL3 models exhibit a significant preference for
the vision modality once the model size increases. However, LLaVA1.5, LLaVA-Next, and LLaVA-
OneVision models maintain a noticeable preference for the text modality as their sizes increase.
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To validate the reliable the evaluation, we conduct a sensitivity analysis for the sample number of
evaluating modality preference in Appendix E.1.

Vision Ratio aligns with human preference. We further verify whether the Vision Ratio can
serve as a human-level measure of modality preference in MLLMs. We randomly sample 100
instances from MC2 and compute the Vision Ratio of four representative models—Qwen2.5VL-
7B, LLaVA-OneVision-7B, InternVL3-14B, and LLaVA1.5-7B. In addition, we craft prompts to
elicit explicit reasoning chains from the models, specifically targeting their reliance on visual or
textual information. To ensure labeling reliability, three expert annotators independently annotate
the expressed modality preference for each response, with the final label determined by majority
vote. The automatically obtained Vision Ratio scores ([56.3%, 24.6%, 52.3%, 13.9%]) are highly
consistent with the ones given by human ([61.0%, 22.0%, 51.0%, 16.0%]), with an average discrep-
ancy of only 2.68%. This indicates that the Vision Ratio can act as a reliable, automated proxy for
human assessment of modality preference.
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Figure 3: Analysis of modality preferences. Left: Trends of Vision Ratio and multimodal Attention
Ratio across different models. Middle: Vision Ratio with Respect to the Proportion of Multimodal
Conflict-Context Training Data and different MLLMs. Right: Relationship between visual under-
standing ability, quantified as the average accuracy across seven widely used benchmarks and the
modality preference measured by Vision Ratio.

4.2 WHAT FACTORS DRIVE THESE PREFERENCES?

Given that different MLLMs display varying modality preferences, we examine two primary sources
of such differences: the internal attention distribution and the training factors.

Different allocation of attention across modalities. We compute the mean attention scores over
all token positions from both modalities and define the ratio of visual attention to total attention as
the Attention Ratio. By analyzing Qwen2.5VL-7B and LLaVA-OneVision-7B, we observe that the
trends of the Attention Ratio closely align with the Vision Ratio across models in the left panel of
Figure 3. This alignment suggests that MLLMs distribute attention unevenly between modalities,
which in turn contributes to their divergent modality preferences.

Impact of model scale and training data recipe. Through reviewing the technical reports of the
evaluated MLLMs, we find that they all adopt a common architecture comprising a vision encoder,
an alignment layer, and an LLM. Thus, we hypothesize that the observed preferences mainly arise
from two factors: 1) Exposure to more multimodal contexts, especially with conflicting cases, drives
more pronounced shifts in modality preference. 2) Larger LLMs are more capable of shifting their
preference during training;

To examine these hypotheses, we construct a training dataset containing vision–text conflict con-
texts and fine-tune Qwen2.5VL-7B/3B and LLaVA1.5-7B with varying proportions of samples with
multimodal conflict contexts, adjusting their preferences toward text or vision. We then measured
changes with the Vision Ratio. We optimize MLLMs in the opposite direction of their original
preferences and measure changes using the Vision Ratio. As shown in the middle panel of Figure 3,
increasing the proportion of multimodal contexts consistently leads to larger preference shifts, sup-
porting Hypothesis 1. This suggests that multimodal inputs maybe create more challenging training
conditions, leading to stronger shifts of preference. Furthermore, Qwen2.5VL-7B exhibites greater
shifts than Qwen2.5VL-3B under the same conditions, supporting Hypothesis 2. This indicates that
larger LLMs demonstrate stronger learning ability and adapt more effectively.
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4.3 CAN THE VISION RATIO PROVIDE GUIDANCE FOR DOWNSTREAM TASK PERFORMANCE?

As a foundational behavioral prior, the identified modality preference can inform how a model
integrates information across modalities. As such, the findings can offer relevant insights into
the model’s behavior in deeper cross-modal understanding tasks. To demonstrate the correlation
between the modality preference and performance for downstream tasks, we evaluate the visual
understanding abilities of 10 representative MLLMs. Specifically, we compute the average accuracy
across 7 widely benchmarks including reasoning tasks, MMMU, and RealworldQA, as detailed in
the Appendix C.2. We then compare the visual understanding abilities with their modality preference
measured by Vision Ratio using MC2, as shown in the right panel of Figure 3. The results reveal
a strong positive association between the Vision Ratio and visual understanding ability across the
evaluated MLLMs. Specifically, Spearman’s rank correlation (Sedgwick, 2014) reaches ρ = 0.964,
demonstrating that the Vision Ratio provides a highly reliable indicator of visual understanding task
performance.

4.4 CAN MODALITY PREFERENCE BE CONTROLLED?

We employ instruction guidance to investigate whether modality preference can be controlled, and
conduct a latent space representation analysis to examine the mechanisms, underlying the preference
adjustment. Details of the experimental design and results are provided in Appendix C.3.
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Figure 4: Analysis of modality preference under instruction-guidance. Left: Adjustment of modality
preference using instruction-guided control (Inst-vision vs. Inst-text). Middle: Representation shifts
under instruction-guided interventions. Right: layer-wise absolute difference and standard deviation
of hidden states between different instruction.

Modality preference can be guided through instruction design. We investigate the impact of
instruction design on modality preference, for instance, by explicitly directing the model to rely
on a specific modality when answering a question. Specifically, we evaluate the modality prefer-
ence measured by Vision Ratio for four representative MLLMs including Qwen2.5VL-7B, LLaVA-
OneVision-7B, Qwen2VL-7B and InternVL3-14B under the text or vision preference instruction
(Inst-text, Inst-vision). As illustrated in the left panel of Figure 4, instructions that steer the model
toward a particular modality effectively shape its modality preference.

Modality preference direction in representation space. To further understand how the inter-
vention methods influence modality preference internally, we analyze the hidden representations
of the models. Specifically, we apply Principal Component Analysis (PCA; Abdi & Williams,
2010) to the hidden states to identify the dominant direction corresponding to modality preference
shifts. The middle panel of Figure 4 shows that instruction-based interventions drive clear shifts in
representations, aligning with the modality specified by the instruction. The PCA direction further
reveals that the model’s internal states are sensitive to modality control cues, which motivates us to
develop representation techniques for adjusting modality preference and to apply these insights to
downstream tasks in Section 5.

5 REPRESENTATION BASED MODALITY PREFERENCE STEERING

Inspired by the representation behavior discussed in Section 4.4, we propose to use the representa-
tion engineering (Zou et al., 2023) to steer the modality preference, controlling the model’s behav-
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Figure 5: Overall framework of the proposed method. Modality Preference Probing collects the
neural activity, computes and scales the direction of modality preference. Modality Preference
Steering selects the target layer during the second inference and adds the scaled modality preference
direction to the representation at the corresponding layer at each inference step.

ioral expression. As shown in Figure 5, the proposed framework consists of Modality Preference
Probing (§5.1) and Modality Preference Steering (§5.2).

5.1 MODALITY PREFERENCE PROBING

We probe and collect neural activity that represents the direction of modality preference. Inspired
by the pre-training Next Token Prediction objective of decoder-only MLLMs (Hurst et al., 2024a)
and the method to extract classification features (Feucht et al., 2024), we collect neural activity from
the last token in the input text. The process involves probing modality preference through two pairs
of requests: one with a vision preference probing (e.g., ‘answer the question based on the vision
context’) and another with a text preference probing (e.g., ‘answer the question based on the text
context’). Let us denote these two inputs by qv (based on the vision context) and qt (based on the
text context), and consider a set of N such pairs (qvi , q

t
i ), i ∈ {1, . . . , N}. Let xv

i,ℓ,x
t
i,ℓ ∈ Rd be the

hidden states on the two queries at the last token of the input at layer ℓ ∈ {1, . . . , L}, where d is
the dimension of the chosen MLLM. We identity the direction of modality preference by computing
the difference in the hidden states between the paired inputs. More formally, we compute a vector
uℓ ∈ Rd representing the direction towards the text modality at layer l for a given query as:

ut
ℓ =

1

N

N∑
i

(
xt
i,ℓ − xv

i,ℓ

)
. (1)

Averaging over different queries allows us to capture the activation values most closely associated
with modality preference, independent of questions. As shown in the right panel of Figure 4, we
compute the absolute values and standard deviations of the modality preference direction ut

ℓ across
different samples. We observe that layers 20–23 exhibit both higher absolute values and lower
variance, indicating that the preference direction is more prominent and stable in these layers. Based
on this observation, we select the corresponding layer ℓ′ of the model to control the direction of
modality preference in Section 5.2. Similar patterns are observed for Qwen2VL-7B, Qwen2.5VL-
7B, LLaVA-OneVision and InternVL3, as detailed in Appendix D.1.

5.2 MODALITY PREFERENCE STEERING

After obtaining the probing direction vector, we compute the steering vector by re-scaling the vector
ut
ℓ with a weight w ∈ Rd. The scaling process must carefully balance two objectives: 1) it must be

strong enough to effectively steer the model’s modality preference, 2) it must preserve the model’s
normal output behavior. In our preliminary experiments, we observe that setting the weight too
large leads to repetitive and meaningless outputs, whereas a too small weight fails to obtain any
noticeable change for modality preference. Unlike previous approaches (Zou et al., 2023; Stolfo
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Table 1: Performance for steering Qwen2VL-
7B and OneVision-7B towards vision modality
and steering Qwen2.5VL-7B and InternVL3-8B to-
wards text modality, measured by Svision and Stext.

Preference Model MLLM InstDesign CoT FewShot Ours

Text↑ Qwen2.5VL-7B 35.4 37.7 55.6 61.1 63.6
InternVL3-8B 20.9 31.6 36.7 38.2 42.8

Vision↑ Qwen2VL-7B 15.3 32.3 34.2 17.2 48.1
OneVision-7B 37.5 52.8 53.1 49.8 57.1

Table 2: Multimodal translation results for
Ambigcaps (Li et al., 2021). BLEU scores
are reported for English (En) ↔ Turkish
(Tr).

Method En->Tr Tr->En
Qwen2.5VL-7B 8.92 18.56

+Inst towards vision 8.21 (-0.71) 16.09 (-2.47)
+Inst towards text 9.45 (+0.53) 18.98 (+0.42)
+Ours 10.22 (+1.30) 19.89 (+1.33)

Table 3: Performance of the proposed method on the visual understanding benchmark, Phd (Liu
et al., 2024c). we report the accuracy results on the phd-icc/phd-iac.

Model Attribute Sentiment Positional Counting Object Avg
Qwen2VL-7B 10.0 / 28.5 2.5 / 8.5 3.5 / 20.5 6.0 / 30.5 8.0 / 50.0 6.0 / 27.6
+InstDesign 14.5 / 34.5 2.5 / 13.0 1.5 / 26.0 5.5 / 39.0 25.0 / 60.0 9.8 / 34.5
+CoT 5.0 / 15.5 6.0 / 23.5 8.5 / 30.2 6.5 / 17.0 40.5 / 59.0 13.3 / 29.0
+FewShot 3.0 / 17.0 0.5 / 9.0 1.5 / 14.5 5.0 / 29.0 2.0 / 37.0 2.4 / 21.3
+Ours 10.0 / 34.4 11.0 /16.5 14.0 / 28.3 5.0 / 37.4 51.5 / 64.0 18.4 / 36.1
OneVision-7B 11.5/ 20.5 1.5 / 5.0 1.5 / 16.5 6.5 / 28.5 11.0 / 52.0 6.4 / 24.5
+InstDesign 16.0 / 27.0 5.5 / 12.5 6.0 / 31.5 13.5 / 30.5 34.0 / 61.5 15.0 / 32.6
+CoT 17.3 / 28.4 6.2 / 12.9 7.8 / 33.2 13.8 / 30.9 34.5 / 62.1 15.9 / 33.1
+FewShot 17.0 / 28.0 6.0 / 13.0 7.2 / 32.8 13.9 / 31.0 34.8 / 62.3 16.2 / 33.4
+Ours 19.6 / 30.5 7.8 / 13.5 10.3 / 36.4 15.1 / 29.8 35.6 / 63.5 17.7 / 34.7

et al., 2024) that rely on exhaustive search over a validation set to determine the weight, we propose
a principled method that aligns the mean of the probed direction distribution with the mean of
the original distribution of hidden states. This strategy ensures that the steering remains effective
without disrupting the model’s inherent generation capabilities. Formally, the weight is determined
by aligning the mean of the probed direction with the central distribution of the original hidden states
and the steering vector is computed by:

stℓ = wut
ℓ, where w =

1

N

N∑
i=1

∥xt
i,ℓ∥

∥ut
ℓ∥

(2)

Finally, during the second inference, we adjust the original hidden states at the selected steering
layer ℓ′ at each decoding step by adding stℓ′ to all tokens to steer the model’s response toward the
text modality. Similarly, steering models towards vision modality is performed towards the opposite
direction. In the final implementation, no additional data or labels are introduced. We only require
two consecutive rounds of inference: the first for probing and the second for steering, effectively
controlling the modality preference.

5.3 EXPERIMENTS

We verify the effectiveness of the method in controlling modality preference on MC2 and down-
stream tasks across Qwen2VL-7B, Qwen2.5VL-7B, and LLaVA-OneVision-7B and InternVL3-8B.
We consider widely used training-free approaches as baselines: MLLM refers to employing MLLM
to directly reason in modality-conflicting contexts; InstDesign uses instructions to guide modality
preference direction; CoT enables complex reasoning through intermediate steps; and FewShot uses
four examples to guide the models. For detailed implementation and results, refer to Appendix D.

As shown in Table 1, the proposed method consistently outperforms the baseline approaches on
MC2 across both settings, demonstrating its effectiveness in adjusting modality preference.

We further assess the effectiveness of the proposed method on two types of downstream tasks: 1)
multimodal machine translation (MMT) using AmbigCaps (Li et al., 2021), and 2) visual under-
standing on PhD (Liu et al., 2024c). The latter includes two subsets—PhD-ica, which contains
irrelevant textual context, and PhD-icc, which introduces misleading or incorrect textual informa-
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tion—both of which increase the risk of hallucination. In MMT, the task should primarily ground the
source-language text while treating visual information as auxiliary. Accordingly, we adjust modality
preference toward the text modality. As shown in Table 2, our method yields an improvement of 1.33
BLEU score over the baselines. By contrast, for PhD, we steer the modality preference toward the
vision modality to ground the image. The results in Table 3 demonstrate that our approach achieves
substantial improvements across both MLLMs, In particular, when applied to Qwen2VL-7B, our
method surpasses the best baseline by an average margin of 6.1 percentage points. We also evaluate
more reasoning and grounding tasks and other model in Appendix E.2.

5.4 IN-DEPTH ANALYSIS FOR STEERING METHOD

To analyze the internal mechanism of the steering methodwe analyze the attention scores of the
generated token toward the vision and text contexts using the the proposed steering method and the
InstDesign method with the samples from MC2. In Figure 6, we visualize the attention distribution
at the 24th layer by steering the Qwen2.5VL-7B at the 22th layer towards text modality using the
case in Figure 12, as detailed in Appendix E.4. We observe that after applying the steering method,
the model’s attention weight toward the text modality significantly increases. This change clearly
demonstrates that the steering mechanism successfully alters the modality preference by enhancing
the model’s dependency on the text modality. More ablation experiments, the analysis of the
latency, memory usage and the prerequisites for the proposed method are Appendix E.3 and E.4.
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Figure 6: The attention scores of the generated token toward the vision and text contexts at the 22th
layer using InstDesign (Left) and the proposed method (Right).

6 DISCUSSION

Based on the experiment analysis, we highlight two key principles for designing effective multi-
modal learning strategies: 1) As observed in Section 4.2, increasing the proportion of data with
multimodal context (TVQA) accelerates the adjustment of modality preference. Therefore, for
MLLMs—especially those inheriting parameters from LLMs—introducing a more TVQA data can
more rapidly mitigate the inherent language bias, facilitating faster convergence toward balanced
multimodal learning. 2) We identify that the Vision Ratio serves as a reliable indicator of visual un-
derstanding, and adjusting modality preference improves downstream performance. Consequently,
combined with the first point, selecting an appropriate ratio of TVQA training data can adjust
modality preferences to satisfy the specific requirements of different downstream.

7 CONCLUSION

This paper investigates modality preference in multimodal large language models (MLLMs). We
carefully curate a modality conflict dataset and use a controlled experimental setup to quantitatively
evaluate modality preference. Besides, we find the direction of modality preference can be captured
within the latent representations of MLLMs. Inspired by this, we propose a modality preference
probing and steering method, which enables significant and flexible changes in modality prefer-
ence. Experiments show that the proposed method generalizes well to downstream tasks, such as
multimodal machine translation and multimodal understanding tasks.
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APPENDICES

All codes, data, and instructions for our MC2 can be found in https://anonymous.4open.
science/r/Modality-Preference-8016. MC2 is released under a Creative Commons
Attribution 4.0 License (CC BY 4.0).

Our supplementary materials are summarized as follows:

• Appendix A: Limitations, Social Impacts, Use of LLM and License of Assets.

• Appendix B: Dataset Construction

• Appendix C: Model Evaluation

• Appendix D: Method Applying

• Appendix E: More Experiment Analysis

A DISCUSSION

A.1 LIMITATIONS

This paper investigates the modality preference in multimodal large language models (MLLMs)
using a controlled experiment setup with a modality conflict dataset. In constructing the dataset, we
employs LLaVA1.5-7B and QwenVL-7B to filter samples and ensure that most models could answer
questions correctly based on a single modality. However, this process requires multiple iterations
and turned out to be time-consuming. Therefore, devising a more efficient and elegant method for
sample selection may be of greater importance.

A.2 SOCIAL IMPACTS

The proposed MC2 evaluates the modality preference of MLLMs. Understanding which modality
a model prioritizes could be used to circumvent safety mechanisms (e.g., hiding harmful content in
the favored modality), making it harder for filters to detect inappropriate content. Therefore, it is
essential to incorporate effective safeguards in MLLMs to filter out any inappropriate materials.

A.3 USE OF LLM

In this work, we use the LLMs including GPT-4o-mini (Hurst et al., 2024a) and DeepSeekV3 (Liu
et al., 2024a), and MLLMs including LLaVA1.5-7B (Liu et al., 2024b) and QwenVL-7B (Bai et al.,
2023) to help annotate the text context in MC2, as detailed in Section B. We evaluate the modality
preference of 20 open-source MLLMs and GPT-4o-mini (Hurst et al., 2024a), and steer the modality
preference of Qwen2VL-7B (Wang et al., 2024), Qwen2.5VL-7B (Bai et al., 2025), and LLaVA-
OneVision-7B (Li et al., 2024a) and InternVL3-8B (Zhe et al., 2024). Besides, we also utilize the
LLMs to correct the grammatical errors.

A.4 LICENSE OF ASSETS

All images in MC2 are publicly available from COCO (Lin et al., 2014). We release our benchmark
under a Creative Commons Attribution 4.0 License (CC BY 4.0) to enhance global accessibility and
foster innovation and collaboration in research.

B DATASET CONSTRUCTION

B.1 CONFLICT TEXT CONTEXT GENERATION

Details for data generation using LLMs To ensure reproducibility and transparency, we include
the exact prompts used in our data generation process. These prompts were designed to generate the
candidate textual contexts and corresponding answers using GPT-4o-mini (Hurst et al., 2024a) and
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DeepSeekV3 (Liu et al., 2024a). Below, we provide representative examples of the prompts used
during dataset construction given the caption of an image, question, the answer for the question
based on image and the task type for the question. For the full list of prompts, please refer to the
project repository.

Conflict Context Generation for counting task using DeepSeekV3

Instruction:
# Given a description of an image and a corresponding counting type question with its an-
swer, now you are required to generate a text context that points to an answer that fluctuates
by 1 or 2 from the original answer. The context explicitly supports the new answer, providing
clear evidence that aligns logically with the counting question. Only one alternative answer
should be generated.
Caption: {caption}
Question: {question}
Answer: {answer based on vision context}
Output the new answer enclosed in <answer> </answer> and the context enclosed in <con-
text> </context> tags.

Conflict Context Generation of for other tasks using DeepSeekV3

Instruction:
# Given the caption of an image and a corresponding {task-type} type question with its
answer, now you are required to generate a text context as a premise that supports a new
distractor answer for the question. The context should mimic the environment described in
the caption but should not include {answer based on vision context}, while maintaining
logical consistency within the context. Only one alternative answer should be generated.
Caption: {caption}
Question: {question}
Output the new answer enclosed in <answer> </answer> and the context enclosed in <con-
text> </context> tags.

Conflict Context Generation for other tasks using GPT-4o-mini

Instruction:
# Given a caption of an image and a corresponding counting question with its answer, you
are required to generate a single text context that provides an indirect premise leading to a
new answer that fluctuates by 1 or 2 from the original answer. The context should build an
indirect premise to the new answer. Carefully design this context. For this task, I want you
to first describe the scene with a certain quantity and then introduce an increase or decrease
in that quantity to imply the final answer and don’t include the final answer. Only one
alternative answer should be generated.
Caption: {caption}
Question: {question}
Answer: {answer based on vision context}
Task-type: {task-type}
Output the new answer enclosed in <answer> </answer> and the context enclosed in <con-
text> </context> tags.
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Conflict Context Generation for count task using GPT-4o-mini

Instruction:
# Given the caption of an image and a corresponding question with its answer, now you are
required to generate a text context as the indirect premise of a new answer for the question,
which belongs to the same category as the original answer. The context should support the
new answer, include the caption while maintaining logical consistency within the context
and don’t include the final answer. Only one alternative answer should be generated.
Caption: {caption}
Question: {question}
Answer: {answer}
Task-type: {task-type}
Output the new answer enclosed in <answer> </answer> and the context enclosed in <con-
text> </context> tags.

Human Verification Although the text contexts and answers generated by strong LLMs—filtered
through judge MLLMs such as LLaVA1.5-7B (Liu et al., 2024b) and QwenVL-7B (Bai et al.,
2023)—generally yield reliable results, we further incorporate manual inspection to ensure the high
quality of data annotations. Specifically, we verify that the visual and textual contexts are indeed
in conflict, and that each modality independently supports the corresponding answer to the given
question. This involves a two-stage manual review process:

• Modality-Answer Alignment. First, for each context from different modalities (image and
text), annotators assess whether it independently provides sufficient information to correctly
answer the question. This step is particularly important because the original VQA answers
in the TDIUC (Kafle & Kanan, 2017) dataset may contain error annotations, and the LLM-
generated contexts and answers may occasionally be inconsistent.

• Conflict Verification. Next, annotators examine whether the visual and textual contexts are
semantically inconsistent with respect to the question. That is, the two modalities should lead
to different correct answers when considered separately. Samples where both modalities lead
to the same answer are discarded, as they do not reflect a true modality conflict.

Samples that do not meet either verification criterion are flagged for further review. Depending
on the nature and severity of the issue, we take one of the following actions: revise the prompt
to improve clarity, regenerate the problematic part of the sample (e.g., the question or context), or
discard the sample entirely if it cannot be reasonably corrected.

To ensure consistency and reduce subjectivity, each category (i.e., vision-aligned, text-aligned, and
conflict) is independently verified by three trained annotators. Disagreements are resolved through
discussion or majority voting. In addition, we conduct random spot-checks throughout the dataset
to ensure the consistency and reliability of the annotations.

Table 4: Average text context length across different task types in the MC2 dataset.

statistics Sport Attribute Sentiment Positional Counting Color Activity Object Avg

Text Length 52.48 33.50 39.69 31.53 37.12 31.15 49.68 39.71 39.36

B.2 DATA STATISTICS

We computed the average number of words in the text context for all samples within each task
type using the spaCy library.1 As shown in Table 4, while there are some variations in text length
across tasks, the differences are relatively minor. This indicates that text length is unlikely to be a
confounding factor in evaluating modality preference across different task types.

1We use the spaCy library in Python, available at https://pypi.org/project/spacy/.
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B.3 ILLUSTRATIVE SAMPLES FROM THE MC2 BENCHMARK

To provide an intuitive understanding of the MC2 benchmark and the nature of modality conflict, we
present a few representative samples covering different task types as shown in Figure 7, Figure 8,
Figure 9 and Figure 10.

<image> is a placeholder for below image

User: <image> Conflict Text Context: Three sheep
are peacefully eating grass, surrounded by lush
greenery. Their heads are lowered as they nibble on
the fresh blades, completely undisturbed. Question:
What are the cows in the back doing?
Assistant: <output>
vision-based Answer: running
Text-based Answer: eating

<image> is a placeholder for below image

User: <image> Conflict Text Context: In the photo,
there are three boys playing Frisbee, and one more
boy is partially visible in the corner, bending down
to tie his shoelaces, making a total of four people.
Question: How many people are in the photo?
Assistant: <output>
vision-based Answer: five
Text-based Answer: four

Figure 7: Illustration of using modality context conflict pairs to investigate modality preference in
activity recognition (Left) and counting tasks (Right). The highlighted areas indicate the points of
conflict between visual and textual contexts.

C MODEL EVALUATIION

C.1 EVALUATIION DETAIL FOR MODALITY PREFERENCE

We assess open-source multimodal large language models (MLLMs) with different parameter sizes,
including LLaVA1.5-7B/13B (Liu et al., 2024b), LLama3.2-11B-Vision-Instruct (Grattafiori et al.,
2024), LLaVA-OneVision-7B/72B (Li et al., 2024a), CogVLM2-19B (Hong et al., 2024a), mPLUG-
Owl3-24-07 (Ye et al., 2024), Qwen2VL-7B (Wang et al., 2024), GLM-4V-9B (Du et al., 2022),
SPHINX-V2-1K (Lin et al., 2023), InternVL3-9B/14B/38B/78B (Zhe et al., 2024), LLaVA-next-
7B/13B/34B (Liu et al., 2024b) and Qwen2.5VL-7B/32B/72B (Bai et al., 2025). All the open-source
models are evaluated using NVIDIA A100 or A800 GPUs. We also evaluate the proprietary model,
GPT-4o-mini (Hurst et al., 2024a) via the official API.

Details of single-modality context evaluation Before evaluating modality preference, we first
assess the ability of MLLMs to answer questions accurately given a single-modality context in the
MC2 dataset. Specifically, we evaluate the models’ accuracy in answering based on text context
and based on vision context (based on the image). As shown in Table 17 and Table 18, all models
achieve over 95% accuracy when provided with either textual or visual context. This indicates that
question understanding and the understanding of single-modality context do not affect the modality
preference evaluation. Therefore, we have excluded this confounding factor from the analysis.

Details of results for modality preference evaluation We provide the results of modality pref-
erence for several models in the left panel of Figure 2 in the main text. More detailed modality
preference evaluation results are presented in Table 14.
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<image> is a placeholder for below image

User: <image> Conflict Text Context: The birthday
cake was designed to look like a sleek police car,
complete with edible flashing lights and a fondant
badge on the side. Question: What is the cake in
the shape of?
Assistant: <output>
vision-based Answer: fire truck
Text-based Answer: police car

<image> is a placeholder for below image

User: <image> Conflict Text Context: Two wilde-
beests are standing in a dry, grass-less savanna, their
dark coats contrasting with the dusty ground. The
area is sparse, with only a few scattered shrubs vis-
ible in the background. Question: What animal is
shown?
Assistant: <output>
vision-based Answer: zebras
Text-based Answer: wildebeests

Figure 8: Illustration of using modality context conflict pairs to investigate modality preference in
attribute recognition (Left) and object recognition tasks (Right). The highlighted areas indicate the
points of conflict between visual and textual contexts.

<image> is a placeholder for below image

User: <image> Conflict Text Context: A large
brown clock tower mounted in the face ofa building
overlooks a vibrant park filled with lush green trees.
The contrast between the brown tower and the sur-
rounding greenery creates a picturesque scene. Ques-
tion: What color are the trees?
Assistant: <output>
vision-based Answer: white
Text-based Answer: green

<image> is a placeholder for below image

User: <image> Conflict Text Context: A white bus
with a large rack on the front is parked by the beach,
designed to carry equipment for surfing .The rack is
sturdy and spacious, perfect for securing bulky items.
Question: What can you hang on the rack on the
front of the bus?
Assistant: <output>
vision-based Answer: bikes
Text-based Answer: surfboards

Figure 9: Illustration of using modality context conflict pairs to investigate modality preference in
color recognition (Left) and positional reasoning (Right) tasks. The highlighted areas indicate the
points of conflict between visual and textual contexts.
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<image> is a placeholder for below image

User: <image> Conflict Text Context: A girl sitting
at a counter with a piece of pizza, staring blankly at
the wall while the pizza grows cold in front of her.
The room is quiet, and she seems uninterested in her
surroundings. Question: What is the girl on the right
feeling in the image?
Assistant: <output>
vision-based Answer: happy
Text-based Answer: bored

<image> is a placeholder for below image

User: <image> Conflict Text Context: The young
girl is running swiftly across the field, dribbling a
soccer ball with precision as she maneuvers past
imaginary opponents. Her focus is on scoring a goal,
and she practices her footwork with determination.
Question: What sport is depicted in the picture?
Assistant: <output>
vision-based Answer: tennis
Text-based Answer: soccer

Figure 10: Illustration of using modality context conflict pairs to investigate modality preference in
sentiment understanding and object recognition tasks. The highlighted areas indicate the points of
conflict between visual and textual contexts.

C.2 CAN THE VISION RATIO PROVIDE GUIDANCE FOR DOWNSTREAM TASK PERFORMANCE?

We evluate the performance of Qwen2.5VL-7B, Qwen2.5VL-72B, InternVL3-9B, InternVL3-14B,
InternVL3-38B, InternVL3-78B, LLaVA-OneVison-7B, LLaVA-OneVison-72B, LLava-next-7B,
LLava-next-13B on 7 general multimodal understanding benchmarks including MMMU (Yue et al.,
2024), MME (Chaoyou et al., 2023), MMBench (Liu et al., 2024d), RealwordQA (X.AI, 2024),
MMStar (Masry et al., 2022), InfoVQA (X.AI, 2024) and ChartQA (Masry et al., 2022). We
compute the average score on all datasets, where MME score is normalized between 0-1, as shown
in Table 5.

Model MMMU MME MMBench RealworldQA MMStar HallBench InfoVQA ChartQA Avg Vision Ratio

Qwen2.5VL-7B 58.6 83.8 83.5 68.5 63.9 52.9 82.6 87.3 75.5 59.6
Qwen2.5VL-72B 70.2 87.4 88.6 75.7 70.8 55.2 87.3 89.5 81.4 78.6
InternVL3-9B 57.7 84.7 83.4 70.5 66.3 51.2 79.6 86.2 75.5 41.2
InternVL3-14B 67.1 88.5 85.6 70.7 68.8 55.1 83.6 87.3 78.8 55.0
InternVL3-38B 70.1 90.1 87.6 75.6 71.5 57.1 85.0 89.2 81.3 62.4
InternVL3-78B 72.2 91.1 89.0 78.0 72.5 59.1 86.5 89.7 82.7 81.5
LLaVA-OneVision-7B 47.9 71.2 83.2 66.3 61.7 31.6 68.8 80.0 68.4 26.3
LLaVA-OneVision-72B 55.7 80.8 85.8 71.9 65.8 49.0 74.9 83.7 74.1 30.1
Qwen2VL-7B 54.1 83.1 83.0 70.1 60.7 50.6 76.5 83.0 72.9 16.3
LLaVA-Next-7B 37.6 63.2 69.2 57.8 37.6 27.6 31.6 51.9 49.8 8.5
LLaVA-Next-13B 37.3 62.3 70.0 57.6 40.4 31.8 34.9 59.0 51.6 9.7
LLaVA-1.5-7B 35.7 64.6 69.2 54.8 33.1 27.6 22.4 17.8 42.5 13.4
LLaVA-1.5-13B 37.0 63.6 66.5 55.3 34.3 24.5 24.9 18.5 42.9 15.0

Table 5: Performance comparison across benchmarks for different models measured by accuracy
(%) and Vision Ratiio score (%).

C.3 THE DETAILS FOR CONTROLLING MODALITY PREFERENCE

More results for controlling modality preference through instruction design. In the left panel
of Figure 4, we provide the Vision Ratio results for LLaVA-OneVision-7B, Qwen2.5VL-7B,
Qwen2VL-7B and InternVL3-8B. We also present more results on controlling modality preference
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(a) LLaVA-OneVision-7B
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(b) Qwen2VL-7B
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(c) InternVL3-8B

Figure 11: Layer-wise absolute difference and standard deviation of hidden states between image-
guided and text-guided instruction for LLaVA-OneVision-7B, Qwen2VL-7B and InternVL3-8B
models from left to right.

through instruction design for preference towards the vision modality and the text modality in Ta-
ble 15 and Table 16. For each setting, we report the results measured by Svision, vision-based
accuracy and Stext, text-based accuracy.

The details of PCA Analysis In Section 4.4, we use the PCA analysis regarding the Modality
Preference Direction in Representation Space. Here, we provide a more detailed description of
the setup. We extract the model’s hidden representations from the last token of the input across
different layers. Then, we apply the PCA method to reduce the dimensionality to two dimensions
for visualization. The following settings were visualized:

1. The model states under the original modality context input in conflicting scenarios.
2. The model states when there is image noise or textual syntax errors.
3. The model states when specific instructions biased towards image or text are added.

To improve PCA dimensionality reduction efficiency, we selected 500 samples for each setting.
Additionally, we calculated the center position after dimensionality reduction for each setting. The
center (or centroid) of the samples is computed by taking the mean of the reduced-dimensional
points across all the samples.

D METHOD APPLYING

D.1 DETAILS FOR PATTERN OF HIDDEN STATES

In the main text, we visualize the layer-wise absolute difference and standard deviation of the
hidden states for Qwen2.5VL-7B. As shown in Figure 11, we present the visualization of hidden
states for LLaVA-OneVision-7B, Qwen2VL-7B, and InternVL3-8B. For each model, we selected
layers with large absolute differences and small standard deviations. This means we identified the
layers that showed stable and significant differences between instructions with modality preference
towards vision context and text context, which are then used to steer and adjust the model’s modality
preference.

D.2 EVALUATION OF VISUAL UNDERSTANDING AND MULTIMODAL MULTIMODAL MACHINE
TRANSLATION

PhD (Liu et al., 2024c) is a visual understanding benchmark and includes two subsets—PhD-ica,
which contains irrelevant textual context, and PhD-icc, which introduces misleading or incorrect
textual information—both of which increase the risk of hallucination. For testing convenience,
we randomly selected 1,000 samples from the original Phd-cc and Phd-ica datasets for evaluation.
By steering the model’s modality preference toward the vision modality, we strengthen its visual
understanding ability and mitigate vision hallucinations in MLLMs.

Ambigcaps (Li et al., 2021) benchmark explores the role of datasets in stimulating the leverage
of the visual modality and proposes methods to highlight the importance of visual signals in the
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datasets. We evaluate the multimodal machine translation (MMT) task on this dataset using the
Qwen2.5VL-7B model. Multimodal contexts in MMT are both complementary and contradictory:
the visual information provides helpful context for translation, but the potential for conflicting,
non-visual signals can interfere with grounding the source language. Consequently, the proposed
method is designed to steer the modality preference toward the text modality to ensure robustness
against these visual-textual conflicts. Conversely, when guided toward the text modality, the model
places greater emphasis on the source language, leading to more accurate grounding in multimodal
machine translation. This adjustment prevents the model from over-relying on visual content and
from introducing spurious objects or extraneous details into the translation output.

E MORE EXPERIMENT ANALYSIS

E.1 THE SENSITIVITY ANALYSIS FOR THE EVALUATION OF MODALITY PREFERENCE

To verify whether the current 2k-sample scale of MC2 is sufficient to ensure the stability of both the
preference evaluation and steering results, we conduct a sensitivity analysis by randomly selecting a
specified quantity of samples from each category for assessment. As shown in Table 6, we calculate
the Vision Ratio for LLaVA-OneVision-7B and Qwen2.5VL-7B. Results demonstrate that as the
sample size increases per category, the Vision Ratio begins to stabilize around 150 samples. These
experiments suggest that the current dataset size for each task is sufficient to ensure the stability of
evaluation of modality preference. In the future, we would like to expand MC2 with a wider variety
of tasks (e.g., texture recognition) and modalities (e.g., Audio), further enhancing its comprehen-
siveness and generalizability.

Table 6: The sensitivity analysis for the evaluation of modality preference. We randomly select a
specified quantity of samples from each category for assessment, measured by Vision Ratio.

Model 25 50 75 100 125 150 175 200 225 250
LLaVA-OneVision-7B 29.2 28.0 29.1 29.6 28.1 26.4 26.6 26.7 26.7 26.3
Qwen2.5VL-7B 56.7 59.4 60.2 59.9 60.4 59.8 60.2 59.7 59.8 59.6

E.2 MORE RESULTS FOR DOWNSTREAM TASKS

E.2.1 MORE RESULTS FOR PHD DATASET

We evaluate the performance of Phd dataset using the proposed method for LLaVA-1.6-7B and the
results are in Table 7. We observe that LLaVA-1.6-7B, due to its severe text preference, only
achieves an average ACC score of 0.7 on the PHD-icc subset. Applying our method significantly
boosts the model’s performance across the two subsets, thereby demonstrating the cross-model
generalization of our approach.

E.2.2 MORE RESULTS FOR REASONING AND GROUNDING TASKS

We extend our evaluation to include additional multimodal reasoning (MathVista Lu et al. (2023))
and grounding tasks (TallyQA Acharya et al. (2019) and VSR Liu et al. (2023a)). We acknowl-
edge that CoT generation often introduces vision hallucination, degrading performance. For our
assessment, we randomly sample a, b, and c instances from the three respective original datasets
that are susceptible to reasoning CoT interference. We show that the proposed steering method
increases reliance on the original visual information by steering image preference, which prevents
the final decision from being misled by potential vision hallucination in the reasoning CoT. The
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Table 7: Performance of the proposed method on the visual understanding benchmark, Phd using
LLaVA-1.6-7B.

Phd Method Attribute Sentiment Positional Counting Object Avg

Phd-icc
LLaVA-1.6-7B 0.5 0.0 0.0 1.5 1.5 0.7
InstDesign 2.0 0.5 0.5 1.5 9.5 2.8
Ours 3.5 1.5 1.0 3.0 15.0 4.8

Phd-iac
LLaVA-1.6-7B 5.5 8.0 4.0 10.5 29.0 11.4
InstDesign 7.5 12.5 14.5 15.5 44.5 18.9
Ours 11.5 20.0 20.5 22.0 51.0 25.0

results for Qwen2.5VL-7B are detailed in Table 8. We observe that the proposed method consis-
tently outperforms both the CoT and the InstDesign baselines across all tasks. This demonstrates
the effectiveness of generalizing our approach to more complex reasoning and grounding tasks by
mitigating post-CoT hallucination.

Table 8: Performance of the proposed method on the reasoning and grounding tasks measured by
accuracy for Qwen2.5VL-7B.

Dataset CoT InstDesign Ours
MathVista 50.0 59.0 60.3
TallyQA 61.6 74.4 75.6
VSR 45.6 51.3 53.2

E.3 ABLATION STUDY

In this section, we conduct the detailed ablation study to analyze the proposed method.

E.3.1 THE NUMBER OF PROBING SAMPLES

We compute the preference direction in Equation 1 using varied sample sizes but test the steering
performance on the complete MC2 dataset. We report the SV ision and SText results for LLaVA-
OneVision-7B and Qwen2.5VL-7B in Table 9. We observe that steering performance remains stable
even when the steering vector is derived from a limited number of samples.

Table 9: The ablation study for the varied sample number of computing the preference direction.

Model 25 50 75 100 125 150 175 200 225 250
LLaVA-OneVision-7B 56.0 55.9 56.3 57.1 57.0 57.3 57.3 57.4 57.2 57.1
Qwen2.5VL-7B 62.2 62.2 61.7 62.6 64.0 62.8 62.7 63.1 62.8 63.6

E.3.2 THE DIVERSITY OF PROBING SAMPLES

To study the impact of data diversity for probing task, we experiment by using only a single task
for probing and applying the resulting vector to steer all other tasks. We report the SV ision and
SText for LLaVA-OneVision-7B and Qwen2.5VL-7B for entire dataset in Table 10. We observe that
LLaVA-OneVision-7B achieves competitive performance compared to our initial implementation
for using nearly each probing task, with Qwen2.5VL-7B showing similar success on over half the
tasks. Further analysis finds that the most effective single-probing tasks are those where the initial
modality preference change was more pronounced.
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Table 10: The ablation study for the varied diversities of computing the preference direction.

Model Sport Attribute Sentiment Positional Counting Color Activity Object Ours
LLaVA-OneVision-7B 58.6 55.8 59.3 57.8 59.0 53.4 58.5 58.6 57.1
Qwen2.5VL-7B 64.1 59.5 70.0 51.9 47.4 65.5 63.0 60.6 63.6

E.3.3 DIFFERENT STEERING INTENSITIES

To investigate the performance with varied steering intensities, we introduce a scaling coefficient
λ to the steering weight w in Equation 2 to change the steering intensity and conduct a test on
MC2 for both LLaVA-OneVision-7B and Qwen2.5-VL-7B, reporting the SV ision or SText scores
in Table 11. We observe that performance drops for both models with decreased steering intensity,
indicating insufficient steering. As intensity increases, the performance of LLaVA-OneVision-
7B significantly drops, exhibiting clear over-steering at λ = 2.0 which leads to destruction of
language capabilities. Conversely, for Qwen2.5VL-7B, the steering effect continues to enhance up
to λ = 1.75, only significantly degrading beyond λ = 2.0, demonstrating a wider safe steering
margin in its representation space.

Table 11: The ablation study for the varied steering intensities.

Model 0.125 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0
LLaVA-OneVision-7B 40.2 45.5 51.8 52.6 57.1 56.5 32.6 12.1 3.9 0.1 0.0 0.0 0.0
Qwen2.5VL-7B 40.8 44.1 49.4 53.2 63.6 72.3 76.0 70.7 45.8 15.2 16.2 12.5 7.8

E.4 DETAILS FOR THE APPLICATION OF THE PROPOSED METHOD

E.4.1 DETAILS OF IN-DEPTH ANALYSIS FOR STEERING METHOD

We provide the detailed description of the case for in-depth analysis for steering method in Figure 6
in Section 5.4. Besides, we also provide more attention analysis for the case in the different layers
in Figure 13, 14, 15, 16, 17 and 18. We observe that across all subsequent layers following steering
modality preference towards text at the 21 th layer, our method significantly increases the model’s
attention weight toward the text modality, surpassing the corresponding vision attention weight. This
change clearly demonstrates that the steering mechanism successfully alters the modality preference
by enhancing the model’s dependency on the text modality.

E.4.2 LATENCY AND MEMORY

The proposed method consists of two phases, probing and steering. The probing phase is conducted
offline and the resulting steering vector is cached for reuse. During the actual steering phase, we
simply load this cached steering vector, which incurs minimal memory overhead and does not add
meaningful computational cost to the inference process. We measure the single-sample inference
latency (seconds) (without Flash-Attention acceleration and batch inference) for our method com-
pared to the MLLM baseline (MLLM-only) in Table 12. The results show that the steering phase
introduces negligible latency compared to the MLLM-only baseline, and the overhead is confined
to the initial offline probing stage. Furthermore, all three methods require nearly identical memory
requirements.

E.4.3 THE PREREQUISITES FOR IMPLEMENTATION OF THE PROPOSED METHOD

Based on Representation Engineering Greenblatt et al. (2023); Xu et al. (2024), the proposed method
requires capturing an explicit modality preference direction vector to realize behavioral adjust-
ment. The approach succeeds when such a vector can be reliably extracted, as seen in models
like Qwen2.5VL-7B. However, the method fails in cases such as LLaVA-1.5-7B, primarily due to
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<image> is a placeholder for below image

Figure 12: The highlighted areas indicate the points of conflict between visual and textual contexts.
User: <image> Text Context: The table was adorned with a vibrant bouquet of flowers and a
charming ceramic sheep, while the surrounding chairs, crafted from smooth, polished wood, com-
plemented the rustic yet elegant setting. In case there is an inconsistency between the text context
and the image content, you should follow the text context rather than the image content. Question:
What is the chairs made of? A. wicker B. wood
Assistant: <output>
Vision-based answer: wicker
Text-based answer: wood
InstDesign answer: A.wicker ✗
The proposed steering method answer: B. wood. ✓

15 41 67 93 119 145 171 197 223 249 275 301 327 353 379 405 431 457 483 509 535
Token Position (from the first image token)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

At
te

nt
io

n 
Sc

or
e

Image Tokens (Attention Score: 0.5075)
Text Tokens (Attention Score: 0.4925)

15 41 67 93 119 145 171 197 223 249 275 301 327 353 379 405 431 457 483 509 535
Token Position (from the first image token)

0.00

0.05

0.10

0.15

0.20

0.25

At
te

nt
io

n 
Sc

or
e

Image Tokens (Attention Score: 0.1626)
Text Tokens (Attention Score: 0.8374)

Figure 13: The attention scores of the generated token toward the vision and text contexts using
InstDesign (Left) and the proposed method (Right) in the 23th layer.

its limited ability to follow instructions for preference adjustment, which prevents the capture of a
meaningful direction vector. Besides, we observe a localized performance drop in the Attribute
subset of the Phd-icc benchmark in Table 3. We attribute this to the limitation of applying a single
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Figure 14: The attention scores of the generated token toward the vision and text contexts using
InstDesign (Left) and the proposed method (Right) in the 24th layer.
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Figure 15: The attention scores of the generated token toward the vision and text contexts using
InstDesign (Left) and the proposed method (Right) in the 25th layer.

global steering vector, which may fail to accommodate instance-level granularity—where fine-
grained, sample-specific features are required for optimal alignment. Despite these isolated cases,
the overall benchmark performance improves, underscoring the effectiveness of our approach, espe-
cially considering that it requires no external data or fine-tuning.

E.5 THE FURTHER EXPERIMENT WITHOUT MODALITY PREFERENCE PRIOR

Our current approach intentionally select the steering direction based on known task requirements.
This design has been proven to be pragmatic and effective for many real-world applications where
the optimal modality is clear. In addition, our method can be readily integrated with a training-free
priority detection method to enable dynamic preference selection. To demonstrate this, we conduct
the following experiment:

Dataset Construction: We modify MC2 dataset by degrading the quality of one modality context
so that only one modality is reliable, and the ground-truth answer aligns with it. We use QA accuracy
to measure model performance on this new dataset.

Task Design: 1) Each sample requires a specific reliable modality. 2) All samples share the same
reliable modality in a task. Each task contains 200 samples.

Solution: We apply a causal analysis approach Parcalabescu & Frank (2024) to identify the reliable
modality. For each sample, we first measure the change of predicted answer probability when
removing either the image or the text context. The larger the drop, the more important that modality
is for the given sample. For Task1, we determine the reliable modality for a specific sample by
comparing the probability drops. For Task2, by aggregating the reliable modalities across all samples
via majority voting, we determine the preferred modality for the specific task.

Results: For the identification of reliable modality, we achieve an accuracy of 85.3% for all samples
in Task1; we reach 100% accuracy for task-level identification in Task2 (thus, performance on Task
2 is equivalent to knowing the steering preference in advance). Next, we evaluate the performance
of the proposed method on Task1, measured by QA accuracy in Table 13.

The results show that steering with predicted preference yields significant gains over base models
and closely matches the performance of the “preference prior" setting. This confirms that our method
can be simply adapted to autonomously prioritize modalities based on input quality or task needs.
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Figure 16: The attention scores of the generated token toward the vision and text contexts using
InstDesign (Left) and the proposed method (Right) in the 26th layer.
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Figure 17: The attention scores of the generated token toward the vision and text contexts using
InstDesign (Left) and the proposed method (Right) in the 27th layer.
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Figure 18: The attention scores of the generated token toward the vision and text contexts using
InstDesign (Left) and the proposed method (Right) in the 28th layer.

Table 12: The comparison of inference time between MLLM-only and the proposed method includ-
ing probing and steering phases.

Dataset MC2 Phd-icc
MLLM-only 1.99 1.84
Probing (Offline) 2.21 2.12
Steering 2.00 1.84

Table 13: The performance of the proposed method on the revised MC2 without modality prefer-
ence prior measured by Accuracy.

Method Task1
OneVision-only 25.4
+Steering with preference prior 40.7
+Steering with predicted preference 37.5

Qwen2.5VL-7B-only 49.1
+Steering with preference prior 62.7
+Steering with predicted preference 58.2
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Model Sport Attribute Sentiment Positional Counting Color Activity Object Avg

LLaMAVision-11B 31.2/52.4 20.4/69.6 2.0/93.2 21.2/66.8 4.0/93.2 35.2/47.2 10.0/82.4 38.8/42.8 20.4/68.4
LLaVA1.5-7B 20.0/59.6 8.0/88.0 2.0/86.0 8.8/75.2 1.2/96.0 10.8/82.0 9.6/78.8 35.2/52.0 11.9/77.2
LLaVA1.5-13B 34.4/59.6 8.8/89.6 4.8/88.0 12.0/84.8 1.6/96.4 12.8/82.0 9.6/87.6 31.2/62.8 14.4/81.3
OneVision-7B 32.0/36.4 21.6/54.8 2.8/94.4 24.8/56.4 2.4/86.4 30.0/38.0 11.6/71.2 42.4/31.2 20.9/58.6
Owl3-24-07 60.8/31.6 16.4/72.4 10.8/85.6 22.0/69.6 8.4/88.0 28.4/60.4 17.2/71.2 60.0/29.6 28.0/63.5
Qwen2VL-7B 26.4/58.0 12.4/82.8 0.8/95.6 13.2/80.4 4.0/93.6 16.0/78.8 11.6/83.6 38.0/54.0 15.3/78.3
Qwen2.5VL-7B 65.6/12.8 45.2/46.0 18.0/68.8 46.4/38.0 51.6/39.6 70.8/20.0 42.0/43.6 77.6/14.0 52.2/35.4
GLM-4V-9B 42.0/42.4 32.4/59.2 8.8/81.6 28.0/62.4 15.2/74.4 56.8/32.8 23.3/66.0 54.0/32.8 32.6/56.5
SPHINX-V2-1K 39.6/50.8 14.8/82.4 1.2/98.4 16.8/77.6 9.2/85.6 23.2/69.2 24.4/67.2 59.2/32.4 23.6/70.5
InternVL3-9B 45.2/35.2 21.2/68.0 20.8/62.4 27.2/54.4 23.2/50.4 38.0/40.4 19.6/63.2 76.8/14.8 34.0/48.6
InternVL3-14B 72.8/8.8 30.8/48.4 25.2/60.0 33.2/52.0 37.2/47.2 58.0/21.2 24.8/52.8 84.4/9.6 45.8/37.5
CogVLM2-19B 44.0/39.6 29.2/56.0 8.8/75.6 19.2/54.8 8.0/73.2 31.6/43.2 25.2/60.8 59.2/28.4 28.2/54.0
InternVL3-38B 75.2/9.6 45.2/33.6 19.6/60.8 44.0/42.0 41.6/40.0 48.4/29.6 50.4/23.2 84.4/8.0 51.1/30.8
InternVL3-78B 92.4/3.2 46.0/28.8 66.4/18.4 41.6/37.2 69.6/13.2 76.4/8.8 74.4/12.8 89.6/4.0 69.5/15.8
Qwen2.5-VL-32B 85.60/10.40 49.20/39.20 49.60/42.80 52/37.60 52/42 70.80/20 57.20/35.20 86.80/10.40 62.90/29.70
Qwen2.5VL-72B 93.6/4.4 59.2/27.2 50.0/41.2 73.6/19.2 63.6/29.2 83.6/9.6 74.0/21.2 89.2/8.0 73.4/20.0
OneVision-72B 47.2/46.0 20.0/70.8 4.0/93.6 22.8/67.2 12.8/83.2 21.6/60.8 20.8/70.8 71.6/21.2 27.6/64.2
LLaVA1.6-7B 10.8/74.4 5.2/85.2 0.8/93.2 3.6/79.6 0.4/90.8 6.0/76.0 4.8/73.6 26.0/46.8 7.2/77.5
LLaVA1.6-13B 16.0/66.4 7.2/90.4 0.8/92.0 6.4/91.6 2.4/95.6 6.8/88.0 10.0/84.4 22.4/63.2 9.0/84.0
LLaVA1.6-34B 34.8/42.4 12.0/81.6 6.8/85.6 16.8/76.0 11.2/83.2 25.2/60.8 14.0/76.0 60.0/31.6 22.6/67.2

GPT-4o-mini 94.4/3.2 35.6/47.6 60.4/28.4 22.0/58.9 19.4/59.2 34.8/36.4 71.2/20.4 78.4/12.8 52.0/33.4

Table 14: Accuracy of question answering in the MC2 dataset when both textual and visual contexts
are provided but the instruction does not specify which modality context should be used. Values are
reported as vision-based accuracy/text-based accuracy for each model.

Model Sport Attribute Sentiment Positional Counting Color Activity Object Avg

OneVision-7B 55.6/16.4 31.2/37.2 12.0/76.8 30.8/42.4 3.2/77.6 36.4/18.4 22.4/47.6 61.2/16.4 31.6/41.6
Qwen2VL-7B 60.8/26.8 24.0/69.2 20.0/69.6 20.4/74.0 10.8/80.0 32.0/52.0 27.2/61.6 63.2/28.8 32.3/57.8
Qwen2.5VL-7B 77.6/14.4 43.2/46.8 18.4/72.8 43.2/40.4 35.6/55.6 58.8/24.4 53.6/35.6 81.2/11.6 51.4/37.7
CogVLM2-19B 73.2/13.2 47.6/32.4 35.6/28.4 26.8/45.2 14.0/40.0 61.6/17.6 56.0/28.0 76.0/15.2 48.9/27.5
InternLM-XC2.5-7B 84.0/9.6 46.4/42.8 74.0/18.4 36.0/52.4 22.8/66.0 63.6/20.8 74.0/18.4 76.4/15.6 59.7/30.5
GLM-4V-9B 75.2/18.4 48.8/39.6 28.8/54.0 33.6/55.6 38.4/54.0 76.4/16.4 48.4/38.8 80.0/11.6 53.7/36.1
SPHINX-V2-1K 52.4/38.4 16.4/78.8 2.0/97.2 20.8/72.8 13.6/80.8 30.0/58.8 40.8/52.8 64.8/29.2 30.1/63.6
InternVL3-9B 96.0/2.0 67.2/18.8 82.8/13.2 54.8/26.4 55.6/21.2 84.4/7.6 82.8/6.4 91.6/4.0 76.9/12.4
InternVL3-14B 98.4/0.8 86.0/4.4 87.6/7.6 71.6/12.8 78.0/6.8 97.2/0.8 90.8/3.2 96.4/1.6 88.2/4.8
LLaVA1.6-7B 33.2/54.0 6.8/80.8 6.0/82.4 6.4/79.6 2.8/90.4 10.8/70.0 13.6/69.2 48.4/40.8 16.0/70.9
LLaVA1.6-13B 41.6/40.4 10.4/85.2 4.0/62.8 8.4/83.6 5.6/92.8 14.4/70.8 24.8/58.0 45.2/41.2 19.3/66.9
LLaVA1.6-34B 84.8/12.0 48.0/36.4 62.8/24.0 34.0/52.0 38.8/44.4 76.4/14.4 62.0/18.4 80.4/12.4 60.9/26.8

Table 15: Accuracy of question answering in the MC2 dataset when both textual and visual contexts
are provided and the instruction explicitly directs the model to answer based on visual modality
context. Values are reported as vision-based accuracy/text-based accuracy for each model.

Model Sport Attribute Sentiment Positional Counting Color Activity Object Avg

OneVision-7B 45.6/16.4 22.4/37.2 5.6/76.8 27.2/42.4 1.6/77.6 28.8/18.4 16.8/47.6 56.0/16.4 25.5/41.6
Qwen2VL-7B 51.6/34.8 14.8/78.4 6.8/88.0 15.6/79.6 4.0/90.8 18.0/70.8 19.2/72.8 57.6/36.0 23.4/68.9
Qwen2.5VL-7B 77.6/14.4 43.2/46.8 18.4/72.8 43.2/40.4 35.6/55.6 58.8/24.4 53.6/35.6 81.2/11.6 51.4/37.7
CogVLM2-19B 53.6/29.6 28.4/47.6 10.4/56.8 17.6/56.8 6.0/62.0 36.0/35.2 34.0/39.6 67.2/19.6 31.6/43.4
GLM-4V-9B 53.2/32.8 30.4/61.2 6.0/85.6 23.2/68.0 20.0/70.0 52.4/35.6 28.0/60.8 68.0/22.0 35.2/54.5
SPHINX-V2-1K 48.4/41.2 14.4/81.6 2.0/98.0 19.2/77.6 11.2/84.0 27.2/67.2 30.8/65.2 63.2/30.8 27.1/68.2
InternVL3-9B 41.2/27.2 13.6/71.6 22.4/60.8 16.8/64.0 18.0/60.4 25.6/46.4 29.2/49.2 62.4/17.6 28.6/49.6
InternVL3-14B 28.4/44.8 14.0/68.4 3.6/82.4 21.2/54.8 28.0/43.2 24.8/50.0 17.2/58.8 55.2/19.6 24.0/52.8

Table 16: Accuracy of question answering in the MC2 dataset when both textual and visual contexts
are provided and the instruction explicitly directs the model to answer based on the textual modality.
Values are reported as vision-based accuracy/text-based accuracy for each model.
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Model Sport Attribute Sentiment Positional Counting Color Activity Object Avg

LLaMAVision 97.6 97.2 99.6 99.2 97.2 96.0 97.6 97.6 97.8
LLaVA1.5-7B 98.0 98.0 100.0 97.6 98.4 99.2 97.6 97.6 98.3
LLaVA1.5-13B 97.2 97.6 99.6 97.6 97.6 98.8 95.2 99.2 97.9
OneVision-7B 98.0 95.2 100.0 98.4 98.0 98.8 98.0 100.0 98.3
Owl3 97.6 97.2 99.6 98.8 98.8 99.2 99.2 100.0 98.8
Qwen2VL-7B 98.8 96.4 99.6 99.6 98.8 100.0 98.8 100.0 99.0
Qwen2.5VL-7B 99.2 97.6 100.0 99.6 96.8 98.8 98.4 99.2 98.7
CogVLM2-19B 98.0 95.2 99.2 96.0 94.8 98.4 98.0 99.6 97.4
GLM-4V-9B 98.4 95.2 99.6 97.2 98.8 98.4 99.6 99.6 98.4
SPHINX-V2-1K 98.4 97.6 99.2 98.8 98.0 99.2 98.4 99.6 98.7
InternVL3-9B 97.6 98.0 99.6 99.2 95.6 96.8 98.8 99.2 98.1
InternVL3-14B 98.4 98.4 100.0 99.2 95.6 98.4 98.8 99.6 98.5
InternVL3-38B 97.6 96.8 100.0 98.8 96.0 97.2 98.4 100.0 98.1
InternVL3-78B 97.2 97.6 100.0 98.0 96.4 96.8 98.0 100.0 98.0
Qwen2.5VL-72B 99.6 98.4 96.8 100.0 97.2 100.0 99.6 99.2 98.9
OneVision-72B 100.0 97.6 97.6 99.6 96.4 100.0 100.0 98.8 98.7

GPT-4o-mini 97.6 97.2 99.6 98.6 97.4 98.4 98.4 100.0 98.4

Table 17: Accuracy of question answering in the MC2 dataset when only unimodal textual context
is provided.

Model Sport Attribute Sentiment Positional Counting Color Activity Object Avg

LLaMAVision 100.0 98.8 92.8 98.4 96.4 99.2 98.8 97.2 97.7
LLaVA1.5-7B 99.6 98.0 96.4 100.0 97.6 99.6 98.8 98.4 98.5
LLaVA1.5-13B 99.6 95.2 94.4 97.6 95.2 98.4 96.4 98.4 96.9
OneVision-7B 100.0 97.2 97.2 98.4 84.4 99.6 97.2 98.8 96.6
Owl3 99.2 94.0 94.0 97.2 88.4 96.8 97.2 99.2 95.8
Qwen2VL-7B 99.6 98.8 95.6 98.4 96.4 100.0 99.6 98.4 98.3
Qwen2.5VL-7B 99.6 98.8 98.0 100.0 99.2 100.0 100.0 98.8 99.3
CogVLM2-19B 99.6 99.2 91.2 96.8 91.6 98.8 98.4 98.8 96.8
GLM-4V-9B 99.6 99.2 98.0 99.2 97.6 100.0 99.2 99.6 99.1
SPHINX-V2-1K 98.8 97.6 99.2 92.8 98.0 99.6 96.8 99.2 97.8
InternVL3-9B 98.8 95.6 95.6 96.8 90.0 100.0 98.0 98.0 96.6
InternVL3-14B 99.2 96.4 96.4 98.4 92.4 98.8 97.2 98.4 97.1
InternVL3-38B 100.0 98.0 97.2 100.0 94.4 99.6 99.2 98.8 98.4
InternVL3-78B 99.2 99.6 96.8 98.8 96.0 100.0 99.2 98.4 98.5
Qwen2.5VL-72B 97.2 97.2 100.0 99.2 97.2 98.4 98.4 99.6 98.4
OneVision-72B 100.0 97.6 97.6 99.6 96.4 100.0 100.0 98.8 98.7

GPT-4o-mini 100.0 92.0 95.6 100.0 100.0 96.0 96.4 96.0 97.0

Table 18: Accuracy of question answering in the MC2 dataset when only unimodal visual context is
provided.
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