
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ORACLEKV: ORACLE GUIDANCE FOR QUESTION-
INDEPENDENT KV CACHE EVICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Key-Value (KV) caching is a widely adopted technique in large language models
(LLMs) to accelerate long-context inference. While recent studies predominantly
focus on question-dependent KV cache eviction where cache entries are evicted
based on known queries. In this paper, however, we observe these approaches often
fail in question-independent scenarios, such as multi-turn dialogues and chunk
pre-caching in retrieval-augmented generation (RAG), where future queries remain
unknown. Our empirical analysis reveals that most existing KV cache eviction
methods underperform in this setting due to their heavy reliance on importance
metrics derived from the attention score with question tokens. The core challenge
here is to conduct well-founded estimation on token importance without access to
future questions. To address this, we propose OracleKV for question-independent
KV cache eviction. OracleKV operates by steering model’s attention with an
oracle guidance containing surface-level statistics of user preferences from large-
scale real-world dialogues. Unlike existing methods, OracleKV operates at the
data level, allowing seamless integration with other eviction algorithms in a plug-
and-play manner. Experiments on several multi-turn and single-turn benchmarks
demonstrate that OracleKV achieves higher accuracy-latency tradeoff than existing
KV cache compression approaches. We hope our approach will expand the design
space and serve as a solid baseline for future research in KV cache compression.

1 INTRODUCTION

 LLM

Docs Prefill & Eviction Docs
KV Cache

 LLM
Reload Doc

KV Cache

Docs

Chunk
Retrival

w/ Pre-caching

w/o Precaching

Chunk Pre-Caching in RAG

 LLM

Long Context

Prefill &
Eviction

 LLM

User Query 1

Response 1

 LLM

User Query 2

Response 2

Multi-turn Dialogues

Feed
Forward

Feed Forward

Feed Forward

Reload

Reload

Figure 1: Question-independent KV cache
eviction scenarios.

Recently, long-context capabilities have become a stan-
dard feature in large language models (LLMs) (Ope-
nAI, 2023; Anthropic, 2024; Meta, 2024; 2025; Yang
et al., 2024b; Achiam et al., 2023)). For example, GPT-
4.1 (OpenAI, 2023; Achiam et al., 2023) can process up
to 1M tokens, Claude 3.7 (Anthropic, 2024) supports a
200K-token context window, and the instruction-tuned
version of LLaMA-4 (Meta, 2025) extends this further
to 10M tokens. These models exhibit remarkable poten-
tial on long-context tasks, achieving groundbreaking
performance on various language understanding and
generation benchmarks (Hendrycks et al., 2021; Bai
et al., 2024; Li et al., 2023; Ghazal et al., 2013). However, the Key-Value (KV) cache used during
inference scales linearly with both sequence length and batch size, leading to substantial memory and
computational overhead for long-sequence inference in LLMs (Zhang et al., 2023; Liu et al., 2024b).

Evidence from several studies (Liu et al., 2024b; Zhang et al., 2023; Mu et al., 2023) suggests that
only a small subset of the KV cache contributes to the majority of the model’s attention. As a result,
many KV cache compression methods (Li et al., 2024b; Xiao et al., 2024b; Zhang et al., 2023) have
been proposed, leveraging improved important metrics to identify and retain the most informative
tokens. Most current KV cache selection approaches (Qin et al., 2025; Cai et al., 2024; Fu et al.,
2024; Feng et al., 2024) are based on observation window (Li et al., 2024b) selection, which estimates
the token importance based on the attention distribution of recent tokens. These methods achieve
impressive results on several well-established benchmarks (such as Longbench (Bai et al., 2024)).
However, in question-independent scenarios where question is unknown, such as chunks pre-caching

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1.0 0.8 0.6 0.4 0.2
KV Cache Budget

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Ac
cu

ra
cy

H2O
StreamingLLM
SnapKV
PyramidKV
AdaKV
OracleKV
w/ Question

Figure 2: Accuracy without
question on RULER benchmark.

Read the following story and answer the
questions:
Ted Brimble was born on 28 June 1910 in
Moleno, ...
He began elementary school in
Ted married on 26 October 1929....
Brimble has joined the Newton League
team, and ...

How old was Ted Brimble when he married ?

19 years old. Sorry, story does not mention his marriage.

How old was Ted Brimble when got married ?

Decoding

Prefilling II Stage

Decoding

Identify
Relevant

Information No
Focused

Information

KV Cache
Compression

KV Cache
Compression

Irrelevant
information

is saved

Information
missed!

Information
found

Prefilling

relevant
information

is saved

Prefilling I Stage

Question-aware KV Cache Compression Question-independent KV Cache Compression

Read the following story and answer the
questions:
Ted Brimble was born on 28 June 1910 in
Moleno, ... He began elementary school
in Ted married on 26 October
1929.... Brimble has joined the Newton
League team, and ...

Figure 3: Question-aware KV cache compression vs. question-
independent KV cache cache compression.

in RAG (Yao et al., 2025) and multi-turn dialogues (Li et al., 2024a) as in Figure 1, we observe their
significant performance drop in Figure 2. This motivates the following core questions:

Why question-independent KV cache compression fails, and how to improve it?

To answer these questions, our empirical analysis in Figure 4 reveals that the accurate KV entry
selection heavily rely on the attention distribution induced by question tokens, which leads to the
inadaptability in the question-independent scenarios. Thus, the fundamental challenge of this scenario
lies in conducting well-founded estimation of token importance in the absence of target knowledge,
i.e. without knowing exact questions or prompts the model will respond to, as shown in Figure 3.

To bridge this gap, we propose to find some alternatives to the exact future questions, which help
estimate token importance. Recent report (Handa et al., 2025; Maslej et al., 2025) on AI economics
observe that in large-scale real user dialogues with LLMs, user-asked question types exhibit strong
statistical regularities. Moreover, for each type of question, the associated required information
follows predictable distributional patterns (Maslej et al., 2025). Inspired by this, we introduce a
method we call OracleKV. At a high level, we append a oracle guidance to the end of the long
context as a substitute of the exact question. This guidance encodes the surface-level statistics about
the distribution of future questions, such as the expected types of queries and categories of relevant
information, and is designed based on prior user-preference analyses (Handa et al., 2025; Maslej
et al., 2025). During inference, we estimate the importance of each context token by measuring its
relevance with this oracle guidance. Tokens with low correspondence to the anticipated question
distribution are progressively evicted until the retained KV cache size fits the memory budget.

In contrast to prior approaches that rely on token retention heuristics based on internal model-specific
computational characteristics (Li et al., 2024b; Feng et al., 2024; Xiao et al., 2024a; Cai et al., 2024; Fu
et al., 2024), OracleKV leverages external statistical priors about likely information requirements at
the data level. This design makes it highly flexible and model-agnostic: OracleKV can be seamlessly
integrated with existing KV cache compression frameworks Li et al. (2024b); Feng et al. (2024); Cai
et al. (2024) to enhance their performance, especially under question-independent scenarios.

This paper makes following principal contributions. (1) We identify the root cause of challenges
of question-independent KV cache compression (Section 3 and 4.1); (2) We build a theoretical
model statistically illustrating the relationship between information induced by the question and
required information to answer the question ((Section 4.1). Then, we present a data-level intervention
technique, OracleKV, designed to address question-independent KV cache eviction (Section 4.2).(3)
Our empirical evaluation shows that OracleKV results in a significant performance increase under the
question-independent setting, on both single-turn (e.g., RAG pre-caching) and multi-turn long-context
dialogue scenarios, suggesting that OracleKV introduces a useful inductive bias. (Section 5).

2 RELATED WORK

KV Cache Eviction. Leveraging the inherent sparsity in the self-attention mechanisms, early
studies (Liu et al., 2024b; Zhang et al., 2023) propose maintaining a queue with a pre-allocated budget
and progressively evicting unimportant cache entries during the inference. StreamingLLM (Xiao et al.,
2024b) and LM-Infinite (Han et al., 2024) utilize the attention sink phenomenon to retain both initial

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and most recent tokens. SnapKV (Li et al., 2024b) uses attention scores with recent tokens to estimate
importance. PyramidKV (Cai et al., 2024), PyramidInfer (Yang et al., 2024c) and CAKE (Qin et al.,
2025) dynamically adjust KV cache retaining ratio of different layers. DuoAttention (Xiao et al.,
2024a) employs a learning-based method to identify compression-insensitive attention heads, while
HeadKV (Fu et al., 2024) classifies heads based on their retrieval and reasoning utility. However,
most existing methods (e.g. (Li et al., 2024b; Cai et al., 2024; Yang et al., 2024c; Qin et al., 2025;
Feng et al., 2024; Fu et al., 2024; Hao et al., 2025)) rely heavily on importance metrics derived
from the attention scores with given the exact question, limiting their robustness and applicability
in real-world question-independent scenarios. In contrast, our approach operates at the data level,
leveraging surface-level statistical regularities in the question distribution to affect attention behavior,
making it compatible with existing methods and easily integrable into a broader range of applications.

In-Context Learning/Instruction Following. Early studies (Devlin et al., 2019; Liu et al., 2019)
observed that language models can "learn" to perform a task from input-output examples provided at
inference. (Xie et al., 2021) interprets the emergence of in-context learning by inferring the shared
latent concept among demonstration examples. Based on these, OracleKV affects the attention
distribution through in-context data manipulation, aiming to select instruction-correlated tokens.

Recent Works. Several recent works evaluate the importance of KV entries without the question.
Feng et al. (2025) identify the value states within KV entries are critical, isolated with the attention
matrices. However, their approach stem from perturbation analysis and is not specified for question-
independent setting. KV-Distill (Chari et al., 2025) employs a distillation-based algorithm to select
KV entries but need to retrain the model for days, and may overfit the training data. OracleKV
offers more flexible KV cache management for question-independent scenarios, leading to better
performance for both single and multi-turn applications. More related works are provided in Section I.

3 PRELIMINARY

Revisit of KV Caching. Modern LLMs (OpenAI, 2023; Anthropic, 2024; Touvron et al., 2023)
typically perform transformer-based auto-regressive generation (Achiam et al., 2023). We begin to
revisit the core self-attention (Vaswani et al., 2017) operation. For an attention layer parameterized
by projection matrices WQ,WK ,WV , the query, key, and value are computed by:

Q = XWQ, K = XWK , V = XWV , (1)

with X ∈ RL×d of length L and dimension d. The self-attention is defined as (Vaswani et al., 2017):

Attention(Q,K,V) = Softmax(
QKT

√
d

)V = AV, (2)

where A denotes the attention matrix. During auto-regressive generation, each newly generated token
xi necessitates recalculating QKT, which is inefficient. The goal of KV caching is to transform the
recomputation of QKT to qiK

T by caching the key and value state K and V (Pope et al., 2023):

K = Concat(K,xiWK), V = Concat(V,xiWV) (3)

where qi = xiWQ. Eq(3) highlights the length of KV cache grows linearly with the input sequence
length, results in significant memory footprint and computational costs in long context inference.

Attention-based KV Cache Eviction. Generally, X is a concatenation of context Xctx and question
Xques (or instruction). We denote its KV cache index set as Ω with sequence length L = |Ω|. KV
cache compression targets at exploring a subset of Ω, denoted as C = {li}Bi=1 with size B, to maintain
the model’s capability. StreamingLLM (Xiao et al., 2024b) and LM-Infinite (Han et al., 2024) utilize
a heuristic attention sink phenomenon to retain both initial and recent KV cache. Score-based
methods (Li et al., 2024b; Cai et al., 2024; Qin et al., 2025) select the top B entries based on the
attention score within a Lw-long window (i.e. the observation window) in the tail of the context:

argmax
C

L∑
i=L−Lw

A[i, : −Lw], s.t. |C| = B. (4)

Question-independent Scenarios. However, the success of these methods relies on using the
attention scores of tokens within the observation window to identify relevant tokens. However, in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

At
te

nt
io

n
Sc

or
e

Attention Score Distribution
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

w/ Pure Context
w/ Question

At
te

nt
io

n
Sc

or
e

Kept w/ Guidance
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

w/ Guidance
w/ Question

Figure 4: Visualization of attention distribu-
tion and kept KV entries (10% budget).

Discourse Cues
Narratives Structures
Salient entities

Salutations
Closings,
Conjunctions
Punctuation
Idiomatic
Expressions
...

Formal Relations
Arithmetic Expressions
Chain-Of-Thought

Dialogue Acts
Dialogue State (slots, turn IDs)
User Goals

Named Entities
Attribute slots
Temporal Expressions
Event Triggers & Argument

User
Tasks

Summarization

Negligible
Information

Paraphrasing
& Rewriting

API Schemas
Code Syntax
Docstrings & Comments
Type Signatures
Variable Declarations

Code
Generation

Reasoning
& Logic

Dialogue
Management

Sentence Semantics
Lexical Synonyms
Discourse markers

Recommendation

User Profiles
Temporal/Contextual
Features
Knowledge-graph
relations

Information
Extraction

Figure 5: User preferences on task types and
frequently involved information for each tasks.

question-independent scenario, question Xques is not given during prefilling, i.e. X = Xctx. When
the exact question Xques is not given, these methods fail to capture crucial information related to
Xques in the context Xctx due to the question is missing in observation window. as shown in Figure 4.

4 ORACLEKV

4.1 AN INFORMATION RETAINING PERSPECTIVE OF KV CACHE EVICTION

In this section, we investigate how an LLM can answer a question from the perspective of retaining
information, even when only a subset of cache entries is preserved. We visualize the attention
distribution induced by pure context Xctx and the query Xques, and highlight the top 10% scored kept
tokens. Figure 4 reveals that accuracy degradation primarily results from a mismatch between: (1)
the KV cache entries retained by a given eviction algorithm, and (2) the entries actually required to
answer the question, as measured by their position and relevance with the question token.

In light of this, we build a statistical model to describe the relationship between question answering
and the information retaining. Formally, for an answerable question q (i.e. Xques), let Q denote
the ideal set of token indexes that are critical for maintaining the model’s ability to answer q. The
predictive accuracy is positively correlated with |Q ∩ C|, where C represents the set of retained cache
entry indexes (defined in Sec 3). The objective of KV cache compression can be summarized as
to optimize the retention process so that the retained entry indexes better align with Q, effectively
ensuring that the critical information required to answer the question is preserved. We begin by
assume that the information contained by each tokens are associated with the semantic types.
Assumption 4.1. Each KV entry KVi, i ∈ Ω, its corresponding token retrained information belongs
to one of K semantic "types" (such as topics, concepts, sense, etc.).

For required cache indexes Q, the KV entries retrained information belongs to type Ti account for:

PQ(Ti) =
|{KVj|type of KVj ∈ Ti, j ∈ Q}|

|Q|
. (5)

On the other hand, the retained cache indexes C, under a budget B = |C|, exhibits a type distribution:

PC(Ti) =
|{KVj|type of KVj ∈ Ti, j ∈ C}|

|C|
, |C| = B. (6)

Our goal is to show that the index overlap of retrained caches and required caches |Q ∩ C| ↑ as the
semantic type distribution PC aligns to PQ. Based on Assumption 4.1, we derive theorem:
Theorem 4.2. Let the semantic type of cache entries with index C be a discrete variable TC , and the
semantic type of cache entries with index set Q be a discrete variable TQ. The expected predictive

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Evicted
KV Cache

Long-context Question Response

Saved KV Cache
with Question

Long-context Question Response

Prefilling
Eviction Based on High Attention Score

Prefilling

Long-context Question Response

Prefilling

Guidance

Saved KV Cache without
Question of index

Saved KV Cache with
Guidance of index

Required KV Cache of index for Question

High Overlap
with

Manually Evicted KV Cache of
the Guidance (after prefilling)

Deleted after prefilling

Low Overlap

High Overlap

Question-dependent
KV Cache Eviction

Question-independent
KV Cache Eviction

Question-independent
KV Cache Eviction
with Guidance

Figure 6: Overview of OracleKV. The KV entries of the context
are evicted based on the attention score with oracle guidance.

question

long-context
KV cache

question
KV cache

Prefill in
GPU/CPU

Eviction

long-context
KV cache

Prefill in
GPU/CPU

Eviction

long-context
KV cache Instruction

Prefill in
GPU/CPU

Eviction

next token

next token

Retrieval

Retrieval

Retrieval

Latent
flow

Latent
flow

question next token

question

long-context
KV cache question

KV cache

Prefill in
GPU/CPU

Eviction

long-context
KV cache

Eviction

Prefill in
GPU/CPU

Eviction

next token

next token

Retrieval

Retrieval
Retrieval

Latent
flow

question next token

Instruction
KV Cache

long-context

Prefill in
GPU/CPU

KV Cache
long-context

Eviction

Eviction

question next token

Prefill in
GPU/CPU

question

next token

KV Cache
long-context

Eviction

Prefill in
GPU/CPU

Instruction
KV Cache

long-context

KV Cache

Eviction

KV Cache at -th
layer

Identified relevant information
by Oracle Instruction

required
information
for question

All information
in KV Cache

required
information
for question

required
information
for question

Retained
information

without Question

Identified relevant information
with Question

Evicted
KV Cache

Long-context Question Response

Saved KV Cache
with Question

Long-context Question Response

Prefilling
Eviction Based on High Attention Score

Prefilling

Long-context Question Response

Prefilling

Guidance

Saved KV Cache without
Question of index

Saved KV Cache with
Guidance of index

Required KV Cache of index for Question

High Overlap
with

Manually Evicted KV Cache of
the Guidance (after prefilling)

Deleted after prefilling

Low Overlap

High Overlap

Question-dependent
KV Cache Eviction

Question-independent
KV Cache Eviction

Question-independent
KV Cache Eviction
with Guidance

Required KV indexes to
solve question

Retained KV indexes by scores
 and compression ratio

Token Index

Attention Score

Question Induced
Attention
Oracle Guidance
Induced Attention
Pure Context
Induced Attention

Figure 7: Attention manip-
ulation of OracleKV.

accuracy is positively correlated to:
ETC∼PC,TQ∼PQ (|Q ∩ C|) ∝ 1−DKL(PQ || PC). (7)

Remark 4.3. Theorem 4.2 indicates that the predictive accuracy is inversely correlated with the KL
divergence between PQ and PC . As PC more closely matches PQ, the retained entries are more likely
to be relevant to the query q, thereby improving predictive performance. See proofs in Section C.

4.2 ATTENTION MANIPULATION VIA DATA-LEVEL INTERVENTION

Building on the insights from Theorem 4.2, our objective is to align PC(Ti) with PQ(Ti) as closely
as possible, ensuring that the retained entries effectively cover the semantic diversity required to
answer the question. Result from Figure 4 provide a possibility to impose constraints on probability
mass by manipulating attention over specific regions through data-level manipulation.

Based on the idea, we aim to control the distribution of attention across semantic types in the retained
entries. An overview of our method is presented in Fig.6. We begin by manually designing an oracle
guidance Õ of length Lo, which encodes surface statistics of prevalent user-preferred information
types in large-scale dialogues. This oracle guidance Õ is then appended to the input context Xctx as a
substitude of Xques (question q), allowing it to steer the attention distribution during the prefilling:

Q = WQConcat(Xctx, Õ), K = WKConcat(Xctx, Õ), V = WV Concat(Xctx, Õ). (8)
To ensure the representativeness of user-preferred information types, we resort to recent stud-
ies (Handa et al., 2025; Maslej et al., 2025) that indicates users exhibit distinct preferences across task
types when interacting with large language models (LLMs). We summarize the dominant information
types associated with common long-context tasks from (Handa et al., 2025; Maslej et al., 2025) in
Figure 5 (detailed in Section D.2). Following the instruction format (Zhou et al., 2023), we design
Õ to encourage the model to assign higher attention score to tokens containing specific information
types as in Figure 7. We provide specific examples of Õ in Table A3, and we also explore the
automation of Õ (LLM-as-Guidance) in Section G.2. Based on Figure 4, we make an assumption:
Assumption 4.4. The attention matrix explicitly reflects the semantic correlation between KV entries.

Our goal is to select the KV entries semantically correlated to the oracle guidance Õ. Based on the
Assumption 4.4, we focus on the attention scores within the cache entry window of Õ, as illustrated
in Fig. 6, and retain the top B entries using attention scores with the oracle guidance (last Lo tokens):

argmax
C

L∑
i=L−Lo

A[i, : −Lo], s.t. |C| = B. (9)

Finally, we manually exclude the KV entries corresponding to Õ itself, as these surface statistics
do not directly contribute to answering the query. Our method explicitly selects highly guidance-
correlated cache entries. With Theorem 4.2 and Assumption 4.4, Our method results in a corollary:
Corollary 4.5. Let C̃ be the retrained index set with oracle guidance Õ. The oracle guidance Õ
constrains the probability mass of PC̃ over semantic regions Ri (Ri ∩Rj = ∅, i ̸= j) as follows:

PC̃(Ri) =
∑

Ti∈Ri

PC|Õ(Ti) =
∑

Ti∈Ri

PQ(Ti) = PQ(Ri), (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Average performance of various baselines across different LLMs in single-turn Bai et al.
(2024) and multi-turn Li et al. (2024a) benchmarks. We compare OracleKV with baselines under
40% and 10% KV budget.

Method Budget Single-turn LongBench Multi-turn SCBench
Sin.QA Mul.QA Sum. Few.Shot. Syn. AVG. M.C. M.S. M.F. QA.En QA.Ch Sum. AVG.

LLaMA-3.1-8B-Instruct

Full Cache 100% 44.3 47.0 29.2 51.1 55.6 45.7 5.7 40.0 28.0 20.9 27.5 30.9 25.8

StreamingLLM

40%

27.9 34.6 25.7 53.4 26.1 33.5 7.9 38.2 12.2 18.0 16.3 22.3 19.1
SnapKV 35.3 44.8 26.5 53.6 54.5 42.9 6.1 44.4 22.5 17.8 23.5 27.7 23.7
PyramidKV 34.1 35.3 25.7 55.3 51.5 40.4 5.5 42.8 19.5 18.6 19.9 23.5 21.6
Ada SnapKV 37.0 45.6 26.7 55.1 54.3 44.1 5.7 40.4 19.8 19.3 24.0 28.3 22.9
DuoAttention 42.4 44.3 27.2 53.5 52.8 44.0 8.3 39.6 15.3 18.6 25.4 29.4 22.8
OracleKV 40.9 46.4 27.4 54.0 56.1 45.0 5.2 44.2 23.3 20.5 25.7 29.8 24.8
Ada OracleKV 42.0 45.5 27.6 53.4 55.8 44.9 5.7 43.0 22.9 20.5 27.2 30.5 24.9
StreamingLLM

10%

20.7 24.6 21.3 51.0 10.0 25.5 6.6 38.9 12.0 15.6 10.1 20.8 17.3
SnapKV 22.6 29.6 21.7 51.6 29.5 30.1 6.1 50.7 21.2 15.2 14.5 22.3 21.7
PyramidKV 21.3 24.0 21.7 51.8 27.1 29.2 5.2 48.8 20.6 13.6 11.0 21.4 20.1
Ada SnapKV 24.1 30.7 22.3 51.7 31.5 32.1 5.7 50.4 20.3 14.7 15.9 23.0 21.7
DuoAttention 18.2 23.3 21.4 49.4 28.0 28.1 7.4 47.4 19.7 12.3 7.6 25.3 20.0
OracleKV 24.5 33.2 23.5 56.3 45.3 36.5 6.1 45.2 21.3 18.5 18.1 25.9 22.5
Ada OracleKV 28.8 34.0 23.8 58.3 49.3 38.8 5.7 50.4 21.0 17.0 19.3 26.3 23.3

Mistral-7B-Instruct-v0.2

Full Cache 100% 32.1 24.3 27.7 55.4 38.5 35.6 11.4 64.1 5.7 6.1 10.1 24.0 20.2

StreamingLLM

40%

19.5 18.5 25.4 46.3 16.6 25.3 11.4 57.0 6.0 6.0 8.0 19.3 18.0
SnapKV 23.9 19.4 25.2 53.9 37.9 32.0 10.5 59.3 3.7 6.8 9.1 23.1 18.7
PyramidKV 23.9 20.8 25.1 54.7 34.0 31.7 11.4 61.1 5.7 6.7 9.5 22.5 19.5
Ada SnapKV 24.3 20.0 24.5 53.5 35.6 31.6 11.1 58.5 5.5 6.7 9.7 23.8 19.2
DuoAttention 15.3 14.4 22.4 44.0 6.3 20.5 9.6 56.3 3.5 5.9 4.6 23.7 17.3
OracleKV 25.4 21.1 26.3 53.6 37.2 32.7 11.9 62.6 5.7 6.4 9.5 23.9 20.0
Ada OracleKV 26.4 21.3 26.2 53.7 37.8 33.1 11.5 61.5 4.5 6.4 10.3 24.3 19.7

StreamingLLM

10%

13.9 12.5 21.3 38.6 6.9 18.7 10.5 61.1 3.0 4.5 5.0 20.0 17.4
SnapKV 15.1 13.5 21.8 49.5 23.0 24.6 9.6 59.4 3.2 5.7 6.2 20.5 17.4
PyramidKV 14.6 13.7 21.6 49.2 21.6 24.1 8.3 60.2 6.8 5.2 6.5 20.3 17.9
Ada SnapKV 15.9 14.4 21.7 50.3 26.6 25.8 9.7 59.1 4.6 5.7 6.7 21.1 17.8
DuoAttention 14.0 13.1 20.4 40.8 5.3 18.7 9.2 48.9 2.2 4.4 3.6 21.0 14.9
OracleKV 17.6 13.7 23.3 49.1 26.9 26.1 10.5 59.9 6.0 5.5 8.8 21.1 18.6
Ada OracleKV 18.3 14.1 23.5 48.3 32.6 27.4 10.9 59.7 4.3 5.7 9.1 21.9 18.6

The following inequality holds:

ETC̃∼PC̃,TQ∼PQ

(
|Q ∩ C̃|

)
≥ ETC∼PC,TQ∼PQ (|Q ∩ C|) (11)

Remark 4.6. Corollary 4.5 shows that OracleKV improves predictive accuracy by introducing oracle
guidance to redistribute probability mass over semantic types to better align with PQ, thereby
enhancing the retention of relevant entries. The proofs are provided in Section C.

5 EXPERIMENT

Datasets and Backbone LLMs. We evaluate the performance of OracleKV using several well-
established benchmarks. We choose Longbench (Bai et al., 2024), RULER (Hsieh et al., 2024)
and Needle-In-A-Haystack (Kamradt, 2023) to evaluate the performance of OracleKV in single-
turn dialogues (matching prefix-caching scenarios), and SCBench (Li et al., 2024a) for multi-turn
dialogues (matching multi-turn dialogues shared prefix-caching). Our experiments are conducted on
three state-of-the-art, open-source, instruction-tuned LLMs: Mistral-7B-Instruct-v0.2, Llama-3.1-8B-
Instruct, and Qwen2.5-7B-Instruct, offering context window sizes of 32K, 128K, and 1M.

Compared Baselines. We compare OracleKV against several strong baselines categorized as: (1)
Progressive Eviction Methods, including StreamingLLM (Xiao et al., 2024b) and H2O (Zhang et al.,
2023); (2) Selection-Based Methods, exemplified by SnapKV (Li et al., 2024b); (3) Layer-Level
Methods, represented by PyramidKV (Cai et al., 2024); and (4) Head-Level Methods, including
DuoAttention (Xiao et al., 2024a) and AdaKV (Feng et al., 2024). These baselines offer a diverse
range of approaches for comparison, ensuring a comprehensive evaluation of OracleKV. The detailed
experiment settings are provided in Section D.1(dataset settings), Section D.2(guidance example),
and Section D.3(implementation and justification of compared baselines). Except for ablation studies,
we employ the same general oracle guidance for all experiments (second row in Table A3).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1.0 0.8 0.6 0.4 0.2

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Lla
m

a
3.

1
8B

NIAH Single

1.0 0.8 0.6 0.4 0.2

0.2

0.4

0.6

0.8

NIAH MultiKey

1.0 0.8 0.6 0.4 0.2

0.2

0.4

0.6

0.8

NIAH MultiQuery

1.0 0.8 0.6 0.4 0.2

0.2

0.4

0.6

0.8

NIAH MultiValue

1.0 0.8 0.6 0.4 0.2
0.2

0.4

0.6

0.8

Variable Tracing

1.0 0.8 0.6 0.4 0.2

0.2

0.4

0.6

0.8

Average

1.0 0.8 0.6 0.4 0.2

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Qw
en

 2
.5

 7
B

1.0 0.8 0.6 0.4 0.2

0.2

0.4

0.6

0.8

1.0 0.8 0.6 0.4 0.2

0.2

0.4

0.6

0.8

1.0 0.8 0.6 0.4 0.2

0.2

0.4

0.6

0.8

1.0 0.8 0.6 0.4 0.2

0.2

0.4

0.6

0.8

1.0 0.8 0.6 0.4 0.2

0.2

0.4

0.6

0.8

KV Cache Budget

H2O StreamingLLM SnapKV PyramidKV Ada SnapKV OracleKV

Figure 8: Performance comparison on RULER (Hsieh et al., 2024) benchmark. OracleKV provides
superior KV budget and accuracy trade-off on most subtasks.

8K 32K 56K 80K
104K

128K

0
22
44
67
89

Do
cu

m
en

t D
ep

th
 (%

) SnapKV 40%

8K 32K 56K 80K
104K

128K

0
22
44
67
89

SnapKV w/ OG 40%

8K 32K 56K 80K
104K

128K

0
22
44
67
89

PyramidKV 40%

8K 32K 56K 80K
104K

128K

0
22
44
67
89

PyramidKV w/ OG 40%

8K 32K 56K 80K
104K

128K

0
22
44
67
89

AdaSnapKV 40%

8K 32K 56K 80K
104K

128K

0
22
44
67
89

AdaSnapKV w/ OG 40%
Llama-3.1-8B-Instruct

2K 8K 14K 20K
 26K

 32K

0
22
44
67
89

Do
cu

m
en

t D
ep

th
 (%

) SnapKV 20%

2K 8K 14K 20K
 26K

 32K

0
22
44
67
89

SnapKV w/ OG 20%

2K 8K 14K 20K
 26K

 32K

0
22
44
67
89

PyramidKV 20%

2K 8K 14K 20K
 26K

 32K

0
22
44
67
89

PyramidKV w/ OG 20%

2K 8K 14K 20K
 26K

 32K

0
22
44
67
89

AdaSnapKV 20%

2K 8K 14K 20K
 26K

 32K

0
22
44
67
89

AdaSnapKV w/ OG 20%
Mistral-7B-Instruct-v0.2

Figure 9: Oracle Guidance provides significant performance increase on the Needle-In-A-
Haystack (Kamradt, 2023) pressure test while integrating into uniform (SnapKV(Li et al., 2024b)),
layer-wise (PyramidKV (Cai et al., 2024)) and head-wise (Ada SnapKV (Feng et al., 2024)) methods.

5.1 ACCURACY EVALUATION

We evaluate OracleKV on four benchmarks: Longbench(Bai et al., 2024), RULER(Hsieh et al.,
2024), Needle-In-A-Haystack(Kamradt, 2023), and SCBench (Li et al., 2024a). For Longbench and
SCBench, we compare OracleKV against baselines under KV budgets of 40% and 10% with context
length of 60K for Llama and 32K for Mistral. Additionally, we integrate the head-level adaptive
allocation strategy from(Feng et al., 2024) into OracleKV, denoted as Ada OracleKV. Note that
the original design of H2O (Zhang et al., 2023) is unsuitable for long-context scenarios due to its
quadratic memory cost during the prefilling. We evaluate H2O on the RULER benchmark with 4K
context length on both Llama and Qwen. The overall accuracy results are provided in Section E.

LongBench(Bai et al., 2024) is a comprehensive multi-task benchmark suite meticulously de-
signed to evaluate the long-context understanding capabilities of LLMs across diverse scenarios.
Table 1,A12,A13, and A14 present the performance of various methods across five task types with 14
datasets. OracleKV consistently demonstrates superior performance on most tasks. Notably, under a
10% cache budget, OracleKV and its variant significantly outperforms other methods across solid
majority of all tasks on both models, achieving an average improvement of 6.7% for Llama and 1.6%
for Mistral. This result highlights its superior adaptability under extreme memory constraints.

RULER(Hsieh et al., 2024) is specifically designed benchmark to evaluate a model’s ability to
identify and retrieve relevant information from long contexts, which includes complex needle-in-a-
haystack tests. Figure 8, Table A15,Table A16,Table A17, and Table A18 illustrate the performance
across five retrieval subtasks, comparing baselines with KV budgets ranging from 100% to 10%.
OracleKV demonstrates an exceptional tradeoff between memory budget and accuracy across most
subtasks, highlighting its strong retrieval capabilities. Notably, OracleKV experiences a minimal
performance drop (less than 0.1) on three subtasks with only 30% of the KV cache budget.

Needle-In-A-Haystack (NIAH)(Kamradt, 2023) is a widely adopted benchmark designed to rig-
orously assess a model’s ability to retrieve a specific string (the “needle”) from a context (the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

16k 32k 48k 64k 80k 96k
Context Length

0

10

20

30

40

50

60

70

80

Pe
ak

 M
em

or
y

(G
B)

16.8 18.9 21.0 23.2 25.3 27.4
18.7

22.4 26.2
29.9

33.6
37.4

Lla
m

a3
.1

-8
B-

In
st

ru
ct SnapKV

PyramidKV
OracleKV
Full Cache

40k 80k 120k 160k 200k 240k
Context Length

0

10

20

30

40

50

60

70

80

Pe
ak

 M
em

or
y

(G
B) O

O
M

O
O

M

O
O

M

O
O

M

19.8
25.1

30.4
35.7

41.1
46.4

24.7

46.7

Qw
en

2.
5-

7B
-In

st
ru

ct SnapKV
PyramidKV
OracleKV
Full Cache

16k 32k 48k 64k 80k 96k
Context Length

0

2

4

6

8

10

12

14

16

Pr
ef

ill
in

g
Ti

m
e

(s
)

1.6

3.2

5.4

8.1

11.4

15.2SnapKV
PyramidKV
OracleKV

40k 80k 120k 160k 200k 240k
Context Length

0

10

20

30

40

50

60

70

80

Pr
ef

ill
in

g
Ti

m
e

(s
)

4.1
11.2

21.4

35.6

52.0

73.2SnapKV
PyramidKV
OracleKV

64 128 256 512 1024
Guidance Length (log scale)

24

28

32

36

M
em

or
y

(G
B)

1.63x

Context Length=60K

7.8

8.2

8.6

9.0

9.8

La
te

nc
y

(s
)1.18x

64 128 256 512 1024
Guidance Length (log scale)

35

45

55

65

M
em

or
y

(G
B)

1.98x

Context Length=150K

31

32

33.

34

35

La
te

nc
y

(s
)1.11x

Figure 10: Prefilling latency and memory footprint of OracleKV comparing with other methods
across different context length: (1) Comparison of peak memory usage. (2) Comparison of prefilling
latency. (3) The computation cost scales with the length of the oracle guidance.

“haystack”). As shown in Figure 9, baseline methods struggle to extract the correct answer from
contexts of varying depths. Notably, these methods (including head and layer-level methods) demon-
strate significant improvement when integrated with OracleKV, highlighting its remarkable flexibility.
This performance boost is particularly evident in deeper contexts, where other methods typically
experience sharp declines in retrieval precision. OracleKV’s robust handling of long-context scenarios
thus proves crucial in improving the model’s overall reliability in practical retrieval tasks.

Multi-turn Benchmark. To investigate performance in real-world multi-turn dialogues, we evaluate
OracleKV along with all baselines on the multi-turn SCBench(Li et al., 2024a). SCBench is a
challenging KV-centric multi-turn long-context benchmark that includes various tasks such as QA,
choice, summary, and many-shot in-context learning, where each shared context involves at least four
turns of dialogue. Table1 shows that OracleKV consistently outperforms all other baselines on most
tasks, maintaining superior performance under the same KV budget on both models.

5.2 EFFICIENCY EVALUATION

We evaluate the prefilling latency and memory footprint of OracleKV on Llama-3.1-8B-Instruct
for 96K context prefilling and Qwen2.5-7B-Instruct for 240K context prefilling. All experiments
are conducted with a fixed 4K KV cache budget on a single A100 GPU. Since the primary goal of
OracleKV is to compress KV cache in context-only scenarios without on-the-fly requirement, we do
not emphasize its decoding efficiency in the main paper. Comprehensive efficiency evaluation results
(decoding memory/latency and futher system-level evaluation) are provided in Section F.

Peak Memory Usage. As shown in Figure 10(1), OracleKV shows comparable memory savings with
uniform budget allocation strategies (SnapKV (Li et al., 2024b)) and layer-pattern budget allocation
strategies (PyramidKV (Cai et al., 2024)), both of which significantly reduce memory consumption
compared to full attention. Notably, OracleKV saves 26.7% with on Llama model with 96K context
length, while saving more than 62% memory on Qwen model with 120K context length.

Prefilling Latency (Time-To-First-Token). Figure 10(2) illustrates the prefilling latency for each
method. OracleKV achieves comparable prefilling speed to PyramidKV (fixed-pattern allocation)
while being marginally slower than SnapKV (uniform allocation), the latency increase accordingly
with context length grows. This tradeoff reflects the efficient cache management of OracleKV.

Computational Cost with Guidance Length. To further investigate the computational efficiency of
OracleKV, we examine how its memory footprint and prefilling latency scale with the guidance length,
using context lengths of 64K and 150K. As shown in Figure 10(3), the memory usage increases
significantly beyond a guidance length of 512 tokens. For a guidance length of 1K, peak memory
usage increases by 1.63× and 1.98× for 64K and 150K contexts, respectively. Prefilling latency
(TTFT) also increases, with a 1.18× increase for the 64K context and a 1.11× increase for the 150K
context. These findings illustrate the tradeoffs between guidance length and computational efficiency
in OracleKV, providing insights into optimal configuration choices for various scenarios.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.4 0.3 0.2 0.1 0.05

0.25

0.40

0.10
Sc

or
e

M
ul

ti-
Ke

y
NI

AH

Different Granularity of Description

Abstract Level
Contextual Level
Specific Level

1.0 0.8 0.6 0.4 0.2 0.05

0.25

0.50

0.75

1.00
Different Information Coverage

General (ours)
Retrieval-Oriented
Summarization-Oriented

0.4 0.3 0.2 0.1 0.05

0.25

0.40

0.10

Retaining vs. Evicting Guidance

OracleKV with Evicting Guidance
OracleKV with Retaining Guidance

0.4 0.3 0.2 0.1 0.05

0.19

0.22

0.25

Sc
or

e
Su

m
m

ar
iza

tio
n

Abstract Level
Contextual Level
Specific Level

1.0 0.8 0.6 0.4 0.2 0.05
KV Cache Budget

0.18

0.22

0.26

General (ours)
Retrieval-Oriented
Summarization-Oriented

0.4 0.3 0.2 0.1 0.05

0.19

0.22

0.25

0.16
OracleKV with Evicting Guidance
OracleKV with Retaining Guidance

Figure 11: Ablation studies of OracleKV: (1) Comparison of OracleKV with varying descriptive
granularity, showing the superior of high-level descriptive oracle guidance. (2) Analysis of OracleKV
with guidance with different information coverage, showing the task-specific guidance results in
performance increase on corresponding task but with the loss of generalization capability accordingly.
(3). Comparison of retraining and evicting the KV entries of oracle guidance.

5.3 ABLATION STUDY

We perform ablation studies on the multi-key retrieval and summarization tasks to investigate the
effect of various design choices in OracleKV, with Llama-3.1-8B-Instruct model of KV cache budget
ranging from full cache to 5% budget. In Section G, we explore the question-dependent performance
(Section G.1) of OracleKV, the automation of oracle guidance (LLM-as-Guidance, Section G.2) and
further integration with other methods (Section G.3), and we also discuss the performance impact of
retaining vs. evicting choice of oracle guidance (Section G.4) on specific task.

Descriptive Granularity. We examine the effect of descriptive granularity in oracle guidance with
three levels: (1)Abstract Level: the oracle guidance provides generalized instructions, such as "Please
remember the specific details." (2) Contextual Level: The guidance specifies information types
as "Please remember the numerical information." (3) Specific Level: The guidance explicitly lists
information types with examples, such as "Please remember numerical information, such as timelines,
birthdays, and percentages." As shown in Figure 11(1), contrary to our initial expectations, the
abstract-level guidance outperforms other two on both tasks, suggesting that concise, high-level
instructions are more effective in guiding the model than overly detailed descriptions.

Information Coverage of Oracle Guidance. We further explore the impact of information coverage
in oracle guidance by tailoring the guidance to the target task (e.g., specifying "This is a retrieval
task."). Figure 11(2) shows that task-specific guidance significantly enhances performance on the
corresponding task but leads to performance degradation on other tasks. In contrast, the default
general (surface-level) guidance achieves balanced performance across all tasks. This finding indicates
that task-specific oracle guidance can significantly boost performance when the task is explicitly
known. However, it also impair the model’s generalization capabilities, accordingly.

Retraining vs. Evicting Oracle Guidance. Finally, we investigate the effect of maintaining or
evicting oracle guidance in the KV cache. As shown in Figure 11(3), retaining oracle guidance
leads to a substantial performance drop as the KV cache budget decreases, and the gap widens in
summarization task. This decline occurs because the oracle guidance is descriptive rather than factual,
thus occupies valuable KV cache space without contributing directly to the answer. evicting the oracle
guidance effectively mitigating the adverse impact of retaining invasive, non-essential guidance.

6 CONCLUSION

We present OracleKV, a data-level intervention approach designed for question-independent KV
cache compression. OracleKV steers the attention distribution of by appending an oracle guidance to
the pure context. It then selects KV entries that are semantically correlated with oracle guidance based
on attention score. Comprehensive experiments across four well-established benchmarks demonstrate
OracleKV results in a significant performance increase and acceleration under question-independent
setting. We do not claim that OracleKV alone constitutes a state-of-art data-level solution for KV
cache compression. Rather, we view it as a promising step toward more adaptive and context-aware
cache compression. With extensive validation and development, OracleKV could serve as an useful
component within a broader, more comprehensive framework for long-context inference.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All datasets used in this work are publicly available and have been widely adopted in prior research.
They do not involve any personally identifiable or sensitive information. Therefore, this work
complies with the ethics requirements of ICLR. The purpose of this work is to improve the inference
efficiency and robustness of large language models. The potential risks are consistent with those
of general-purpose LLMs, and no additional ethical concerns are introduced. Existing mitigation
strategies applicable to LLMs remain sufficient.

In particular, this work is intended to enhance the applicability of large language models in low-
resource computational environments and to strengthen their service capability in specific scenarios.
We hope this can contribute to broadening equitable access to advanced AI technologies.

We also acknowledge that large language models, including those optimized by our approach, may
still inherit biases from training data and could be misused if applied irresponsibly. We encourage
the research community to apply our methods with caution, and to further investigate fairness,
transparency, and safety in downstream applications.

REPRODUCIBILITY STATEMENT

All datasets used in this work are publicly available and can be directly downloaded. The prepro-
cessing procedure follows prior research, and additional preprocessing details (e.g., test context
length) are provided in Appendix Table A2. The models we used are all open-source, and the core
algorithmic details are described in Section 4 of the main text. The most critical component (oracle
guidance) is further summarized in Appendix Table A3.

We provide the source code in supplementary material. And we will release a well-organized version,
along with experimental scripts and configuration files for open-source community, as soon as
possible. All experiments were conducted using three NVIDIA L40S GPUs with 48GB memory (for
accuracy experiments) and one NVIDIA A100 GPU with 80GB memory (for efficiency experiments).
For each benchmark, compression ratio, and model, the runtime of a single experiment was less than
one day.

We have reported comprehensive experimental results, ranging from per-benchmark results (Section 5)
to per-task results (Table 1, Figure 8, Figure 9) to per-dataset results (Table A12, Table A13, Table A14,
Table A15, Table A16, Table A17,T able A18). Negative results are also included and discussed in
Section H.2.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic.
com/news/claude-3-family.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36:57125–57211, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 3119–3137, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-long.172.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

10

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://aclanthology.org/2024.acl-long.172

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vivek Chari, Guanghui Qin, and Benjamin Van Durme. Kv-distill: Nearly lossless learnable context
compression for llms. arXiv preprint arXiv:2503.10337, 2025.

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuohuan
Wang, Yu Sun, Dianhai Yu, and Hua Wu. Nacl: A general and effective kv cache eviction
framework for llms at inference time. arXiv preprint arXiv:2408.03675, 2024.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference. arXiv preprint arXiv:2407.11550,
2024.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S Kevin Zhou. Identify critical kv cache in llm
inference from an output perturbation perspective. arXiv preprint arXiv:2502.03805, 2025.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter:
A head-level kv cache compression method with integrated retrieval and reasoning. arXiv preprint
arXiv:2410.19258, 2024.

Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain Crolotte, and
Hans-Arno Jacobsen. Bigbench: Towards an industry standard benchmark for big data analytics.
In Proceedings of the 2013 ACM SIGMOD international conference on Management of data, pp.
1197–1208, 2013.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. LM-infinite:
Zero-shot extreme length generalization for large language models. In Kevin Duh, Helena Gomez,
and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 3991–4008, Mexico City, Mexico, 2024. Association for Computational Linguistics.
URL https://aclanthology.org/2024.naacl-long.222.

Insu Han, Michael Kapralov, Ekaterina Kochetkova, Kshiteej Sheth, and Amir Zandieh. Balancekv:
Kv cache compression through discrepancy theory. arXiv preprint arXiv:2502.07861, 2025.

Kunal Handa, Alex Tamkin, Miles McCain, Saffron Huang, Esin Durmus, Sarah Heck, Jared Mueller,
Jerry Hong, Stuart Ritchie, Tim Belonax, et al. Which economic tasks are performed with ai?
evidence from millions of claude conversations. arXiv preprint arXiv:2503.04761, 2025.

Jitai Hao, Yuke Zhu, Tian Wang, Jun Yu, Xin Xin, Bo Zheng, Zhaochun Ren, and Sheng Guo.
Omnikv: Dynamic context selection for efficient long-context llms. In The Thirteenth International
Conference on Learning Representations, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? ArXiv preprint, abs/2404.06654, 2024. URL https://arxiv.org/abs/2404.
06654.

11

https://aclanthology.org/2024.naacl-long.222
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sam Ade Jacobs et al. DeepSpeed Ulysses: System optimizations for enabling training of extreme
long sequence Transformer models. ArXiv preprint, abs/2309.14509, 2023. URL https://
arxiv.org/abs/2309.14509.

Gregory Kamradt. Needle In A Haystack - pressure testing LLMs. Github, 2023. URL https:
//github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference of llm.
arXiv e-prints, pp. arXiv–2403, 2024.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

Jannik Kossen, Yarin Gal, and Tom Rainforth. In-context learning learns label relationships but is not
conventional learning. arXiv preprint arXiv:2307.12375, 2023.

Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. Loogle: Can long-context language
models understand long contexts? arXiv preprint arXiv:2311.04939, 2023.

Yucheng Li, Huiqiang Jiang, Qianhui Wu, Xufang Luo, Surin Ahn, Chengruidong Zhang, Amir H
Abdi, Dongsheng Li, Jianfeng Gao, Yuqing Yang, et al. Scbench: A kv cache-centric analysis of
long-context methods. arXiv preprint arXiv:2412.10319, 2024a.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
ArXiv preprint, abs/2404.14469, 2024b. URL https://arxiv.org/abs/2404.14469.

Minghui Liu, Tahseen Rabbani, Tony O’Halloran, Ananth Sankaralingam, Mary-Anne Hartley, Brian
Gravelle, Furong Huang, Cornelia Fermüller, and Yiannis Aloimonos. Hashevict: A pre-attention
kv cache eviction strategy using locality-sensitive hashing. arXiv preprint arXiv:2412.16187,
2024a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024b.

Nestor Maslej, Loredana Fattorini, Raymond Perrault, Yolanda Gil, Vanessa Parli, Njenga Kariuki,
Emily Capstick, Anka Reuel, Erik Brynjolfsson, John Etchemendy, Katrina Ligett, Terah Lyons,
James Manyika, Juan Carlos Niebles, Yoav Shoham, Russell Wald, Tobi Walsh, Armin Hamrah,
Lapo Santarlasci, Julia Betts Lotufo, Alexandra Rome, Andrew Shi, and Sukrut Oak. Artificial
intelligence index report 2025, 2025. URL https://arxiv.org/abs/2504.07139.

Meta. Introducing meta llama 3: The most capable openly available llm to date. https://ai.
meta.com/blog/meta-llama-3/, 2024. Accessed: 2024-06-07.

AI Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation.
https://ai. meta. com/blog/llama-4-multimodal-intelligence/, checked on, 4(7):2025, 2025.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36:19327–19352, 2023.

NVIDIA. Llm kv cache compression made easy. Github, 2025. URL https://github.com/
NVIDIA/kvpress.

OpenAI. Gpt-4o-mini: Advancing cost-efficient intelligence. 2023. Accessed: 2023-12-14.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5:606–624, 2023.

12

https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2504.07139
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://github.com/NVIDIA/kvpress
https://github.com/NVIDIA/kvpress

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ziran Qin, Yuchen Cao, Mingbao Lin, Wen Hu, Shixuan Fan, Ke Cheng, Weiyao Lin, and Jianguo
Li. Cake: Cascading and adaptive kv cache eviction with layer preferences. In The Thirteenth
International Conference on Learning Representations, 2025.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang. Razorat-
tention: Efficient kv cache compression through retrieval heads. arXiv preprint arXiv:2407.15891,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. ArXiv preprint, abs/2302.13971, 2023. URL https:
//arxiv.org/abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanistically
explains long-context factuality. arXiv preprint arXiv:2404.15574, 2024.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and
Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads.
arXiv preprint arXiv:2410.10819, 2024a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=NG7sS51zVF.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. ArXiv preprint,
abs/2407.10671, 2024a. URL https://arxiv.org/abs/2407.10671.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024b.

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. PyramidInfer: Pyramid
KV cache compression for high-throughput LLM inference. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics ACL 2024,
pp. 3258–3270, Bangkok, Thailand and virtual meeting, 2024c. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-acl.195. URL https://aclanthology.org/
2024.findings-acl.195.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du, Shan Lu,
and Junchen Jiang. Cacheblend: Fast large language model serving for rag with cached knowledge
fusion. In Proceedings of the Twentieth European Conference on Computer Systems, pp. 94–109,
2025.

Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuohang Wang, Hao Cheng, Chao Zhang, and Yelong
Shen. Lorc: Low-rank compression for llms kv cache with a progressive compression strategy.
arXiv preprint arXiv:2410.03111, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and Hanie Sedghi.
Teaching algorithmic reasoning via in-context learning. arXiv preprint arXiv:2211.09066, 2022.

13

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://openreview.net/forum?id=NG7sS51zVF
https://arxiv.org/abs/2407.10671
https://aclanthology.org/2024.findings-acl.195
https://aclanthology.org/2024.findings-acl.195

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A Limitation and Broader Impact 16

B Use of LLMs 16

C Complete Assumptions/Proofs for Theoretical Results 16

D Implementation Details 19

D.1 Dataset Configuration . 19

D.2 Examples of Oracle Guidance . 20

D.3 Details of Experimental Environment and Baseline 22

E Supplementary Accuracy Evaluation Results 22

E.1 Supplementary Results for LongBench . 22

E.2 Supplementary Results for RULER . 23

E.3 Additional Comparison with More Advanced Methods 24

F Supplementary Efficiency Results 24

F.1 Decoding Latency . 24

F.2 Efficiency-Accuracy Tradeoff with Guidance Length 24

G Supplementary Ablation Results 25

G.1 Question-Dependent KV Cache Eviction Performance 25

G.2 LLM as Oracle Guidance . 25

G.3 Futher Integration Analysis with Other Layer/Head-Level Methods 26

G.4 More Discussion about Retaining vs. Evicting Guidance 26

H Supplementary Analysis 27

H.1 Visualization of Attention Distribution . 27

H.2 Side Effects of OracleKV . 27

I More Related Work 27

I.1 KV Cache Eviction . 27

I.2 In-Context Learning . 28

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A LIMITATION AND BROADER IMPACT

Limitation. While OracleKV has been experimentally demonstrated to introduce useful inductive
bias for KV cache eviction, it is not exempt from the "no free lunch" theorem–oracle guidance
inevitably entails certain side effects. Specifically, we observe that in some specialized tasks, such as
code generation, where issues related to token frequency are prominent, the general oracle guidance
employed by OracleKV may fail to yield significant improvements. In some cases, it may even
degrade the performance of the LLM on these tasks. Though, designing task-specific oracle guidance
can enhance performance in such scenarios. However, as highlighted in our ablation study, this
approach still suffers from side effects in other tasks.

Moreover, OracleKV involves the computation and explicitly return of the windowed attention
matrix, which, to the best of our knowledge, cannot be optimized using memory-efficient techniques
like flash attention (Dao et al., 2022; Dao, 2024). This limitation not only leads to notable latency but
also results in high memory usage. In environments with rigorous memory peak requirements, such
as edge devices, this necessitates carefully design within the length limit of oracle guidance for KV
cache eviction. Nevertheless, as demonstrated in our ablation experiments, longer and more detailed
oracle guidance does not always correlate with better performance.

Broader Impact. OracleKV provides a new perspective to guide KV cache eviction in large language
models (LLMs) by leveraging data-level intervention to introduce inductive biases. While OracleKV
demonstrates significant performance improvements in question-independent eviction settings, its
potential extension to other setting (such as question-aware or task-oriented KV cache eviction)
presents a exciting direction for future research. Additionally, the limitations of OracleKV, especially
the task-specific nature of its benefits and the increased computational and memory overhead,
highlight important trade-offs in the practical deployment. In particular, the increased latency and
memory consumption could pose challenges for real-time applications on resource-constrained
devices. Furthermore, the need for task-specific oracle design raises concerns about scalability and
generalizability, potentially reinforcing disparities between well-resourced and low-resource tasks
or domains. We believe that future work should explore more efficient and generalizable oracle
guidance designs that balance interpretability, performance, and system efficiency, ensuring that such
techniques can be equitably applied across a broad range of use cases.

B USE OF LLMS

Large Language Models (LLMs) were used in this work solely as general-purpose assistive tools.
Specifically, we used ChatGPT (GPT-4/5), Claude-3.7 and Grok-3 for language polishing, grammar
correction, and occasional translation of specific terminology. In some cases, we consulted LLMs for
debugging advice (e.g., resolving minor Python errors), but all code implementations, experimental
designs, and analyses were performed and verified independently by the authors.

LLMs were not used for research ideation, novelty, methodological design, or interpretation of results.
All scientific contributions, claims, and conclusions of this paper are entirely the responsibility of the
authors.

C COMPLETE ASSUMPTIONS/PROOFS FOR THEORETICAL RESULTS

Assumption C.1. type Each KV entry KVi, i ∈ Ω, its retrained information belongs to one of K
semantic "types" (such as topics, concepts, etc.).

For required cache indexes Q, the KV entries retrained information belongs to type Ti account for:

PQ(Ti) =
|{KVj|type(KVj) ∈ Ti, j ∈ Q}|

|Q|
. (12)

On the other hand, the retained cache indexes C, under a budget B = |C|, exhibits a type distribution
given by:

PC(Ti) =
|{KVj|type(KVj) ∈ Ti, j ∈ C}|

|C|
, |C| = B (13)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Our goal is to show that the index overlap of retrained caches and required caches |Q ∩ C| ↑ as
the semantic type distribution PC aligns to PQ. Based on Assumption C.1, we derive the following
theorem.
Lemma C.2. (Pinsker’s inequality) Let P and Q be two distributions defined on a universe U , then

DKL(P || Q) ≥ 1

2
||P −Q||21 (14)

We first prove the above inequality for the special case of U = {0, 1}. Then we show how one can
prove the general case, by reducing it to the binary case.

Proof of Lemma C.2. For the binary case:

P =

{
1, w.p. p
0, w.p. 1− p

Q =

{
1, w.p. q
0, w.p. 1− q

(15)

We assume p ≥ q (proof of q ≥ p is similar), and let

f(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
− 1

2 ln 2
(2(p− q))2. (16)

Since
∂f

∂q
= −p− q

ln 2

(
1

q(1− q)
− 4

)
≤ 0, (17)

and f = 0 when q = p, we conclude that f(p, q) ≥ 0 where q ≤ p. By change the logarithm base
from 2 to e, we have DKL(P || Q) ≥ 1

2 ||P −Q||21 for this special case. We consider the general case.
Let P and Q be distributions on U , let A ⊂ U be

A = {x | p(x) ≥ q(x)}. (18)

And PA, QA be

PA :=

{
1, w.p.

∑
x∈A p(x)

0, w.p.
∑

x/∈A p(x)
QA :=

{
1, w.p.

∑
x∈A q(x)

0, w.p.
∑

x/∈A q(x)
(19)

Then,

||P −Q||1 =
∑
x

|p(x)− q(x)| (20)

=
∑
x∈A

(p(x)− q(x)) +
∑
x/∈A

(q(x)− p(x)) (21)

=

∣∣∣∣∣∑
x∈A

p(x)−
∑
x∈A

q(x)

∣∣∣∣∣+
∣∣∣∣∣
(
1−

∑
x/∈A

p(x)

)
+

(
1−

∑
x/∈A

q(x)

)∣∣∣∣∣ (22)

= ||PA −QA||1 (23)

To caculate the KL-divergence, we define the random variable

Z =

{
1, if x ∈ A,

0, if x /∈ A.
(24)

Since Z is a function of X , we can also think of the two distributions P and Q as joint distributions
for the random variables (X,Z). Applying the chain rule for KL-divergence gives

DKL(P || Q) = DKL(P (X,Z) || Q(X,Z)) (25)
= DKL(P (Z) || Q(Z)) +DKL(P (X|Z) || Q(X|Z)) (26)
≥ DKL(P (Z) || Q(Z)) (27)
= DKL(PA || QA) (28)

≥ 1

2
||PA −QA||2 (29)

=
1

2
||P −Q||21, (30)

which completes the proof.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Theorem C.3. (Theorem 4.2) Let the semantic type of cache entries with index C be a discrete
variable TC , and the semantic type of cache entries with index set Q be a discrete variable TQ. The
lowerbound of expected predictive accuracy is positively correlated to:

inf
C⊆Ω

ETC∼PC,TQ∼PQ (|Q ∩ C|) ∝ 1−DKL(PQ || PC). (31)

Proof. Let Ni = {KVj | type(KVj) ∈ Ti, j ∈ Ω} For a questions with required information type Ti,
for a long-context, the model is possible to answer it correctly only when the retained KV caches
contain the information of type Ti. i.e.

E (|Q ∩ C|) ∝
∑
i

|Q|PQ(Ti) ·BPC(Ti)

Ni
= |Q| ·B

∑
i

PQ(Ti)PC(Ti)

Ni
, (32)

∝
∑
t∈ΩT

PQ(t)PC(t) = ⟨PQ, PC⟩. (33)

Where ΩT is the type space. Consider

⟨PQ, PC⟩ = 1− 1

2

∑
t∈ΩT

(PQ(t)− PC(t))
2 = 1− 1

2
||PQ − PC ||22, (34)

since ||x||2 ≤ ||x||1, we have
||PQ − PC ||22 ≤ ||PQ − PC ||21. (35)

By Pinsker’s inequality (Lemma C.2), we have

||PQ − PC ||1 ≤
√
2DKL(PQ || PC), (36)

then substitute Eq(36) to Eq(33) and we have

E (|Q ∩ C|) ∝
∑
t∈ΩT

PQ(t)PC(t) ≥ 1−DKL(PQ || PC), (37)

which completes the proof.

Corollary C.4. Let C̃ be the retrained index set with oracle guidance Õ. The oracle guidance Õ
constrains the probability mass of PC̃ over specific semantic regions Ri (Ri ∩ Rj = ∅, i ̸= j) as
follows:

PC̃(Ri) =
∑

Ti∈Ri

PC|Õ(Ti) =
∑

Ti∈Ri

PQ(Ti) = PQ(Ri), (38)

The following inequality holds:

ETC̃∼PC̃,TQ∼PQ

(
|Q ∩ C̃|

)
≥ ETC∼PC,TQ∼PQ (|Q ∩ C|) (39)

Proof of Corollary C.4. Based on Theorem C.3, we show above inequality by proving DKL(PQ ||
PC̃) ≤ DKL(PQ || PC). We first define a random variable Z that indicates the region to which a type
T belongs to Z = i if T ∈ Ri. Since the regions are disjoint and exhaustive, Z is a deterministic
function of T , The chain rule for KL-divergence allows us to express the divergence over the joint
distribution of (T,Z):

DKL(P (T) || Q(T)) = DKL(P (Z) || Q(Z)) +
∑
z

DKL(P (T |Z = z) || Q(T |Z = z)), (40)

where P (Z) and Q(Z) are the marginal distributions over the regions, and P (T |Z = z) and
Q(T |Z = z) are the conditional distributions within region z. KL-divergence calculation:

DKL(PQ || PC) = DKL(PQ(Z) || PC(Z)) +
∑
i

PQ(Z = i)DKL(PQ(T |Z = i) || PC(T |Z = i))

(41)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where

PQ(Z = i) = PQ(Ri) =
∑
t∈Ri

PQ(t) (42)

PC(Z = i) = PC(Ri) =
∑
t∈Ri

PC(t) (43)

PQ(T = t|Z = i) =
PQ(t)

PQ(Ri)
, w.r.t. t ∈ R (44)

PC(T = t|Z = i) =
PC(t)

PC(Ri)
, w.r.t. t ∈ R (45)

And then we calculate

DKL(PQ || PC̃) = DKL(PQ(Z) || PC̃(Z)) +
∑
i

PQ(Z = i)DKL(PQ(T |Z = i) || PC̃(T |Z = i))

(46)

Since the type distribution PC and PC̃ are identical on regions Ri in the sense of expectation. or

DKL[PQ(T |Z = i) || PC̃(T |Z = i)] = DKL[PQ(T |Z = i) || PC(T |Z = i)] (47)

We compare the KL-divergence

DKL(PQ || PC)−DKL(PQ || PC̃) (48)
= [DKL(PQ(Z) || PC(Z))−DKL(PQ(Z) || PC̃(Z))] (49)

+[
∑
i

PQ(Z = i)DKL(PQ(T |Z = i) || PC(T |Z = i)) (50)

−
∑
i

PQ(Z = i)DKL(PQ(T |Z = i) || PC̃(T |Z = i))] (51)

Thus the second term vanishes. For the first term, since

DKL(PQ(Z) || PC̃(Z)) =
∑
i

PQ(Z = i) ln
PQ(Ri)

PC(Ri)
(52)

=
∑
i

PQ(Ri) ln
PQ(Ri)

PQ(Ri)
= 0, (53)

thus we have

DKL(PQ || PC)−DKL(PQ || PC̃) = DKL(PQ(Z) || PC(Z)) ≥ 0, (54)

which completes the proof.

D IMPLEMENTATION DETAILS

D.1 DATASET CONFIGURATION

We adopt four benchmark datasets for our experiments: LongBench(Bai et al., 2024), RULER(Hsieh
et al., 2024), and Needle-In-A-Haystack(Kamradt, 2023). Detailed configurations of the datasets
used are provided in TableA2.

For LongBench, we evaluate OracleKV and compare it with baseline methods on 14 tasks (excluding
code-related tasks). Results for the code tasks are reported separately in the subsequent section. Due
to the unavailability of head-level identification files for Qwen2.5(Yang et al., 2024a), we omit the
DuoAttention(Xiao et al., 2024a) results on Qwen2.5.

Regarding H2O (Zhang et al., 2023), its original design is not well-suited for long-context inference
(e.g., 32K tokens) due to the high memory cost of window attention, which leads to out-of-memory
(OOM) errors for context lengths exceeding 11K tokens.

For RULER, we use a 4K context length to evaluate and compare the performance of OracleKV and
other baselines on a subset of the tasks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table A2: Detailed dataset configuration of all experiments. Our experiments involve four datasets
with comprehensive datasets and varying context length.

Benchmark Task Dataset Average Length Test Length

LongBench (Bai et al., 2024)

Single-Document QA
NartvQA 18409

60000(Llama)
32000(Mistral)

Qasper 3619
MultiFieldQA-En 6701

Multi-Document QA
HotpotQA 9151

2WikiMQA 4887
Musique 11214

Summarization
GovReport 8734
QMSum 10614

MultiNews 2113

Few-shot Learning
TREC 5177

TriviaQA 8209
SAMSum 6258

Synthetic Passage Count 11141
Passage Retrieval 9289

Code Lcc 1235
Repobench-p 4206

SCBench (Li et al., 2024a)

Multiple Choice Multiple Choice 188000

In-Context Learning Many Shot 22000

Math Find Math Find 120000

Question Answering QA.En 198000
QA.Ch 1500000

Summarization Summarization 18409

RULER (Hsieh et al., 2024)

NIAH Single
NIAH-Single-1

4000 4000 for Llama
and Qwen

NIAH-Single-2
NIAH-Single-3

NIAH Multikey
NIAH-Multikey-1
NIAH-Multikey-2
NIAH-Multikey-3

NIAH-Multiquery Summarization

NIAH-Multivalue Summarization

Variable Tracing Variable Tracing

Word Extraction Common Word Extraction
Frequent Word Extraction

Question Answering QA.1
QA.2

Needle-In-
-A-Haystack (Kamradt, 2023) NIAH Single Synthetic depth

0%∼100%
2K∼32K(Mistral)
8K∼128K(Llama)

D.2 EXAMPLES OF ORACLE GUIDANCE

In OracleKV, the oracle guidance was designed based on an analysis of frequently queried information
derived from prior studies (Handa et al., 2025; Maslej et al., 2025). Specifically, we examined user
query patterns as detailed in (Handa et al., 2025) (Section 3.1, Figure 2) to identify semantic types
highly relevant to common query types. For instance, tasks categorized as “data analysis” were
found to be prevalent across domains such as life sciences, physical sciences, social sciences, finance,
administration, and computing, indicating frequent queries involving semantic categories like numbers
and entities. Similarly, Handa et al. (2025) (Section 3.2) highlights that content generation tasks, such
as writing and marketing, account for over 10% of requests in the arts and media domains. These tasks
often involve summarization, suggesting that semantic categories like main themes and timelines
are critical. Additionally, we analyzed frequently requested skills (Section 3.2, Figure 3, Appendix
D.1, Figures 12 and 13 in (Handa et al., 2025)) and inferred associated semantic types. For example,
reading comprehension, which constitutes over 70% of total task requests, typically requires both
global (e.g., main theme, topic) and local (e.g., entities such as person names, events) information for
effective context understanding. Furthermore, insights from occupational categories (Appendix B.2,
Figure 10 in (Handa et al., 2025)) provided additional information on relevant semantic types.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table A3: Example of Oracle Guidance. The general oracle guidance can yield improvements on
most of the tasks. The task-specific oracle guidance can yield significant performance increase on
corresponding tasks.

General

Next, you will be presented with a series of questions regarding the context above,
including specific details about the narrative, content, and numerical information.
Also, Do not forget the global information and the relations between entities. And
note the structural cues. Please retain these details and provide accurate responses.

Next, you will be presented with a series of questions regarding the context above.
including specific details about the narrative, content, numerical information
and key global information. The questions may also involve small fragmented
relationships from the context, including term relationships, causal relations, and
temporal relations. Please retain these details and provide accurate responses.
Next, you will be presented with a series of questions regarding the context above.
Please remember the following information: 1. specific details like names, places,
and numbers; 2. main theme, like overall message; 3. relations, like family ties
and event linkages, 4. semantic details, like grammar dependencies and narrative
information between words.

Analyze the given text carefully. Your tasks include: 1) Answering factual
questions accurately. 2) Generating concise summaries. 3) Demonstrating in-
context learning. 4) Writing code based on the text. 5) Counting paragraphs. 6)
Retrieving specific strings. 7) Extracting numerical values. 8) Selecting correct
answers in multiple-choice questions. 9) Calculating extreme values from arrays.
Always ensure your answers are strictly based on the provided text.

Carefully read and analyze the provided text. Your tasks involve multiple types of
questions, each requiring precise information extraction from the text. Specifically,
you will: 1) Answer factual questions by identifying accurate details directly from
the text. 2) Generate concise and coherent summaries without introducing any
external information. 3) Demonstrate in-context learning by recognizing patterns
or concepts reflected in the text. 4) Write code accurately based on the textual
instructions or examples. 5) Count the total number of paragraphs accurately. 6)
Search and retrieve specific strings or terms mentioned in the text. 7) Extract and
list numerical values, maintaining their original form. 8) Solve multiple-choice
questions by selecting the most accurate answer based on the content. 9) Identify
and calculate extreme values (maximum, minimum) from any given array of
numbers in the text. Always ensure that your responses are strictly grounded in
the provided text. Do not infer, assume, or generate information beyond what is
explicitly stated. Maintain clarity, accuracy, and completeness in your answers.
Stay focused on the input context and prioritize factual consistency.

Task-specific

Next, you will be asked with some questions about the context above. These
questions includes: question answering, summarization, code completion, in-
context learning, paragraph counting, retrival, etc. Please remember the relevant
information and answering the question.

Next, you will be asked with some questions about the context above. These
questions will ask you to summarize the above context includes: question answer-
ing, summarization, code completion, in-context learning, paragraph counting,
retrieval, etc. Please remember the relevant information and answering the ques-
tion.

Next, you will be asked to write a summary of all the contexts above. Please take
care of the global information.

Next, you will be asked to find a special number in the context above. Please take
care of the relevant information.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Furthermore, (Handa et al., 2025) reports that over 30% of Claude (Anthropic, 2024) dialogues
are dedicated to code generation tasks. In artistic fields, approximately 10% of LLM usage is
devoted to writing tasks, including technical writing, advertising copy, and archival work, while
report writing and book processing account for 4–6% of total dialogues. Additionally, (Handa et al.,
2025) emphasizes the significance of LLMs in supporting writing refinement (e.g., rewriting) and
academic reading tasks (e.g., information retrieval and interpretation). Moreover, (Maslej et al.,
2025) underscores that the widespread adoption of LLMs hinges on their advanced capabilities in
processing long-context information—such as retrieval, reasoning, and summarization—frequently
applied in complex scenarios like clinical note processing.

These findings, combined with industry trends reported in (Maslej et al., 2025) (e.g., Section 5 for
medical applications and relevant tasks, Section 7 for educational applications and relevant tasks),
guided our selection of semantic categories (e.g., numbers, topics, person names) for the oracle
guidance templates. We build our oracle guidance based on these statistics.

Table A3 provides some examples of the oracle guidance. The general oracle guidance contain that
we use for accuracy and efficiency experiments. The task-specific oracle guidance contain that we we
use for ablation experiments.

D.3 DETAILS OF EXPERIMENTAL ENVIRONMENT AND BASELINE

We use PyTorch 2.3.1 as our primary experimental platform. Our implementation is based on the
NVIDIA KVPress repository (NVIDIA, 2025), which also serves as the codebase for most baseline
methods.

All experiments are conducted using a server equipped with an AMD EPYC 7742 64-Core Processor,
256 GB of CPU memory, and four GPUs: three NVIDIA L40 GPUs for accuracy evaluations and
ablation studies, and one NVIDIA A100 GPU for efficiency experiments.

For H2O(Zhang et al., 2023), since the original algorithm is not designed to perform KV cache
eviction during the prefilling stage, we modify it to begin eviction only after prefilling is complete.
For DuoAttention(Xiao et al., 2024a), whose effective compression ratio varies dynamically with
input length, we adaptively set the head compression ratio per input to maintain a fixed KV cache
budget. Additionally, to ensure a fair comparison, we disable all on-the-fly decoding mechanisms
across all baselines.

E SUPPLEMENTARY ACCURACY EVALUATION RESULTS

E.1 SUPPLEMENTARY RESULTS FOR LONGBENCH

We present the detailed results on LongBench (Bai et al., 2024) in Table A12, Table A13, and
Table A14. These include extended evaluations of Qwen2.5-7B-Instruct-1M on LongBench, as well
as two additional code datasets that are not reported in the main paper.

We observe that LLaMA-3.1-8B-Instruct is generally more robust than both Mistral-7B-Instruct-v0.2
and Qwen2.5-7B-Instruct-1M across tasks. Notably, the performance of KV cache compression
methods on multi-document QA datasets—such as HotpotQA and MuSiQue (Table A12)—tends to be
unstable. In some cases, the compressed models actually outperform the full model. This is especially
pronounced with Qwen2.5-7B-Instruct-1M, where several KV compression methods exceed the
full-model performance on both single-document QA (e.g., NarrativeQA) and multi-document QA
(e.g., MuSiQue).

Interestingly, OracleKV leads to slight degradation on some multi-document QA datasets (e.g.,
2WikiMQA) compared to head-level compression methods such as DuoAttention(Xiao et al., 2024a)
and Ada SnapKV(Feng et al., 2024), under the 40% KV cache budget. However, under the extreme
condition of a 10% KV cache budget, OracleKV consistently outperforms all other methods across
nearly all single- and multi-document QA datasets, highlighting its strong adaptability in low-memory
scenarios.

As shown in Table A13, most KV cache compression methods lead to performance improvements
on few-shot learning and in-context learning tasks across all three models—particularly on the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table A4: Performance results on subsets of Longbench (Bai et al., 2024), keep ratio=0.1, using
LLama-3.1-8B-Instruct.

Method NrtvQA Qasper MF-En HotPotQA GovReport MultiNews TREC TriviaQA PRe

CAKE 27.0 35.9 43.0 57.0 31.2 25.5 35.5 85.2 99.5
OmniKV 23.4 30.8 29.7 47.4 30.9 25.2 31.9 91.5 99.5
OracleKV 27.8 42.3 51.3 58.2 32.4 25.4 35.0 85.6 99.5

TREC dataset. This suggests that longer contexts may degrade few-shot performance. Addition-
ally, streaming-based methods such as StreamingLLM(Xiao et al., 2024b) and DuoAttention(Xiao
et al., 2024a) show a notable advantage on TriviaQA. Again, OracleKV demonstrates a superior
accuracy–memory trade-off on both summarization and few-shot learning tasks, particularly under
the 10

For passage count and passage retrieval tasks, as shown in Table A14, OracleKV delivers significant
performance gains on LLaMA-3.1-8B-Instruct under both 10% and 40% KV cache budgets. For
Mistral-7B-Instruct-v0.2, OracleKV outperforms all baselines on passage retrieval and achieves
competitive performance with head-level methods on passage count at the 40% budget. On Qwen2.5-
7B-Instruct-1M, OracleKV surpasses most methods at 40% for both passage count and retrieval tasks,
and outperforms all baselines under the 10% KV cache budget for both tasks.

Table A14 highlights the side effect of OracleKV on code generation tasks, specifically on LCC and
RepoBench-P. Notably, OracleKV introduces significant performance degradation on these tasks,
with the most pronounced drop observed on the LCC dataset.

We hypothesize that this degradation stems from the oracle-guided attention redistribution, which
may interfere with the inherent structural and syntactic regularity of code. Unlike natural language,
code relies heavily on precise token dependencies and hierarchical structures. The intervention of
OracleKV, though beneficial for semantic understanding tasks, may distort these structural patterns,
leading to suboptimal generation quality in code-oriented scenarios.

E.2 SUPPLEMENTARY RESULTS FOR RULER

We present the extended results on RULER(Hsieh et al., 2024) in TableA15, Table A16, Table A17,
and Table A18. These tables report performance across 8 tasks from 13 datasets, evaluated under
varying KV cache budgets (from 100% down to 10%) using two models: LLaMA-3.1-8B-Instruct
and Qwen2.5-7B-Instruct-1M.

As shown in Table A15 and Table A16, OracleKV achieves a favorable accuracy–memory trade-off
on the single-key Needle-in-a-Haystack (NIAH) task, demonstrating strong retrieval capabilities on
both models. However, for multi-key NIAH, OracleKV shows noticeable performance degradation
when compared to Ada SnapKV(Feng et al., 2024) and StreamingLLM(Xiao et al., 2024b). That
said, the performance gap narrows as the KV cache budget decreases, indicating OracleKV’s stronger
adaptability under constrained memory conditions.

Table A16 and Table A18 further demonstrate OracleKV’s strength in multi-value and multi-query
variants of the NIAH task, as well as in variable tracing tasks. In these settings, OracleKV significantly
outperforms all baselines across various KV cache budgets. Notably, under a 10% KV cache budget,
OracleKV achieves average scores of 72.7 on LLaMA and 34.1 on Qwen, far surpassing the best-
performing baselines (averaging 22.0 on LLaMA and 15.1 on Qwen). These results underscore
OracleKV’s effectiveness in complex retrieval and memory-intensive tasks, even under extreme
memory constraints.

However, OracleKV also exhibits certain side effects on the RULER benchmark. Specifically,
in word extraction (e.g., identifying the most frequently occurring words) and QA-style tasks,
OracleKV underperforms relative to baseline methods, as shown in Table A16 and Table A18.
This degradation suggests that OracleKV struggles with counting-oriented tasks or frequency-based
reasoning. A possible explanation is that the general-purpose oracle guidance used by OracleKV does
not effectively capture the inductive biases required for such tasks—biases that are rarely emphasized
in large scale dialogues.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table A5: Throughput results of decoding,
measured in token per second (token/s), batch
size=1, cache budget=1024, using Llama-3.1-8B-
Instruct.

Method 2K 4K 8K 16K 32K

Original 34.90 31.37 22.22 14.00 8.02
SnapKV 35.41 35.30 34.97 34.63 35.37

PyramidKV 35.37 35.16 35.21 34.84 34.83
OracleKV 35.12 35.31 35.22 35.00 34.18

Table A6: KV Cache memory footprint results
of decoding, measured in gigabyte(GB), batch
size=1, cache budget=1024, using Llama-3.1-8B-
Instruct.

Method 2K 4K 8K 16K 32K

Original 15.46 15.92 16.87 18.73 22.46
SnapKV 15.33 15.55 16.00 16.89 18.66

PyramidKV 15.33 15.55 16.00 16.89 18.66
OracleKV 15.33 15.55 16.00 16.89 18.66

Table A7: Results for guidance length latency-memory tradeoff, KV budget=1K, using Llama-3.1-
8B-Instruct.

Exp.Settings KV.Mem.(GB) Pref.Latency(s) I/O Latency(s) Dec.Latency(s) Infer.w/o.Loading(s) Infer.w/Loading(s)

Original,64k,bs=1 7.83 11.75 1.31~7.83 17.77 29.52 19.08~25.60
Original,32k,bs=2 7.84 4.14 1.31~7.84 8.40 12.54 9.71~16.24
Original,16k,bs=4 7.87 1.72 1.31~7.87 4.90 6.62 6.21~12.77

OralceKV,64k,bs=1,L=128 0.49 11.87 0.08~0.49 14.76 26.63 14.84~15.25
OralceKV,32k,bs=2,L=128 0.49 4.41 0.08~0.49 7.30 11.71 7.38~7.79
OralceKV,16k,bs=4,L=128 0.49 1.88 0.08~0.49 4.71 6.59 4.79~5.20
OralceKV,64k,bs=1,L=256 0.49 12.32 0.08~0.49 15.20 27.52 15.28~15.69

OralceKV, 32k, bs=2, L=256 0.49 4.63 0.08~0.49 7.51 12.14 7.59~8.00
OralceKV, 16k, bs=4, L=256 0.49 2.01 0.08~0.49 4.83 6.84 4.91~5.32
OralceKV, 64k, bs=1, L=512 0.49 13.98 0.08~0.49 16.31 30.29 16.39~16.80
OralceKV, 32k, bs=2, L=512 0.49 5.20 0.08~0.49 8.08 13.28 8.16~8.57
OralceKV, 16k, bs=4, L=512 0.49 2.30 0.08~0.49 5.14 7.44 5.22~5.63

E.3 ADDITIONAL COMPARISON WITH MORE ADVANCED METHODS

We compare OracleKV with recent advanced methods (Qin et al., 2025; Hao et al., 2025) on subsets
of Longbench in Table A4. OracleKV outperforms CAKE and OmniKV in question-independent
scenarios.

F SUPPLEMENTARY EFFICIENCY RESULTS

F.1 DECODING LATENCY

During the decoding stage, questions are typically provided by users, rendering question-independent
algorithms less applicable. However, to further investigate the applicability of OracleKV under
such conditions, we conducted additional experiments to evaluate OracleKV’s memory footprint and
latency during the decoding phase, particularly for challenging edge cases. As shown in Table A5 and
Table A6, OracleKV’s decoding memory footprint and latency remain comparable (cache memory
costs are identical since the budget is fixed) to SnapKV and PyramidKV across varying context
lengths. This is primarily because the main computational overhead in OracleKV during decoding
stems from the calculation of the window attention matrix.

F.2 EFFICIENCY-ACCURACY TRADEOFF WITH GUIDANCE LENGTH

To highlight critical trade-off between memory savings and computational/latency overhead in
real-time systems, we conducted experiments across varying guidance lengths in two settings:

• Decoding without loading CPU KV cache: re-prefilling and decoding;

• Decoding with loading CPU KV cache: loading KV cache with CPU-GPU I/O and decoding.

We measured KV cache memory usage, decoding throughput, prefilling latency, and I/O latency,
calculated based on typical consumer-grade server sequential read speeds (1GB/s for NVMe SSDs
with PCIe 3.0 x4 to 6GB/s for PCIe 4.0 x4). Total latency for generating 100 tokens was computed
as: the w/o loading setting, and I/O latency + decoding latency for the loading setting. Results
are reported in Table A7. OracleKV outperforms the full-cache method in systems with KV cache

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table A8: Results for guidance length latency-memory tradeoff on a subset of Longbench (Bai et al.,
2024), KV budget=1K, using Llama-3.1-8B-Instruct.

Length NrtvQA Qasper MF-En HotPotQA GovReport MultiNews TREC TriviaQA PRe

73 31.2 44.6 49.3 56.1 32.8 25.1 38.0 85.6 99.5
122 28.2 40.8 49.9 56.6 32.7 25.3 33.0 84.6 99.5
231 29.1 39.1 49.1 55.5 32.2 24.3 32.5 79.3 99.5

Table A9: Question-dependent performance of OracleKV on RULER (Hsieh et al., 2024) benchmark.
We compare OracleKV with SnapKV using general surface-level oracle guidance.

Method Budget NIAH-S NIAH-M MV MQ VT CWE FWE QA Avg

SnapKV 50% 95.67 98.80 99.60 99.95 99.88 98.04 91.33 75.00 94.78
OracleKV 50% 100.00 97.60 99.70 99.90 99.92 97.28 93.00 74.70 95.26
SnapKV 40% 88.80 94.87 99.45 99.90 99.88 96.06 90.00 74.90 92.98

OracleKV 40% 98.93 91.53 99.70 99.90 99.92 94.88 92.00 74.90 93.97
SnapKV 30% 78.40 84.93 99.50 99.85 99.88 88.46 87.07 74.80 89.11

OracleKV 30% 94.47 80.67 99.65 99.85 99.84 89.14 89.40 74.80 90.98
SnapKV 20% 68.67 72.73 98.80 99.80 98.96 72.60 81.80 74.10 83.43

OracleKV 20% 79.80 69.47 99.50 99.80 99.64 74.52 84.40 74.70 85.23
SnapKV 10% 67.13 65.87 77.70 99.20 94.92 40.62 64.73 73.40 72.95

OracleKV 10% 67.93 65.87 99.15 99.30 97.12 41.82 74.80 74.00 77.50

loading when guidance length is ≤512. In systems with prefilling, OracleKV achieves significant
speedup only when guidance length is ≤128. For guidance length = 256, speedup is observed for
longer contexts (>32K), with greater benefits as context length increases. However, at guidance
length = 512, negative performance is observed in prefilling systems for contexts between 16K and
64K, as longer guidance requires computing and explicitly returning the attention matrix during
prefilling, which cannot leverage hardware acceleration (e.g., FlashAttention (Dao et al., 2022; Dao,
2024)), incurring significant overhead. We also explore the accuracy with varying guidance length.
Table A8 shows that longer guidance length(>128) generally underperforms, suggesting a practical
heuristic: guidance length should be kept ≤ 128 for better performance.

G SUPPLEMENTARY ABLATION RESULTS

G.1 QUESTION-DEPENDENT KV CACHE EVICTION PERFORMANCE

We explore the design choices of OracleKV under a question-dependent setting. As shown in
Table A9, OracleKV yields small but consistent improvements over question-independent KV cache
eviction when guided only by surface-level oracle guidance. This suggests that OracleKV can
introduce a useful inductive bias, even when the question is already known. Additionally, as the KV
cache budget decrease, OracleKV can enhance the average performance significantly (77.50 vs. 72.95
under 10% KV budget)

G.2 LLM AS ORACLE GUIDANCE

In this section, we explore the automation of oracle guidance in multi-task pipeline. In real-world
deployment scenarios, one viable approach is to predefine guidance templates for each domain and
train a classifier to map user inputs to the corresponding domain. Upon receiving a user request, the
system can automatically select and apply the appropriate domain-specific guidance.

To validate the feasibility of this concept, we conducted preliminary experiments using LLM itself
to predict the types of questions users might ask based on the provided context and to retain key
information. Specifically, we evicted KV cache with guidance: Based on the context above, please
predict the questions that the user might ask about the above context. Please remember the most

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table A10: Performance results on subsets of Longbench (Bai et al., 2024), keep ratio=0.1, using
Mistral-7B-Instruct-v0.2 and LLama-3.1-8B-Instruct.

Method NrtvQA Qasper MF-En HotPotQA GovReport MultiNews TREC TriviaQA PRe

Mistral-7B-Instruct-v0.2

Original 20.8 29.3 46.0 35.1 32.1 26.81 50.8 76.1 74.2
SnapKV 12.8 9.1 23.5 20.1 24.4 20.9 31.8 78.8 42.8

Statistics-as-Guidance 13.7 13.0 26.0 20.8 26.1 22.5 32.8 77.5 49.9
LLM-as-Guidance 13.4 10.9 23.5 20.2 26.4 21.8 31.0 77.7 54.3

Llama-3.1-8B-Instruct

Original 29.7 47.6 55.7 58.8 35.5 27.2 28.0 86.2 100.00
SnapKV 24.2 21.1 26.9 46.4 25.6 20.5 33.0 82.9 56.0

Statistics-as-Guidance 26.8 20.2 26.6 48.3 27.6 21.5 45.5 84.1 79.5
LLM-as-Guidance 23.6 17.7 28.2 47.6 27.9 21.5 39.5 84.0 84.0

Table A11: Performance results on subsets of Longbench (Bai et al., 2024), cache budget=0.1, using
Llama-3.1-8B-Instruct.

Method NrtvQA Qasper MF-En HotPotQA GovReport MultiNews TREC TriviaQA PRe

PyramidKV 26.9 33.2 42.1 47.2 29.7 24.9 49.0 86.3 93.8
Pyramid OracleKV 27.2 33.5 47.6 55.0 29.9 23.6 44.0 85.3 99.5

OracleKV 29.1 42.3 51.3 58.2 32.8 25.4 35.0 86.3 99.5

important and relevant information and answer the question. We refer to this preliminary approach as
LLM-as-Guidance.

As shown in the Table A10, even without fine-tuning or incorporating prior information, LLM-as-
Guidance achieves competitive performance across various tasks (best performance on some tasks)
compared to baseline methods. The results demonstrate the potential of leveraging learned models
(e.g. LLMs) to predict future user queries based on context, thereby automating the generation of
oracle guidance. We believe optimizing automated guidance strategies is a interesting direction for
future research.

G.3 FUTHER INTEGRATION ANALYSIS WITH OTHER LAYER/HEAD-LEVEL METHODS

Current layer/head-level methods (e.g., PyramidKV, AdaKV, CAKE) use heuristics for budget
allocation, relying on SnapKV’s observation window algorithm (Li et al., 2024b). OracleKV, however,
selects entries based on oracle guidance attention scores, enabling seamless integration with these
methods. Table 1 shows that integrating OracleKV with AdaKV improves performance on most
tasks. To further enrich the integration analysis, we conducted additional experiments integrating
OracleKV with PyramidKV, with results in the Table A11. As shown, integrating with PyramidKV
slightly degrades OracleKV’s performance on most tasks but still outperforms PyramidKV alone.
This further demonstrates the superiority of guidance-based selection over observation window-based
selection in question-independent scenarios.

G.4 MORE DISCUSSION ABOUT RETAINING vs. EVICTING GUIDANCE

Figure A12: Results on Longbench few-shot learn-
ing dataset TREC.

Exp.Setting Accuracy.TREC

Original 28.0
SnapKV 32.5

OracleKV w/ Evicting Guidance 34.5
OracleKV w/ Retaining Guidance 67.5

In Section 5.3, we conduct experiments and con-
clude that retaining the guidance cache degrades
performance in most cases, especially with low
KV cache budgets, as it consumes space without
contributing relevant information, leading to the
eviction of critical tokens. This affects tasks like
summarization and QA.

Specifically, evicting the guidance cache is gen-
erally more effective, but in few-shot learning
tasks on LongBench, particularly TREC, we
observe that retaining it outperforms eviction,
showing a significant performance gap over OracleKV and other baselines, with KV compression

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

methods also surpassing full cache. Results in few-shot learning datasets TREC are shown in
Table A12.

H SUPPLEMENTARY ANALYSIS

H.1 VISUALIZATION OF ATTENTION DISTRIBUTION

Our main paper (Section 4) highlights the mismatch in attention distributions induced by the question
and the pure context, which leads to discrepancies in the indices of retained tokens. In this section,
we further investigate the differences in attention distribution and token retention across layers and
tasks.

Layer-wise visualization. We observe a clear layer-wise pattern in the attention distributions.
As shown in Figures A1–A14, the distributions induced by the question and pure context exhibit
substantial overlap in the first three layers (Layers 0, 1, and 2) across various tasks. Notably, the
attention distribution in the first layer appears relatively stable, and its attention scores are significantly
higher than those in other layers.

Task-wise visualization. We also observe clear task-specific patterns in the attention distributions.
Figures A1–A14 demonstrate that the overlap between attention scores induced by the question and
pure context are higher in tasks such as word extraction, variable tracing, and question answering,
compared to NIAH tasks.

H.2 SIDE EFFECTS OF ORACLEKV

We observe side effects of OracleKV on certain datasets across benchmarks (e.g., code generation in
LongBench (Bai et al., 2024), and word extraction and QA in RULER (Hsieh et al., 2024)). However,
consistent with the no-free-lunch principle, OracleKV generally performs well across a majority of
tasks, serving as an effective approach for KV cache eviction.

I MORE RELATED WORK

I.1 KV CACHE EVICTION

Previous research has highlighted the inherent sparsity in the self-attention mechanisms of large
language models (LLMs). Leveraging this property, early studies (Liu et al., 2024b; Zhang et al., 2023)
propose maintaining a queue with a pre-allocated budget and progressively evicting unimportant cache
entries during the inference. Subsequent works focus on exploiting fixed attention patterns within the
input sequence. StreamingLLM (Xiao et al., 2024b) and LM-Infinite (Han et al., 2024) utilize the
attention sink phenomenon to retain both initial and most recent tokens. Recently, SnapKV (Li et al.,
2024b) introduces an attention-based strategy that uses attention scores with recent tokens to estimate
importance. Building on this foundation, several approaches (Hao et al., 2025; Qin et al., 2025; Cai
et al., 2024; Yang et al., 2024c) incorporate layer-wise cache budget allocation. PyramidKV (Cai
et al., 2024) and PyramidInfer (Yang et al., 2024c) discard more KV entries from deeper layers,
motivated by the pyramidal information funneling hypothesis. Similarly, CAKE (Qin et al., 2025)
analyzes layer-wise preferences using spatial and temporal attention dynamics to optimize cache
retention. In parallel, the discovery of retrieval heads in attention mechanisms (Wu et al., 2024) fuel
a new line of research in head-level cache eviction (Fu et al., 2024; Xiao et al., 2024a; Feng et al.,
2024). DuoAttention (Xiao et al., 2024a) employs a learning-based method to identify compression-
insensitive attention heads (i.e., streaming heads), while HeadKV (Fu et al., 2024) classifies heads
based on their retrieval and reasoning utility (R2 heads).

Most recent research has introduced a variety of strategies for managing the Key-Value (KV) cache in
large language models (LLMs), focusing on eviction and compression techniques to enhance memory
efficiency without compromising performance. Eviction methods like NaCl (Chen et al., 2024)
combine attention-based statistics with randomized strategies to retain crucial tokens, achieving sig-
nificant cache reduction while maintaining high performance. HashEvict (Liu et al., 2024a) employs
locality-sensitive hashing to identify and replace tokens with low relevance, reducing computational

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

overhead. Compression approaches have also evolved; GEAR (Kang et al., 2024) integrates ultra-
low precision quantization, low-rank approximation, and sparse matrices to achieve near-lossless
4-bit compression, enhancing throughput. RazorAttention (Tang et al., 2024) differentiates between
retrieval and non-retrieval heads, maintaining full cache for the former while discarding distant
tokens for the latter. FastGen (Jacobs et al., 2023) introduces a plug-and-play adaptive compression
method that profiles attention modules to selectively retain or discard tokens based on their contextual
importance, significantly reducing GPU memory usage. Additionally, methods like BalanceKV (Han
et al., 2025) utilize vector balancing theory for geometric sampling, and LoRC (Zhang et al., 2024)
applies low-rank approximations with progressive compression strategies. These methodologies
collectively advance the efficiency of LLM inference by intelligently managing KV cache resources.

Despite these approaches achieve impressive performance on several long-context benchmarks, most
existing methods (e.g. (Li et al., 2024b; Cai et al., 2024; Yang et al., 2024c; Qin et al., 2025; Feng
et al., 2024; Fu et al., 2024; Hao et al., 2025)) rely heavily on importance metrics derived from the
attention scores with the current question, limiting their robustness and applicability in real-world
scenarios without question. In contrast, our approach operates at the data level, leveraging surface-
level statistical regularities in the question distribution, making it compatible with existing methods
and easily integrable into a broader range of applications.

I.2 IN-CONTEXT LEARNING

Early studies (Devlin et al., 2019; Liu et al., 2019) observed that language models can "learn" to
perform a task from a few shot input-output examples provided in context at inference. (Xie et al.,
2021) interprets the emergence of in-context learning by inferring the shared latent concept among
demonstration examples. Based on these, OracleKV affects the attention behavior through in-context
data manipulation, aiming to select instruction-correlated tokens.

Recently, (Bai et al., 2023) provided theoretical evidence that transformers can implement a broad
class of machine learning algorithms in-context, including least squares and Lasso, and can adaptively
select among them based on input sequences. Further empirical analysis (Kossen et al., 2023)
revealed that ICL predictions are heavily influenced by in-context labels and that models can learn
novel tasks in-context, although they may retain biases from pre-training data. For the algorithmic
reasoning, (Zhou et al., 2022) introduced algorithmic prompting, teaching LLMs to perform multi-step
reasoning tasks by formulating algorithms as composable skills, leading to significant performance
improvements. Additionally, (Kirsch et al., 2022) explored meta-learning approaches, showing that
transformers can be trained to act as general-purpose in-context learners, capable of adapting to
diverse tasks without explicit training loss definitions.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table A12: Detailed results of LongBench Bai et al. (2024), including Single-Document QA
datasets(NartvQA, Qasper, and MF-en) and Multi-Documents QA datasets(HotpotQA, 2WikiMQA,
and Musique).

Method Budget NartvQA Qasper MF-en HotpotQA 2WikiMQA Musique

LLaMA-3.1-8B-Instruct

Full Cache 100% 31.99 48.20 57.18 57.56 48.92 28.19

StreamingLLM

40%

23.44 30.69 29.64 47.29 33.94 22.43
SnapKV 27.04 35.66 43.22 56.79 47.50 30.06

Ada SnapKV 27.28 39.60 44.25 56.11 50.05 30.66
PyramidKV 26.85 33.16 42.14 47.17 39.22 19.60

DuoAttention 28.55 41.08 50.68 54.80 48.91 29.24
OracleKV 29.10 42.33 51.34 58.16 48.51 32.61

Ada OracleKV 28.51 44.44 53.04 57.47 47.41 31.47

StreamingLLM

10%

20.59 18.44 22.95 37.24 22.40 14.01
SnapKV 23.64 20.77 23.29 44.62 24.22 19.87

Ada SnapKV 24.24 21.14 26.88 46.35 26.95 18.80
PyramidKV 19.63 21.45 22.89 34.25 24.28 13.36

DuoAttention 15.13 14.21 25.22 35.02 22.31 12.59
OracleKV 26.77 20.18 26.59 48.31 29.19 21.95

Ada OracleKV 28.12 23.86 34.48 50.00 29.40 22.50

Mistral-7B-Instruct-v0.2

Full Cache 100% 20.84 29.34 45.99 35.11 20.73 16.95

StreamingLLM

40%

13.75 17.09 27.75 26.87 17.31 11.44
SnapKV 15.31 19.71 36.59 28.89 15.79 13.39

Ada SnapKV 17.29 19.07 36.39 30.74 16.16 13.24
PyramidKV 15.86 19.68 36.27 30.84 18.72 12.70

DuoAttention 11.51 9.09 25.27 21.51 15.03 6.76
OracleKV 18.61 21.21 36.24 29.84 18.71 14.70

Ada OracleKV 19.13 22.04 37.94 31.29 17.88 14.81

StreamingLLM

10%

10.01 10.55 21.02 17.82 12.33 7.41
SnapKV 12.75 9.08 23.54 20.06 12.20 8.12

Ada SnapKV 14.10 9.98 23.49 21.08 13.06 8.91
PyramidKV 10.43 9.08 24.38 21.26 12.64 7.28

DuoAttention 9.01 7.98 24.96 19.68 13.56 6.01
OracleKV 13.70 13.01 25.96 20.79 13.06 7.39

Ada OracleKV 13.85 13.65 27.49 21.31 13.36 7.59

Qwen2.5-7B-Instruct-1M

Full Cache 100% 20.23 49.72 52.53 62.91 56.35 33.74
StreamingLLM

40%

17.37 31.62 28.82 44.61 42.68 24.66
SnapKV 24.57 38.34 38.23 58.65 47.50 34.08

Ada SnapKV 26.05 38.79 41.63 59.30 48.24 33.77
PyramidKV 17.16 27.13 29.79 47.10 37.66 23.27
OracleKV 24.88 39.55 42.67 59.58 52.34 34.36

Ada OracleKV 25.08 40.32 44.64 60.07 53.86 34.87

StreamingLLM

10%

13.20 18.51 21.32 32.83 32.40 13.54
SnapKV 19.78 15.95 24.83 41.15 30.89 23.40

Ada SnapKV 22.44 17.91 25.89 42.57 31.27 22.52
PyramidKV 16.93 16.18 24.69 36.70 31.01 15.76
OracleKV 24.99 18.88 31.39 51.31 33.96 27.68

Ada OracleKV 24.97 20.73 30.33 47.04 35.03 28.94

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table A13: Detailed results of LongBench Bai et al. (2024), including Summarization datasets(Gov
Report, QMSum, Multi News) and Few-shot Learning datasets(TREC, Trivia QA, and SAMSum).

Method Budget GovReport QMSum MultiNews TREC TriviaQA SAMSum

LLaMA-3.1-8B-Instruct

Full Cache 100% 35.49 25.06 27.15 28.00 86.21 39.16

StreamingLLM

40%

30.41 21.69 24.97 31.50 91.40 37.21
SnapKV 30.96 23.37 25.07 34.50 85.13 41.04

Ada SnapKV 30.98 23.47 25.64 38.00 86.38 41.05
PyramidKV 29.72 22.65 24.86 49.00 86.28 30.76

DuoAttention 30.70 25.00 24.80 34.00 90.19 36.21
OracleKV 32.78 24.11 25.39 35.00 86.28 40.57

Ada OracleKV 32.85 24.40 25.64 33.50 87.21 39.49

StreamingLLM

10%

24.81 19.10 20.09 28.00 90.66 34.38
SnapKV 25.21 20.04 19.91 34.00 82.21 38.64

Ada SnapKV 25.57 20.87 20.52 33.00 82.88 39.18
PyramidKV 24.84 20.13 19.98 34.00 85.38 36.05

DuoAttention 23.70 17.70 22.83 25.00 86.92 36.21
OracleKV 27.61 21.28 21.45 45.50 84.11 39.31

Ada OracleKV 27.90 21.97 21.44 49.50 85.59 39.67

Mistral-7B-Instruct-v0.2

Full Cache 100% 32.13 24.15 26.81 50.75 76.14 39.32

StreamingLLM

40%

30.23 21.34 24.54 49.50 52.78 36.48
SnapKV 28.77 22.12 24.65 44.75 77.92 39.11

Ada SnapKV 27.73 22.37 24.53 44.15 77.10 39.10
PyramidKV 28.43 22.21 24.55 45.75 79.23 39.12

DuoAttention 23.79 20.35 23.04 24.62 72.36 35.08
OracleKV 30.28 23.38 25.35 44.05 78.06 38.80

Ada OracleKV 30.03 23.31 25.36 45.25 77.17 38.78

StreamingLLM

10%

24.72 20.25 19.00 34.50 45.69 35.49
SnapKV 24.39 20.04 20.86 31.75 78.81 37.99

Ada SnapKV 24.06 20.56 20.44 37.50 79.14 38.18
PyramidKV 23.97 20.05 20.64 31.75 78.93 36.82

DuoAttention 20.89 18.38 21.87 22.62 66.06 33.69
OracleKV 26.10 21.14 22.51 32.75 77.46 36.97

Ada OracleKV 26.04 21.74 22.74 31.50 75.68 37.61

Qwen2.5-7B-Instruct-1M

Full Cache 100% 35.45 24.59 25.97 69.50 86.53 37.21

StreamingLLM

40%

32.35 20.91 24.03 59.00 48.12 24.61
SnapKV 33.04 21.71 23.62 61.00 86.25 37.22

Ada SnapKV 32.50 21.98 23.81 64.50 86.45 36.54
PyramidKV 29.46 20.10 23.16 49.50 82.40 39.06
OracleKV 33.71 23.14 23.64 69.00 86.52 38.40

Ada OracleKV 33.51 23.50 23.84 72.00 86.88 36.44

StreamingLLM

10%

26.66 19.25 18.46 47.00 40.82 20.98
SnapKV 27.51 18.88 19.01 42.25 86.42 35.84

Ada SnapKV 27.65 18.63 19.37 45.50 85.97 36.09
PyramidKV 26.40 18.45 19.36 42.50 85.16 35.31
OracleKV 29.50 20.68 19.66 61.50 86.16 35.51

Ada OracleKV 29.43 20.58 19.81 58.25 85.68 35.46

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table A14: Detailed results of LongBench Bai et al. (2024), including Sythetic datasets(Passage
Count, Passage Retrieval) and Code Generation datasets(Lcc and RepoBench-P).

Method Budget Passage Count Passage Retrieval Lcc RepoBench-P

LLaMA-3.1-8B-Instruct

Full Cache 100% 11.20 100.00 54.09 47.28

StreamingLLM

40%

6.70 45.50 50.63 49.28
SnapKV 11.05 98.00 53.23 47.52

Ada SnapKV 11.55 97.00 48.21 42.85
PyramidKV 9.22 93.75 56.77 56.93

DuoAttention 6.00 99.50 55.09 53.09
OracleKV 12.65 99.50 48.35 43.89

Ada OracleKV 12.15 99.50 50.23 46.10

StreamingLLM

10%

4.00 16.00 52.29 52.88
SnapKV 5.00 54.00 51.04 48.78

Ada SnapKV 7.00 56.00 46.36 44.92
PyramidKV 7.50 46.75 51.40 52.26

DuoAttention 6.00 50.00 55.09 53.09
OracleKV 11.10 79.50 38.73 43.05

Ada OracleKV 9.50 89.00 36.76 43.72

Mistral-7B-Instruct-v0.2

Full Cache 100% 2.81 74.17 51.25 50.74

StreamingLLM

40%

2.14 31.01 43.95 46.21
SnapKV 3.37 72.40 48.54 48.49

Ada SnapKV 3.23 67.87 48.41 48.35
PyramidKV 3.36 64.54 51.56 50.83

DuoAttention 2.08 10.54 45.24 47.28
OracleKV 3.41 71.02 46.66 47.14

Ada OracleKV 2.63 72.93 45.93 48.21

StreamingLLM

10%

3.64 10.20 46.05 47.29
SnapKV 3.16 42.77 49.31 50.06

Ada SnapKV 3.26 50.02 47.24 48.35
PyramidKV 4.41 38.83 48.81 50.73

DuoAttention 1.88 8.64 42.78 48.46
OracleKV 3.87 49.93 37.99 47.92

Ada OracleKV 3.97 61.20 38.44 47.28

Qwen2.5-7B-Instruct-1M

Full Cache 100% 8.50 99.00 63.14 59.08

StreamingLLM

40%

5.00 34.00 56.46 54.51
SnapKV 8.50 98.00 62.13 57.71

Ada SnapKV 9.00 99.00 59.83 55.30
PyramidKV 8.50 63.00 61.76 58.54
OracleKV 9.50 98.00 55.64 56.65

Ada OracleKV 8.00 98.00 54.31 56.25

StreamingLLM

10%

2.50 10.50 55.10 54.96
SnapKV 4.50 40.50 57.98 56.39

Ada SnapKV 4.50 36.50 55.61 53.42
PyramidKV 4.50 31.00 57.92 56.47
OracleKV 9.00 71.00 43.89 55.60

Ada OracleKV 8.00 75.00 42.59 54.68

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table A15: Detailed results of RULER (Hsieh et al., 2024) on Llama-3.1-8B-Instruct, including the
NIAH-Single and NIAH-MultiKey, both of which consists of three datasets.

Method Budget NIAH-Single NIAH-MultiKey
S-1 S-2 S-3 MK-1 MK-2 MK-3

LLaMA-3.1-8B-Instruct

Full Cache 100% 100.00 100.00 100.00 99.80 100.00 99.80

H2O

90%

84.00 74.20 34.60 97.40 100.00 91.40
StreamingLLM 92.60 91.60 91.40 89.00 93.60 92.20

SnapKV 99.20 100.00 21.00 99.60 98.20 83.80
PyramidKV 70.20 100.00 21.40 99.20 96.60 83.00

Ada SnapKV 100.00 100.00 65.00 99.80 100.00 99.00
OracleKV 100.00 100.00 100.00 99.80 91.20 76.20

H2O

75%

76.60 47.80 18.00 86.60 94.00 48.60
StreamingLLM 75.20 75.20 75.00 77.40 78.20 74.40

SnapKV 99.60 99.80 11.20 99.00 84.20 55.20
PyramidKV 71.00 100.00 11.20 98.60 84.20 51.00

Ada SnapKV 99.80 100.00 18.80 99.80 99.20 91.60
OracleKV 100.00 100.00 98.40 99.80 68.00 24.00

H2O

50%

46.20 23.60 11.40 51.00 46.40 15.20
StreamingLLM 50.20 50.00 55.40 55.60 49.80 48.80

SnapKV 95.40 95.20 5.60 85.40 53.60 20.60
PyramidKV 74.80 98.00 4.20 83.40 55.80 17.20

Ada SnapKV 99.00 98.60 7.60 88.80 82.80 47.40
OracleKV 100.00 100.00 49.80 99.80 26.60 2.00

H2O

40%

34.00 16.20 8.80 33.60 28.00 9.40
StreamingLLM 40.80 41.80 43.40 46.80 38.80 39.20

SnapKV 90.60 83.00 3.80 68.40 39.80 9.60
PyramidKV 72.60 92.20 3.60 71.00 41.40 10.20

Ada SnapKV 97.80 90.40 4.60 71.60 67.00 31.20
OracleKV 100.00 100.00 14.80 99.80 14.80 1.00

H2O

30%

21.80 6.80 6.80 17.80 16.60 5.00
StreamingLLM 30.20 34.00 36.60 39.20 29.20 27.60

SnapKV 82.60 65.60 2.80 43.80 22.80 4.40
PyramidKV 83.80 65.80 2.80 43.60 23.40 4.00

Ada SnapKV 95.40 70.60 2.60 44.60 44.20 14.00
OracleKV 100.00 100.00 3.00 99.80 7.40 0.00

H2O

20%

13.40 2.00 4.00 7.60 8.80 2.20
StreamingLLM 19.60 22.40 23.20 27.00 19.00 17.60

SnapKV 73.40 41.40 2.40 27.20 12.00 1.00
PyramidKV 72.80 41.80 2.40 27.40 12.20 1.00

Ada SnapKV 91.80 38.80 2.40 24.80 21.60 3.60
OracleKV 100.00 100.00 0.60 96.00 4.60 0.00

H2O

10%

5.40 1.20 2.40 3.60 3.60 0.40
StreamingLLM 10.40 15.40 15.60 17.60 9.00 7.00

SnapKV 56.20 13.40 2.40 17.40 6.20 0.40
PyramidKV 56.40 13.40 2.40 17.40 6.20 0.40

Ada SnapKV 70.20 11.40 2.40 17.00 7.80 0.60
OracleKV 100.00 100.00 0.00 77.80 3.00 0.00

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table A16: Detailed results of RULER (Hsieh et al., 2024) on LLama-3.1-8B-Instruct, including the
NIAH-MultiValue(MV), NIAH-MultiQuery(MQ), Varaiable Tracing(VT), Common Words Extrac-
tion(CWE), Frequent Words Extraction(FWE), Question Answering(QA-1, QA-2).

Method Budget MV MQ VT Word Extraction QA
CWE FWE QA-1 QA-2

LLaMA-3.1-8B-Instruct

Full Cache 100% 99.90 99.90 99.88 99.62 94.80 87.80 62.80

H2O

90%

96.15 96.55 98.68 99.64 94.60 87.60 61.60
StreamingLLM 87.90 89.05 100.00 99.70 95.40 87.00 59.00

SnapKV 98.80 99.60 97.80 99.56 94.80 87.20 61.40
PyramidKV 99.70 99.20 97.96 99.78 94.40 80.60 54.40

Ada SnapKV 99.90 99.85 99.92 99.70 94.67 87.20 62.40
OracleKV 99.90 99.90 99.92 99.48 94.73 85.00 62.20

H2O

75%

82.70 81.75 97.40 99.66 94.27 86.80 59.80
StreamingLLM 75.35 76.20 94.68 99.62 94.07 87.00 55.00

SnapKV 90.35 96.05 93.36 99.42 94.27 83.20 58.80
PyramidKV 97.85 98.20 93.52 99.58 93.47 78.20 53.00

Ada SnapKV 98.95 99.45 99.92 99.58 94.27 84.80 59.00
OracleKV 99.85 99.90 99.92 99.00 93.47 78.60 60.00

H2O

50%

43.85 43.55 91.12 99.66 93.87 86.80 56.20
StreamingLLM 53.40 53.60 72.40 53.38 91.60 87.40 49.60

SnapKV 72.65 75.75 82.16 98.38 92.33 75.60 52.00
PyramidKV 76.80 75.85 80.68 90.26 88.93 67.20 43.80

Ada SnapKV 78.60 85.60 96.68 99.28 94.73 77.20 52.80
OracleKV 99.90 99.70 99.64 95.54 89.87 58.00 52.40

H2O

40%

23.80 25.10 85.16 99.58 93.33 85.80 52.60
StreamingLLM 43.00 43.25 62.28 26.86 91.93 87.40 47.00

SnapKV 56.15 57.85 75.12 96.34 90.87 69.20 48.60
PyramidKV 56.30 54.85 72.88 82.18 85.67 68.80 44.80

Ada SnapKV 59.65 60.55 93.28 99.06 94.47 73.20 47.20
OracleKV 98.35 99.60 98.76 91.50 87.40 49.80 47.20

H2O

30%

9.90 11.45 73.84 98.70 92.13 85.00 47.60
StreamingLLM 35.55 36.40 49.28 13.50 92.60 88.00 41.80

SnapKV 32.00 34.40 65.32 90.80 87.47 60.60 40.80
PyramidKV 31.55 34.75 65.56 90.22 87.47 60.60 40.60

Ada SnapKV 28.20 29.60 86.64 97.78 93.33 64.60 43.60
OracleKV 96.60 98.70 96.20 80.68 83.67 41.40 44.80

H2O

20%

2.30 4.90 46.28 95.46 89.60 79.00 40.80
StreamingLLM 22.85 23.25 35.96 1.60 92.80 88.60 36.40

SnapKV 20.65 21.45 51.72 73.02 81.60 48.60 34.60
PyramidKV 20.05 21.50 52.28 72.92 81.87 48.40 34.60

Ada SnapKV 17.15 19.30 67.44 93.44 90.20 55.60 36.80
OracleKV 90.55 95.05 90.68 60.62 78.27 31.20 36.40

H2O

10%

0.30 2.45 18.28 78.28 77.93 68.40 32.00
StreamingLLM 15.15 15.25 19.12 0.44 87.60 74.60 29.80

SnapKV 15.05 16.05 30.44 16.08 67.80 32.20 24.80
PyramidKV 15.00 16.20 30.68 16.40 67.67 32.00 25.00

Ada SnapKV 14.90 16.25 34.60 44.54 78.87 35.60 27.20
OracleKV 72.65 76.35 69.00 30.70 65.20 19.20 27.60

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table A17: Detailed results of RULER (Hsieh et al., 2024) on Qwen2.5-7B-Instruct-1M, including
the NIAH-Single and NIAH-MultiKey, both of which consists of three datasets.

Method Budget NIAH-Single NIAH-MultiKey
S-1 S-2 S-3 MK-1 MK-2 MK-3

Qwen2.5-7B-Instruct-1M

Full Cache 100% 100.00 99.00 99.80 100.00 99.80 99.40

H2O

90%

39.00 98.00 13.80 86.80 80.40 84.00
StreamingLLM 32.00 96.40 9.60 77.00 73.20 70.80

SnapKV 92.00 86.40 88.60 89.00 92.40 89.60
PyramidKV 86.20 98.40 40.60 99.20 99.00 92.60

Ada SnapKV 18.00 9.60 0.20 25.40 30.40 1.20
OracleKV 100.00 98.80 96.40 99.80 22.40 44.20

H2O

75%

24.80 79.80 6.20 55.60 61.40 39.80
StreamingLLM 17.60 59.40 3.40 37.00 44.60 23.20

SnapKV 75.00 74.40 74.60 77.40 77.80 72.80
PyramidKV 66.80 96.40 11.40 81.20 90.20 54.60

Ada SnapKV 14.60 4.40 0.20 18.80 17.40 0.20
OracleKV 100.00 99.00 70.40 97.80 3.60 12.60

H2O

50%

15.00 38.40 2.80 25.20 29.40 8.80
StreamingLLM 9.40 11.80 2.40 13.40 10.40 1.40

SnapKV 49.40 49.40 55.20 55.20 49.60 48.60
PyramidKV 31.00 58.00 4.00 37.00 45.20 12.60

Ada SnapKV 10.20 1.80 0.00 8.00 6.20 0.00
OracleKV 100.00 99.20 12.20 87.00 1.40 2.60

H2O

40%

14.00 27.40 2.60 22.60 19.60 4.40
StreamingLLM 8.40 6.60 2.40 12.00 7.00 0.60

SnapKV 40.80 41.60 43.00 46.60 38.80 38.40
PyramidKV 22.00 41.00 2.80 25.40 29.60 6.20

Ada SnapKV 8.80 1.60 0.00 3.80 0.00 9.40
OracleKV 100.00 99.80 5.80 79.20 1.20 1.40

H2O

30%

11.80 18.40 2.40 17.20 13.80 1.60
StreamingLLM 12.00 18.40 2.40 17.40 4.40 1.60

SnapKV 30.20 33.60 36.20 39.00 29.00 26.40
PyramidKV 15.60 23.00 2.60 19.40 18.40 4.60

Ada SnapKV 6.00 1.20 0.00 4.60 2.60 0.00
OracleKV 100.00 99.80 0.60 65.20 1.00 0.00

H2O

20%

11.00 10.00 2.40 12.40 7.60 0.40
StreamingLLM 10.80 10.00 2.40 12.40 7.60 0.40

SnapKV 19.60 22.20 21.60 26.80 19.00 17.40
PyramidKV 12.40 11.20 2.40 13.60 10.20 1.00

Ada SnapKV 4.00 1.00 0.00 2.40 2.00 0.00
OracleKV 100.00 99.00 0.40 46.60 1.00 0.00

H2O

10%

8.40 3.20 2.40 10.40 2.40 0.00
StreamingLLM 8.40 3.20 2.40 10.40 2.40 0.00

SnapKV 10.40 15.40 13.00 16.20 9.00 7.00
PyramidKV 7.60 2.80 2.40 10.20 3.60 0.00

Ada SnapKV 1.40 0.60 0.00 1.00 0.60 0.00
OracleKV 99.40 89.00 0.00 25.20 0.60 0.00

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table A18: Detailed results of RULER (Hsieh et al., 2024) on Qwen2.5-7B-Instruct-1M, including
the NIAH-MultiValue(MV), NIAH-MultiQuery(MQ), Varaiable Tracing(VT), Common Words Ex-
traction(CWE), Frequent Words Extraction(FWE), Question Answering(QA-1, QA-2).

Method Budget MV MQ VT Word Extraction QA
CWE FWE QA-1 QA-2

Qwen2.5-7B-Instruct-1M

Full Cache 100% 99.30 99.60 99.92 95.24 85.87 85.80 60.40

H2O

90%

64.65 80.75 86.32 95.40 85.93 85.60 58.60
StreamingLLM 47.10 63.95 81.00 95.94 87.80 84.40 57.40

SnapKV 89.25 88.75 77.32 95.82 89.60 86.20 60.20
PyramidKV 91.00 96.70 98.60 95.06 85.93 85.60 58.60

Ada SnapKV 22.35 23.40 53.28 84.34 83.87 83.40 55.80
OracleKV 98.80 99.50 99.92 95.18 84.60 84.40 58.80

H2O

75%

32.90 45.85 66.76 94.98 86.33 82.80 58.20
StreamingLLM 20.40 27.10 57.96 95.20 87.20 80.20 52.80

SnapKV 75.75 75.95 78.36 94.12 88.60 86.20 55.20
PyramidKV 53.60 71.00 90.92 95.16 86.20 84.20 57.40

Ada SnapKV 14.80 16.20 49.84 83.28 83.73 82.20 53.80
OracleKV 96.60 98.25 99.92 94.40 82.27 77.60 55.40

H2O

50%

17.90 21.60 43.16 92.42 85.33 73.00 48.00
StreamingLLM 11.00 12.05 12.48 45.52 79.00 50.20 33.00

SnapKV 53.00 52.85 61.96 88.60 85.93 86.60 49.40
PyramidKV 21.95 30.40 61.24 93.70 85.67 75.80 50.80

Ada SnapKV 4.60 6.25 30.24 82.54 85.20 79.00 49.40
OracleKV 78.00 84.50 99.84 89.42 78.00 61.40 50.80

H2O

40%

14.70 17.65 39.72 89.28 84.00 68.40 46.60
StreamingLLM 10.05 10.80 10.32 42.86 77.33 64.20 36.00

SnapKV 42.70 43.10 52.12 87.62 85.93 87.40 47.00
PyramidKV 17.50 23.70 46.72 92.54 85.60 69.40 48.00

Ada SnapKV 2.70 4.50 21.56 81.34 84.07 79.20 46.20
OracleKV 68.60 74.45 99.32 84.04 76.27 55.40 48.20

H2O

30%

12.45 14.95 30.68 84.44 82.27 59.00 43.80
StreamingLLM 12.60 15.05 30.64 38.64 82.33 58.80 43.40

SnapKV 35.50 36.30 40.76 84.50 83.53 86.60 44.40
PyramidKV 13.60 16.35 32.72 88.86 84.67 61.20 43.60

Ada SnapKV 1.40 2.75 12.44 77.02 82.07 73.80 44.00
OracleKV 57.85 61.45 97.68 74.80 75.00 45.60 42.80

H2O

20%

11.25 12.65 22.44 73.58 80.33 52.00 37.00
StreamingLLM 11.25 12.60 22.08 73.80 80.40 52.20 37.20

SnapKV 22.65 23.10 29.04 80.10 83.87 87.60 37.20
PyramidKV 12.05 13.80 20.84 81.44 82.13 53.80 37.60

Ada SnapKV 0.70 1.85 9.04 69.70 77.60 72.40 40.20
OracleKV 43.10 44.75 91.56 56.32 69.40 36.60 39.00

H2O

10%

9.60 9.90 11.80 54.48 72.73 35.20 25.80
StreamingLLM 9.60 9.90 11.68 54.62 72.60 35.20 26.60

SnapKV 14.55 14.90 15.80 65.90 76.87 73.20 28.80
PyramidKV 9.55 9.90 11.52 62.22 76.93 36.20 27.60

Ada SnapKV 0.90 0.90 5.00 45.86 69.40 58.60 32.60
OracleKV 24.55 23.00 54.76 30.60 60.73 27.80 28.60

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 0
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 1
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 2
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A13: Attention distribution of first three layers in Common Words Extraction (CWE) task.

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 15
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 23
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 30
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A14: Attention distribution of layer 15, 23, 30 in Common Words Extraction (CWE) task.

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 0
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 1
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 2
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A15: Attention distribution of first three layers in multi-key needle in a haystack (NIAH) task.

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 15
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 23
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 30
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A16: Attention distribution of first layer 15, 23, 30 in multi-key needle in a haystack (NIAH)
task.

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 0
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 1
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 2
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A17: Attention distribution of first three layers in multi-query needle in a haystack (NIAH)
task.

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 15
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 23
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 30
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A18: Attention distribution of first layer 15, 23, 30 in multi-query needle in a haystack (NIAH)
task.

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 0
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 1
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 2
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A19: Attention distribution of first three layers in multi-value needle in a haystack (NIAH)
task.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 15
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 23
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 30
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A20: Attention distribution of first layer 15, 23, 30 in multi-value needle in a haystack (NIAH)
task.

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 0
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 1
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y
Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 2
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A21: Attention distribution of first three layers in single needle in a haystack (NIAH) task.

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 15
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 23
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 30
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A22: Attention distribution of first layer 15, 23, 30 in single needle in a haystack (NIAH) task.

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 0
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 1
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e
Attention Score Distribution Layer 2

Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A23: Attention distribution of first three layers in question-answering (QA) task.

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 15
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 23
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 30
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A24: Attention distribution of first layer 15, 23, 30 in question-answering (QA) task.

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 0
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 1
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 2
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A25: Attention distribution of first three layers in variable tracing (VT) task.

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 15
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 23
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

At
te

nt
io

n
Sc

or
e

Attention Score Distribution Layer 30
Kept w/ Pure Context
Kept w/ Question
Evicted
Answer Position

Token Index

Fr
eq

ue
nc

y

Kept w/ Pure Context
Kept w/ Question

Figure A26: Attention distribution of first layer 15, 23, 30 in variable tracing (VT) task.

37

	Introduction
	Related Work
	Preliminary
	OracleKV
	An Information Retaining Perspective of KV Cache Eviction
	Attention Manipulation via Data-level Intervention

	Experiment
	Accuracy Evaluation
	Efficiency Evaluation
	Ablation Study

	Conclusion
	Limitation and Broader Impact
	Use of LLMs
	Complete Assumptions/Proofs for Theoretical Results
	Implementation Details
	Dataset Configuration
	Examples of Oracle Guidance
	Details of Experimental Environment and Baseline

	Supplementary Accuracy Evaluation Results
	Supplementary Results for LongBench
	Supplementary Results for RULER
	Additional Comparison with More Advanced Methods

	Supplementary Efficiency Results
	Decoding Latency
	Efficiency-Accuracy Tradeoff with Guidance Length

	Supplementary Ablation Results
	Question-Dependent KV Cache Eviction Performance
	LLM as Oracle Guidance
	Futher Integration Analysis with Other Layer/Head-Level Methods
	More Discussion about Retaining vs. Evicting Guidance

	Supplementary Analysis
	Visualization of Attention Distribution
	Side Effects of OracleKV

	More Related Work
	KV Cache Eviction
	In-Context Learning

