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ABSTRACT

In recent years, there has been rapid development in 3D generation models, opening
up new possibilities for applications such as simulating the dynamic movements
of 3D objects and customizing their behaviors. However, current 3D generative
models tend to focus only on surface features such as color and shape, neglecting
the inherent physical properties that govern the behavior of objects in the real
world. To accurately simulate physics-aligned dynamics, it is essential to pre-
dict the physical properties of materials and incorporate them into the behavior
prediction process. Nonetheless, predicting the diverse materials of real-world
objects is still challenging due to the complex nature of their physical attributes. In
this paper, we propose Physics3D, a novel method for learning various physical
properties of 3D objects through a video diffusion model. Our approach involves
designing a highly generalizable physical simulation system based on a viscoelastic
material model, which enables us to simulate a wide range of materials with high-
fidelity capabilities. Moreover, we distill the physical priors from a video diffusion
model that contains more understanding of realistic object materials. Extensive
experiments demonstrate the effectiveness of our method with both elastic and
plastic materials. Physics3D shows great potential for bridging the gap between
the physical world and virtual neural space, providing a better integration and
application of realistic physical principles in virtual environments. Project page:
https://physics3d-3dgs.github.io

1 INTRODUCTION

In recent years, 3D computer vision has witnessed significant advancements, with researchers
focusing on reconstructing or generating 3D assets Mildenhall et al. (2021); Kerbl et al. (2023);
Tang et al. (2023); Poole et al. (2022); Hong et al. (2023); Li et al. (2024), and even delving into
the realm of 4D dynamics Ren et al. (2023); Ling et al. (2023). However, a common feature in
these works is the emphasis on color space, which can be difficult in modeling realistic interactive
dynamics without any physical priors, especially for applications in areas such as virtual/augmented
reality and animation. Physics simulation is one of the most crucial methods to achieve a deeper
understanding of the real world and enhance the effectiveness of interactive dynamics. Although
conventional methods Stewart (2000); Felippa (2004); Kilian & Ochsendorf (2005) describe behavior
using continuous physical dynamic equations based on body-fixed mesh, they are usually difficult
and time-consuming to generate complex 3D objects and suffer from highly nonlinear issues, large
deformations or fracture-prone physical phenomenaJiang et al. (2016).

Powered by recent advances in implicit and explicit 3D representation techniques (e.g., NeRF Milden-
hall et al. (2021) and 3D Gaussian Splatting Kerbl et al. (2023)), some researchers Xie et al. (2023);
Li et al. (2022) have attempted to bridge the gap between rendering and simulation using the differen-
tiable Material Point Method (MPM) Hu et al. (2018b), which enables efficient physical simulation
driven by 3D particles (i.e., 3D Gaussian kernels). PhysGaussian Xie et al. (2023) extends the
capabilities of 3D Gaussian kernels by incorporating physics-based attributes such as velocity, strain,
elastic energy, and stress. This unified representation of material substance facilitates both simulation
and rendering tasks. However, manual pre-design of physical parameters in PhysGaussian Xie et al.
(2023) remains a laborious and imprecise process, where objects are categorized into six material
types: jelly, metal, sand, foam, snow, and plasticine. Each category has distinct physical models and
parameters, making it inconvenient to manually classify objects and initialize parameters based on
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t
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Material Space

Video Diffusion Model

Figure 1: Physics3D is a unified simulation-rendering pipeline based on 3D Gaussians, which learn
physics dynamics from video diffusion model. The top row shows the dynamic effects in the 2D
RGB video space, which represents the starting of the SDS loss in the optimization process. The
bottom row shows the dynamic effects in the 3D Gaussian space, representing the final optimization
goal of SDS. Each 3D Gaussian, when rendered from a specific viewpoint, corresponds to a frame in
the 2D video. The different objects in the two rows are intended for visual contrast and clarity.

expert knowledge. To avoid manually setting parameters, PhysDreamer Zhang et al. (2024) leverages
object dynamics learned from video generation models Blattmann et al. (2023b); Wang et al. (2023)
to estimate a physical material parameter (i.e., Young’s modulus). However, in practical applications,
real-world objects often exhibit a complex composite nature, making it challenging for a simulation
approach that relies solely on a single physical parameter to fully capture their dynamic behavior.
This limits PhysDreamer to be primarily tailored for the simulation of hyper-elastic materials. Specif-
ically, it encounters significant challenges when dealing with materials such as plastics, metals, and
non-Newtonian fluids due to its heavy reliance on optimizing Young’s modulus alone. The inherent
complexities in these materials surpass the capabilities of PhysDreamer, highlighting the need for a
more comprehensive and robust approach that considers a broader range of physical properties for
accurate and effective simulation.

In this paper, we propose Physics3D, a generalizable physical simulation system to learn various
physical properties of 3D objects. Given a 3D Gaussian representation, we first expand the dimension
of the physical parameters to capture both elasticity and viscosity. Then we design a viscoelastic
Material Point Method (MPM) to simulate 3D dynamics. Through the simulation process, we
decompose the deformation gradient into two separate components and calculate them independently
to contribute to the overall force. Finally, leveraging the capabilities of the differentiable MPM, we
iteratively optimize both 3D Gaussian parameters and physical parameters via the Score Distillation
Sampling (SDS) Poole et al. (2022) strategy to distill physical priors from the video diffusion model.
Iterating the MPM process and SDS optimization, Physics3D achieves high-fidelity and realistic
performance in a wide range of materials. Extensive experiments demonstrate the efficacy and
superiority of our proposed Physics3D over existing methods. In summary, our key contributions are
as follows.

• We propose a novel generalizable physical simulation system called Physics3D, which is capable
of learning physical properties of diverse materials. We model physical properties with both
elastoplastic and viscoelastic parts and design a parallel simulation framework.

• We design a physics-driven distillation strategy to iteratively optimize both filling 3D Gaussians and
physical parameters, realising to generate realistic, physics-driven and controllable 3D dynamics
while maintaining the model’s generalization capability with limited 3D data.

• Experiments show Physics3D is effective in creating high-fidelity and realistic 3D dynamics, ready
for various interactions across users and objects in the future.

2 RELATED WORK

Dynamic 3D representations. Rapid advancements in static 3D representations have sparked interest
in incorporating temporal dynamics into the 3D modeling of dynamic objects and scenes. Various
explicit or hybrid representation techniques have demonstrated impressive outcomes, including planar
decomposition for 4D space-time grids Cao & Johnson (2023); Shao et al. (2023); Fridovich-Keil
et al. (2023), the utilization of NeRF representation Li et al. (2022); Pumarola et al. (2021); Gao et al.
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(2021), and alternative structural approaches Turki et al. (2023); Abou-Chakra et al. (2024); Fang et al.
(2022). Recently, 3D Gaussian Splatting Kerbl et al. (2023) has revolutionized the representation via
its outstanding rendering efficiency and high-quality results. Efforts have been made to extend static
3D Gaussians into dynamic versions, yielding promising results. Dynamic 3D Gaussians Luiten et al.
(2023) refine per-frame Gaussian Splatting through dynamic regularizations and shared properties
such as size, color, and opacity. Similarly, the concept of 4D Gaussian Splatting Wu et al. (2023);
Yang et al. (2023) employs a deformation network to anticipate time-dependent positional, scaling,
and rotational deformations. In addition, DreamGaussian4D Ren et al. (2023) learns motion from
image-conditioned generated videos Blattmann et al. (2023a), enabling more controllable and diverse
3D motion representations.

Viscoelastic materials. In the realm of computer graphics and animation, there has been significant
interest in accurately simulating the behavior of nonrigid objects and their interactions with physical
environments. Conventional elastic models Terzopoulos et al. (1987); Zong et al. (2023) predicated
on Hooke’s law Rychlewski (1984) are the cornerstone for simulating the deformation of objects.
These models are effective in representing materials that exhibit perfectly elastic behavior, returning
to their original shape after the applied force is removed. However, real-world materials often exhibit
more complex behaviors that cannot be captured by simple elastic models. The introduction of
viscoelastic materials in computer graphics Terzopoulos & Fleischer (1988) has expanded the range
of simulated material behaviors. Viscoelastic materials combine the characteristics of both viscous
fluids and elastic solids, leading to time-dependent deformations under constant stress, a phenomenon
known as creep Christensen (2003). Compared with elastic models, viscoelastic models offer a more
versatile framework for animating nonrigid objects. They can simulate the slow restoration of a
material’s shape after the cessation of force, as well as the permanent deformation that occurs due to
prolonged stress.

Video generation models. With the emergence of models like Sora Brooks et al. (2024), the field
of video generation Villegas et al. (2022); Wu et al. (2022); Bar-Tal et al. (2024); Blattmann et al.
(2023c) has drawn significant attention. These powerful video models Kondratyuk et al. (2023);
Singer et al. (2022); Ho et al. (2022); Hong et al. (2022) are typically trained on extensive datasets of
high-quality video content. Sora Brooks et al. (2024) is capable of producing minute-long videos with
realistic motions and consistent viewpoints. Furthermore, some large-scale video models, such as
Sora Brooks et al. (2024), can even support physically plausible effects. Inspired by these capabilities,
we aim to distill the physical principles observed in videos and apply them to our static 3D objects,
thereby achieving more realistic and physically accurate results. In our framework, we choose Stable
Video Diffusion Blattmann et al. (2023b) to optimize our physical properties.

3 PROBLEM FORMULATION

Given a static representation through 3D Gaussians, our goal is to estimate the physical attributes of
each Gaussian particle and generate physics-plausible motions by organizing the interaction of force
and velocity among these particles. For pure-elastic models, these physical properties include mass
(m), Young’s modulus (E), and Poisson’s ratio (ν). Young’s modulus and Poisson’s ratio control the
dynamics of elastic objects. For example, with a fixed amount of external force applied, the system’s
higher Young’s modulus will have smaller deformation.

However, only modeling the property of elastic objects is inadequate for recovering diverse physics
with heterogeneous materials in real-world applications, which significantly limits the recent work
like PhysDreamer Zhang et al. (2024). For example, they usually suffer from complex mixed
materials, especially in scenarios of rapid deformation where viscosity emerges as a significant factor
in dynamics. Therefore, our key insight is to build a more comprehensive physics model that includes
additional parameters, notably viscosity, to enrich the descriptive capacity for real-world objects,
especially in inelastic scenarios.

To model viscoelastic stresses with physical fidelity, we explore continuum mechanics, where Lamé
constants (also referred to as Lamé coefficients or parameters), denoted by λ and µ, emerge as
pertinent material-related quantities within the strain-stress relationship, while viscosity coefficient
νv and νd governs the viscous dynamics. Consequently, our framework pivots towards the estimation
of the viscosity coefficient (νv and νd) and the two Lamé parameters (λ, and µ). As for other physical
attributes, we align with the conventional methods Zhang et al. (2024); Xie et al. (2023), where the
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Plasiticity

Equilibrium elasticity

Viscous deformation

Non-equilibrated elasticity

Video Diffusion
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3D Gaussian Sequence
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MPM

Score Distillation Sampling 

Loss

3D Gaussians
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Figure 2: Pipeline of Physics3D. Given an object represented as 3D Gaussians, We first simulate
it using the Material Point Method (MPM). The simulation comprises two distinct components: an
elastoplastic part and a viscoelastic part. These components operate independently to calculate the
individual stresses within the object and are combined to determine the overall stress. After the
simulation, a series of Gaussians with varying orientations are generated, reflecting the dynamic
evolution of the scene. Then, we render these Gaussians from a fixed viewpoint to produce a sequence
of video frames. Finally, we utilize a pretrained video diffusion model with Score Distillation
Sampling (SDS) strategy to iteratively optimize physical parameters.

particle mass (mp) is pre-calculated as the product of a constant density (ρ) and the particle volume
(Vp), and Poisson’s ratio (ν) is constant across the object. For detailed explanation and clarified
summary of notations, please refer to Appendix C.1.

4 METHOD

In this section, we introduce our method, i.e., Physics3D, for learning the dynamics of multi-material
3D systems with physical alignment. Our goal is to estimate the various physical properties of 3D
objects. Building upon this, we first review the theory of three foundational techniques (Sec. 4.1)
that form the backbone of our algorithm. Then we introduce our physical modeling framework
and describe our particle-based simulation process (Sec. 4.2). Finally, we present the physical-
based distillation strategy (Sec. 4.3) to iteratively optimize both filling 3D Gaussians and physical
parameters with the video diffusion model. An overview of our framework is depicted in Figure 2.

4.1 PRELIMINARY

� = �(�)

��

�� ��

elastoplastic part

viscoelastic part

��

Material 
Space �

World 
Space �

��

�� ��

��

Figure 3: Elastoplastic and vis-
coelastic decomposition.

Continuum Mechanics describes motions by a deformation
map x = ϕ(X, t) from the material space Ω0 (with coordinate
X ) to the world space Ωn (with coordinate x). The defor-
mation gradient F = ∂ϕ

∂X (X, t) measures local rotation and
strain Bonet & Wood (1997). We consider viscoelastic ma-
terials where we have two components Govindjee & Reese
(1997), the elastoplastic component FEFP and the viscoelastic
component FNFV. They are in parallel combination shown in
Figure 3, and formulated as:

F = FEFP = FNFV. (1)
Intuitively, we model our material with two different compounds in parallel connection as they deform
in the same way thus having the same total strain. However, only the elastic components FE and
FN contributes to the internal stress σE and σN . We can now evolve the system with dynamical
equations. Denoting the velocity field with v(x, t) and density field with ρ(x, t), the conservation of
momentum and conservation of mass Germain (1998) is given by:

ρ
Dv

Dt
= ∇ · σ + f ,

Dρ

Dt
+ ρ∇ · v = 0, (2)
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where f denotes an external force, σ = σE + σN is the total internal stress. We will also need to
update the strain tensor after updating the material point.

Material Point Method (MPM) Sulsky et al. (1995); Jiang et al. (2016); Hu et al. (2018b) discretizes
the material into deformable particles and employs particles to monitor the complete history of strain
and stress states while relying on a background grid for precisely evaluating derivatives during force
computations. This methodology has demonstrated its efficacy in simulating diverse materials Jiang
et al. (2015); Klár et al. (2016); Stomakhin et al. (2013) and is proved to be capable of simulating
some viscoelastic and viscoplastic materials Ram et al. (2015); Yue et al. (2015). MPM operates in a
particle-to-grid (P2G) and grid-to-particle (G2P) transfer loop. In P2G process, MPM transfers mass
and momentum from particles to grids:

mn
i =

∑
p

wn
ipmp, mn

i v
n
i =

∑
p

wn
ipmp(v

n
p + Cn

p (xi − xn
p)), (3)

Here i and p represent the fields on the Eulerian grid and the Lagrangian particles respectively.
Each particle p carries a set of properties including volume Vp, mass mp, position xn

p, velocity vn
p,

deformation gradient Fn
p and affine momentum Cn

p at time tn. wn
ip is the B-spline kernel defined on

i-th grid evaluated at xn
p. After P2G, the transferred grids can be updated as:

vn+1
i = vn

i − ∆t

mi

∑
p

τnp ∇wn
ipV

0
p +∆tg, (4)

here g represents the acceleration due to gravity. Then G2P transfers velocities back to particles and
updates particle states τ (i.e., Kirchhoff tensor).

τn+1
p = τ (Fn+1

E ,Fn+1
N ), (5)

where Fn+1
E and Fn+1

E are two parts of strain tensor. We will provide a detailed introduction in
Sec. 4.2. In this work, we integrate the physical properties of viscoelastic materials into the Material
Point Method, thereby enhancing the generalization capabilities of MPM. This implementation
enables the simulation for a wide range of materials commonly found in the real world, including
various inelastic materials. We refer to the Appendix for more details.

Score Distillation Sampling (SDS) is first introduced by DreamFusion Poole et al. (2022), which
distills the 3D knowledge from large 2D pretrain model Saharia et al. (2022). For a set of particles
parameterized by physical properties θ, its rendering x can be obtained by x = g(θ) where g is a
differentiable renderer. SDS calculates the gradients of physical parameters θ by,

∇θLSDS(ϕ,x = g(θ)) = Et,ϵ

[
w(t)(ϵϕ(xt; y, t)− ϵ)

∂xt

∂x

∂x

∂θ

]
, (6)

where w(t) is a weighting function that depends on the timestep t and y denotes the given condition.
ϵθ(xt, t) is autoencoder in diffusion model to estimate the origin distribution of the given noise xt.

4.2 PHYSICAL MODELING

Our goal is to generate 3D dynamics for diverse materials, especially inelastic materials and composite
materials with more complex motion modeling. An intuitive solution is to capture these viscous
effects by directly adding a viscosity part following the current elastic pipeline as PhysDreamer Zhang
et al. (2024). However, such a simple series connection of components is prone to coupling of the two
dissipative behaviors (elastoplastic and viscoelastic), which increases the complexity of the model
simulation and disrupts the original elastic properties of the model.

In our paper, we instead design a novel parallel framework to avoid the coupling issue. We decompose
the material space into elastoplastic and an additional viscoelastic part, aiming to unify the simulation
of a wide range of materials. It showcases the flexibility of this framework, and by adding more
blocks into both the static and dynamical modeling, it can be expected to be widely useful for
more complicated scenes. To simulate the physical process with Gaussian particles, we employ a
particle-based method MLS-MPM Hu et al. (2018a) as our simulator, and we formalize the simulation
process for a single sub-step as follows:

5
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xn+1,vn+1,Fn+1, Cn+1 = S(xn,vn,Fn, Cn, θ,∆t), (7)

Here, θ contains the physical properties of all particles: mass mi, Young’s modulus Ei, Poisson’s
ratio νi, Lamé coefficients λ, µ, viscosity coefficient νNi and volume Vi. ∆t denotes the simulation
step size. Within the MPM simulation, stress, as depicted in Equation 1, can be divided into two
components: one representing elastoplasticity, denoted as FE, and the other referring to viscoelasticity,
denoted as FN. The two parallel parts are also illustrated in Figure 2, consisting of a parallel
combination: (a) an elastic part with a frictional element for plasticity and; (b) a viscous part which is
assumed to capture the dissipation with a elastic part. Now, we elaborate on the computation for each
component individually.

Model for elastoplastic part. We first explain how to compute the internal stress σE through FE,
which is essential in updating kinematical variables like velocities v through Eq. 2, for the elastic
part. We will speak out the rule here but postpone explanations and intuitions in Appendix C.4. As
we demonstrate in Sec. 4.1 and Appendix C.3, one can compute the Cauchy stress tensor given the
energy function. In this work, we choose the fixed corotated constitutive model for the elastic part,
whose energy function is

ψ(FE) = ψ(ΣE) = µE

∑
i

(σE,i − 1)2 +
λE
2
(det(FE)− 1)2, (8)

where ΣE is the diagonal singular value matrix FE = UΣEVT. And σE,i are singular values of
FE. From this energy function, we can compute the Cauchy stress tensor as:

σE =
2µ

det(FE)
(FE −R)FT

E + λE(det(FE)− 1), (9)

where R = UVT. We now explain how to update the Fn
E with the velocity field vn at nth step. For

purely elastic case, this can be simply done via:

Fn+1
E = (I+∆t∇vn)Fn, (10)

where ∆t is the length of the time segment in the MPM method. This formula represents the fact that
the internal velocity field causes a change in strains.

For the plastic part of the branch, we constraint the singular value of FE to sit between [1−θc, 1+θs],
where θc and θs are learnable parameters quantifying the plasticity. More precisely, in the simulation
algorithm, at n-th step, Fn = Fn

EF
n
P. We then compute the internal stress σ(Fn

E) and update Fn to
Fn+1 with MPM method. Please refer to the Appendix C.4 for more details.

Model for viscoelastic part. We now explain the other branch of our model: the viscoelastic part.
The total strain now consist of two parts F = FNFV. There are two key features of this brunch.
First, only the FN contributes to the internal stress. Secondly, FV only plays a role in the update
rule of FN. For the first step, we know have a relation between internal stress σN (or equivalently
Kirchoff tensor τN = det(FN)σN ):

τN = 2µN ϵN + λN tr(ϵN )I (11)

where we denote τN as a vector of singular value of τN , in another word τN = Udiag(τN )V T .
And ϵN , called log principle Kirchoff tensor, denotes a vector takes the diagonal element of log ΣN ,
where ΣN as the diagonal singular value matrix FN = UΣNV

T . We can again update kinemetical
variables afterward. The second step is we need to modify the update rule for FN tensor. This boils
down to a trial-and-correction procedure where we first update

Fn
N,tr = (I+∆t∇vn)Fn

N, (12)

then we modify the trial strain tensor Fn
N,tr by

ϵn+1
N = A(ϵnN,tr −Btr(ϵnN,tr) · 1) (13)

where ϵn+1
N denotes the log principle Kirchoff tensor of Fn+1

N . A and B are functions of viscocity
parameters νd and νe. Please refer to Appendix C.4 for more detailed intuitions and explanations.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.3 PHYSICS-DRIVEN DISTILLATION

Through iterations of the Material Point Method (MPM), we obtain a set of Gaussians evolving over
time t. The general practice is that in order to optimize physical properties for each 3D Gaussian, we
need high-quality 3D Gaussian models and corresponding motion ground truth. This ground truth
could come from various sources, such as single-view or multi-view real-captured videos, 4D videos,
or ideally, detailed 3D models with comprehensive physical property labels.

However, acquiring such datasets is currently challenging. Inspired by former works like Zhang
et al. (2024); Ren et al. (2023) which learn 3D dynamics from 2D videos, we intend to create 3D
dynamics that appear as realistic videos when given different initial external forces and rendered
from random angles. Such 3D dynamics can be specified as a differentiable video parameterization,
where a differentiable generator g (here indicates MPM processor and following Gaussian rasterizer)
transforms both physical parameters and Gaussian parameters θ to create a video x = g(θ). Therefore,
we extend the score distillation sampling (SDS) to iteratively optimize both 3D Gaussian parameters
and physical parameters from the video diffusion model. To ensure consistency, the camera remains
stationary as we capture and render each Gaussian to produce a reference image Irt . To supervise and
optimize this process, we employ two optional models: image-to-video and text-to-video diffusion
models. Then, we use SDS loss to guide our optimization process:

∇θLSDS = Et,p,ϵ

[
w(t)(ϵϕ(I

p
t ; t, I

r
t ,∆p, y)− ϵ)

∂Ipt
∂θ

]
. (14)

Here, w(t) represents a time-dependent weighting function, ϵϕ(·) denotes the predicted noise gener-
ated by the 2D diffusion prior ϕ, Ipt represents a rendered video frame of diffusion timestep t from
a camera pose p, ∆p signifies the relative change in camera pose from the reference camera r, and
y denotes the given condition (i.e., image or text). Furthermore, we adopt a partial filling strategy
like Xie et al. (2023), where internal volumes of select solid objects are optionally filled to augment
simulation realisticity. For better rendering quality, we optimize the filled Gaussian along with the
SDS process. The optimization objective for filled Gaussians is defined as:

LFill =
1

T

T∑
t=1

λ||Ipt − Irt ||22. (15)

For more details about the learnable internal filling strategy, please refer to Appendix C.5.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate our Physics3D and show the comparison
results against other methods Xie et al. (2023); Zhang et al. (2024); Ren et al. (2023). We first present
our qualitative results and comparisons with baselines (Sec. 5.2). Then we report the quantitative
results along with a user study (Sec. 5.3). Finally, we carry out more open settings and ablation
studies to further verify the efficacy of our framework design (Sec. 5.4). Please refer to the Appendix
for more visualizations and detailed analysis.

5.1 EXPERIMENT SETUP

Datasets. We evaluate our method for generating diverse dynamics using several sources of input.
We choose four real-world static scenes from PhysDreamer Zhang et al. (2024) for fair comparison.
Each scene includes an object and a background. The objects include a carnation, an alocasia plant,
a telephone cord, and a beanie hat. We also employed NeRF datasets Mildenhall et al. (2021) to
evaluate the efficacy of our proposed model. Additionally, we utilize BlenderNeRF Raafat (2023) to
synthesize several scenes. For more dataset details, please refer to Append A.2.

Implementation Details. In our implementation, we initiate the process by reconstructing 3D
Gaussians from multi-view images, establishing a foundational representation of the scene. In
complex realistic cases, we undertake a segmentation step to differentiate between the background
and foreground elements, focusing solely on the latter for subsequent simulation tasks. Prior to

7
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Physics-based DynamicsStatic

Figure 4: Visual results of Physics3D on different subjects with an external force (red arrow).
Physics3D is able to generate realistic scene movement while maintaining good motion consistency.

simulation, we execute internal particle filling operations to refine the representation further. Each
Gaussian kernel is then associated with a distinct set of physical properties targeted for optimization,
facilitating the fine-tuning process. Subsequently, we discretize the foreground region into a grid
structure, typically set at dimensions of 503. As for the MPM simulation, we employ 400 sub-steps
within each temporal interval spanning successive video frames. This temporal granularity translates
to a sub-step duration of 1e− 4 second, ensuring precision and accuracy in the simulation dynamics.
Notably, the optimization process for each object requires approximately 5 minutes to complete on a
single NVIDIA A6000 (48GB) GPU.

Baselines and Metrics. We extensively compare our method with three baselines: Phys-
Dreamer Zhang et al. (2024), PhysGaussian Xie et al. (2023) and DreamGaussian4D Ren et al.
(2023). Following Zhang et al. (2024), we show our results with notable comparisons with space-time
slices. For metrics, we evaluate our approach with the video-quality metrics : PSNR, SSIM, MS-
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PhysDreamerObject Real video PhysGaussian DreamGaussian4DOurs

Figure 5: Comparison results on different subjects. From the visual results, we observe that
PhysDreamer Zhang et al. (2024) only estimates the elastic properties of objects, resulting in the lack
of damping. DreamGaussian4D Ren et al. (2023) and PhysGaussian Xie et al. (2023) are respectively
limited in unrealistically constant, low-magnitude periodic motion and low-frequency movements. In
contrast, our model successfully balances high and low-frequency oscillations with more realistic
damping.

SSIM, and VMAF on the rendered videos. Currently, there is a lack of comprehensive 3D dynamic
evaluation metrics. PSNR, SSIM and MS-SSIM Free Software Foundation, Inc. (1991) are used to
evaluate the quality of generated frames, while video-specific metrics (VMAF Netflix, Inc. (2020))
are employed to assess the dynamic effects of the generated sequences.

5.2 QUALITATIVE RESULTS

Figure 4 shows qualitative results of simulated interactive motion. For each case, we visualize
one example with its initial scene and deformation sequence. The results demonstrate our model’s
capability of simulating the movement of complex textured objects, presenting a realistic and
physically plausible outcome. Additional experiments are included in the Appendix B.1. Please visit
our project page: https://physics3d-3dgs.github.io for more dynamic visual results.

Following PhysDreamer Zhang et al. (2024), we compare our results with real captured videos and
simulations from other methods Zhang et al. (2024); Xie et al. (2023); Ren et al. (2023) in Figure 5.
We utilize space-time slices to present our comparisons. These slices depict time along the vertical
axis and spatial slices of the object along the horizontal axis, as indicated by the red lines in the
"object" column. Through these visualizations, we aim to elucidate the magnitude and frequencies
of the oscillating motions under scrutiny. PhysDreamer Zhang et al. (2024) closely approximates
the elastic properties of objects, resulting in periodic oscillations with subtle damping, contrasting
the unrealistic aspects. PhysGaussian Xie et al. (2023) showcases unrealistically low-frequency
movements due to inaccurate parameter settings. DreamGaussian4D Ren et al. (2023) lacks physical
prior and generates unrealistically constant, low-magnitude periodic motion. In contrast, our model
successfully balances high and low-frequency oscillations with more realistic damping, aligning more
closely with the behavior of objects in the real world.

5.3 QUANTITATIVE RESULTS Table 1: Quantitative comparisons on rendered videos
using different video-quality metrics.

PSNR↑ SSIM↑ MS-SSIM↑ VMAF↑
PhysDreamer Zhang et al. (2024) 13.89 0.55 0.37 0.52
PhysGaussian Xie et al. (2023) 13.86 0.57 0.39 0.59
Ours 14.72 0.59 0.49 0.59
- w/o viscoelastic part 14.13 0.53 0.36 0.52
- w/o elastoplastic part 13.53 0.55 0.41 0.50

Table 1 shows the average video-
quality metrics over rendered videos
from the same fixed perspective. Re-
sults clearly demonstrate higher scores
for Physics3D, indicating better video
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quality and motion consistency of our
results. We also conduct numerous user experiments in Appendix B.3.

5.4 ABLATION STUDY

We conduct ablation study in Figure 6 to evaluate the efficacy of our physics modeling. Specifically,
we investigate the importance of elastoplastic and viscoelastic components from the model architec-
ture. We observe that removing either of the modules leads to a notable degradation in the realism of
the physical simulations. Particularly, the absence of the elastoplastic component results in a lack
of elasticity, making objects more susceptible to shape deformation and fluid-like behavior. On the
other hand, the absence of the viscoelastic component leads to a deficiency in sustained damping and
rebound effects, especially in scenarios with minimal external disturbances where energy dissipation
occurs rapidly. These show the significance of both components of our model in capturing the
dynamics of physical objects. Please refer to our Appendix B.2 for more ablations.

w/o viscoelastic part

w/o elastoplastic part

“a ball is falling down”

Full model

Figure 6: Ablation study on elastoplastic and viscoelastic parts of our model.

6 CONCLUSION

In this paper, we present Physics3D, a novel framework to learn various physical properties of
3D objects from video diffusion model. Our method tackles the challenge of estimating diverse
material properties by incorporating two key components: elastoplastic and viscoelastic modules.
The elastoplastic component facilitates simulations of pure elasticity, while the viscoelastic module
introduces damping effects, crucial for capturing the behavior of materials exhibiting both elasticity
and viscosity. Furthermore, we leverage a video generation model to distill inherent physical priors,
improving our understanding of realistic material characteristics. Extensive experiments show
Physics3D is effective in creating high-fidelity and realistic 3D dynamics.

Limitations and Future Work. In complex environments with a lot of entangled objects, our method
requires manual intervention to assign the scope of movable objects and define the filling ranges for
objects, which is not efficient for more real applications. In the future, we aim to utilize the prior of
large segmentation models to solve the problem with more comprehensive physics system modeling.
We believe that Physics3D takes a significant step to open up a wide range of applications from
realistic simulations to interactive virtual experiences and will inspire more works in the future.
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APPENDIX

A ADDITIONAL IMPLEMENTATION DETAILS

A.1 TRAINING DETAILS.

During the iterative optimization process, we use a specific video diffusion model in our experiment.
For the image-to-video model, we utilize Stable Video Diffusion Blattmann et al. (2023b) that learns
rich 2D diffusion prior from large real-world data. For a text-to-video diffusion model, we use a
diffusion-based model text-to-video-ms-1.7b Wang et al. (2023), which augments the UNet structure
with a cross-attention mechanism, which is an effective approach to condition the visual content
on texts Huang et al. (2023). Following the text-to-video model, we use the text embedding of the
prompt in the spatial attention block as the key and value in the multi-head attention layer. This
enables the intermediate UNet features to aggregate text features seamlessly, thereby facilitating
an alignment of language and vision embeddings. To ensure a great alignment between language
and vision, the text encoder from pre-trained CLIP ViT-H/14 is used to convert the prompt into text
embedding. In our experiment, we use text descriptions of object motion as conditional inputs instead
of reference images. For example, in Figure 4, the top row uses a text prompt "a ficus swaying in the
wind" to generate the video sequence.

In our experiment, we give external force to different objects. For synthetic data, we use a uniform,
randomly initialized force for each method. For real-world data in PhysDreamer Zhang et al. (2024),
due to the absence of explicit initial external forces and for fair comparisons with PhysDreamer, we
choose to estimate an initial force based on the initial velocity field predicted by PhysDreamer. This
force is manually tested to perform equally to the motion with the initial velocity field in PhysDreamer.
Then we apply the estimated initial force across all baselines in real-world data.

For the representation of the physical parameters to be learned, We do not utilize the tri-plane Chan
et al. (2022) approach which is employed in PhysDreamer Zhang et al. (2024). The tri-plane method,
while useful, involves a degree of data compression that can compromise the quality of the material
representation. Instead, we assign specific physical parameters to each Gaussian kernel directly
because of our pursuit of higher fidelity in modeling.

A.2 DATASET DETAILS

For real-world data, we are leveraging the data in Figure 4 from PhysDreamer Zhang et al. (2024)
(carnation, alocasia, hat, telephone cord), which is indeed sourced from real-world scenarios. Due
to the limited availability of 3D data and its complexities, following the approach of PhysDreamer
allows us to verify the effectiveness of Physics3D on real-world data. Our work in this area continues
to need more comprehensive 3D datasets, whether synthetic or real.

For a fair comparison with PhysDreamer Zhang et al. (2024) and others, we use the ground truth
videos captured from Physdreamer to compute the reconstruction metrics. Since synthetic 3D data
lacks dynamic ground truth, we use it simply for qualitative visual results. We also conduct a user
study to further demonstrate the overall quality and the alignment with real-world physics in our
simulation, which can be found in Figure 9.

B MORE RESULTS

To further demonstrate the effectiveness and impressive visualization results of our Physics3D, we
conducted more experiments including additional visual results and user study.

B.1 ADDITIONAL VISUAL RESULTS

Figure 7 shows additional visual results of interactive video sequences. We use BlenderNeRF Raafat
(2023) to synthesize the cases below. For each case, We apply external forces of different directions
and magnitudes to static objects and render video frames to show their motion states.
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For more complex scenes, we have done more experiments on complex synthetic data such as
collisions or fluid dynamics. Please refer to Figure 8, 9 for visual results of complex synthetic data.
We are also planning to construct more complex real-world dynamic scenes using the segmentation
method to separate objects and their movements, thereby enabling a more detailed analysis of dynamic
behaviors. While the scarcity of diverse and high-quality 3D data poses remains challenging, we are
making efforts to expand our dataset and refine our methodology. We are still committed to advancing
our research by incorporating more complex synthetic and real-world data.

Physics-based DynamicsStatic

Figure 7: More visual results on different objects. Notice ours can simulate a variety of non-elastic
and composite materials, including rubber, fluffy bread, fabric etc.

B.2 ADDITIONAL ABLATION STUDY

We carry out additional ablation analyses on the Physics3D design in Figure 6 to assess the efficacy
of our physics modeling process. Specifically, we investigate the impact of removing the elastoplastic
and viscoelastic components from the model architecture. The findings highlight that the removal
of either of these modules leads to a notable decrease in the realisticity of the physical simulations.
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Liquid

Metal

Non-Newtonian

Figure 8: More visual results of various materials such as liquid, non-Newtonian fluids and metal
(a coke can is pressed).

Figure 9: Variety of dynamic interactions such as car collision.

Particularly, the absence of the elastoplastic component results in a lack of elasticity, thereby making
objects more susceptible to shape deformation and fluid-like behavior. On the other hand, the
absence of the viscoelastic component leads to a deficiency in sustained damping and rebound effects,
especially in scenarios with minimal external disturbances where energy dissipation occurs rapidly.
These outcomes underscore the significance of both components of our model in capturing the
dynamics of physical objects.

We also conduct an ablation study on the internal filling strategy shown in Figure 10. Notice that
without internal filling, the hollow part of the cake is prone to collapse in the simulation process, but
with internal filling, the object’s deformation under external force is more realistic and smooth. For
static and learnable internal filling, we can find that learnable internal filling can significantly reduce
noise and artifacts introduced by initialization errors of internal Gaussian particles compared to static
internal filling in Figure 11.

“a pastry is flatten”

w/o internal filling

w internal filling

Figure 10: Ablation study on internal filling.
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Static internal filling

Learnable internal filling

Figure 11: Comparison on static and learning internal filling. Top row: static filling strategy
encounters challenges in dynamic situations, such as tearing a bread, where blur internal regions are
exposed to the outside. Bottom row: learnable internal filling with iterative optimization strategy of
SDS ensures thorough optimization and stability.

B.3 USER STUDY

For user study, we show each volunteer with five samples of rendered video from a random method
(PhysDreamer Zhang et al. (2024), PhysGaussian Xie et al. (2023), DreamGaussian4D Ren et al.
(2023), and ours) and real-captured videos. The study engaged 30 volunteers to assess the generated
results in 20 rounds. In each round, they were asked to select the video they preferred the most,
based on quality, realisticity, alignment with input 3D object, and fluency. We find our method is
significantly preferred by users over these aspects.

Table 2: Quantitative comparison results of PhysGaussian Xie et al. (2023), PhysDreamer Zhang
et al. (2024) and our Physics3D on the action coherence, motion realism, and overall quality score in
a user study, rated on a range of 1-10, with higher scores indicating better performance.

Method Action Coherence Motion Realism Overall Quality

PhysGaussian Xie et al. (2023) 7.82 6.89 6.93
PhysDreamer Zhang et al. (2024) 8.76 7.73 7.89
Physics3D (Ours) 8.95 8.57 9.05

C MORE ANALYSIS

C.1 PROBLEM FORMULATION AND NOTATION

In modeling viscoelastic stresses with physical fidelity, λ and µ are respectively denoted as Lamé’s
first and second parameters. Their significance varies in different contexts. For example, in fluid
dynamics, µ is related to the dynamic viscosity of fluids while in elastic environments, Lamé
parameters λ and µ intertwine with Young’s modulus (E) and Poisson’s ratio (ν) via a specific
relationship. On the other hand, the viscosity coefficient corrects the elastic strain-stress relation
by dynamically controlling the relation to account for viscosity. With a closer look at the viscosity
coefficient νv and νd, it serves as a viscous damper to exert resistance against rapid deformation, thus
enhancing the model’s fidelity in capturing viscoelasticity. We also summarize the main physical
parameters needed in the simulation process in Table 3.

C.2 MATERIAL POINT METHOD (MPM) ALGORITHM

The Material Point Method (MPM) simulates the behavior of materials by discretizing a continuum
body into particles and updating their properties over time. Here’s an additional summary of the
MPM algorithm:
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Table 3: Material Parameters.

Notation Meaning Value

m Mass of the Gaussian particle. /

E Young’s Modulus: Controls the dynamics of elastic objects;
higher E results in smaller deformation under a fixed external
force.

Learnable parameter

ν Poisson’s Ratio: Determines the relationship between lateral
strain and longitudinal strain in elastic materials.

/

λE Lamé’s First Parameter: Relevant in continuum mechanics for
stress-strain relationships in elastoplastic part.

λE = Eν
(1+ν)(1−2ν)

µE Lamé’s Second Parameter (Shear Modulus): Related to elastic
materials in elastoplastic part.

µE = E
2(1+ν)

νd Dynamic Viscosity Coefficient: Serves as a viscous damper
exerting resistance against rapid deformation.

Learnable parameter

νv Kinematic Viscosity Coefficient: Governs the dynamic aspect
of viscosity in the model for the viscoelastic part.

Learnable parameter

µN Lamé’s First Parameter: Relevant in continuum mechanics
for stress-strain relationships in viscoelastic part. In fluid
dynamics, related to dynamic viscosity.

Learnable parameter

λN Lamé’s Second Parameter (Shear Modulus): Related to elastic
materials in viscoelastic part.

Learnable parameter

Particle to Grid Transfer. Mass and momentum are transferred from particles to grid nodes. This
step involves distributing the particle properties (mass and velocity) to nearby grid points.

mn
i =

∑
p

wn
ipmp,

mn
i v

n
i =

∑
p

wn
ipmp(v

n
p +Cn

p (xi − xn
p)).

Grid Update. Grid velocities are updated based on external forces and the forces from neighboring
particles. This step moves the grid points according to the applied forces.

vn+1
i = vn

i − ∆t

mi

∑
p

τn
p ∇wn

ipV
0
p +∆tg.

Grid to Particle Transfer. Velocities are transferred back to particles, and particle states are updated.
This step brings the changes in grid velocities back to the particles.

vn+1
p =

∑
i

vn+1
i wn

ip,

xn+1
p = xn

p +∆tvn+1
p ,

Cn+1
p =

12

∆x2(b+ 1)

∑
i

wn
ipv

n+1
i

(
xn
i − xn

p

)T
,

∇vn+1
p =

∑
i

vn+1
i ∇wn

ip
T ,

τn+1
p = τ (Fn+1

E ,Fn+1
N ),

Here b is the B-spline degree, and ∆x is the Eulerian grid spacing. We extensively demonstrate how
to update FE, FN and τ in Appendix C.3.
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C.3 DYNAMIC 3D GENERATION.

Dynamic 3D generation aims to synthesize the dynamic behavior of 3D objects or scenes in the
process of generating three-dimensional representations. Unlike static 3D generation methods Liu
et al. (2023); Hong et al. (2023); Wang et al. (2024); Liu et al. (2024) that solely focus on the spatial
morphology of objects, the field of 3D dynamics imposes a higher requirement, necessitating the
incorporation of information from all three spatial dimensions as well as the temporal dimension.
As advancements in 3D representation techniques continue to emerge, certain parameterizable 3D
representations have empowered us to inject dynamic information into 3D models Li et al. (2022);
Kratimenos et al. (2023). One popular approach Newcombe et al. (2015); Ren et al. (2023) integrates
three essential components:

Gaussian Splatting Kerbl et al. (2023) represents 3D information with a set of 3D Gaussian
kernels. Each Gaussian can be described with a center x ∈ R3, a scaling factor s ∈ R3, and a
rotation quaternion q ∈ R4. Additionally, an opacity value α ∈ R and a color feature c ∈ R3 are for
volumetric rendering. These parameters can be collectively denoted by θ, with θi = {xi, si, qi, αi, ci}
representing the parameters for the i-th Gaussian. The volume rendering color C of each pixel is
computed by blending N ordered points overlapping the pixel:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj). (16)

Diffusion Model Ho et al. (2020); Nichol & Dhariwal (2021) is usually pre-trained on large 2D
datasets to provide a foundational motion prior for dynamic 3D generation. These models, charac-
terized by their probabilistic nature, are tailored to acquire knowledge of the data distribution p(x0)
through a step-by-step denoising process applied to a normally distributed variable. Throughout
the training phase, the data distribution is perturbed towards an isotropic Gaussian distribution over
T timesteps, guided by a predefined noising schedule αt ∈ (0, 1), where αt =

∑t
s=1 αs and t

uniformly sampled from 1, ..., T :

zt =
√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I). (17)

The backward denoising process estimates the origin distribution by autoencoder ϵθ(zt, t). The final
training loss can be simplified as:

LDM = Ex,ϵ∼N (0,I)

[
∥ϵ− ϵϕ (zt, t)∥22

]
. (18)

Score Distillation Sampling (SDS) is a technique used in machine learning, particularly in the
context of generative models, to improve sample quality and diversity. It addresses the challenge of
generating high-quality samples from complex probability distributions, such as those learned by
deep neural networks.

In traditional generative models like Generative Adversarial Networks (GANs) Goodfellow et al.
(2020) or Variational Autoencoders (VAEs) Kingma & Welling (2013), generating samples involves
directly sampling from the learned latent space. However, this approach often results in low-quality
samples with poor diversity, especially in regions of low probability density.

SDS introduces a novel sampling strategy that leverages the notion of score matching. Score matching,
introduced by Hyvärinen in 2005 Hyvärinen & Dayan (2005), is a technique for training generative
models by matching the score function (gradient of the log-density) of the model distribution to that
of the true data distribution.

Given a target distribution pdata(x) and a model distribution pϕ(x), where ϕ represents the parameters
of the model, the score function is defined as:

∇x log pϕ(x) (19)

The score function provides valuable information about the local geometry of the probability distribu-
tion, helping to guide the sampling process towards regions of high probability density.

In SDS, the goal is to distill the score function learned by a complex generative model into a simpler,
more tractable form. This distilled score function can then be used to guide the sampling process
efficiently, resulting in higher-quality samples with improved diversity.
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Formally, given a set of generated samples {xi}Ni=1 from the model distribution pϕ(x), the distilled
score function ŝ(x) is learned to approximate the score function of the model distribution. This is
achieved by minimizing the score matching loss:

LSM(ŝ) =
1

N

N∑
i=1

∥∇x log pθ(xi)− ŝ(xi)∥2 (20)

where ∥ · ∥ denotes some norm (e.g., L2 norm) and ŝ(xi) is the estimated score at sample xi.

As for particular diffusion model, its score function can be related to the predicted noise (shown in
Eq. 18) for the smoothed density through Tweedie’s formula Robbins (1992):

ϵϕ (zt, t) = −σtsϕ(zt; t). (21)

Training the diffusion model with a (weighted) evidence lower bound (ELBO) simplifies to a weighted
denoising score matching objective for parameters ϕ (Ho et al., 2020; Kingma et al., 2021):

LDiff(ϕ,x) = Et∼U(0,1),ϵ∼N (0,I)

[
w(t)∥ϵϕ(αtx+ σtϵ; t)− ϵ∥22

]
, (22)

where w(t) is a weighting function that depends on the timestep t. To understand the difficulties of
this approach, consider the gradient of LDiff:

∇θLDiff(ϕ,x = g(θ)) = Et,ϵ

[
w(t) (ϵ̂ϕ(zt; y, t)− ϵ)︸ ︷︷ ︸

Noise Residual

∂ϵ̂ϕ(zt; y, t)

∂zt︸ ︷︷ ︸
U-Net Jacobian

∂x

∂θ︸︷︷︸
Generator Jacobian

]
(23)

where following DreamFusion Poole et al. (2022), we absorb the constant αtI = ∂zt/∂x into w(t).
In practice, the U-Net Jacobian term is expensive to compute (requires backpropagating through the
diffusion model U-Net), and poorly conditioned for small noise levels as it is trained to approximate
the scaled Hessian of the marginal density. In Poole et al. (2022), It is found that omitting the U-Net
Jacobian term leads to an effective gradient:

∇θLSDS(ϕ,x = g(θ)) ≜ Et,ϵ

[
w(t) (ϵ̂ϕ(zt; y, t)− ϵ)

∂x

∂θ

]
, (24)

here, we get the gradient of a weighted probability density distillation loss in Eq. 14.

C.4 ADDITIONAL ANALYSIS IN CONTINUUM MECHANICS

Basic intuitions in continuum mechanics involves explaining the strain tensor F which describes
the internal deformation of the material, and σ which describe the internal stress tensor. In an actual
material, there might be multiple compounds, each of them might have their own strain and stress
tensor and they might interact with each other. For purpose of this subsection, we explain the intuition
when there is only one such compounds. However we will generalize it into multiple compounds
case later in the paper.

One could describe an equilibrium material as a point cloud X. In actually simulation, one take
a discretization of the system. For our convenience, we will just state the intuition in continum,
and generalization to discrete points should be straightforward. When the material is away from
its equilibrium position, the position of point is given by x ̸= X. However, we notice that if, for
example, we move x and the adjacent point x̃ in the same way, then there is actually no internal
deformation of the material. In another word, internal deformation describe how relative position
between two points x and its adjacent x̃ change. To make this quantity well-defined, we normalize it
with the original difference between X and X̃

F̃ij =
x̃i − xi

X̃j −Xj

(25)

Taking continuum limit, the equation becomes differential and reproduce

F =
∂ϕ

∂X
(X, t) (26)
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in the main text.

To get the dynamics, we will further need the stress tensor σ. However, the general relation between
σ and F is usually complicated. In fact only when internal stress is a conservative force, we can
related it to F through an energy function ψ(F). An analog for this case is the Hooke’s force in a
spring, where we can introduce a potential energy for the force. There are two main types of internal
stress people use in the literature. The first Piola-Kirchoff stress

P =
∂ψ

∂F
(27)

and a related Cauchy stress

σ =
1

det(F)

∂ψ

∂F
FT (28)

We will use Cauchy stress for most part of out paper. However, we could sometimes use the other
one interchangeably. Physically, if we want the force acting on a unit surface with normal vector n̂,
the force will be σ · n̂ . Another version people use is the Kirchoff stress τ = det(F)σ. The only
difference between them are whether it is measured with the deformed volume(σ) or the undeformed
volume(τ ). Sometimes using one or the other could be easier for technical reason, as we can see later
in the viscoelastic model.

Beyond this simple case, the relation will be quite complicated and non-universal. In this paper, we
discuss a specific variant of them, which we explain below. One can see both the relation between σ
and F, and the update rule for F get modified.

With these background, we can explain the intuition behind Eq.2. The second equation

Dρ

Dt
+ ρ∇ · v = 0, (29)

is nothing but mass conservation, ρ∇ · v is the local density times the local divergence, which
physically correspond to the mass flows out of a local unit volumn in unit time.

The first equation is Newton’s law

ρ
Dv

Dt
= ∇ · σ + f , (30)

the f term is the external force. The term ∇ · σ is the divergence for the stress tensor, thus giving the
total force on a unit volume material.

Model for elastoplastic part. We explain how to compute the internal stress σE through FE, and
how to update FE for the elastic part in this appendix. Again for current paper we consider the
elastoplastic branch with only elastic part. As we have reviewed, one can compute the Cauchy stress
tensor given the energy function. In this work, we choose the Fixed corotated constitutive model for
the elastic part, whose energy function is

ψ(FE) = ψ(ΣE) = µ
∑
i

(σE,i − 1)2 +
λ

2
(det(FE)− 1)2 (31)

in which ΣE is the diagonal singular value matrix FE = UΣEVT. And σE,is are singular values
of FE. From this energy function, one can compute the Cauchy stress tensor

σE =
2µ

det(FE)
(FE −R)FT

E + λ(det(FE)− 1) (32)

in which R = UVT.

We now explain how to update the Fn
E with the velocity field vn at nth step. For purely elastic case,

this can be simply done via
Fn+1

E = (I+∆t∇vn)Fn (33)
in which ∆t is the length of the time segment in the MPM method. This formula represents the fact
that internal velocity field cause change in strains. However, as one will say for the viscoelastic part,
this rule will change.

For the plastic part of the branch, we have F = FEFP, where we constraint the singular value of FE

to sit between [1− θc, 1 + θs], where θcand θs are learnable parameters quantifying the plasticity.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

More precisely, in the simulation algorithm, at n-th step, Fn = Fn
EF

n
P. We then compute the internal

stress σ(Fn
E) and update Fn to Fn+1 with MPM method. At step n+ 1, we first have a trial

F̃n+1
E = Fn+1(Fn

P)
−1. (34)

This F̃n+1
E might have singular value lies out of [1− θc, 1 + θs], so we truncate the singular value

again to get Fn+1
E , and get

Fn+1
P = Fn+1(Fn+1

E )−1. (35)
This procedure updates all strain tensor FE,FP from step n to step n+ 1. Noticing a key difference
here between FE and FP is only FE contributes to the stress tensor. This is a manifestation of
plasticity, where a large enough deformation will not contribute forces that move the object back to
its original position.

Model for viscoelastic part. We now explain the other branch of our model: the viscoelastic part.
Now we should imagine a elastic strain series connect with a viscous dissipator. In another word,
the total strain F = FNFV. We now explain two key features for this brunch. First, only the
FN contributes to the internal stress. Secondly, FV only plays a role in the update rule of FN.
Very roughly, one can view the dissipator FV as a reservoir for strain and each time during the
update, people will be able to relocate part of the strain into the FV, such that only part of the strain
contributes to the internal stress.

For the FN part, we again take it to be a elastic system, so the relation between strain and stress is
again given by the energy function. Here we choose the energy function following Fang et al. (2019)

ψN (ΣN ) = µN tr((log ΣN )2) +
1

2
λN (tr(log ΣN ))2 (36)

In this formula, we introduce ΣN as the diagonal singular value matrix FN = UΣNV
T . As one can

see, this potential is only a function of the singular values, so the Kirchoff tensor τN will be diagonal
in the same basis as the strain FN. So we will just write down the relation between FN and τN just
in the singular value basis

τN =
∂ψN (ΣN )

∂ϵN
= 2µN ϵN + λN tr(ϵN )I (37)

where we denote τN as a vector of singular value of τN , in another word τN = Udiag(τN )V T . This
is sometimes called principle Kirchoff tensor in literature. And ϵN , called log principle Kirchoff
tensor, denotes a vector takes the diagonal element of log ΣN . So this relation is essentially a vector
equation. We can recover the Kirchoff tensor τN thus the Cauchy stress tensor

σN =
1

det(FN)
τN . (38)

Now we can discuss the update rule for the strain tensor FN. As we explained before, the rough
intuition was part of the strain tensor FN can dissipate into the dissipator FV. More quantitatively,
we can follow the dissipator model in Fang et al. (2019), which results into a trial-and-correction
procedure. The idea is we first imagine FN evolve elastically

Fn
N,tr = (I+∆t∇vn)Fn

N (39)

Next step, we modify this trial strain tensor by introducing a dissipation into the dissipator

ϵn+1
N = ϵnN,tr −∆t

∂ψV

∂τN
(40)

Here again, we assume the dissipation happen to only the singular value of the strain tensor, so ϵnN,tr
is the log principle Kirchoff tensor of Fn

N,tr and ψV is the dissipation potential. We take a model
where

ψV (τN ) =
1

2νd
|dev (τN )|2 + 1

9νv
(τN · 1)2 (41)

where νd and νv are parameters controlling the dissipation of the deviatoric and dilational parts.
Physically, parameter νd controls dissipation in deviatoric deformation (deformation that does not
change volume, but only the shape), and νe controls dissipation in dilational deformation (deformation
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that only changes the volume but not the shape). These two parameters will be the same when
materials have a certain kind of homogenous property. We will not use them directly instead, we can
put this equation back into Eq.40, and get a version of this formula purely in terms of ϵn+1

N and ϵnN,tr

ϵn+1
N = A(ϵnN,tr −Btr(ϵnN,tr) · 1) (42)

In principle, we can write the parameters A,B in terms of νd, νv, however since in our algorithm,
all these parameters will be learnt from videos, we will directly learn parameter A and B in the
update rule without bothering νd, νv . But it worth remembering our model comes from a dissipation
potential.

C.5 LEARNABLE INTERNAL FILLING

In Xie et al. (2023), it employs a static filling strategy where the filled particles inherit the parameters
σp and Cp from their nearest Gaussian kernels. These parameters correspond to the Gaussian
properties of the filled particles. However, this static filling strategy encounters challenges in dynamic
situations, such as tearing or compression shown in Figure 10, where large internal regions are
exposed to the outside. The issue arises because the internal particles are not well-initialized and
remain fixed during optimization.

To address these challenges, we propose an iterative optimization strategy that refines both physical
parameters and internal Gaussian parameters. This approach ensures that the distribution of these two
components does not interfere with each other, thereby preventing mode collapse. In other words, one
set of parameters can be optimized independently, avoiding "self-sacrifice" for the optimization of
the other set. Please refer to the visual comparison of the original and learnable strategy in Figure 11.
Specifically, for each epoch in the iterative optimization, we first fix all physical parameters and focus
on optimizing the internal filling Gaussian parameters (e.g., Gaussian center x ∈ R3, an opacity value
α ∈ R, a color feature c ∈ R3 and so on) by Eq. 15. Subsequently, we fix the Gaussian parameters
and optimize the physical properties (e.g., Young’s modulus E, Poisson’s ratio ν , and so on) of each
Gaussian by Eq. 14. This iterative process is designed to ensure thorough optimization and stability.
Moreover, to enhance the generalizability, we choose a random view for each epoch. This ensures
that our model is robust and performs well across different perspectives.
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