
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETHINKING EVALUATION FOR TEMPORAL LINK
PREDICTION THROUGH COUNTERFACTUAL ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

In response to critiques of existing evaluation methods for temporal link prediction
(TLP) models, we propose a novel approach to verify if these models truly capture
temporal patterns in the data. Our method involves a sanity check formulated
as a counterfactual question: “What if a TLP model is tested on a temporally
distorted version of the data instead of the real data?” Ideally, a TLP model that
effectively learns temporal patterns should perform worse on temporally distorted
data compared to real data. We provide an in-depth analysis of this hypothesis
and introduce two data distortion techniques to assess well-known TLP models.
Our contributions are threefold: (1) We introduce two simple techniques to distort
temporal patterns within a graph, generating temporally distorted test splits of
well-known datasets for sanity checks. These distortion methods are applicable to
any temporal graph dataset. (2) We perform counterfactual analysis on six TLP
models JODIE, TGAT, TGN, CAWN, GraphMixer, and DyGFormer to evaluate
their capability in capturing temporal patterns across different datasets. (3) We
introduce two metrics – average time difference (ATD) and average count difference
(ACD) – to provide a comprehensive measure of a model’s predictive performance.

1 INTRODUCTION

In static graphs, link prediction refers to the task of predicting whether an edge exists between two
nodes after having observed other edges in the graph. Temporal link prediction (TLP) is a dynamic
extension of link prediction wherein the task is to predict whether a link (edge) exists between any
two nodes in the future based on the historical observations (Qin and Yeung, 2023). The predictive
capability of TLP models make them useful in applications pertaining to dynamic graphs, such as
product recommendations (Qin et al., 2024; Fan et al., 2021), social network content or account
recommendation (Fan et al., 2019; Daud et al., 2020), fraud detection in financial networks (Kim
et al., 2024), and resource allocation, to name a few.

In the TLP literature (Kumar et al., 2019; Trivedi et al., 2019; Xu et al., 2020; Rossi et al., 2020;
Wang et al., 2020; Cong et al., 2023; Yu et al., 2023), the TLP task is treated as a binary classification
problem where the query

q1 : “Does an edge exist between the nodes u and v at time t?”

is processed by a model and then compared with the ground truth following which metrics such as
area under the receiver operating characteristic curve (AU-ROC), and average precision (AP) are
reported. The ground truth consists of positive samples, and a fixed number of random negative
samples. There are a couple of issues in the binary classification approach. Firstly, the timestamps in
the query are restricted to the timestamps present in the ground truth, which makes the evaluation
biased and does not test the model’s performance in the continuous time range. Secondly, checking
for the existence of an edge at a specific timestamp is an ill-posed question, and instead the existence
of an edge should be queried within a finite time-interval. Lastly, the negative edge sampling strategy,
and the number of negative samples per positive sample impact the performance metrics as seen in
EXH (Poursafaei and Rabbany, 2023).

Alternatively, in a rank-based approach, the query is formulated as:

q2 : “Which nodes are likely to have an edge with node u at time t?”

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this case, the model returns an ordered list of nodes arranged from most likely to least likely.
Then, the rank of the ground truth edge is returned if a match is found, and if not, a high number is
reported. For all the edges in the test data, metrics such as Mean Average Rank (MAR) or Mean
Reciprocal Rank (MRR) can be reported to assess the performance of the model (Huang et al., 2024).
While the rank-based metrics are more intuitive than AU-ROC and AP, the issues regarding binary
classification mentioned above still remain unaddressed. To give a true picture of the predictive power
of the TLP models, a penalty term should be introduced to account for the nodes that are incorrectly
estimated to form an edge with node u at time t.

In a recent work, Poursafaei et al. (2022) highlighted that the state-of-the-art (SoTA) performance
of some TLP models on the standard benchmark datasets is near-perfect. This is counterintuitive
because TLP is a challenging task, even more challenging than link prediction of static graphs, due
to the additional degree of freedom in the data induced by the temporal dimension. The flaw in the
evaluation method is attributed to the limited negative sampling strategy, and the authors propose a
new negative edge sampling strategy which results in a different ranking of the baselines.

Inspired by the critique of the evaluation method, we propose a method to conduct sanity check of
the TLP models to determine if they truly capture the temporal patterns in the data. The sanity check
is formulated as the counterfactual question (Pearl, 2009):

“What if a TLP model which is trained on a temporal graph is tested on temporally
distorted version of the data instead of the real data?”

Ideally, a TLP model which is capable of learning the temporal patterns should perform worse on
temporally distorted data compared to the real data. We conduct an in-depth analysis of this argument
and introduce various data distortion techniques to assess well-known TLP models.

Contributions The contributions of our work can be summarised as follows:

• We introduce simple techniques to distort the temporal patterns within a graph. These
techniques are then used to generate temporally distorted version of the test split of some
famous datasets which can be used for sanity check. Moreover, the distortion methods can
be applied to any temporal graph dataset [Link to code repository].

• We perform counterfactual analysis on TLP models such as JODIE (Kumar et al., 2019),
TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), CAWN (Wang et al., 2020), GraphMixer
(Cong et al., 2023), and DyGFormer (Yu et al., 2023) to check whether they are capable of
capturing the temporal patters within various datasets.

• We propose two metrics: average time difference (ATD), and average count difference
(ACD) to measure the performance of TLP models. These metrics can provide a holistic
picture of a model’s predictive performance.

• Lastly, we propose an alternative evaluation strategy for TLP through which the existing
pitfalls of binary classification and ranking methods can be avoided.

2 PRELIMINARIES

2.1 DEFINITIONS

In TLP literature, continuous-time temporal graphs with instantaneous edges are often considered,
where edges represent interaction events between two nodes at a specific point in time. Alternatively,
temporal graphs can be defined with edges that appear at a certain time and either persist for a duration
(Celikkanat et al., 2024) or accumulate indefinitely. In this work, we focus on the instantaneous
edge temporal graph, also known as interaction graphs (Qin et al., 2024) or unevenly sampled edge
sequence (Qin and Yeung, 2023).
Definition 2.1. A temporal graph with m ∈ N instantaneous edges formed between nodes in U and
V is defined as G = (U ,V, E), where E ≜ {(ui, vi, ti) : i ∈ [m], ui ∈ U , vi ∈ V, ti ∈ R} denotes
the set of edges. The tuple (u, v, t) is referred to as an edge event.

While the definition caters to bipartite structure, with U = V , it can also represent general graphs.

2

https://anonymous.4open.science/r/TLPCF-ICLR

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Definition 2.2. The occurrences of a particular edge (u, v) in E is denoted as E(u,v) and defined as
E(u,v) ≜ {(u, v, t) : (u, v, t) ∈ E}.
Definition 2.3. The slice of edges in E with timestamps in the range (t1, t2) is denoted as E(t1, t2),
and defined as E(t1, t2) ≜ {(u, v, t) : (u, v, t) ∈ E , t ∈ (t1, t2)}.
Definition 2.4. The timestamps in E consisting of m ∈ N edges can be extracted through a function
T : (U × V × R)m → Rm as T (E) ≜ {t : (u, v, t) ∈ E}.

2.2 POINT PROCESSES

Perry and Wolfe (2013) modelled the interaction events of a directed edge (u, v) as an inhomogeneous
Poisson point process. In a recent work on continuous-time representation learning on temporal
graphs, Modell et al. (2024) followed suit, and assumed E(u,v) to be sampled from an independent
inhomogeneous Poisson point process with intensity λ(u,v)(t). The number of edge events (u, v)
between timestamps t1 and t2 follow a Poisson distribution with rate

∫ t2
t1

λ(u,v)(t) dt, i.e.,

|E(u,v)(t1, t2)| ∼ Poisson
(∫ t2

t1
λ(u,v)(t) dt

)
. (1)

To connect the present to the past, Du et al. (2016) view the intensity function λ⋆
(u,v)(t) as a nonlinear

function of the sample history, where ⋆ indicates that the function is conditioned on the history. The
conditional density function for edge (u, v) is written as

p⋆(u,v)(t) = λ⋆
(u,v)(t) exp

(
−
∫ t

t′
λ⋆
(u,v)(τ) dτ

)
, (2)

where t′ < t is the last time when edge (u, v) was observed. The goal is to find the parameters
λ⋆
(u,v)(t) : 0 < t ≤ T which can describe the observation E(u,v). This is done by minimizing the

negative log likelihood (NLL) at the timestamps of edge occurrence (Shchur et al., 2021):

min
λ⋆
(u,v)

(t) : 0<t≤T
−

∑
t∈T (E(u,v))

log
(
λ⋆
(u,v)(t)

)
+

∫ T

0

λ⋆
(u,v)(τ) dτ, T = maxT

(
E(u,v)

)
. (3)

Shchur et al. (2021) summarize the operation of a neural temporal point process as follows:

• The edge events in {(u, v, ti) : i ∈ [m]} are represented as feature vectors xi = fe(u, v, ti),
• The historical feature vectors are encoded into a state vector hi = fh(x1, · · ·xi−1),
• The distribution of ti conditioned on the past is simply conditioned on hi.

The functions fe and fh, as well as the conditioning on hi are implemented using neural networks.

3 COUNTERFACTUAL ANALYSIS

A temporal graph is characterized by (1) the order in which the edges appear, (2) the frequency
with which edges appear over time, and (3) the time gap between any two edge events. In this
work, we refer to these characteristics as temporal patterns. Furthermore, if temporal patterns
observed in the past enable predictions of future temporal patterns that outperform naïve estimates on
a specific performance metric, then the temporal data is considered learnable. This does not require
the temporal pattern to remain consistent over time; rather, it suggests that future changes can be
estimated from past observations.

Experiment Setup A model f is trained on a temporal graph Etrain and tested on Etest through the
binary classification approach resulting in a performance metric such as AP. The train and test data
are chronologically split from the same temporal graph which is assumed to be generated through a
common causal mechanism, i.e., Etrain = E(0, τ0), and Etest = E(τ0, T). In light of the experimental
setup, we ask the following question:

Would the model f which is trained on Etrain perform well if tested on a distorted
version of Etest instead of Etest?

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To formalise the question in the counterfactual framework (Pearl, 2019), we consider the following
statements:

x′ : The model f is tested on Etest
y′: The performance metric is α
x : The model f is tested on a temporally distorted version of Etest
y : The performance metric is less than α

Additionally, yx is read as y when x. The counterfactual question is framed as P (yx | x′, y′), i.e.,

The probability that the performance metric would be less than α had the test data
been a temporally distorted version of Etest, given the performance metric was
observed to be at least α when the model was tested on Etest.

To answer the question above, we design the intervention as graphically depicted in Fig. 1. The TLP
model f is trained on the data Etrain. The true test data Etest is temporally distorted through some
function D(·) resulting in E ′ = D(Etest). Finally, we test the model f on the true data Etest and the
temporally distorted data E ′ and compare the metrics which may result in either of the two scenarios
shown in the figure based on which we can comment on the effectiveness of f .

train
test

test

Scenario A Scenario B

✓✗

Figure 1: The intervention setup to verify the counterfactual question above.

Motivation To motivate the counterfactual analysis, we present a simplified example of classifica-
tion on binary sequences, viewed as a discretized version of the temporal graph described in Def. 2.1.
Let the set of all binary sequences of length m ∈ N be denoted by Bm = {0, 1}m, and let b ∈ Bm

be a binary sequence representing the true data. Moreover, we consider a model f whose output
is b̂ ∈ Bm. The performance metric achieved by b̂ on ground truth b is denoted as ϕ(b̂, b). Next,
let b′ ∈ Bm \ {b} denote a distorted version of b. Building on the above setup, the counterfactual
question is P (ϕ(b̂, b′) < ϕ(b̂, b)), i.e., the probability that the model performs relatively worse on
the distorted sequence. Next, we find the conditions on model output b̂ and distorted sequence b′

such that P (ϕ(b̂, b′) < ϕ(b̂, b)) = 1.

Figure 2: Scatter plot showing the normalised Hamming dis-
tance between b and b′ on the x-axis and the performance (AP)
of the classifier on the distorted sequence b′ on the y-axis. The
normalised Hamming distance serves as a distortion metric
for binary sequences. Each point corresponds to a random
b ∈ Bm, and b̂ such that ϕ(b̂, b) ≥ α. In the figure, m = 16,
and α = 0.9. We observe that for ∥b− b′∥1 > β, all the
points lie below α, i.e., P (ϕ(b̂, b′) < α) = 1.

Higher
distortion

Lower AP

Let M be a causal model which generates b succeeding another binary sequence b0. The causal model
can produce multiple sequences succeeding b0, i.e., b ∼M(b0). We assume that M(b0) ∈ Ω ⊂ Bm

with |Ω| ≪ 2m. If the model f produces output b̂ ∈ Ω after being trained on b0, we can say that it
has learnt the causal mechanism underlying M, which gives us the lower bound on the performance
metric as α0 = inf b̂,b∈Ω ϕ(b̂, b). Then, based on Fig. 2, we make the following Assumption:

Assumption 3.1. For some α ≤ α0, there exists β ∈ (0, 1) such that a model which admits a
performance metric of α on the true sequence b, reports a performance metric lower than α for all
distorted samples b′ with distortion greater than β.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Going back to the experiment setup in Fig. 1, we conjecture the following:
Conjecture 3.1. P (yx | x′, y′) ̸= 1 =⇒ model f is not capable of discerning the temporal patterns
distorted through D.

We now present the logic behind this conjecture. Please consider the following statements,
s1 : The model f is capable of discerning temporal patterns in (Etrain, Etest)
s2 : The function D generates temporally distorted test data E ′ = D(Etest)
s3 : The data (Etrain, Etest) is learnable
s4 : The performance metric reported by the model f on true test data Etest is always higher than

that reported on the distorted test data E ′, i.e., P (yx | x′, y′) = 1.

We start with s1 ∧ s2 ∧ s3 =⇒ s4. Assuming that the data is learnable, i.e., s3 = 1, we get
s1 ∧ s2 =⇒ s4. Through contraposition, we arrive at ¬s4 =⇒ ¬s1 ∨ ¬s2, where

¬s4 ≡ P (yx | x′, y′) ̸= 1.

Further, we impose that D satisfies Assumption 3.1, i.e., ¬s2 = 0, allowing us to conclude ¬s4 =⇒
¬s1 which reads as the conjecture above.

In Fig. 3 we present an example depicting what temporal distortion means using point processes. In
the remainder of this section, we define temporal distortion metrics and then discuss two temporal
distortion techniques to distort the temporal graphs.

Figure 3: Let Etrain ∪ Etest be sampled from a
point process with intensity λ⋆(t), t ∈ [0, T].
We generate E ′ from another point process with
intensity λ′(t), t ∈ [τ0, T]. We depict the in-
tensity functions as two sinusoidal waves with
different frequency and phase. If a model f
learns this intensity function by observing Etrain,
and then generates samples for prediction, they
would be more similar to Etest than E ′, resulting
in a lower performance on the distorted test set.

3.1 TEMPORAL DISTORTION METRICS

Let E be a temporal graph sampled from a temporal point process with intensity λ⋆(t) for t ∈ [0, T].
Let E ′ be data sampled from another point process with intensity λ′(t) for t ∈ [0, T].
Definition 3.1. The temporal graph E ′ is δ-temporally distorted w.r.t. E if for some δ > 0,∑

(u,v)∈U×V

1

T

∫ T

0

|λ∗
(u,v)(t)− λ′

(u,v)(t)| dt > δ. (4)

In practice, we do not have access to the true intensity functions, so we have to compare the
realisations instead. Let E and E ′ be two temporal graphs, then we measure the difference in their
temporal patterns through the metrics defined below.
Definition 3.2. The average time difference (ATD) between E and E ′ is defined as:

ATD(E , E ′) ≜ 1

T |E|
∑

(u,v,t)∈E

min
t′∈T

(
E′
(u,v)

)
∪{T}

|t− t′|, T = maxT (E)−minT (E) . (5)

In ATD, we measure the time difference between the edge event (u, v, t) ∈ E and the closest
(u, v, t′) ∈ E ′, reporting the average over all the edge events in E . In Fig. 4 we show two temporal
graphs as impulse trains with each impulse color coded to represent the edge of the sample 3-node
graph. Through ATD we can measure the overall difference in the occurrence of an edge event.
However, ATD fails to capture the difference in the frequency with which an edge occurs in the
two temporal graphs E and E ′. Therefore, we define average count difference ACD to measure the
difference in the frequency with which edges occur in the temporal graph.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Definition 3.3. The average count difference (ACD) between E and E ′ is defined as:

ACD(E , E ′) ≜ 1
|E|

∑
(u,v,t)∈E

∣∣∣|E(u,v)(t− τ̄ , t+ τ̄)| − |E ′(u,v)(t− τ̄ , t+ τ̄)|
∣∣∣ , τ̄ ∈ R+. (6)

For each edge event (u, v, t) ∈ E , we count the number of occurrences of (u, v) in the time range
(t− τ̄ , t+ τ̄) in both E and E ′ and measure the count difference. In Fig. 4 we depict the time interval
as a light blue box centred around each edge event in E . For τ̄ → 0, the search becomes restricted to
an infinitesimal time interval, with ACD(E , E ′) approaching 1− 1

|E|
∑

(u,v,t)∈E I{(u, v, t) ∈ E ′}.

Time
difference

Count
difference

Figure 4: Comparing two temporal graphs by measuring the time difference, and the count difference
within intervals of duration 2τ̄ centred around the edge event.

Table 1: Joint interpretation of the distortion metrics.

ATD ↓ ATD ↑
ACD ↓ similar the edge events are shifted near the ex-

tremities of the 2τ̄ interval.

ACD ↑ the edge event is duplicated multiple
times in the vicinity of the original edge
event.

the edge events are either duplicated or
reduced, and also shifted away from the
original edge interval.

3.2 TEMPORAL DISTORTION TECHNIQUES

Now that we are equipped with metrics to measure the difference between two temporal graphs, we
device distortion functions D(·) which can enable us to investigate the counterfactual question posed
earlier. We propose two distortion techniques DINTENSE(·,K) which creates K time-perturbed copies
of each edge events, and DSHUFFLE(·) wherein the timestamps of different edge events are shuffled.

INTENSE Let the real temporal graph data be denoted by E = ∪(u,v)∈U×VE(u,v), and the distorted
version be denoted by E ′ = ∪(u,v)∈U×VE ′(u,v). Then, for each edge event (u, v, t) in the real data E ,
we create K edge events (u, v, t + τ) with τ sampled uniformly from (−τ̄ , τ̄) for some τ̄ ∈ R+1.
Alternatively, if it is known that E(u,v) is sampled from a point process with intensity λ⋆

(u,v)(t), then
we can generate E ′(u,v) by sampling from another point process with intensity λ′

(u,v)(t), such that

λ′
(u,v)(t) = Kλ⋆

(u,v)(t), ∀(u, v) ∈ U × V. (7)

SHUFFLE For any two edge events (u, v, t), (u′, v′, t′) ∈ E , we shuffle the timestamps in the
distorted version, i.e. (u, v, t′), (u′, v′, t) ∈ E ′. The shuffling process is also called label permutation
(Chatterjee, 2018). In terms of the point process, we can explain shuffling as follows. If E(u,v) is
known to be sampled from a point process with intensity λ⋆

(u,v)(t), then E ′(u,v) can be generated by
sampling from an inhomogeneous Poisson point process with intensity λ′

(u,v)(t), where

λ′
(u,v)(t) =

(∫ T

0
λ⋆
(u,v)(t) dt

)∑
(u′,v′)∈U×V λ⋆

(u′,v′)(t)∑
(u′,v′)∈U×V

∫ T

0
λ⋆
(u′,v′)(t) dt

. (8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 DINTENSE

Input E ,K ∈ N, τ̄ ∈ R+

Output E ′
1: E ′ = ∅
2: for (u, v, t) ∈ E do
3: for k ∈ [K] do
4: τ ∼ Uniform(−τ̄ , τ̄)
5: E ′ ← E ′ ∪ {(u, v, t+ τ)}
6: end for
7: end for

Algorithm 2 DSHUFFLE

Input E
Output E ′

1: E ′ = ∅
2: T ← T (E)
3: for (u, v, t) ∈ E do
4: τ ∼ T
5: E ′ ← E ′ ∪ {(u, v, τ)}
6: T ← T \ {τ}
7: end for

The operations of DINTENSE and DSHUFFLE are described in Algorithms 1 and 2, respectively. Moreover,
a visual example is provided in Fig. 5. The computational complexity of DINTENSE(·,K) is O(K|E|),
and of DSHUFFLE(·) is O(|E|). In short, both distortion techniques are linear in the number of edge
events in E .

Figure 5: Visual representation of INTENSE and
SHUFFLE distortions. In DINTENSE(E , 5), 5 edge events
are created in the vicinity of the true edge event in E .
This increases the frequency with which edges appear
in an interval, thereby distorting the temporal pattern.
In DSHUFFLE(E), as the name suggests, the order in
which the edges appear is shuffled and thus the tem-
poral pattern is distorted, the edges now appear where
they should not be.

We use DINTENSE(·, 5) and DSHUFFLE(·) to create 10 temporally distorted samples of the test splits
of each dataset. In Table 2, we present the ATD, and ACD by comparing the distorted samples
with the original test data of different datasets. The metrics ATD and ACD should be considered in
conjunction to measure the dissimilarity of two temporal graphs. For each real test data, we create 10
distorted samples and report the mean and 95% confidence interval of the metrics to ensure statistical
reliability.

Table 2: Distortion measures on different datasets.

wikipedia reddit uci lastfm mooc

INTENSE
ATD 6.9e-6 ± 2e-8 1.6e-6 ± 2e-9 1.6e-5 ± 1.2e-7 8.6e-7 ± 9.4e-10 2.5e-6 ± 7e-9

ACD 4.479 ± 1.9e-3 4.112 ± 3.9e-4 7.214 ± 1.2e-2 4.046 ± 1.8e-4 4.627 ± 1.4e-3

SHUFFLE
ATD 0.078 ± 5.7e-4 0.099 ± 3e-4 0.132 ± 8.4e-4 0.0800 ± 1.7e-4 0.1906 ± 6.7e-4

ACD 1.093 ± 3.4e-4 1.033 ± 8e-5 1.877 ± 3.3e-3 1.0011 ± 1.4e-4 1.1896 ± 8.9e-5

4 RESULTS

We evaluate the performance of the following TLP models in light of Proposition 3.1: JODIE
(Kumar et al., 2019), TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), CAWN (Wang et al., 2020),
GraphMixer (Cong et al., 2023), DyGFormer (Yu et al., 2023)

The models are evaluated under two settings: transductive and inductive. In transductive TLP, the
nodes u, v in the positive sample (u, v, t) ∈ Etest were observed during training. In contrast, in
inductive TLP, at least one node in u, v is novel, and was not observed during training.

In Table 3, we have arranged the datasets in increasing order of their size (more details can be found
in Appendix A.1). We notice that all the TLP models pass the counterfactual test for SHUFFLE
distortion on the smallest dataset: uci, and some of them {TGAT,GraphMixer,DyGFormer}

1For the experiments we set τ̄ = max T (E)−min T (E)
|E| .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

pass for SHUFFLE on the second-smallest dataset wikipedia, and only GraphMixer and TGN
pass on reddit. Surprisingly, JODIE passes on INTENSE distortion for two of the largest datasets
lasstfm and mooc. And overall, none of the TLP models pass the counterfactual test on the
INTENSE distortions. This allows us to conclude the followg: (1) The TLP models are able to discern
the temporarl order of edge occurrence, however this capability worsens for larger datasets, and (2)
the TLP models do not keep count of the frequency with which edges appear over time.

Table 3: Performance (AP) of the models JODIE, TGAT, TGN, CAWN, GraphMixer, and
DyGFormer on five datasets, and their temporally distorted versions denoted as INTENSE, and
SHUFFLE. For each metric, we report the mean, and the 95% confidence interval (CI) as mean ±
CI. We have marked the metrics in blue for distortions that showed that a model was incapable of
learning on a certain dataset as per Conjecture 3.1, and orange otherwise.

AP uci wikipedia reddit lastfm mooc

J
O
D
I
E

transductive 0.8726 ± 5e-3 0.9137 ± 5e-3 0.9654 ± 5e-3 0.7036 ± 2e-3 0.8068 ± 6e-4

INTENSE 0.9129 ± 5e-3 0.9078 ± 1e-2 0.9567 ± 1e-2 0.7090 ± 3e-4 0.7556 ± 4e-4

SHUFFLE 0.8509 ± 3e-3 0.8962 ± 4e-2 0.9613 ± 4e-2 0.7036 ± 1e-3 0.8072 ± 5e-4

inductive 0.7310 ± 2e-2 0.8970 ± 5e-3 0.9138 ± 2e-2 0.8431 ± 4e-3 0.7931 ± 1e-3

INTENSE 0.8332 ± 8e-3 0.8972 ± 1e-2 0.9308 ± 4e-2 0.8361 ± 5e-4 0.7658 ± 3e-4

SHUFFLE 0.6994 ± 8e-3 0.9078 ± 2e-2 0.9251 ± 6e-3 0.8431 ± 2e-3 0.7931 ± 7e-4

T
G
A
T

transductive 0.7694 ± 7e-3 0.9528 ± 2e-3 0.9818 ± 6e-4 0.7309 ± 3e-4 0.8458 ± 5e-4

INTENSE 0.8637 ± 2e-2 0.9691 ± 2e-3 0.9825 ± 6e-4 0.9840± 1e-4 0.9610 ± 1e-4

SHUFFLE 0.7336 ± 2e-2 0.9532 ± 5e-3 0.9826 ± 6e-3 0.7308 ± 3e-4 0.8458 ± 4e-4

inductive 0.7008 ± 1e-2 0.9401 ± 2e-3 0.9658 ± 1e-3 0.7817 ± 2e-4 0.8430 ± 3e-4

INTENSE 0.8095 ± 2e-2 0.9621 ± 2e-3 0.9676 ± 1e-3 0.9841 ± 1e-4 0.9621 ± 1e-4

SHUFFLE 0.6324 ± 1e-2 0.9304 ± 7e-3 0.9664 ± 3e-3 0.7817 ± 2e-4 0.8430 ± 3e-4

T
G
N

transductive 0.7975 ± 1e-2 0.9472 ± 1e-3 0.9578 ± 1e-3 0.7764 ± 5e-3 0.8855 ± 4e-3

INTENSE 0.9709 ± 3e-3 0.9911 ± 6e-4 0.9744 ± 2e-3 0.9916 ± 1e-5 0.9629 ± 6e-4

SHUFFLE 0.6520 ± 4e-2 0.8487 ± 3e-2 0.9563 ± 2e-3 0.7764 ± 9e-4 0.8848 ± 1e-3

inductive 0.7948 ± 6e-3 0.9463 ± 1e-3 0.9346 ± 1e-3 0.8336 ± 4e-3 0.8873 ± 1e-3

INTENSE 0.9650 ± 2e-3 0.9908 ± 6e-4 0.9645 ± 3e-3 0.9927 ± 2e-5 0.9641 ± 2e-4

SHUFFLE 0.6193 ± 9e-3 0.8376 ± 3e-2 0.9299 ± 3e-3 0.8337 ± 6e-3 0.8872 ± 2e-3

C
A
W
N

transductive 0.9397 ± 8e-4 0.9901 ± 1e-4 0.9884 ± 3e-3 0.8755 ± 3e-4 0.8667 ± 2e-4

INTENSE 0.9889 ± 7e-4 0.9975 ± 8e-5 0.9942 ± 7e-5 0.9879 ± 2e-4 0.9719 ± 1e-4

SHUFFLE 0.8866 ± 2e-3 0.9887 ± 3e-4 0.9880 ± 2e-3 0.8755 ± 3e-4 0.8666 ± 3e-4

inductive 0.9273 ± 2e-3 0.9896 ± 4e-4 0.9859 ± 3e-3 0.9031 ± 5e-4 0.8543 ± 4e-4

INTENSE 0.9857 ± 2e-3 0.9971 ± 1e-5 0.9938 ± 8e-5 0.9889 ± 3e-4 0.9731 ± 2e-4

SHUFFLE 0.8783 ± 3e-2 0.9896 ± 6e-3 0.9851 ± 1e-3 0.9030 ± 5e-4 0.8541 ± 4e-4

G
r
a
p
h
M
i
x
e
r transductive 0.9323 ± 2e-3 0.9690 ± 4e-4 0.9738 ± 3e-4 0.7630 ± 1e-4 0.8233 ± 3e-4

INTENSE 0.9923 ± 6e-4 0.9966 ± 2e-4 0.9965 ± 1e-4 0.9858 ± 1e-4 0.9537 ± 1e-4

SHUFFLE 0.8553 ± 3e-3 0.9096 ± 1e-3 0.9725 ± 2e-4 0.7630 ± 1e-4 0.8230 ± 2e-4

inductive 0.9133 ± 1e-3 0.9639 ± 1e-4 0.9517 ± 8e-4 0.8261 ± 3e-4 0.8077 ± 2e-4

INTENSE 0.9771 ± 5e-4 0.9939 ± 1e-4 0.9937 ± 2e-4 0.9867 ± 1e-4 0.9555 ± 1e-4

SHUFFLE 0.7945 ± 3e-4 0.8900 ± 2e-3 0.9477 ± 7e-4 0.8261 ± 3e-4 0.8072 ± 3e-4

D
y
G
F
o
r
m
e
r transductive 0.9596 ± 3e-4 0.9901 ± 2e-4 0.9921 ± 1e-4 0.9096 ± 1e-4 0.8622 ± 2e-4

INTENSE 0.9938 ± 1e-4 0.9983 ± 1e-4 0.9984 ± 1e-4 0.9912 ± 1e-4 0.9709 ± 1e-4

SHUFFLE 0.9515 ± 1e-3 0.9892 ± 1e-4 0.9924 ± 1e-4 0.9096 ± 2e-4 0.8620 ± 4e-4

inductive 0.9437 ± 1e-4 0.9854 ± 5e-4 0.9880 ± 3e-4 0.9293 ± 1e-4 0.8509 ± 3e-4

INTENSE 0.9854 ± 1e-4 0.9965 ± 4e-5 0.9973 ± 1e-5 0.9918 ± 2e-4 0.9723 ± 1e-4

SHUFFLE 0.9291 ± 4e-4 0.9833 ± 3e-4 0.9878 ± 3e-4 0.9293 ± 1e-4 0.8506 ± 5e-4

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5 DISCUSSION

Some of the TLP models used in this work such as GraphMixer, and DyGFormer are considered
the SoTA on most datasets, with near-perfect performance. However, as we showed earlier, a higher
metric alone is not indicative of good performance without sanity checks. The counterfactual question
helps make the evaluation more explainable, as models that perform worse on temporally distorted
data with high ATD and ACD can claim superiority over models that do not. An ideal TLP model
should be able to capture the difference in the count of edge events, their order, and the temporal
shifts in the edge events.

To reiterate, if the performance of the model on the temporally distorted test data is similar or better
than the performance on the original test data, then it implies one the following:

• the model has not made use of the temporal information in the training set,

• there is no useful temporal information in the dataset,

• the temporal distortion is weak.

In the absence of a guarantee that the dataset has useful temporal information that can aid prediction,
we can compare different models by comparing the performance gaps.

Future Work Moving away from the binary classification approach to assess the performance of
temporal link prediction, future research should explore a generative approach where after observing
a temporal graph from time t ∈ (0, τ0), the model can generate a temporal graph in t ∈ (τ0, T). This
generated temporal graph can then be compared with the ground truth to measure similarity and
assess the performance of the model. The proposed metrics ATD and ACD can be used to measure
the difference in the timestamps, as well as the occurrence frequency of the edges. Furthermore, the
same model architecture used by the TLP models discussed in this paper, can be further improved
by devising new training objectives that incorporate counterfactual analysis through the distortions
SHUFFLE and INTENSE.

Conclusion In this work, rather than introducing novel datasets, we present techniques for generat-
ing temporally distorted versions of any temporal graph dataset. This makes the contribution relevant
even for datasets which will be introduced in the future. To the best of our knowledge, we are the
first to apply counterfactual analysis to TLP and hope that it can help standardize the assessment of
TLP models.

REFERENCES

A. Celikkanat, N. Nakis, and M. Mørup. Continuous-time graph representation with sequential
survival process. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pages 11177–11185, 2024.

S. Chatterjee. Learning and memorization. In International conference on machine learning, pages
755–763. PMLR, 2018.

W. Cong, S. Zhang, J. Kang, B. Yuan, H. Wu, X. Zhou, H. Tong, and M. Mahdavi. Do We Really
Need Complicated Model Architectures For Temporal Networks? In The Eleventh International
Conference on Learning Representations, Sept. 2023.

N. N. Daud, S. H. Ab Hamid, M. Saadoon, F. Sahran, and N. B. Anuar. Applications of link prediction
in social networks: A review. Journal of Network and Computer Applications, 166:102716, 2020.

N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and L. Song. Recurrent marked
temporal point processes: Embedding event history to vector. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, pages 1555–1564,
2016.

W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. Graph neural networks for social
recommendation. In The world wide web conference, pages 417–426, 2019.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Z. Fan, Z. Liu, J. Zhang, Y. Xiong, L. Zheng, and P. S. Yu. Continuous-time sequential recommenda-
tion with temporal graph collaborative transformer. In Proceedings of the 30th ACM international
conference on information & knowledge management, pages 433–442, 2021.

S. Huang, F. Poursafaei, J. Danovitch, M. Fey, W. Hu, E. Rossi, J. Leskovec, M. Bronstein,
G. Rabusseau, and R. Rabbany. Temporal graph benchmark for machine learning on tempo-
ral graphs. Advances in Neural Information Processing Systems, 36, 2024.

Y. Kim, Y. Lee, M. Choe, S. Oh, and Y. Lee. Temporal graph networks for graph anomaly detection
in financial networks. arXiv preprint arXiv:2404.00060, 2024.

S. Kumar, X. Zhang, and J. Leskovec. Predicting dynamic embedding trajectory in temporal
interaction networks. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 1269–1278, 2019.

A. Modell, I. Gallagher, E. Ceccherini, N. Whiteley, and P. Rubin-Delanchy. Intensity profile
projection: A framework for continuous-time representation learning for dynamic networks.
Advances in Neural Information Processing Systems, 36, 2024.

P. Panzarasa, T. Opsahl, and K. M. Carley. Patterns and dynamics of users’ behavior and interaction:
Network analysis of an online community. Journal of the American Society for Information Science
and Technology, 60(5):911–932, 2009.

J. Pearl. Causality. Cambridge university press, 2009.

J. Pearl. The seven tools of causal inference, with reflections on machine learning. Communications
of the ACM, 62(3):54–60, 2019.

J. W. Pennebaker, M. E. Francis, and R. J. Booth. Linguistic inquiry and word count: Liwc 2001.
Mahway: Lawrence Erlbaum Associates, 71(2001):2001, 2001.

P. O. Perry and P. J. Wolfe. Point process modelling for directed interaction networks. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 75(5):821–849, 2013.

F. Poursafaei and R. Rabbany. Exhaustive Evaluation of Dynamic Link Prediction. In 2023 IEEE
International Conference on Data Mining Workshops (ICDMW), pages 1121–1130, Shanghai,
China, Dec. 2023. IEEE. ISBN 9798350381641. doi: 10.1109/ICDMW60847.2023.00147.

F. Poursafaei, S. Huang, K. Pelrine, and R. Rabbany. Towards better evaluation for dynamic link
prediction. Advances in Neural Information Processing Systems, 35:32928–32941, 2022.

M. Qin and D.-Y. Yeung. Temporal Link Prediction: A Unified Framework, Taxonomy, and Review,
June 2023.

Y. Qin, W. Ju, H. Wu, X. Luo, and M. Zhang. Learning graph ode for continuous-time sequential
recommendation. IEEE Transactions on Knowledge and Data Engineering, 2024.

E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein. Temporal graph networks
for deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637, 2020.

O. Shchur, A. C. Türkmen, T. Januschowski, and S. Günnemann. Neural temporal point processes: A
review. arXiv preprint arXiv:2104.03528, 2021.

R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha. Dyrep: Learning representations over dynamic
graphs. In International conference on learning representations, 2019.

Y. Wang, Y.-Y. Chang, Y. Liu, J. Leskovec, and P. Li. Inductive representation learning in temporal
networks via causal anonymous walks. In International Conference on Learning Representations,
2020.

D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan. Inductive representation learning on
temporal graphs. In International Conference on Learning Representations, 2020.

L. Yu, L. Sun, B. Du, and W. Lv. Towards better dynamic graph learning: New architecture and
unified library. Advances in Neural Information Processing Systems, 36:67686–67700, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

A DATASETS & MODELS

A.1 TEMPORAL GRAPH DATASETS

We use the following datasets2 to perform counterfactual analysis3:

• wikipedia (Kumar et al., 2019) describes a dynamic graph of interaction between the
editors and Wikipedia pages over a span of one month. The entries consist of the user ID,
page ID, and timestamp. The edge features are LIWC-feature vectors (Pennebaker et al.,
2001) of the edit text. The edge feature dimension is 172.

• reddit (Kumar et al., 2019) describes a bipartite interaction graph between the users
and subreddits. The interaction event is recorded with the IDs of the user, subreddit and
timestamp. Similar to wikipedia, the post content is converted into a LIWC-feature
vector of dimension 172 which serves as the edge feature.

• uci (Panzarasa et al., 2009) is a dynamic graph describing message-exchange among
the students at University of California at Irvine (UCI) from April to October 2004. The
interaction event consists of the user IDs, and timestamp.

• lastfm (Kumar et al., 2019) is also a bipartite graph depicting the interactions between
1000 users and 1000 most listened songs over a span of one month.

• mooc (Kumar et al., 2019) as the name suggests is a student interaction network enrolled in
the same online course.

Table 4: The scale of different datasets.

Dataset Total nodes (103) Total Edges (103) Unique Edges (103)

uci 1.89 59.84 20.29
wikipedia 9.23 157.47 18.25
reddit 10.98 672.45 78.52
lastfm 1.98 1293.10 154.99
mooc 7.14 411.75 178.44

A.2 TEMPORAL LINK PREDICTION MODELS

We make use of the following models4 to test the counterfactual framework:

• JODIE (Kumar et al., 2019) uses a recurrent neural network (RNN) to generate node
embeddings for each interaction event. The future embedding of a node is estimated through
a novel projection operator which is turn in used to predict future edge events.

• TGAT (Xu et al., 2020) relies on self-attention mechanism to generate node embeddings to
capture the temporal evolution of the graph structure.

• TGN (Rossi et al., 2020) combine memory modules with graph-based operators to create an
encoder-decoder pair capable of creating temporal node embeddings.

• CAWN (Wang et al., 2020) propose a novel strategy based on the law of triadic closure,
where temporal walks retrieve the dynamic graph motifs without explicitly counting and
selecting the motifs. The node IDs are replaced with the hitting counts to facilitate inductive
inference.

• GraphMixer (Cong et al., 2023) use a simple architecture where the encoder and decoder
are designed using multi-layer perceptrons (MLPs).

• DyGFormer (Yu et al., 2023) use a transformer to learn from nodes’ first-hop interactions
and report SoTA results on most of the datasets.

2The datasets can be downloaded from https://zenodo.org/records/7213796
3The datasets are chronologically split in the ratio 0.7 : 0.15 : 0.15 into train, validation, and test sets.
4The optimal hyper-parameters reported by the models are used.

11

https://zenodo.org/records/7213796

	Introduction
	Preliminaries
	Definitions
	Point Processes

	Counterfactual Analysis
	Temporal Distortion Metrics
	Temporal Distortion Techniques

	Results
	Discussion
	Datasets & Models
	Temporal Graph Datasets
	Temporal Link Prediction Models

