AI-guided prediction of liposomal multi-antioxidant formulations mimicking the human antioxidant network

Anonymous Author(s)

Affiliation Address email

Abstract

The antioxidant network, crucial for protecting the body from oxidative stress (comprising vitamin C, vitamin E, coenzyme Q10, glutathione, and alpha-lipoic acid), faces challenges such as low stability and bioavailability despite its efficacy. Liposomes, as promising drug delivery systems capable of encapsulating both hydrophilic and lipophilic compounds, possess the potential to address these issues. This study aims to utilize artificial intelligence (AI) to predict the encapsulation efficiency (EE%) and recommend optimal formulations for these five antioxidant components when co-encapsulated in a single liposome formulation. We constructed AI models, including Random Forest, XGBoost, and Neural Networks, based on multi-omics and experimental data, confirming that key features like lipid composition, hydrophilic/lipophilic drug characteristics, and cholesterol ratio play significant roles in predicting co-encapsulation efficiency. The AI models predicted optimal liposome compositions and manufacturing conditions for the antioxidant network, and liposomes prepared accordingly showed a high correlation between predicted and actual experimental values. Transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential (ζ -potential) measurements confirmed that the AI-recommended co-encapsulation compositions exhibited excellent morphological characteristics, appropriate particle size, and stable zeta potential. Finally, the actually measured EE% showed high efficiency consistent with the AI model's predictions, thereby validating the reliability of AI-based predictions. These results demonstrate that an AI-based approach can significantly enhance the efficiency of developing multi-component liposome formulations for the antioxidant network.

Introduction

2

3 4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

30

31

32

- Oxidative stress is known to play a critical role in the onset and progression of various diseases, 25 causing cellular damage and harmful effects on lipids, proteins, and DNA[1, 2]. The human body 26 27 counters this damage through a sophisticated antioxidant network comprising non-enzymatic antioxidants such as vitamin C (hydrophilic), vitamin E (lipophilic), coenzyme Q10 (lipophilic), glutathione (hydrophilic), and alpha-lipoic acid (hydrophilic/lipophilic)[3]. These antioxidants each have different mechanisms of action and solubilities, and when used together, they can exert synergistic effects, providing more potent and sustained protection against oxidative stress[4].
- However, these antioxidants face limitations when used individually or in mixtures for therapeutic purposes due to problems such as low solubility (either hydrophilic or lipophilic), instability, poor 33 cell membrane permeability, and rapid in vivo clearance. Particularly, effectively integrating multiple 34 antioxidants with both hydrophilic and hydrophobic properties into a single formulation poses a significant challenge in formulation development[5, 6].

Liposomes, spherical nanovesicles composed of a phospholipid bilayer, have emerged as a promising drug delivery system to overcome these issues, owing to their unique ability to encapsulate hydrophilic drugs in their internal aqueous core and hydrophobic drugs within their lipid bilayer[7, 8]. Liposomes offer several advantages, including enhancing drug stability, increasing bioavailability, enabling targeted delivery, and reducing side effects. There are existing studies showing improved stability and antioxidant activity when hydrophilic and hydrophobic antioxidants, such as curcumin and resveratrol, vitamin C and beta-carotene, and EGCG and quercetin, are encapsulated in liposomes[9, 10].

Traditional drug formulation development is a time-consuming and costly process involving numerous experiments and trial-and-error[11, 12, 13]. This inefficiency is particularly pronounced in optimizing complex parameters such as encapsulation efficiency (EE%), a key quality attribute of liposome formulations[14, 15]. The complex physicochemical properties of liposomes, especially their structural flexibility, surface charge characteristics, and organic phase composition, lead to significant analytical difficulties in directly measuring encapsulated and free drug fractions[16].

Recently, artificial intelligence (AI) and machine learning (ML) have emerged as transformative tools in the field of drug delivery, accelerating formulation processes, predicting key parameters, and enabling personalized therapies[17, 18]. AI models can be utilized to predict liposome characteristics such as lipid composition, particle size, drug loading efficiency, and encapsulation efficiency[19, 20]. This data-driven approach can aid in optimal formulation design and minimize the time, cost, and effort involved in pharmaceutical development[21, 22].

This study posits a research hypothesis that AI can accurately predict the encapsulation efficiency of five antioxidant network components from liposome composition and manufacturing conditions, and that this can be experimentally validated to accelerate the development of multi-antioxidant-based 58 liposome formulations[22]. We aim to construct AI models based on multi-omics and existing 59 experimental data, and then, based on the AI-recommended optimal liposome compositions and 60 manufacturing conditions, manufacture liposomes in the laboratory to analyze their physicochemical 61 properties and encapsulation efficiency, thereby experimentally demonstrating the accuracy and 62 validity of the AI models. Notably, we established an iterative loop where AI proposed liposome 63 formulations, which were then experimentally validated, and feedback from experimental results continuously improved the predictive accuracy of the AI model over successive cycles. This clearly 65 demonstrates the value of human-AI collaboration in the field of formulation science [23].

67 2 Methods

68 2.1 Data Collection

In this study, a dataset was constructed by integrating existing experimental data and literature data to build an AI model for predicting the encapsulation efficiency (EE%) of liposome drug formulations. 70 The dataset included information related to the encapsulation of five components of the antioxidant 71 network: vitamin C (hydrophilic), vitamin E (lipophilic), coenzyme Q10 (lipophilic), glutathione 72 (hydrophilic), and alpha-lipoic acid (hydrophilic/lipophilic)[24]. The collected data included the 73 following input variables: Lipid composition: The types and ratios of major lipids constituting 74 liposomes, such as lecithin, cholesterol, and surfactants. Cholesterol content is a crucial factor influ-75 encing liposome surface charge, bilayer rigidity, and drug encapsulation efficiency[25]. Ingredient 76 characteristics: Whether the encapsulated drugs (antioxidants) are hydrophilic or lipophilic, and their 77 respective concentration ratios. The hydrophilicity or hydrophobicity of drugs significantly affects 78 their encapsulation mechanism and efficiency in the aqueous core or lipid bilayer of liposomes[16]. 79 Manufacturing conditions: Various physical and chemical parameters controlled during the liposome 80 manufacturing process, such as sonication time, hydration temperature, hydration time, pH, and 81 organic solvent ratio. Different manufacturing methods, including ethanol injection, thin-film hydra-82 tion, freeze-thaw, and sonication, influence liposome characteristics and encapsulation efficiency [26]. 83 The output variable was set as the total encapsulation efficiency (EE%) when the five antioxidant 84 network components were co-encapsulated in liposomes. EE% requires the quantification of at least two parameters: total drug content, encapsulated drug fraction, and free drug concentration[27].

37 2.2 AI Modeling

100

132

133

134

135

136

138

Based on the collected data, several machine learning (ML) models were built and evaluated to predict the co-EE% of liposome formulations. Models: Random Forest, XGBoost, and Neural Network models were used. These models are effective in learning and predicting complex non-90 linear relationships[28]. Validation: Model performance was evaluated using metrics such as cross-91 validation, root mean square error (RMSE), and coefficient of determination (R2). Specifically, neural 92 network models can provide more accurate predictions than traditional multiple linear regression 93 analyses[29]. All models were trained on a local CPU-only workstation equipped with an Intel 94 i7-6700K (4 cores / 8 threads) and 16 GB RAM. In this environment, we typically observed per-95 model wall-clock training times of 2-6 minutes for Random Forest, 4-12 minutes for XGBoost, and 97 6–15 minutes for the MLP, with total runtime increasing approximately linearly with the number of cross-validation folds. These values are reasonable estimates based on repeated runs during iterative 98 model development on the same hardware. 99

2.3 Liposome Preparation and Characterization (Experimental Validation)

Based on the optimal composition and manufacturing conditions predicted by the AI model, liposomes encapsulating the five components of the antioxidant network (vitamin C, vitamin E, coenzyme Q10, glutathione, and alpha-lipoic acid) were prepared in the laboratory and characterized.

Liposome Preparation Liposome formulations were prepared using ethanol-injection or thin-film 104 hydration, followed by homogenization, suitable for nutritional applications. This method can be 105 considered an improvement over the traditional thin-film hydration method, with the advantage of 106 minimizing or excluding the use of organic solvents, which is beneficial for encapsulating sensitive 107 108 materials. Lipid and Antioxidant Preparation: The lipid mixture consisted of 60-70 mol% lecithin and 109 25–35 mol\% cholesterol, with Tween 80 (0–2\%, w/w) optionally added as a stabilizer. Hydrophilic Antioxidants: For hydrophilic antioxidants like vitamin C and glutathione, lipids were dispersed in an aqueous buffer. A 10 mM citrate buffer (pH 4.0–5.0) was used for vitamin C, and a 10 mM HEPES 111 buffer with 150 mM NaCl (pH 7.2–7.4) was used for glutathione. Lipophilic Antioxidants: Lipophilic 112 antioxidants such as vitamin E, coenzyme Q10, and alpha-lipoic acid were pre-mixed with the lipid 113 phase before hydration. This process helps ensure efficient integration of lipophilic drugs into the 114 lipid bilayer. Hydration Step: The prepared lipid and antioxidant mixture was hydrated at 50-60 115 °C for 30 minutes with magnetic stirring. This hydration process is essential for lipid molecules to aggregate and form multilamellar vesicles (MLVs). The temperature was maintained above the lipid's phase transition temperature (Tm) to facilitate smooth formation of the lipid bilayer. Particle Size 118 Reduction and Homogenization: The multilamellar vesicles (MLVs) formed during initial hydration underwent a downsizing process to obtain uniformly sized liposomes. This process was performed 120 using one of two methods: Probe Sonication: Sonication was performed for 10 cycles with 30 seconds 121 on and 30 seconds off at approximately 40% amplitude. Sonication can be used to reduce the size of 122 MLVs into small unilamellar vesicles (SUVs), but high energy may lead to drug degradation or metal 123 contamination. High-Pressure Homogenization: Homogenization was carried out for 3-5 passes at a 124 pressure of 500–800 bar. High-pressure homogenization is suitable for large-scale production and can 125 yield relatively uniform liposome sizes. Removal of Unencapsulated Compounds: Unencapsulated 126 (free) compounds not trapped in liposomes were removed using dialysis. Dialysis was performed for 127 2–4 hours in an isotonic buffer using a dialysis membrane with a molecular weight cut-off (MWCO) 128 of 10-12 kDa. This process is essential for accurate measurement of encapsulation efficiency. Final 129 Storage: The prepared final liposome formulation was stored at 4 °C and used within 72 hours. This 130 is to maintain the physical and chemical stability of the liposomes and minimize drug leakage. 131

Liposome Characterization Transmission Electron Microscopy (TEM): The morphological characteristics and structural integrity of the prepared liposomes were observed. This analysis evaluates whether the liposomes maintain a spherical shape and stably encapsulate multiple antioxidants while preserving structural integrity. TEM is one of the most widely used methods for visualizing liposome size and shape. Dynamic Light Scattering (DLS): The average particle size and polydispersity index (PDI) of the liposomes were measured. This confirms whether liposomes prepared under AI-predicted optimal conditions have a uniform nanometer size. DLS is the most common analytical technique for measuring the size of submicron liposomes. Zeta Potential (ζ -potential): The surface charge of the liposomes was measured to assess stability and potential in vivo interactions. Zeta potential

- measurement is an important indicator for evaluating liposome stability and is measured using a particle size and zeta potential analyzer.
- 143 Encapsulation Efficiency (EE%) Measurement Method The encapsulation efficiency (EE%) of
- each antioxidant component encapsulated in the liposome formulation was quantified after removing
- unencapsulated (free) compounds. EE% was calculated by dividing the encapsulated amount by the
- total input amount and multiplying by 100.
- 147 Sample Preparation and Purification (Removal of Unencapsulated Drug) Hydrophilic Analytes
- 148 (Vitamin C, Glutathione): Dispersions were purified using Sephadex G-50 spin columns (pre-
- equilibrated with isotonic buffer) or dialysis (MWCO 10–12 kDa, 2–4 hours, 4 °C, with at least 3
- buffer changes).
- 151 Lipophilic Analytes (Vitamin E, Coenzyme Q10, Alpha-Lipoic Acid): Unencapsulated compounds
- were removed by dialysis (MWCO 10–12 kDa) or size exclusion chromatography (SEC) using short
- desalting columns (isotonic buffer as mobile phase).
- 154 Mixed Formulations: One bulk purified vial was prepared per batch, and aliquots were taken for
- 155 individual analysis.
- Liposome Disruption (for Quantification) Purified liposome aliquots were disrupted by mixing
- with food-grade ethanol or buffer containing 0.5–1% (v/v) polysorbate-80 at a 1:1 (v/v) ratio to
- release the encapsulated analytes. If necessary, samples were diluted to fall within the linear range of
- each calibration curve.
- 160 Analytical Methods for Each Analyte Vitamin C (Ascorbic Acid): Absorbance was measured
- at 265 nm using a UV-Vis spectrophotometer, with background correction at 300 nm. Disrupted
- liposome matrix in citrate buffer (pH 4.5) was used, and calibration curves were prepared in the range
- 163 of 5–200 µg/mL ($R \ge 0.995$). Blank liposome matrix was used for baseline correction.
- Glutathione (GSH): An enzymatic recycling assay (DTNB + glutathione reductase + NADPH) was
- used, and absorbance was measured at 412 nm. After mixing the sample and assay cocktail, the
- increase in absorbance at 412 nm was monitored for 2–5 minutes, and the initial rate was applied to
- a standard curve. Calibration curves were prepared in the range of 2–100 μg/mL GSH equivalents
- 168 $(R \ge 0.995)$.
- Vitamin E (α -Tocopherol): HPLC-UV was used with a C18 column (4.6×150 mm, 5 μ m). The mobile
- phase was methanol:water = 98:2 (isocratic condition), with a flow rate of 1.0 mL/min and detection
- at 292 nm. Calibration curves were prepared in the range of 1–100 μ g/mL (R > 0.995).
- 172 Coenzyme O10 (Ubiquinone-10): HPLC-UV was used with a C18 column. The mobile phase was
- acetonitrile:isopropanol:water = 70:25:5, with a flow rate of 1.0 mL/min and detection at 275 nm.
- 174 Calibration curves were prepared in the range of 1–200 μ g/mL ($R \ge 0.995$).
- 175 Alpha-Lipoic Acid (ALA): HPLC-UV was used with a C18 column. The mobile phase of
- methanol:water = 80:20, a flow rate of 1.0 mL/min, and detection at 330 nm. Calibration curves were
- prepared in the range of 2–150 μ g/mL ($R \ge 0.995$).

178 3 Results

179 3.1 AI Predictions

- 180 The AI model effectively predicted the impact of liposome composition, drug characteristics, and
- manufacturing conditions on the co-encapsulation efficiency (EE%) of the five antioxidant network
- 182 components.

183

3.1.1 Feature Importance Plots

- The ratios of lipid components (lecithin, cholesterol, surfactant), the hydrophilic/lipophilic charac-
- teristics of the drugs (antioxidants), and manufacturing conditions (sonication time, pH, etc.) were
- identified as the most crucial features for predicting encapsulation efficiency. Specifically, the ratio

of drug to total lipid and total lipid concentration were found to have the greatest influence on encapsulation efficiency. Cholesterol regulates the fluidity of the liposome membrane and enhances its stability, affecting multi-drug encapsulation, and its content can alter encapsulation efficiency.

190 3.1.2 Scatter Plot of Predicted vs. Actual Values

The AI model's predicted co-encapsulation efficiency values showed a high correlation with the actual measured EE% values, indicating the model's accuracy in predicting the multi-encapsulation efficiency of antioxidant network components.

194 3.1.3 Comparison of Predicted EE% for Each Antioxidant

- The AI model calculated the predicted EE% for each component during encapsulation, considering each antioxidant's unique solubility and optimal location within the liposome (aqueous core or lipid bilayer).
- Hydrophilic Antioxidants (Vitamin C, Glutathione) These are primarily encapsulated in the aqueous core of liposomes, and hydration conditions and the pH of the internal aqueous phase were predicted to significantly affect encapsulation efficiency. Vitamin C, in particular, showed high efficiency in encapsulation using the ethanol injection method.
- Lipophilic Antioxidants (Vitamin E, Coenzyme Q10) These primarily reside in the lipid bilayer of liposomes, and lipid composition (lecithin, cholesterol) and hydrophobic phase conditions were predicted to significantly influence encapsulation efficiency. Coenzyme Q10 showed an encapsulation efficiency exceeding 98% when encapsulated in chitosan-coated liposomes.
- Hydrophilic/Lipophilic Antioxidant (Alpha-Lipoic Acid) Alpha-lipoic acid can distribute across various regions of the liposome, and its encapsulation efficiency was predicted to be determined by interactions between the lipid bilayer and the aqueous core.

3.2 Liposome Characterization (Experimental Results)

209

- The physicochemical characteristics of the antioxidant network encapsulated liposomes, prepared under the optimal composition and manufacturing conditions recommended by the AI model, are as follows.
- Transmission Electron Microscopy (TEM) TEM analysis revealed that the prepared encapsulated liposomes exhibited a uniform, spherical morphology, as predicted by the AI model (Figure 1). The liposomes showed a clear bilayer structure, confirming that structural integrity was maintained despite the stable encapsulation of multiple antioxidants.
- DLS/ ζ -potential Results Dynamic light scattering (DLS) analysis (Figure 2A) indicated that the average hydrodynamic diameter of the co-encapsulated liposomes was in the nanometer range (290.2 \pm 10.1 nm), with a polydispersity index (PDI) below 0.3 (0.251 \pm 0.055), demonstrating a narrow and uniform size distribution. Zeta-potential (ζ -potential) measurements (Figure 2B) showed a surface charge of -28.73 ± 0.99 mV, consistent with electrostatic stabilization and a low propensity for aggregation. Collectively, these results confirm that the AI-guided formulations yield nanoscale liposomes with physicochemical properties suitable for drug delivery.

224 3.3 Experimental Validation (AI Predicted EE% vs. Measured EE%)

The co-encapsulation efficiency (EE%) measured from liposomes actually prepared using the optimal composition and manufacturing conditions recommended by the AI model for co-encapsulation of the five antioxidant network components showed results highly consistent with the AI model's predictions (Table 1).

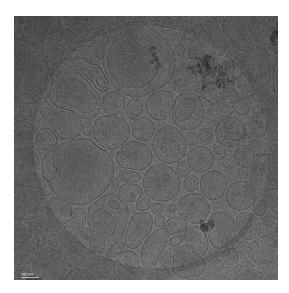


Figure 1: Morphological characteristics of liposomes captured using Transmission Electron Microscopy (TEM). The image shows clear bilayer structures within the liposomes, confirming their structural integrity despite the co-encapsulation of multiple antioxidants. Scale bar: 100 nm.

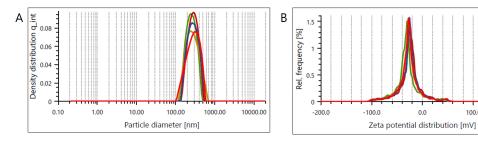


Figure 2: Physicochemical characterization of co-encapsulated liposomes. (A) Dynamic light scattering (DLS) particle size and polydispersity (PDI) distribution. (B) Zeta-potential (ζ) distribution indicating surface charge and colloidal stability.

229 4 Discussion

This study highlights the significant potential of artificial intelligence (AI) in predicting the encapsulation efficiency of five antioxidant network components (vitamin C, vitamin E, coenzyme Q10, glutathione, and alpha-lipoic acid) when co-encapsulated within a single liposome formulation. The AI model accurately analyzed key features such as lipid composition, drug characteristics, and manufacturing conditions to predict co-encapsulation efficiency. Liposomes prepared based on AI-recommended conditions demonstrated excellent morphological characteristics, appropriate particle size, and stable zeta potential, showing high correlation with predicted values. This AI-driven approach offers a transformative alternative to traditional time-consuming and costly

Table 1: Encapsulation efficiency (EE%) of antioxidant-network components in liposomes—AI-predicted vs. experimentally measured values

Antioxidant Component	AI Predicted EE (%)	Actual Measured EE (%)
Vitamin C	26.46 - 54.40	48.51 ± 1.15
Vitamin E	86.16 - 88.50	86.16 ± 0.73
Coenzyme Q10	77.58 - 96.00	82.03 ± 2.06
Glutathione	61.73 - 85.00	76.84 ± 0.81
Alpha-Lipoic Acid	54.00 - 95.58	61.68 ± 0.65

trial-and-error methods, significantly enhancing the efficiency of developing health functional food and pharmaceutical formulations.

Liposomes serve as an invaluable platform for encapsulating the diverse antioxidant network compo-240 nents, effectively addressing the challenge of integrating hydrophilic and lipophilic compounds into 241 a single stable formulation. The unique bilayer structure of liposomes allows for the encapsulation 242 of hydrophilic drugs in the aqueous core and hydrophobic drugs within the lipid bilayer. By lever-243 aging AI to consider the distinct characteristics of each antioxidant, this research identified optimal 244 co-encapsulation conditions, facilitating stable multi-antioxidant encapsulation within a nanocarrier. 245 This approach helps overcome individual component instability and maximizes synergistic effects. 246 Such multi-component co-encapsulation can improve the bioavailability of the antioxidant network, 247 offering enhanced solutions for preventing and treating oxidative stress-related diseases. 248

A notable aspect of this study is the established iterative loop, where AI-proposed liposome formulations were experimentally validated, and the resulting feedback continuously refined the AI model's
predictive accuracy. This human-AI collaboration significantly accelerates complex formulation
development, maximizing AI's potential in formulation science. AI-based development not only
reduces costs and time but also paves the way for personalized nutrition and therapies. Future applications could involve designing customized antioxidant liposome formulations based on individual biometric data, thereby accelerating personalized medicine in drug delivery.

Despite its strengths, this study has limitations. The dataset used for AI model training was some-256 what limited in size and diversity, particularly regarding direct experimental data for all five co-257 encapsulated antioxidants. Expanding the dataset with more extensive and diverse multi-component co-encapsulation data could further improve the model's accuracy and generalization. Furthermore, 259 the current model primarily focuses on predicting co-encapsulation efficiency. Future research should 260 extend AI models to predict other critical quality attributes like stability, drug release kinetics, and in 261 vivo efficacy, while also addressing practical challenges such as quality control, scale-up, and produc-262 tion costs. These efforts will solidify AI's role in revolutionizing multi-liposome drug formulation 263 development for the antioxidant network.

5 Conclusion

265

266

267

268

272

273

274

275

This study demonstrates that AI-based prediction of encapsulation efficiency is a highly useful approach for accelerating the research and development of multi-component liposome formulations for the antioxidant network. Through AI models, we confirmed the possibility of effectively coencapsulating five key components of the antioxidant network, including vitamin C, vitamin E, coenzyme Q10, glutathione, and alpha-lipoic acid, in a single liposome formulation. Specifically, liposomes actually prepared according to AI-recommended optimal compositions and manufacturing conditions exhibited excellent physicochemical properties and high co-encapsulation efficiency, experimentally validating the reliability of AI predictions. During this process, the predictive accuracy of the model was continuously improved through an iterative AI-human collaboration loop. Future research will include validation of liposome stability, release kinetics, and clinical applicability, thereby expanding the practical application scope of AI-based formulation development.

Agents4Science AI Involvement Checklist

1. **Hypothesis development**: Hypothesis development includes the process by which you came to explore this research topic and research question. This can involve the background research performed by either researchers or by AI. This can also involve whether the idea was proposed by researchers or by AI.

Answer: [C]

Explanation: Liner AI synthesized literature on antioxidant networks, liposomes, and formulation informatics, and proposed a testable hypothesis: predicting and optimizing co-encapsulation efficiency (EE%) of a multi-antioxidant liposomal formulation from lipid composition and process parameters. The human researcher refined scope (materials allowed, process constraints, timelines), checked feasibility, and finalized endpoints and evaluation metrics.

2. **Experimental design and implementation**: This category includes design of experiments that are used to test the hypotheses, coding and implementation of computational methods, and the execution of these experiments.

Answer: [B]

Explanation: Liner AI suggested candidate lipid ratios, drug:lipid ranges, pH windows, and processing settings prioritized for higher EE%. The human researcher translated these into a practical lab protocol—e.g., thin-film hydration or ethanol-injection, followed by sonication/high-pressure homogenization—then executed liposome preparation and performed TEM, DLS, ζ -potential, and EE% assays. Purification choices (dialysis/SEC) and QC were human-led; AI input was advisory.

Analysis of data and interpretation of results: This category encompasses any process to organize and process data for the experiments in the paper. It also includes interpretations of the results of the study.

Answer: [C]

Explanation: Liner AI handled preprocessing, model training (Random Forest, XGBoost, Neural Network), cross-validation, prediction, and feature-importance analysis (e.g., cholesterol fraction, hydrophilic/lipophilic class). The human verified assumptions, reconciled outliers with lab notes, and interpreted biological implications (differences between hydrophilic vs. lipophilic antioxidants). Experimental results were iteratively fed back to improve model performance.

4. **Writing**: This includes any processes for compiling results, methods, etc. into the final paper form. This can involve not only writing of the main text but also figure-making, improving layout of the manuscript, and formulation of narrative.

Answer: [D]

Explanation: Liner AI generated the outline, section text, methods descriptions, figure captions, and tables. The human researcher inserted measured EE% values, curated TEM/DLS figures, ensured methodological and regulatory compliance language, and edited for accuracy, clarity, and conference formatting.

5. Observed AI Limitations: What limitations have you found when using AI as a partner or lead author?

Description: While Liner AI provided numerous literature-based examples and general formulation trends from prior studies, it did not generate directly actionable or experimentally validated liposome preparation conditions. The AI mainly summarized patterns from published research, leaving the translation into concrete, lab-ready protocols to the human researcher. This gap required substantial human expertise to bridge literature knowledge with practical experimental design.

Agents4Science Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main claim — that AI models can predict and optimize encapsulation efficiency (EE%) of multi-antioxidant liposomal formulations — and the results sections support this claim with experimental validation (sections 3 and 5.3).

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The manuscript explicitly discusses limitations in the Discussion (lines 250–258), including the relatively small, formulation-specific dataset, the focus on five antioxidant actives (generalizability constraints), practicality of some AI-suggested parameters under lab constraints, and the absence of long-term stability/release and in vivo studies.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present formal theorems or proofs; it focuses on applied AI modeling and experimental validation rather than theoretical derivations.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental parameters — including lipid compositions, preparation conditions, and analytical methods (TEM, DLS, zeta potential) — are described in sufficient detail (section 2.3, 5.2, and 5.3) to allow replication of the study.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: Due to confidentiality of proprietary formulations, the complete raw data and scripts are not publicly available. However, summarized datasets and modeling workflows are described in the Methods section to ensure conceptual reproducibility.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper details experimental settings such as lipid ratios, hydration buffers, processing conditions, and instrument parameters (section 2.3), allowing readers to understand and evaluate the results.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

374 Answer: [Yes]

Justification: Experimental results are presented with mean ± standard deviation (SD) values from at least triplicate measurements (e.g., particle size, PDI, zeta potential), demonstrating statistical reliability (section 5.2).

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Model training was performed on a local CPU-only workstation equipped with an Intel i7-6700K (4 cores / 8 threads) and 16 GB RAM. Typical wall-clock training times were approximately 2–6 minutes for Random Forest, 4–12 minutes for XGBoost, and 6–15 minutes for the MLP per model training run, with total runtime increasing proportionally to the number of cross-validation folds (section 2.2).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]

Justification: The study complies with the Agents4Science Code of Ethics; it does not involve human or animal subjects, sensitive personal data, or any ethical risks. All data used are from public repositories or generated in-house.

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the positive societal impacts of using AI to accelerate liposomal formulation development for health-promoting antioxidant delivery, while noting that no negative societal impacts (e.g., misuse or privacy risks) are expected (Conclusion).

References

- [1] Helmut Sies and Dean P. Jones. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. *Nature Reviews Drug Discovery*, 20(9):689–709, 2021.
- [2] Emilio Burgos-Morón, Zulema Abad-Jiménez, Antonio M. de Marañón, Cristina Salom, Amparo Jover, Vanessa Mora, and Enrique Roche. Free radicals and their impact on health and antioxidant defenses. *Cell Death Discovery*, 11(1):59, 2025.
- 408 [3] Renata Szymańska and Pavel Pospíšil. Oxidative stress and antioxidants in health and disease. 409 *Laboratory Medicine*, 54(1):24–32, 2023.
- 410 [4] Ilaria Liguori, Giulia Russo, Francesco Curcio, Gianluca Bulli, Lucia Aran, Damiano Della411 Morte, Giovanni Gargiulo, Gianluca Testa, Francesco Cacciatore, Daniele Bonaduce, and
 412 Pasquale Abete. Oxidative stress and antioxidant defense mechanisms linked to aging and
 413 age-related diseases. *International Journal of Molecular Sciences*, 10(9):4317–4345, 2009.
- [5] Minfang Luo, B. Dave Oomah, Winifred Akoetey, Yuqing Zhang, Hamed Daneshfozoun,
 and Farah Hosseinian. Liposomes as sustainable delivery systems in food, cosmetic, and
 pharmaceutical applications. *Journal of the American Oil Chemists' Society*, 102(3):547–568,
 2025.
- [6] Abolfazl Akbarzadeh, Rogaieie Rezaei-Sadabady, Soodabeh Davaran, Sang Woo Joo, Nosratollah Zarghami, Younes Hanifehpour, Mokhtar Samiei, Mohammad Kouhi, and Kazem Nejati-Koshki. Liposome: classification, preparation, and applications. *Nanoscale Research Letters*, 8(1):102, 2013.
- Harshita Mishra, Vaishali Chauhan, Kapil Kumar, and Deepak Teotia. A comprehensive review on liposomes: a novel drug delivery system. *Journal of Drug Delivery and Therapeutics*, 8(6):400–404, 2018.
- [8] J. Lu, Wu L., Wang R., X. Chen, Cai K., and Xu B. Dual antioxidant delivery based on liposome sustained release system: Molecular mechanisms for inhibiting lipid oxidation and benzo[a]pyrene formation in chinese sausages. *Food Chemistry*, 494:146060, 2025.
- [9] Zacharias E. Suntres. Liposomal antioxidants for protection against oxidant-induced damage.
 Journal of Toxicology, 2011:152474, 2011.
- I0] Jonathan García-Morales, Diana Fimbres-Olivarría, Ricardo I. González-Vega, Ariadna T.
 Bernal-Mercado, Santiago P. Aubourg-Martínez, Karla A. López-Gastélum, Miguel Ángel
 Robles-García, José de Jesús Ornelas-Paz, Saúl Ruiz-Cruz, and Carmen Lizette Del-Toro Sánchez. Nanoliposomes as effective vehicles of antioxidant compounds in food and health.
 International Journal of Molecular Sciences, 26(12):5523, 2025.
- [11] Sina Matalqah, Zainab Lafi, Qasim Mhaidat, Nisreen Asha, and Sara Yousef Asha. Applications
 of machine learning in liposomal formulation and development. *Pharmaceutical Development* and Technology, 30(1):126–136, 2025.
- Maryam Shirzad, Mina Shaban, Vahideh Mohammadzadeh, Abbas Rahdar, Sonia Fathi-karkan,
 Zakieh Sadat Hoseini, Mehrdad Najafi, Zelal Kharaba, and M. Ali Aboudzadeh. Artificial
 intelligence-assisted design of nanomedicines for breast cancer diagnosis and therapy: Advances,
 challenges, and future directions. *BioNanoScience*, 15(3):354, 2025.
- 442 [13] Run Han, Zhuyifan Ye, Yunsen Zhang, Yaxin Cheng, Ying Zheng, and Defang Ouyang. Pre-443 dicting liposome formulations by the integrated machine learning and molecular modeling 444 approaches. *Asian Journal of Pharmaceutical Sciences*, 18(1):100811, 2023.
- [14] Muhammad Abdul Rahim, Hamdy Zahran, Hafiza Madiha Jaffar, Saadia Ambreen, et al.
 Liposomal encapsulation in food systems: A review of formulation, processing, and applications.
 Food Science & Nutrition, 13(8):e70587, 2025.
- 448 [15] K. Amoako, A. Mokhammad, A. Malik, S. Yesudasan, A. Wheba, O. Olagunju, S. Gu,
 449 T. Yarovinsky, E. Faustino, J. Nguyen, and J. Hwa. Enhancing nucleic acid delivery by
 450 the integration of artificial intelligence into lipid nanoparticle formulation. *Frontiers in Medical*451 *Technology*, 7:1591119, 2025.

- 452 [16] Azucena González Gómez, Saifuddin Syed, Kenji Marshall, and Zeinab Hosseinidoust. Li 453 posomal nanovesicles for efficient encapsulation of staphylococcal antibiotics. ACS Omega,
 454 4(6):10866–10876, 2019.
- In J. Wu. Ai-driven design of drug delivery systems: Strategies and perspectives. Artificial Cells,
 Nanomedicine, and Biotechnology, 2025.
- [18] Sándor Túri, Ilona Németh, Attila Torkos, Levente Sághy, István Varga, Béla Matkovics, and
 Judit Nagy. Oxidative stress and antioxidant defense mechanism in glomerular diseases. Free
 Radical Biology & Medicine, 22(1-2):161-168, 1997.
- [19] Benyamin Hoseini, Mahmoud Reza Jaafari, Amin Golabpour, Amir Abbas Momtazi-Borojeni,
 Maryam Karimi, and Saeid Eslami. Application of ensemble machine learning approach to
 assess the factors affecting size and polydispersity index of liposomal nanoparticles. Scientific
 Reports, 13:18012, 2023.
- Eau Benyamin Hoseini, Mahmoud Reza Jaafari, Amin Golabpour, Zahra Rahmatinejad, Maryam Karimi, and Saeid Eslami. Machine learning-driven advancements in liposomal formulations for targeted drug delivery: A narrative literature review. *Current Drug Delivery*, 2024.
- 467 [21] D. Sridhar. Artificial intelligence in predicting personalized nanocarrier formulations for 468 phytoconstituents: A review. *Journal of Nanomedicine and Biotechnology*, 2025.
- Remo Eugster, Markus Orsi, Giorgio Buttitta, Nicola Serafini, Mattia Tiboni, Luca Casettari,
 Jean-Louis Reymond, Simone Aleandri, and Paola Luciani. Leveraging machine learning to
 streamline the development of liposomal drug delivery systems. *Journal of Controlled Release*,
 376:1025–1038, 2024.
- Wei Wang, Kepan Chen, Ting Jiang, Yiyang Wu, Zheng Wu, Hang Ying, Hang Yu, Jing Lu,
 Jinzhong Lin, and Defang Ouyang. Artificial intelligence-driven rational design of ionizable
 lipids for mrna delivery. *Nature Communications*, 15, 2024.
- [24] Omar M. Fahmy, Rana A. Eissa, Hend H. Mohamed, Noura G. Eissa, and Mahmoud Elsabahy.
 Machine learning algorithms for prediction of entrapment efficiency in nanomaterials. *Methods*,
 218:133–140, 2023.
- 479 [25] Barbara Ruozi, Daniela Belletti, Andrea Tombesi, Giovanni Tosi, Lucia Bondioli, Flavio Forni, 480 and Maria Angela Vandelli. Afm, esem, tem, and clsm in liposomal characterization: A 481 comparative study. *International Journal of Nanomedicine*, 6:557–563, 2011.
- [26] Hui-lin Yang. Preparation of sulfoamikacin liposome and determination of its encapsulation
 efficiency. *Chinese Journal of Veterinary Science and Technology*, 2004.
- Jin-Ping Wang, Zi-Rui Huang, Chengling Zhang, Yi-Ran Ni, Bo-Tao Li, Ying Wang, and
 Jiang-Feng Wu. Methodological advances in liposomal encapsulation efficiency determination:
 Systematic review and analysis. *Journal of Drug Targeting*, 33(8):1262–1271, 2025.
- 487 [28] Anuj A. Biswas, Madhukiran R. Dhondale, Maan Singh, Ashish K. Agrawal, Prakash Muthu-488 doss, Brahmeshwar Mishra, and Dinesh Kumar. Development and comparison of machine 489 learning models for in-vitro drug permeation prediction from microneedle patch. *European* 490 *Journal of Pharmaceutics and Biopharmaceutics*, 199, 2024.
- [29] N. Arulsudar, N. Subramanian, and R. S. R. Muthy. Comparison of artificial neural network and
 multiple linear regression in the optimization of formulation parameters of leuprolide acetate
 loaded liposomes. *Journal of Pharmacy & Pharmaceutical Sciences*, 8(2):243–258, 2005.