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Abstract

The antioxidant network, crucial for protecting the body from oxidative stress1

(comprising vitamin C, vitamin E, coenzyme Q10, glutathione, and alpha-lipoic2

acid), faces challenges such as low stability and bioavailability despite its efficacy.3

Liposomes, as promising drug delivery systems capable of encapsulating both4

hydrophilic and lipophilic compounds, possess the potential to address these issues.5

This study aims to utilize artificial intelligence (AI) to predict the encapsulation6

efficiency (EE%) and recommend optimal formulations for these five antioxidant7

components when co-encapsulated in a single liposome formulation. We con-8

structed AI models, including Random Forest, XGBoost, and Neural Networks,9

based on multi-omics and experimental data, confirming that key features like10

lipid composition, hydrophilic/lipophilic drug characteristics, and cholesterol ratio11

play significant roles in predicting co-encapsulation efficiency. The AI models12

predicted optimal liposome compositions and manufacturing conditions for the13

antioxidant network, and liposomes prepared accordingly showed a high corre-14

lation between predicted and actual experimental values. Transmission electron15

microscopy (TEM), dynamic light scattering (DLS), and zeta potential (ζ-potential)16

measurements confirmed that the AI-recommended co-encapsulation composi-17

tions exhibited excellent morphological characteristics, appropriate particle size,18

and stable zeta potential. Finally, the actually measured EE% showed high effi-19

ciency consistent with the AI model’s predictions, thereby validating the reliability20

of AI-based predictions. These results demonstrate that an AI-based approach21

can significantly enhance the efficiency of developing multi-component liposome22

formulations for the antioxidant network.23

1 Introduction24

Oxidative stress is known to play a critical role in the onset and progression of various diseases,25

causing cellular damage and harmful effects on lipids, proteins, and DNA[1, 2]. The human body26

counters this damage through a sophisticated antioxidant network comprising non-enzymatic antioxi-27

dants such as vitamin C (hydrophilic), vitamin E (lipophilic), coenzyme Q10 (lipophilic), glutathione28

(hydrophilic), and alpha-lipoic acid (hydrophilic/lipophilic)[3]. These antioxidants each have different29

mechanisms of action and solubilities, and when used together, they can exert synergistic effects,30

providing more potent and sustained protection against oxidative stress[4].31

However, these antioxidants face limitations when used individually or in mixtures for therapeutic32

purposes due to problems such as low solubility (either hydrophilic or lipophilic), instability, poor33

cell membrane permeability, and rapid in vivo clearance. Particularly, effectively integrating multiple34

antioxidants with both hydrophilic and hydrophobic properties into a single formulation poses a35

significant challenge in formulation development[5, 6].36
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Liposomes, spherical nanovesicles composed of a phospholipid bilayer, have emerged as a promising37

drug delivery system to overcome these issues, owing to their unique ability to encapsulate hydrophilic38

drugs in their internal aqueous core and hydrophobic drugs within their lipid bilayer[7, 8]. Liposomes39

offer several advantages, including enhancing drug stability, increasing bioavailability, enabling40

targeted delivery, and reducing side effects. There are existing studies showing improved stability and41

antioxidant activity when hydrophilic and hydrophobic antioxidants, such as curcumin and resveratrol,42

vitamin C and beta-carotene, and EGCG and quercetin, are encapsulated in liposomes[9, 10].43

Traditional drug formulation development is a time-consuming and costly process involving nu-44

merous experiments and trial-and-error[11, 12, 13]. This inefficiency is particularly pronounced in45

optimizing complex parameters such as encapsulation efficiency (EE%), a key quality attribute of46

liposome formulations[14, 15]. The complex physicochemical properties of liposomes, especially47

their structural flexibility, surface charge characteristics, and organic phase composition, lead to48

significant analytical difficulties in directly measuring encapsulated and free drug fractions[16].49

Recently, artificial intelligence (AI) and machine learning (ML) have emerged as transformative50

tools in the field of drug delivery, accelerating formulation processes, predicting key parameters, and51

enabling personalized therapies[17, 18]. AI models can be utilized to predict liposome characteristics52

such as lipid composition, particle size, drug loading efficiency, and encapsulation efficiency[19, 20].53

This data-driven approach can aid in optimal formulation design and minimize the time, cost, and54

effort involved in pharmaceutical development[21, 22].55

This study posits a research hypothesis that AI can accurately predict the encapsulation efficiency of56

five antioxidant network components from liposome composition and manufacturing conditions, and57

that this can be experimentally validated to accelerate the development of multi-antioxidant-based58

liposome formulations[22]. We aim to construct AI models based on multi-omics and existing59

experimental data, and then, based on the AI-recommended optimal liposome compositions and60

manufacturing conditions, manufacture liposomes in the laboratory to analyze their physicochemical61

properties and encapsulation efficiency, thereby experimentally demonstrating the accuracy and62

validity of the AI models. Notably, we established an iterative loop where AI proposed liposome63

formulations, which were then experimentally validated, and feedback from experimental results64

continuously improved the predictive accuracy of the AI model over successive cycles. This clearly65

demonstrates the value of human-AI collaboration in the field of formulation science[23].66

2 Methods67

2.1 Data Collection68

In this study, a dataset was constructed by integrating existing experimental data and literature data to69

build an AI model for predicting the encapsulation efficiency (EE%) of liposome drug formulations.70

The dataset included information related to the encapsulation of five components of the antioxidant71

network: vitamin C (hydrophilic), vitamin E (lipophilic), coenzyme Q10 (lipophilic), glutathione72

(hydrophilic), and alpha-lipoic acid (hydrophilic/lipophilic)[24]. The collected data included the73

following input variables: Lipid composition: The types and ratios of major lipids constituting74

liposomes, such as lecithin, cholesterol, and surfactants. Cholesterol content is a crucial factor influ-75

encing liposome surface charge, bilayer rigidity, and drug encapsulation efficiency[25]. Ingredient76

characteristics: Whether the encapsulated drugs (antioxidants) are hydrophilic or lipophilic, and their77

respective concentration ratios. The hydrophilicity or hydrophobicity of drugs significantly affects78

their encapsulation mechanism and efficiency in the aqueous core or lipid bilayer of liposomes[16].79

Manufacturing conditions: Various physical and chemical parameters controlled during the liposome80

manufacturing process, such as sonication time, hydration temperature, hydration time, pH, and81

organic solvent ratio. Different manufacturing methods, including ethanol injection, thin-film hydra-82

tion, freeze-thaw, and sonication, influence liposome characteristics and encapsulation efficiency[26].83

The output variable was set as the total encapsulation efficiency (EE%) when the five antioxidant84

network components were co-encapsulated in liposomes. EE% requires the quantification of at least85

two parameters: total drug content, encapsulated drug fraction, and free drug concentration[27].86
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2.2 AI Modeling87

Based on the collected data, several machine learning (ML) models were built and evaluated to88

predict the co-EE% of liposome formulations. Models: Random Forest, XGBoost, and Neural89

Network models were used. These models are effective in learning and predicting complex non-90

linear relationships[28]. Validation: Model performance was evaluated using metrics such as cross-91

validation, root mean square error (RMSE), and coefficient of determination (R²). Specifically, neural92

network models can provide more accurate predictions than traditional multiple linear regression93

analyses[29]. All models were trained on a local CPU-only workstation equipped with an Intel94

i7-6700K (4 cores / 8 threads) and 16 GB RAM. In this environment, we typically observed per-95

model wall-clock training times of 2–6 minutes for Random Forest, 4–12 minutes for XGBoost, and96

6–15 minutes for the MLP, with total runtime increasing approximately linearly with the number of97

cross-validation folds. These values are reasonable estimates based on repeated runs during iterative98

model development on the same hardware.99

2.3 Liposome Preparation and Characterization (Experimental Validation)100

Based on the optimal composition and manufacturing conditions predicted by the AI model, liposomes101

encapsulating the five components of the antioxidant network (vitamin C, vitamin E, coenzyme Q10,102

glutathione, and alpha-lipoic acid) were prepared in the laboratory and characterized.103

Liposome Preparation Liposome formulations were prepared using ethanol-injection or thin-film104

hydration, followed by homogenization, suitable for nutritional applications. This method can be105

considered an improvement over the traditional thin-film hydration method, with the advantage of106

minimizing or excluding the use of organic solvents, which is beneficial for encapsulating sensitive107

materials. Lipid and Antioxidant Preparation: The lipid mixture consisted of 60–70 mol% lecithin and108

25–35 mol% cholesterol, with Tween 80 (0–2%, w/w) optionally added as a stabilizer. Hydrophilic109

Antioxidants: For hydrophilic antioxidants like vitamin C and glutathione, lipids were dispersed in an110

aqueous buffer. A 10 mM citrate buffer (pH 4.0–5.0) was used for vitamin C, and a 10 mM HEPES111

buffer with 150 mM NaCl (pH 7.2–7.4) was used for glutathione. Lipophilic Antioxidants: Lipophilic112

antioxidants such as vitamin E, coenzyme Q10, and alpha-lipoic acid were pre-mixed with the lipid113

phase before hydration. This process helps ensure efficient integration of lipophilic drugs into the114

lipid bilayer. Hydration Step: The prepared lipid and antioxidant mixture was hydrated at 50–60115

°C for 30 minutes with magnetic stirring. This hydration process is essential for lipid molecules to116

aggregate and form multilamellar vesicles (MLVs). The temperature was maintained above the lipid’s117

phase transition temperature (Tm) to facilitate smooth formation of the lipid bilayer. Particle Size118

Reduction and Homogenization: The multilamellar vesicles (MLVs) formed during initial hydration119

underwent a downsizing process to obtain uniformly sized liposomes. This process was performed120

using one of two methods: Probe Sonication: Sonication was performed for 10 cycles with 30 seconds121

on and 30 seconds off at approximately 40% amplitude. Sonication can be used to reduce the size of122

MLVs into small unilamellar vesicles (SUVs), but high energy may lead to drug degradation or metal123

contamination. High-Pressure Homogenization: Homogenization was carried out for 3–5 passes at a124

pressure of 500–800 bar. High-pressure homogenization is suitable for large-scale production and can125

yield relatively uniform liposome sizes. Removal of Unencapsulated Compounds: Unencapsulated126

(free) compounds not trapped in liposomes were removed using dialysis. Dialysis was performed for127

2–4 hours in an isotonic buffer using a dialysis membrane with a molecular weight cut-off (MWCO)128

of 10–12 kDa. This process is essential for accurate measurement of encapsulation efficiency. Final129

Storage: The prepared final liposome formulation was stored at 4 °C and used within 72 hours. This130

is to maintain the physical and chemical stability of the liposomes and minimize drug leakage.131

Liposome Characterization Transmission Electron Microscopy (TEM): The morphological char-132

acteristics and structural integrity of the prepared liposomes were observed. This analysis evaluates133

whether the liposomes maintain a spherical shape and stably encapsulate multiple antioxidants while134

preserving structural integrity. TEM is one of the most widely used methods for visualizing liposome135

size and shape. Dynamic Light Scattering (DLS): The average particle size and polydispersity index136

(PDI) of the liposomes were measured. This confirms whether liposomes prepared under AI-predicted137

optimal conditions have a uniform nanometer size. DLS is the most common analytical technique138

for measuring the size of submicron liposomes. Zeta Potential (ζ-potential): The surface charge139

of the liposomes was measured to assess stability and potential in vivo interactions. Zeta potential140
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measurement is an important indicator for evaluating liposome stability and is measured using a141

particle size and zeta potential analyzer.142

Encapsulation Efficiency (EE%) Measurement Method The encapsulation efficiency (EE%) of143

each antioxidant component encapsulated in the liposome formulation was quantified after removing144

unencapsulated (free) compounds. EE% was calculated by dividing the encapsulated amount by the145

total input amount and multiplying by 100.146

Sample Preparation and Purification (Removal of Unencapsulated Drug) Hydrophilic Analytes147

(Vitamin C, Glutathione): Dispersions were purified using Sephadex G-50 spin columns (pre-148

equilibrated with isotonic buffer) or dialysis (MWCO 10–12 kDa, 2–4 hours, 4 °C, with at least 3149

buffer changes).150

Lipophilic Analytes (Vitamin E, Coenzyme Q10, Alpha-Lipoic Acid): Unencapsulated compounds151

were removed by dialysis (MWCO 10–12 kDa) or size exclusion chromatography (SEC) using short152

desalting columns (isotonic buffer as mobile phase).153

Mixed Formulations: One bulk purified vial was prepared per batch, and aliquots were taken for154

individual analysis.155

Liposome Disruption (for Quantification) Purified liposome aliquots were disrupted by mixing156

with food-grade ethanol or buffer containing 0.5–1% (v/v) polysorbate-80 at a 1:1 (v/v) ratio to157

release the encapsulated analytes. If necessary, samples were diluted to fall within the linear range of158

each calibration curve.159

Analytical Methods for Each Analyte Vitamin C (Ascorbic Acid): Absorbance was measured160

at 265 nm using a UV-Vis spectrophotometer, with background correction at 300 nm. Disrupted161

liposome matrix in citrate buffer (pH 4.5) was used, and calibration curves were prepared in the range162

of 5–200 µg/mL (R ≥ 0.995). Blank liposome matrix was used for baseline correction.163

Glutathione (GSH): An enzymatic recycling assay (DTNB + glutathione reductase + NADPH) was164

used, and absorbance was measured at 412 nm. After mixing the sample and assay cocktail, the165

increase in absorbance at 412 nm was monitored for 2–5 minutes, and the initial rate was applied to166

a standard curve. Calibration curves were prepared in the range of 2–100 µg/mL GSH equivalents167

(R ≥ 0.995).168

Vitamin E (α-Tocopherol): HPLC-UV was used with a C18 column (4.6×150 mm, 5 µm). The mobile169

phase was methanol:water = 98:2 (isocratic condition), with a flow rate of 1.0 mL/min and detection170

at 292 nm. Calibration curves were prepared in the range of 1–100 µg/mL (R ≥ 0.995).171

Coenzyme Q10 (Ubiquinone-10): HPLC-UV was used with a C18 column. The mobile phase was172

acetonitrile:isopropanol:water = 70:25:5, with a flow rate of 1.0 mL/min and detection at 275 nm.173

Calibration curves were prepared in the range of 1–200 µg/mL (R ≥ 0.995).174

Alpha-Lipoic Acid (ALA): HPLC-UV was used with a C18 column. The mobile phase of175

methanol:water = 80:20, a flow rate of 1.0 mL/min, and detection at 330 nm. Calibration curves were176

prepared in the range of 2–150 µg/mL (R ≥ 0.995).177

3 Results178

3.1 AI Predictions179

The AI model effectively predicted the impact of liposome composition, drug characteristics, and180

manufacturing conditions on the co-encapsulation efficiency (EE%) of the five antioxidant network181

components.182

3.1.1 Feature Importance Plots183

The ratios of lipid components (lecithin, cholesterol, surfactant), the hydrophilic/lipophilic charac-184

teristics of the drugs (antioxidants), and manufacturing conditions (sonication time, pH, etc.) were185

identified as the most crucial features for predicting encapsulation efficiency. Specifically, the ratio186
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of drug to total lipid and total lipid concentration were found to have the greatest influence on187

encapsulation efficiency. Cholesterol regulates the fluidity of the liposome membrane and enhances188

its stability, affecting multi-drug encapsulation, and its content can alter encapsulation efficiency.189

3.1.2 Scatter Plot of Predicted vs. Actual Values190

The AI model’s predicted co-encapsulation efficiency values showed a high correlation with the191

actual measured EE% values, indicating the model’s accuracy in predicting the multi-encapsulation192

efficiency of antioxidant network components.193

3.1.3 Comparison of Predicted EE% for Each Antioxidant194

The AI model calculated the predicted EE% for each component during encapsulation, considering195

each antioxidant’s unique solubility and optimal location within the liposome (aqueous core or lipid196

bilayer).197

Hydrophilic Antioxidants (Vitamin C, Glutathione) These are primarily encapsulated in the198

aqueous core of liposomes, and hydration conditions and the pH of the internal aqueous phase were199

predicted to significantly affect encapsulation efficiency. Vitamin C, in particular, showed high200

efficiency in encapsulation using the ethanol injection method.201

Lipophilic Antioxidants (Vitamin E, Coenzyme Q10) These primarily reside in the lipid bilayer202

of liposomes, and lipid composition (lecithin, cholesterol) and hydrophobic phase conditions were203

predicted to significantly influence encapsulation efficiency. Coenzyme Q10 showed an encapsulation204

efficiency exceeding 98% when encapsulated in chitosan-coated liposomes.205

Hydrophilic/Lipophilic Antioxidant (Alpha-Lipoic Acid) Alpha-lipoic acid can distribute across206

various regions of the liposome, and its encapsulation efficiency was predicted to be determined by207

interactions between the lipid bilayer and the aqueous core.208

3.2 Liposome Characterization (Experimental Results)209

The physicochemical characteristics of the antioxidant network encapsulated liposomes, prepared210

under the optimal composition and manufacturing conditions recommended by the AI model, are as211

follows.212

Transmission Electron Microscopy (TEM) TEM analysis revealed that the prepared encapsulated213

liposomes exhibited a uniform, spherical morphology, as predicted by the AI model (Figure 1). The214

liposomes showed a clear bilayer structure, confirming that structural integrity was maintained despite215

the stable encapsulation of multiple antioxidants.216

DLS/ζ-potential Results Dynamic light scattering (DLS) analysis (Figure 2A) indicated that217

the average hydrodynamic diameter of the co-encapsulated liposomes was in the nanometer range218

(290.2± 10.1 nm), with a polydispersity index (PDI) below 0.3 (0.251± 0.055), demonstrating a219

narrow and uniform size distribution. Zeta-potential (ζ-potential) measurements (Figure 2B) showed220

a surface charge of −28.73±0.99 mV, consistent with electrostatic stabilization and a low propensity221

for aggregation. Collectively, these results confirm that the AI-guided formulations yield nanoscale222

liposomes with physicochemical properties suitable for drug delivery.223

3.3 Experimental Validation (AI Predicted EE% vs. Measured EE%)224

The co-encapsulation efficiency (EE%) measured from liposomes actually prepared using the optimal225

composition and manufacturing conditions recommended by the AI model for co-encapsulation226

of the five antioxidant network components showed results highly consistent with the AI model’s227

predictions (Table 1).228
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Figure 1: Morphological characteristics of liposomes captured using Transmission Electron Mi-
croscopy (TEM). The image shows clear bilayer structures within the liposomes, confirming their
structural integrity despite the co-encapsulation of multiple antioxidants. Scale bar: 100 nm.

Figure 2: Physicochemical characterization of co-encapsulated liposomes. (A) Dynamic light
scattering (DLS) particle size and polydispersity (PDI) distribution. (B) Zeta-potential (ζ) distribution
indicating surface charge and colloidal stability.

4 Discussion229

This study highlights the significant potential of artificial intelligence (AI) in predicting the en-230

capsulation efficiency of five antioxidant network components (vitamin C, vitamin E, coenzyme231

Q10, glutathione, and alpha-lipoic acid) when co-encapsulated within a single liposome formulation.232

The AI model accurately analyzed key features such as lipid composition, drug characteristics,233

and manufacturing conditions to predict co-encapsulation efficiency. Liposomes prepared based234

on AI-recommended conditions demonstrated excellent morphological characteristics, appropri-235

ate particle size, and stable zeta potential, showing high correlation with predicted values. This236

AI-driven approach offers a transformative alternative to traditional time-consuming and costly237

Table 1: Encapsulation efficiency (EE%) of antioxidant-network components in liposomes—AI-
predicted vs. experimentally measured values

Antioxidant Component AI Predicted EE (%) Actual Measured EE (%)

Vitamin C 26.46 - 54.40 48.51 ± 1.15
Vitamin E 86.16 - 88.50 86.16 ± 0.73
Coenzyme Q10 77.58 - 96.00 82.03 ± 2.06
Glutathione 61.73 - 85.00 76.84 ± 0.81
Alpha-Lipoic Acid 54.00 - 95.58 61.68 ± 0.65
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trial-and-error methods, significantly enhancing the efficiency of developing health functional food238

and pharmaceutical formulations.239

Liposomes serve as an invaluable platform for encapsulating the diverse antioxidant network compo-240

nents, effectively addressing the challenge of integrating hydrophilic and lipophilic compounds into241

a single stable formulation. The unique bilayer structure of liposomes allows for the encapsulation242

of hydrophilic drugs in the aqueous core and hydrophobic drugs within the lipid bilayer. By lever-243

aging AI to consider the distinct characteristics of each antioxidant, this research identified optimal244

co-encapsulation conditions, facilitating stable multi-antioxidant encapsulation within a nanocarrier.245

This approach helps overcome individual component instability and maximizes synergistic effects.246

Such multi-component co-encapsulation can improve the bioavailability of the antioxidant network,247

offering enhanced solutions for preventing and treating oxidative stress-related diseases.248

A notable aspect of this study is the established iterative loop, where AI-proposed liposome formula-249

tions were experimentally validated, and the resulting feedback continuously refined the AI model’s250

predictive accuracy. This human-AI collaboration significantly accelerates complex formulation251

development, maximizing AI’s potential in formulation science. AI-based development not only252

reduces costs and time but also paves the way for personalized nutrition and therapies. Future appli-253

cations could involve designing customized antioxidant liposome formulations based on individual254

biometric data, thereby accelerating personalized medicine in drug delivery.255

Despite its strengths, this study has limitations. The dataset used for AI model training was some-256

what limited in size and diversity, particularly regarding direct experimental data for all five co-257

encapsulated antioxidants. Expanding the dataset with more extensive and diverse multi-component258

co-encapsulation data could further improve the model’s accuracy and generalization. Furthermore,259

the current model primarily focuses on predicting co-encapsulation efficiency. Future research should260

extend AI models to predict other critical quality attributes like stability, drug release kinetics, and in261

vivo efficacy, while also addressing practical challenges such as quality control, scale-up, and produc-262

tion costs. These efforts will solidify AI’s role in revolutionizing multi-liposome drug formulation263

development for the antioxidant network.264

5 Conclusion265

This study demonstrates that AI-based prediction of encapsulation efficiency is a highly useful266

approach for accelerating the research and development of multi-component liposome formulations267

for the antioxidant network. Through AI models, we confirmed the possibility of effectively co-268

encapsulating five key components of the antioxidant network, including vitamin C, vitamin E,269

coenzyme Q10, glutathione, and alpha-lipoic acid, in a single liposome formulation. Specifically,270

liposomes actually prepared according to AI-recommended optimal compositions and manufacturing271

conditions exhibited excellent physicochemical properties and high co-encapsulation efficiency,272

experimentally validating the reliability of AI predictions. During this process, the predictive273

accuracy of the model was continuously improved through an iterative AI-human collaboration loop.274

Future research will include validation of liposome stability, release kinetics, and clinical applicability,275

thereby expanding the practical application scope of AI-based formulation development.276
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Agents4Science AI Involvement Checklist277

1. Hypothesis development: Hypothesis development includes the process by which you278

came to explore this research topic and research question. This can involve the background279

research performed by either researchers or by AI. This can also involve whether the idea280

was proposed by researchers or by AI.281

Answer: [C]282

Explanation: Liner AI synthesized literature on antioxidant networks, liposomes, and283

formulation informatics, and proposed a testable hypothesis: predicting and optimizing284

co-encapsulation efficiency (EE%) of a multi-antioxidant liposomal formulation from lipid285

composition and process parameters. The human researcher refined scope (materials allowed,286

process constraints, timelines), checked feasibility, and finalized endpoints and evaluation287

metrics.288

2. Experimental design and implementation: This category includes design of experiments289

that are used to test the hypotheses, coding and implementation of computational methods,290

and the execution of these experiments.291

Answer: [B]292

Explanation: Liner AI suggested candidate lipid ratios, drug:lipid ranges, pH windows,293

and processing settings prioritized for higher EE%. The human researcher translated294

these into a practical lab protocol—e.g., thin-film hydration or ethanol-injection, followed295

by sonication/high-pressure homogenization—then executed liposome preparation and296

performed TEM, DLS, ζ-potential, and EE% assays. Purification choices (dialysis/SEC)297

and QC were human-led; AI input was advisory.298

3. Analysis of data and interpretation of results: This category encompasses any process to299

organize and process data for the experiments in the paper. It also includes interpretations of300

the results of the study.301

Answer: [C]302

Explanation: Liner AI handled preprocessing, model training (Random Forest, XGBoost,303

Neural Network), cross-validation, prediction, and feature-importance analysis (e.g., choles-304

terol fraction, hydrophilic/lipophilic class). The human verified assumptions, reconciled305

outliers with lab notes, and interpreted biological implications (differences between hy-306

drophilic vs. lipophilic antioxidants). Experimental results were iteratively fed back to307

improve model performance.308

4. Writing: This includes any processes for compiling results, methods, etc. into the final309

paper form. This can involve not only writing of the main text but also figure-making,310

improving layout of the manuscript, and formulation of narrative.311

Answer: [D]312

Explanation: Liner AI generated the outline, section text, methods descriptions, figure cap-313

tions, and tables. The human researcher inserted measured EE% values, curated TEM/DLS314

figures, ensured methodological and regulatory compliance language, and edited for accu-315

racy, clarity, and conference formatting.316

5. Observed AI Limitations: What limitations have you found when using AI as a partner or317

lead author?318

Description: While Liner AI provided numerous literature-based examples and general319

formulation trends from prior studies, it did not generate directly actionable or experimentally320

validated liposome preparation conditions. The AI mainly summarized patterns from321

published research, leaving the translation into concrete, lab-ready protocols to the human322

researcher. This gap required substantial human expertise to bridge literature knowledge323

with practical experimental design.324
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Agents4Science Paper Checklist325

1. Claims326

Question: Do the main claims made in the abstract and introduction accurately reflect the327

paper’s contributions and scope?328

Answer: [Yes]329

Justification: The abstract and introduction clearly state the main claim — that AI models330

can predict and optimize encapsulation efficiency (EE%) of multi-antioxidant liposomal331

formulations — and the results sections support this claim with experimental validation332

(sections 3 and 5.3).333

2. Limitations334

Question: Does the paper discuss the limitations of the work performed by the authors?335

Answer: [Yes]336

Justification: The manuscript explicitly discusses limitations in the Discussion (lines337

250–258), including the relatively small, formulation-specific dataset, the focus on five an-338

tioxidant actives (generalizability constraints), practicality of some AI-suggested parameters339

under lab constraints, and the absence of long-term stability/release and in vivo studies.340

3. Theory assumptions and proofs341

Question: For each theoretical result, does the paper provide the full set of assumptions and342

a complete (and correct) proof?343

Answer: [NA]344

Justification: The paper does not present formal theorems or proofs; it focuses on applied345

AI modeling and experimental validation rather than theoretical derivations.346

4. Experimental result reproducibility347

Question: Does the paper fully disclose all the information needed to reproduce the main ex-348

perimental results of the paper to the extent that it affects the main claims and/or conclusions349

of the paper (regardless of whether the code and data are provided or not)?350

Answer: [Yes]351

Justification: All experimental parameters — including lipid compositions, preparation352

conditions, and analytical methods (TEM, DLS, zeta potential) — are described in sufficient353

detail (section 2.3, 5.2, and 5.3) to allow replication of the study.354

5. Open access to data and code355

Question: Does the paper provide open access to the data and code, with sufficient instruc-356

tions to faithfully reproduce the main experimental results, as described in supplemental357

material?358

Answer: [No]359

Justification: Due to confidentiality of proprietary formulations, the complete raw data and360

scripts are not publicly available. However, summarized datasets and modeling workflows361

are described in the Methods section to ensure conceptual reproducibility.362

6. Experimental setting/details363

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-364

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the365

results?366

Answer: [Yes]367

Justification: The paper details experimental settings such as lipid ratios, hydration buffers,368

processing conditions, and instrument parameters (section 2.3), allowing readers to under-369

stand and evaluate the results.370

7. Experiment statistical significance371

Question: Does the paper report error bars suitably and correctly defined or other appropriate372

information about the statistical significance of the experiments?373
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Answer: [Yes]374

Justification: Experimental results are presented with mean ± standard deviation (SD) values375

from at least triplicate measurements (e.g., particle size, PDI, zeta potential), demonstrating376

statistical reliability (section 5.2).377

8. Experiments compute resources378

Question: For each experiment, does the paper provide sufficient information on the com-379

puter resources (type of compute workers, memory, time of execution) needed to reproduce380

the experiments?381

Answer: [Yes]382

Justification: Model training was performed on a local CPU-only workstation equipped with383

an Intel i7-6700K (4 cores / 8 threads) and 16 GB RAM. Typical wall-clock training times384

were approximately 2–6 minutes for Random Forest, 4–12 minutes for XGBoost, and 6–15385

minutes for the MLP per model training run, with total runtime increasing proportionally to386

the number of cross-validation folds (section 2.2).387

9. Code of ethics388

Question: Does the research conducted in the paper conform, in every respect, with the389

Agents4Science Code of Ethics (see conference website)?390

Answer: [Yes]391

Justification: The study complies with the Agents4Science Code of Ethics; it does not392

involve human or animal subjects, sensitive personal data, or any ethical risks. All data used393

are from public repositories or generated in-house.394

10. Broader impacts395

Question: Does the paper discuss both potential positive societal impacts and negative396

societal impacts of the work performed?397

Answer: [Yes]398

Justification: The paper discusses the positive societal impacts of using AI to accelerate399

liposomal formulation development for health-promoting antioxidant delivery, while noting400

that no negative societal impacts (e.g., misuse or privacy risks) are expected (Conclusion).401
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