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ABSTRACT

When large language models (LLMs) use in-context learning (ICL) to solve a
new task, they must infer latent concepts from demonstration examples. This
raises the question of whether and how transformers represent latent structures
as part of their computation. Our work experiments with several controlled tasks,
studying this question using mechanistic interpretability. First, we show that in
transitive reasoning tasks with a latent, discrete concept, the model successfully
identifies the latent concept and does step-by-step concept composition. This
builds upon prior work that analyzes single-step reasoning. Then, we consider
tasks parameterized by a latent numerical concept. We discover low-dimensional
subspaces in the model’s representation space, where the geometry cleanly reflects
the underlying parameterization. Overall, we show that small and large models
can indeed disentangle and utilize latent concepts that they learn in-context from a
handful of abbreviated demonstrations.

1 INTRODUCTION

Transformer-based Large Language Models (LLMs) demonstrate remarkable in-context learning
(ICL) abilities: with only a handful of source-target demonstrations, they can generalize to new queries
without any parameter updates (Brown et al., 2020). These successes hint that the models might be
inferring latent rules or concepts implicit in the prompt. Understanding this goes beyond studying a
specific question about ICL; it is a key step to deciphering how the attention mechanism encapsulates
the influence of prior tokens on posterior tokens, through latent intermediate representations.

Our work takes a systematic view of core questions on how transformers process and use latent
concepts to perform ICL. By latent, we refer to unstated variables or rules that are necessary for the
computation. We also want to understand how the model represents the implicit functions, going
beyond just measuring the accuracy of different tasks. Given the breadth of domains where ICL
appears to work, we are faced with a large canvas of experiment design: Is the model inferring an
elementary function or latently performing chained reasoning? Are the hidden arguments instance-
specific, or abstract and reusable? How is ICL performed when “memorized world knowledge” is
entailed, versus when the task relies on more elementary logic?

To explore these diverse dimensions, we design and implement two sets of experiments. The first
addresses the question of whether and how transformers resolve hidden, intermediate entities in
ICL when “memorized world knowledge” is entailed. An example is mapping an arbitrary city in a
country to the capital city of this country. The second studies the structure of representations when
the model performs numerical or geometrical computations. For example, the model may need to
output the next point in a traversal of a circle or a rectangle. While these tasks are fairly simple, we
believe that studying them sheds new light on more fundamental questions, including whether the
model is taking shortcuts or performing abstract reasoning in its hidden activations.

For tasks involving world knowledge, we use pre-trained Gemma-2 models. We apply causal and
correlation techniques to study how the hidden activations map to certain key parts of the solution
process.

• For the largest 27B model, we find that it relies on step-by-step composition of latent concept
representations to obtain the result. In particular, we discover that a sparse set of attention heads
is responsible for resolving the intermediate latent concept (e.g., the country when going from

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

city to capital, or the company when going from product to headquarter city); the latent concepts
exhibit orthogonality in the embedding space. Then, we show that there is a set of heads and MLPs
deeper in the model responsible for realizing the concrete output (such as the capital) from the
intermediate concept.

• In contrast to the large 27B model, we find that the smaller 2B variant contains a much weaker and
noisier version of the 27B model’s circuit. This corroborates the general wisdom that model size
significantly impacts latent-concept disentanglement and composition abilities in the LLMs.

• We also show that, as expected, adding more in-context examples leads to higher accuracy. We
attribute this to a strengthening of the model circuit’s causal importance and an increase in concept
representation disentanglement. In other words, the model more fully utilizes its relevant sub-
circuits when we add more ICL examples.

Following these tasks involving world knowledge, we study quantitative self-contained tasks. This
allows us to perform more fine-grained experiments on two-layer models trained from scratch. The
ICL tasks here are single-step "arithmetic": add-k, Circular-Trajectory, and Rectangular-Trajectory.

• Recent work has identified linear task vectors for problems such as basic arithmetic, single-step
reasoning, and linguistic mappings (Todd et al., 2024; Hendel et al., 2023). Our key finding
is that models not only have task vectors, but these representations reflect the geometry of the
latent variable. For example, the task vectors for add-k almost entirely project onto a line. More
surprisingly, we can intervene on which function the model computes: interpolating along the task
vector line approximately interpolates on the latent parameter k for the task.

• For the Circular-Trajectory and Rectangular-Trajectory tasks, we see a similar geometry in a
2-dimensional space. This aligns with the linear representation hypothesis, but provides more
nuanced evidence for it by showing a more continuous parameterization along the representation
direction. As with the two-hop task, we provide evidence through both correlational analysis and
localization of task vectors in the model’s representation.

We designed these settings to be clean enough for controlled experimentation, yet hint at some
more general phenomena that deserve further study. For example, models can encapsulate the latent
structures of the tasks they learn. Moreover, these structures may be localized and interpretable in
the model. We posit that even for much more complex tasks, we will be able to find that the latent
concepts are captured by a sparse set of attention heads or a relatively low-dimensional encoding.

1.1 PRELIMINARIES

To focus on analyzing whether and how transformers utilize latent concept representations for
solving ICL, we work with prompts that contain demonstration-only specifications of latent functions.
Intuitively, we have a source x and target y, along with a hidden function F . As input, the model only
sees a handful of pairs (xi, yi)

n
i=1 where yi = F (xi). Then, on a new x′ the model has to compute

F (x′) to obtain a correct answer. The subtle part is that F = R ◦ C, where C maps input x to a
low-dimensional “concept space”, which is then refined by R to produce the output.

The concept map is marked by its re-usability over different instances of sources and targets: for
example, a function that maps cities and landmarks to Country representations, or one that maps points
on a circle to the same radius representation. Such abstract representations enable lower-complexity
inference. To test for the existence and utilization of such maps in transformers performing ICL, we
consider several varieties of demonstration-only prompts, under two categories. The first category
focuses on concept maps relying on world knowledge, with Countries and Companies serving as the
hidden concepts connecting the source to the target (Fig. 1 top half). The second category focuses
purely on self-contained numerical puzzles, with Radius, Offset and other numerical values serving
as the hidden intermediate concepts (Fig. 1 bottom half).

More precisely, we consider the following ICL settings:

• Factuality-based 2-hop Reasoning. This setting involves demonstration examples with under-
specified reasoning steps and discrete latent concepts. Specifically, we consider 2-hop factual
recall tasks where the model must map a “source” entity to a “target” entity (e.g., (non-capital)
city→capital) by first latently inferring the hidden “bridge” entity (e.g., country), allowing us to
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Figure 1: An illustration of our main findings. We primarily focus on how decoder-only transformer-
based language models disentangle and manipulate latent concepts for solving in-context learning
(ICL) problems. In the discrete multi-hop setting, we discover that transformers compose latent
concept representations for predicting the answer. For example, as shown in the upper half of the
figure, by intervening on certain “bridge-concept” attention heads, we can push the model’s “belief”
(reflected in logit and rank) in the original answer Canberra (the capital of Australia, which the
city Sydney belongs to) to the “type-corrected” alternative answer Ottawa (the capital of Canada,
which the landmark Niagara Falls belongs to). In the continuous-parameterization ICL setting, we
discover that transformers’ hidden embeddings capture the geometry of the latent concepts for our
prediction tasks. For instance, for a transformer trained to predict circular trajectories whose radius is
randomly chosen from a continuous interval, not only do we obtain causal evidence for task vectors
(TVs) which control the trajectory’s radius, but they also fall on a smooth 2D manifold.

ask whether the LLM first resolves the “bridge”, then refines it to a “target” entity via (causal) con-
cept compositions. An instance looks like “Toronto, Ottawa. Mumbai, New Delhi.
Shanghai, ”, where the answer is Beijing. The motivation here is to understand what the
model does after reading the input city: does it jump directly to the capital, or does it first invoke
the country as an intermediate reasoning step? While both are plausible strategies, only the latter
captures the latent causal structure that goes through the latent variable (the country).

• Numerical Tasks with Latent Parameters. We generate demonstrations based on quantitative
parameters. We will see that this determines task similarity and induces smooth geometric
relationships in the task space, suggesting that the model encodes such parameters along a low-
dimensional geometry. We first consider the numerical add-k task (also studied by (Hu et al.,
2025)) where the demonstration examples are (xi, yi)

n
i=1 with yi = xi + k, where k is the latent

parameter. An example of add-4 is “5, 9. 3, 7. 1, 5. 2, ”, where the answer is 6.
We then study geometric tasks, such as Circular-Trajectory where points lie on a circle of varying
radii and a related Rectangular-Trajectory task. Our goal is to localize, and more importantly,
understand the geometry of the task vectors: does it reflect the geometry of the latent parameter?

Both sets of tasks are demanding enough to require intricate latent concept disentanglement and
manipulation, yet sufficiently controlled to permit causal, feature and circuit-level analysis.

1.2 RELATED WORK

In-context Learning Interpretation. ICL abilities of transformer-based models were first observed
by Brown et al. (2020), which sparked work in analyzing this ability. This includes analyzing how
pretrained LLMs solve ICL tasks requiring abilities such as copying, single-step reasoning, basic
linguistics (Olsson et al., 2022; Min et al., 2022; Zhou et al., 2023; Hendel et al., 2023; Todd et al.,
2024; Yin & Steinhardt, 2025a), and smaller models trained on synthetic tasks like regression (Garg
et al., 2022; Von Oswald et al., 2023; Akyürek et al., 2023; Bai et al., 2023; Guo et al., 2025), discrete
tasks (Bhattamishra et al., 2024), and mixture of Markov chains (Edelman et al., 2024; Rajaraman
et al., 2024; Park et al., 2025a). These setups enable discovery of relations between in-context and
in-weight learning (Lin & Lee, 2024; Singh et al., 2025; Russin et al., 2025), and internal algorithms
that models implement (Olsson et al., 2022; Edelman et al., 2024; Li et al., 2023; Park et al., 2025a;
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Yin & Steinhardt, 2025a). We contribute to this line of work, by shedding light on how transformers
solve ICL problems which have more intricate latent structures.

Linear Representation Hypothesis (LRH). Our results are also connected to the LRH, which
essentially speculates that LLMs represent high-level concepts in (almost) linear latent directions
(Park et al., 2024; Merullo et al., 2024; Park et al., 2025b; Huh et al., 2024; Ilharco et al., 2023;
Li et al., 2025a; Dumas et al., 2025; Beaglehole et al., 2025). Many papers motivated by the LRH
then find “concept” vectors that can capture directions of truthfulness (Marks & Tegmark, 2024;
Arditi et al., 2024), sentiment (Tigges et al., 2024), humor (von Rütte et al., 2024), toxicity (Turner
et al., 2025), etc. We deepen this study, asking how LLMs’ representations capture/disentangle
latent concepts, and compose them during inference. In addition, the LRH is rooted in the field of
mechanistic interpretability, which aims to reverse engineer mechanisms in transformer-based LMs
(Elhage et al., 2021; Olsson et al., 2022; Singh et al., 2025; Wu et al., 2023; Wang et al., 2023; Hong
et al., 2024; Brinkmann et al., 2024; Bakalova et al., 2025; Heindrich et al., 2025; AlKhamissi et al.,
2025b; Vig et al., 2020; Baek & Tegmark, 2025; Wang & Xu, 2025).

Task and Function Vectors. A specific line of work in analyzing ICL mechanisms focus on task or
function vectors. They show that there exist certain causal patterns which capture the input-output
relationship of the ICL task, on relatively simple problems such as “Country to Capital”, “Antonyms”,
“Capitalize a Word” (Todd et al., 2024; Hendel et al., 2023; Davidson et al., 2025; Yin & Steinhardt,
2025b). Similarly, Liu et al. (2024); Merullo et al. (2024); Li et al. (2025b); AlKhamissi et al. (2025a)
observed that LLMs compress certain task or context information into sparse sets of vectors. We work
with ICL problems with more complex latent structures, and our focus is not solely on (high-level)
task vectors, but on how the model disentangle and manipulate latent concepts useful to answering
the query. In addition, our work complements the function vector analysis from contemporaneous
work of Hu et al. (2025), providing add-k results for smaller models where we have full control over
training and can hence conclude that the geometry of the task vector only arises from the latent task
structure. We also compare results from add-k with other ICL tasks, giving additional insights.

2 DISENTANGLEMENT OF LATENT CONCEPTS IN 2-HOP REASONING

We start with a 2-hop task based on connecting two facts through a latent entity, where the model must
infer the relationships from in-context demonstrations. This task builds on prior work that analyzes
problem with a single step of reasoning (1-hop) over world knowledge, such as geography puzzles
“Country→Capital” or “National Park→Country” (Minegishi et al., 2025; Todd et al., 2024; Yin &
Steinhardt, 2025a). Extending to two steps enables us to explore how LLMs solve ICL problems with
under-specified reasoning steps while requiring latent multi-hop reasoning.

Our goal is to mechanistically analyze how a pre-trained LLM solves a “source→target” problem
when the “bridge” concept is latent. The model needs to understand the nature of the bridge from the
demonstrations, which only contain the sources and targets. Interestingly, models achieve reasonably
high accuracy with sufficient in-context demonstrations. This leads to two competing hypotheses:

• Hypothesis 1 (Shortcut): The LLM maps the queried input directly to the answer (going from
source to target), without internally computing the bridge entity in a discernible manner.

• Hypothesis 2 (Latent two-hop): The LLM first resolves the latent bridge concept (e.g., “country”)
in its hidden representations, then composes it with the output concept to obtain the answer.

We first present the problem definition and experimental set-up. Then, we present our main causal
and correlation evidence favoring Hypothesis 2.

The “Source→Target” Problem. We create two-hop ICL puzzles by composing two facts linked by
a common “bridge” entity. That is, we sample fact tuples {(Si, r1, Bi, r2, Ti)}ni=1, where the source
entity Si is related to the bridge entity Bi via relation r1, and Bi is related to the target entity Ti via
r2. We then create the ICL puzzle in the form [S1, T1. S2, T2 . . . Sn,] [Answer: Tn]1. Note that the
bridge entities Bi’s are never specified in the prompt. An example City→ Capital problem is

Sydney, Canberra. Nantes, Paris. Oshawa,

1We think of this as a systematic ICL version of TWOHOPFACT (Yang et al., 2024). Here, the model must
figure out relations between the source-bridge and bridge-target facts from the ICL examples.
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Here, r1 is “belongs to the country of”, the (unspecified) bridge entities for this example are “Aus-
tralia”, “France”, “Canada”, and r2 is “has capital”. Therefore, the prompt’s answer is Ottawa, the
capital of Canada, the country Oshawa is in.

Figure 2: Accuracy of Gemma-2-27B on the
two-hop “Source→Target” ICL problems.

In the main text, we work with geography puzzles,
with source types {City, University, Landmark}, and
output types {Capital, Calling code}. In addition
to this Country dataset, we work with the Company
dataset in App. A.4 for generality2. See App. A.2 for
details on the data generation process.

We focus on Gemma-2-27B (Gemma Team, 2024)
in the main text. To establish a baseline, we evalu-
ate Gemma-2-27B on Source→Target ICL puzzles.
Fig. 2 reports its accuracy: although the model finds
these tasks more challenging than one-hop counter-
parts—reflected by the need for more in-context ex-
amples—it achieves high accuracy at 20 shots.

We provide new causal and correlational evidence suggesting that the model indeed performs latent
multi-hop reasoning via sequential concept composition: it first infers an abstract bridge concept
representation (e.g. a “Canada” concept), and then specializes to a specific output type (e.g. the
“capital” of “Canada”) deeper in the model. Surprisingly, we find that the bridge-resolving mechanism
is enabled by a sparse set of attention heads in our set of problem settings.

Methodology. We use causal mediation analysis (CMA), also known as activation patching (Pearl,
2022; Zhang & Nanda, 2024) to obtain causal evidence for our claims (see App. A.1 for details). We
discuss the bridge-resolving mechanism in the main text, and delay the analysis of the output-concept
component to App. A.2. For concreteness, consider two prompts with different source-target types:

• A normal prompt, with type [City→Capital]: “Okinawa, Tokyo. Sydney, Canberra. Chicago, ”
[Answer: Washington; Bridge: USA].

• An alternative prompt, with type [Landmark→Calling Code]: “Chapel bridge, 41. The Grand
Canyon, 1. The Great Wall, ” [Answer: 86; Bridge: China].

We perform activation patching on normal and alternative problem pairs with different bridge entities,
across source-target types, at the final token position. Our central experimental assumption is
that if a component computes an abstract representation of the bridge, this should transfer across
different source and target types. This should hold when running the model on the normal prompt,
and replacing a selected component’s activation by the corresponding activation obtained on the
alternative prompt should make the model favor the alternative prompt’s bridge, without bending the
output type. For our example, the alternative-to-normal “patching” pushes the model’s answer on the
normal prompt from Washington to Beijing (the output type remains Capital, but the bridge switches
from USA to China). We refer to this as the “type-corrected” version of the alternative answer. This
evaluation is slightly unorthodox: rather than judging an intervention by whether it reproduces the
literal alternative answer (86), we assess movement toward the type-corrected alternative (Beijing).
By contrast, under the Shortcut hypothesis, patching activations would at worst break the model and
yield nonsensical outputs, or at best, push it to emit the literal alternative answer (86).

We now formalize the intervention with CMA, which enables us to localize components inside the
LLM that specialize in handling the different (latent) reasoning steps of the problem.

Causal Mediation Analysis. Formally, let the normal and alternative prompts be denoted as pnorm =

[S
(norm)
1 , T

(norm)
1 ... S

(norm)
n , ] and palt = [S

(alt)
1 , T

(alt)
1 ... S

(alt)
n , ]. Let T̂ (alt)

n = Typenorm(T
(alt)
n ) denote

the type-corrected output. We run the LLM on both the prompts and cache the LLM’s hidden
activations at the last token position, denoted as (hnorm,halt). To perform CMA on a model component
of interest, say an attention head with activations indexed by (a

(norm)
ℓ,h ,a

(alt)
ℓ,h ), we run the LLM on the

normal prompt again, but this time, intervene by replacing its normal activation with the alternative
a
(alt)
ℓ,h , and let the remainder of the forward pass execute. We then contrast the model’s output behavior

2For our Country & Company data, we collect source and target entity data for 40 countries, 36 companies.
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27th percentile

(b) Reciprocal rank of the altered answer before and after 

patching head group (24,30;31)

(c) Cosine similarity of “Italy” and “Spain” representations 

from head group (24,30;31)

(a) Logit difference variations from select activation 

patching experiments 

Figure 3: We present causal evidence for the bridge-resolving mechanism in (a) and (b), and
correlational evidence in (c) for Gemma-2-27B. In (a) and (b), we run activation patching experiments
across prompts with problems of different source and target types, at the final token position. (a) shows
the percentage logit difference variation of attention heads with the strongest causal influence, on
select intervention experiments. Head group (24,30;31)’s representation exhibits strong transferability
across source and target types. (b) further examines the causal role of (24,30;31), in the patching
experiment [University, Code]→[City, Capital]. Note that the reciprocal rank of 10−1 for the type-
corrected alternative answer after patching (24,30;31) is in the 27th percentile (> 73% in top 10 after
intervention). In (c), we show a cosine similarity plot of bridge-representation disentanglement for
head group (24,30;31), computed on a collection of samples with several combinations of source and
target types, and with “Italy” and “Spain” as the bridge values in the prompts.

on the normal and patched runs by, for example, examining the logit differences between the normal
and (type-corrected) alternative answer, and their ranking pre- and post-intervention. Further details
on CMA and its suitability to our problem setting are deferred to App. A.1.

2.1 RESULTS AND ANALYSIS FOR THE BRIDGE-RESOLVING MECHANISM

Causal evidence. Fig. 3 provides evidence favoring the Latent Two-hop Hypothesis rather than the
Shortcut Hypothesis: we observe causal transferability of the bridge representation. In Fig. 3(a),
we report results on a select set of patching experiments: on both tasks with and without overlap
in source and target types, we observe that a sparse set of attention heads consistently exhibits
very strong causal effects in pushing the model’s “belief” from T

(norm)
n towards T̂ (alt)

n (reflected in
logit difference); the head group (24,30;31) is especially dominant.3 To further understand whether
intervening on (24,30;31) during the normal run really boosts the type-corrected alternative answer
T̂

(alt)
n (instead of only decreasing model’s confidence on the normal answer T (norm)

n , which logit
difference might not tell), in Fig. 3(b), we show an example patching experiment result of [University,
Code]→[City, Capital]. Surprisingly, at least 73% of the time, patching this head group boosts the
model’s rank of the alternative prompt’s answer into top 10 (and directly become the top-1 answer
more than 40% of the time!), when its original, intervention-free rank is typically in the hundreds to
thousands. In consideration of limited space, we visualize the full set of results in App. A.2.

Correlational evidence. To understand the nature of (24,30;31)’s output embeddings better, in
Fig. 3(c), we visualize an example cosine similarity matrix of this attention head, with either “Italy”
or “Spain” as the bridge values for Sn (the query source entity) in the prompts, across a total of
12 different combinations of bridge, source and target types. Specifically, for each combination
of the bridge and source-target type shown in the grid, we sample 10 prompts which obey such

3In our CMA experiments, we account for grouped-query attention by patching heads in groups of 2 on
Gemma-2-27B. We noticed that this tends to produce stronger causal effects than with individual heads.
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requirement,4 giving us a total of 120 prompts. We then obtain head group (24,30;31)’s embedding
of these prompts at the last token position, and compute the pairwise cosine similarities. Observe
that the embedding consistently exhibits strong disentanglement with respect to the bridge value in
the prompt, regardless of source and target types. We provide detailed statistics of disentanglement
strength in App. A.3 and Fig. 27, where we discuss its relation with the number of ICL examples.

Additional Insights. We highlight some additional mechanistic insights below (see Appendix for
details). First, the Gemma-2-2B model has a weak and noisy version of the 27B’s bridge resolving
mechanism. This suggests that increasing model size likely benefits latent concept disentanglement
and utilization in the LLM. We provide details in App. A.2, and Fig. 26. Second, in App. A.3,
we show that disentanglement strengthens with more ICL examples, which is reflected in both the
causal importance of the bridge-resolving components and the angular (dis-)similarities of the bridge
embeddings. Lastly, to complement our study on the geography dataset, we experiment with a similar,
albeit smaller-scaled Company dataset in App. A.4, where company name is the bridge entity. We
again find causal and correlational evidence for the presence of a bridge-resolving mechanism in the
model, and observe overlap in the attention heads driving this mechanism on the two datasets.

3 DISENTANGLEMENT FOR NUMERICAL LATENT VARIABLES

In this section, we consider two problems with numerical or continuous parameterization. For these
experiments we study a very small transformer, with a similar architecture to GPT-2 (Radford et al.,
2019). We use a 2-layer 1-head transformer, with embedding dimension 128, trained with AdamW.

Figure 4: Illustration of an input sequence
for the circle trajectory problem. Here, radius
r=3, period p=2, sequence length n=13.
Every p consecutive steps on the trajectory
are equal. We first sample ⌊n

p ⌋+1 unique
step-sizes in [0, 1], and get the full sequence
{a1, a2, a3, a4, . . . }, where same colors de-
note equal step-sizes. Then, we generate the
trajectory by rotating point xi clockwise by
angle ai · 2πn (see text for formal description).

add-k Problem. Each task is a sequence consisting of
pairwise examples {(xi, yi)}n+1

i=1 , where yi = xi+k,
for a given offset k. Here, we use integer inputs
and offsets; all values are in {0, . . . , V − 1}, each
treated as a distinct token. We consider a collection
of K tasks parameterized by different offset values
in {ki}Ki=1, where k1 = 1 and we fix ki+1 − ki = 3.
The model is trained autoregressively to predict the
label for each example in the sequence. At test time,
the model observes the first n examples and should
predict yn+1 = xn+1 + k for the last example.

Circular-Trajectory Problem. Here a task consists of
a sequence {xi}n+1

i=1 of points on a circle centered at
the origin. Each task is parameterized by the circle’s
radius r; for K tasks, the set of radii {ri}Ki=1 is sam-
pled uniformly from [1, 4]. A task sequence is gener-
ated as follows. We first sample θ0 uniformly at ran-
dom in [0, π

2 ], so x1 = r[cos θ0, sin θ0]
T . Then, we

select the period p randomly from {2, 3, 4}, which de-
termines the number of equal consecutive step-sizes.
Specifically, we first sample a sequence of ⌊n

p ⌋ + 1

unique step-sizes uniformly between [0, 1], and then
get the full sequence of steps {ai}ni=1, where aj = aj+1 = · · · = aj+p−1 for j ∈ {0, p, 2p, . . . }.
Here, context length n = 12m+ 1 for integer m. We also sample c ∈ {±1}, which denotes if the
trajectory is clockwise or counterclockwise. Next, we generate a sequence of angles {θi}ni=1, where
θi = θ0 + c 2πn

∑
j≤i aj . Using the sequence of angles, we generate the sequence, xi+1 = rR(θi)xi,

where R(θ) is the 2D rotation matrix for θ. Fig. 4 shows an example. As in the previous problem,
we train the transformer autoregressively on these types of sequences. Additionally, in App. B, we
consider another shape problem, namely the Rectangular-Trajectory problem, where the trajectories
contain points on lying on axis-aligned rectangles centered at the origin. The Circular-Trajectory
problem is parameterized by one continuous parameter (radius), whereas the Rectangular-Trajectory
problem has two parameters, namely the lengths of the two sides of the rectangle.

4We only specify the bridge entity for Sn in the prompt; the bridge for Si for all i < n are randomly chosen.
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Figure 5: Cosine similarities between the
layer-2 attention embeddings for 200 input
sequences from two tasks/offsets for the add-
k problem. Strong clustering between intra-
task embeddings shows that the model dis-
entangles the concept of different offsets.

Figure 6: Results for linear probing the embeddings
of the trained model at various locations to predict the
final output and the task type for the add-k problem.
The task type becomes disentangled at layer-2 atten-
tion, and the output is computed in layer-2 MLP.

3.1 RESULTS

Existence of Task Vectors. We first outline the process to identify the task vectors for the add-k
problem. We set V = 100, n = 4, and K = 2. Fig. 5 shows the cosine similarities between the
layer-2 attention embeddings at the last position for 200 input sequences from each of the two tasks.
We observe clustering between intra-task embeddings. Hence, the model disentangles the concept of
different offset values in its representation. To provide causal evidence for disentanglement, and to
locate where the task vectors emerge in the model, we linear probe the embeddings of the model to
predict the final output and the offset/task type. We probe embeddings from the output of the MLP at
the first layer, the attention block at the second layer, and the hidden and output layers of the MLP at
the second layer. The results are in Fig. 6. We see that task type is disentangled at layer-2 attention,
and the output is computed at layer-2 MLP. For each task, we treat the layer-2 attention embeddings
averaged across 200 input sequences from that task as the task vector.

We visualize the task vectors by performing PCA and projecting them onto the first two principal
components; Fig. 7 presents the task vectors for the add-k problem, for K = 4, 8, 16 tasks/offsets.
In all three settings, the vectors lie on a 1D linear manifold. More than 99.9% of the variance is
explained by the first PC. Notably, the model compresses the concept of offsets into a line with the
ordering of the offsets (lower to higher) preserved on the manifold (left to right). To corroborate
these results, we study the effect of steering using the task vectors. Specifically, let t1 and tK
denote the task vectors for offsets k1 and kK , respectively. Then, for offset k1 (kK), we steer with
(1 − β)t1 + βtK ((1 − β)tK + βt1) and evaluate the accuracy for predicting the output based
on the original offset k1 (kK), the ‘opposite’ offset kK (k1), or the target offset (1− β)k1 + βkK
((1 − β)kK + βk1), where β ∈ [0, 1]. We use the first/last offsets to interpolate them and steer
towards intermediate offsets. Fig. 8 presents the top-1 and top-3 accuracies for each case. High top-1
accuracies and ≈ 100% top-3 accuracies for the target for all considered values of β indicate that the
model output is steered toward the target. Interpolating along the top principal direction is successful
at interpolating values of k in the task space, showing that the model captures the concept’s geometry.

Figure 7: 2D PCA projection of the task vectors for the add-k problem. The task vectors lie on a 1D
linear manifold. Here the number of tasks refers to the number of values of k.

Fig. 9 presents the 2D PCA projection of the task vectors for the Circular-Trajectory problem, for
K = 16, 32, 64 (training) tasks/radii. In this setting, we consider K = 24 radii, spaced evenly
between [1, 4] to visualize the task vectors, since this task is continuous. We observe that in all three
settings, the task vectors lie on a low-dimensional manifold. The variance explained by the first two
PCs in the three cases is 97.05%, 96.44%, 93.68%, respectively. Similar to the previous setting, the
order of the radii (lower to higher) is preserved in the compressed representation.
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Figure 8: Steering with the task vectors for tasks k1 and kK for the add-k problem (see text for
details). We plot the top-1 and top-3 accuracies for predicting the output based on the original offset
k1 (kK), the ‘opposite’ offset kK (k1), or the target offset (1 − β)k1 + βkK ((1 − β)kK + βk1),
where β ∈ [0, 1], The result shows that the model output can be steered toward the target.

Figure 9: 2D PCA projection of the task vectors for the Circular-Trajectory problem. The task vectors
lie on a smooth low-dimensional manifold. Here the number of tasks refers to the number of radius
values used for training.

Figure 10: Steering with the task vectors for tasks r1 and rK for the Circular-Trajectory problem (see
text for details). The MSE between the radius inferred from the model output and the original radius
r1 (rK), the ‘opposite’ radius rK (r1), or the target radius (1 − β)r1 + βrK ((1 − β)rK + βr1),
where β ∈ [0, 1], indicates that the model output can be steered toward the target.

Fig. 10 presents the results for steering the model output using the task vectors for radii r1 and
rK . We follow the same procedure as in the add-k problem, with a different evaluation metric. We
compute the norm of the generated output after steering as the model’s radius (since the center of the
circles is fixed at the origin), and consider the MSE between these radii and the original radius r1
(rK ), the ‘opposite’ radius rK (r1), or the target radius (1− β)r1 + βrK ((1− β)rK + βr1), where
β ∈ [0, 1], averaged over 200 sequences from each task. We observe that the MSE with the target
radius is the lowest, which indicated the task vector can steer the model’s output toward the target.

In App. B, we examine the task vectors for the Rectangular-Trajectory problem. Here the model
has to reason over two latent continuous parameters, which are the real-valued side lengths of the
unknown rectangle. We find that the first 2 PCs lie on a two-dimensional manifold in that case as well.
This provides a second example of how the model captures the underlying geometry in terms of both
separating the two orthogonal parameters and smoothly interpolating across hidden trajectory shapes.

4 CONCLUSION

Our work provides causal and correlational evidence that transformer-based models disentangle and
manipulate latent concepts from in-context demonstrations in a structured, interpretable manner.
For two-hop tasks, models contain sparse sets of attention heads responsible for first inferring the
bridge entity and then resolving the output. For numerical tasks, the model uses task vectors which
closely capture the underlying parameterization. Future work could leverage these identified concept
representations directly, for instance, by steering model behavior to improve ICL performance or by
composing known concept vectors to enable zero-shot generalization to novel compositional tasks.
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A EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS FOR SECTION 2

A.1 DETAILS ON EXPERIMENTAL SETUP AND TECHNIQUES

Direct effect
X Y

M Indirect effect

Figure 11: Basic illustration of CMA. X =
input (exposure), M = mediator, Y = output
(outcome).

Causal mediation analysis. We primarily rely on
causal mediation analysis (CMA), a.k.a. activation
patching in the mechanistic interpretability literature,
to obtain causal evidence for our claims in the LLM
studies.

At a high level, CMA is about the study of indirect
effects (IE) and direct effects (DE) in a system with
causal relations (Pearl, 2022). Consider the following
classical diagram of CMA, in Figure 11.

Suppose we wish to understand whether a certain
mediator M plays an important role in the causal path from the input X to the outcome Y . We
decompose the “total effect” of X on Y into the sum of direct and indirect effects (DEs and IEs),
as shown in the figure. The indirect effect measures how important a role the mediator M plays
in the causal path X → Y . To measure it, we compute Y given X , except that we artificially
hold M ’s output to its “corrupted” version, which is obtained by computing M on a counterfactual
(“corrupted”) version of the input. A significant change in Y indicates a strong IE, which implies that
M is important in the causal path. On the other hand, a weak IE implies a strong DE, meaning that
the mediator does not play a strong causal role in the system (for the distribution of inputs of interest).

There are two common classes of interventions in mechanistic interpretability for localizing model
components with strong IE in the causal graph. The first class is simple ablation, such as mean
ablation (replace activation of the mediator by its average output on a distribution of interest) (Wang
et al., 2023) or “noising” (Meng et al., 2022). While this type of intervention is easy to perform, it
typically leads to poor localization, surfacing low-level processing components irrelevant to the study
(Zhang & Nanda, 2024).

The other class, which we employ, is “interchange” intervention: it requires construction of alterative
prompts which differ from the normal prompt in subtle ways, requiring careful consideration of
the problem’s nature, but allows “causal surgery” which surfaces model components with specific
functional roles. Technically speaking, we are measuring the natural indirect effects of the mediator.
In particular, it works as follows. We first run the system (the LLM) on both normal and alternative
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(or sometimes called counterfactual) inputs, and cache the output of the mediator M . We then hold
M ’s output to its alternative version, as we run the full system (the LLM) on the normal prompt.
Everything downstream in the causal graph from M are also influenced, up to the output Y . This
helps us measure how the mediator M causally implicate the answer. Or more intuitively, it measures
how “flipping” the output of M causally influences the LLM’s “belief” in the alternative answer over
the normal answer.

What makes our intervention experiments somewhat novel lies in exactly how we measure the IE. In
particular, as we briefly discussed Section 2.1 and 2.2, we do not directly use the alternative prompt’s
ground truth answer to measure how well we are “bending” the model’s “belief” through intervention.
We discuss our method in greater detail here.

First, to understand whether certain attention heads have functional roles in processing the query
source entity Sn which transcend source-target types of the two-hop problems, we work with normal-
alternative prompts with distinct source and target types, such as sampling an alternative prompt
“EPFL, 41. ... University of Tokyo, ” ([University, Code] problem), and a normal prompt “Okinawa,
Tokyo. ... Chicago, ” ([City, Capital] problem). We hypothesize that there are certain model
components which output the bridge concept, which is then composed with the target/output concept
of the problem. For the normal example, this means “Chicago”→“USA” is resolved first, then the
model executes Capital(USA) = Washington D.C. as the output. This means that, patching a model
component’s activation from the alternative prompt onto its activation on a normal prompt, would
cause the model to favor the answer of the alternative prompt, but with the same target semantic type
as the normal prompt. In our running example, this would be “Tokyo”, the capital of “Japan”, the
country (bridge) of the university “University of Tokyo”.

It follows that, to evaluate the “causal effects” of such a bridge-resolving component, we should set
T̂

(alt)
n = Typenorm(T

(alt)
n ). We then measure the (expected) intervened logit difference

∆alt→norm = E
[
logitalt→norm(pnorm)[T

(norm)
n ]− logitalt→norm(pnorm)[T̂

(alt)
n ]

]
, (1)

where pnorm = [S
(norm)
1 , T

(norm)
1 ... S

(norm)
n , ] is the normal prompt, logitalt→norm(pnorm) indicates the

logits of the model obtained after intervention while running the model on the normal prompt, and
logit(pnorm) indicates the logits of the model running naturally (un-intervened) on the normal prompt.
Moreover, when we measure the rank of the model’s answer when intervened, we also use T̂

(alt)
n as

the target.

Remark. To normalize our logit-difference variations, we compute

∆̄ =
∆norm −∆alt→norm

∆norm
, (2)

where
∆norm = E

[
logit(pnorm)[T

(norm)
n ]− logit(pnorm)[T̂

(alt)
n ]

]
. (3)

Problem settings and overall observations. We primarily work with the Geography and Company
2-hop ICL problems to, and with the Gemma-2 LLM family. The former problem setting was
described in the main text (with further elaboration in the Appendix later), while the latter will be
introduced later, to add further generality to our study.

At a high level, in both the Geography and Company 2-hop ICL problems, we obtained causal
and correlational evidence that highly localized groups of attention heads output the representation
of the “bridge” concept based on the query, and the model later utilizes such representation to
produce the output. Furthermore, an interesting technical observation is that multiplying the patched
representation at these attention heads with a constant slightly above 1 (e.g. 1.5 to 4.0) tend to
improve the intervention results. Finally, we make the observation that a smaller LLM, namely
Gemma-2-2B, also possesses attention heads which have a nontrivial causal role in inferring the
bridge representations. However, the representations are poorly disentangled, potentially leading to
the model’s low accuracy on the ICL problems.

Compute. Our LLM experiments are conducted on 2 H200 GPUs, totaling around 200 hours of
compute.
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Licenses. We use the pretrained Gemma 2 models for our LLM experiments. They have the
following license information.

• Models: Gemma-2-27B and Gemma-2-2B (google/gemma-2-27b and google/gemma-2-2B
on Huggingface)

• License: Gemma Terms of Use (Google, 21 Feb 2024)
• Link: https://ai.google.dev/gemma/terms
• Notes: Commercial use permitted subject to Gemma Prohibited-Use Policy.

A.2 ADDITIONAL DETAILS ON EXPERIMENTS WITH THE GEOGRAPHY 2-HOP ICL PUZZLES

Dataset construction. There are two stages to our data sampling process:

Step 1: JSON dictionary sampling. First, we ask ChatGPT o3 to create a JSON dictionary,
mapping each country to its cities, capital, and calling code, and repeating this for universities, and
famous landmarks. We then manually correct for and refine the entries in the JSON dictionaries to
reduce leakage of source types. For instance, ChatGPT sometimes append city or state/province/region
to a landmark, which we remove to ensure that the Landmark source type remains sufficiently distinct
from the City source type. University names sometimes cannot avoid such overlap, e.g. University of
California, Berkeley indeed has city name in it.

The 2-hop Company dataset is constructed in almost exactly the same fashion, mapping the companies
to their products, founders and headquarter cities.

Step 2: Prompt generation. This is discussed in Section 2. Taking the geography puzzles as the
running example, for every City→Capital prompt X = [City1,Capital1 . . .Cityn, ], we sample tuples
(Cityi,Countryi,Capitali), i = 1, . . . , n, where each “bridge” Bi = Countryi is a different country
and the Cityi and Capitali belong to that country, all randomly sampled from the JSON dictionary
from before. The same holds for other source-target types, and on the Company dataset.

Causal evidence. Recall that in the main text, to provide causal evidence for the bridge-resolving
mechanism, we primarily presented causal intervention experiments where we treated [City, Capital]
as the problem type we intervene on, using cross-type prompts [University, Calling Code], [Landmark,
Calling Code] to show causal evidence for the bridge-resolving heads. Here, we add further evidence
by having other source-target types. The results are presented in Figures 12 to 21, indexed as follows:

1. Experiment [City, Capital]→[Landmark, Calling Code]: Figure 12
2. Experiment [University, Capital]→[Landmark, Calling Code]: Figure 13
3. Experiment [City, Capital]→[University, Calling Code]: Figure 14
4. Experiment [Landmark, Capital]→[University, Calling Code]: Figure 15
5. Experiment [University, Capital]→[City, Calling Code]: Figure 16
6. Experiment [Landmark, Capital]→[City, Calling Code]: Figure 17
7. Experiment [City, Calling Code]→[University, Capital]: Figure 18
8. Experiment [Landmark, Calling Code]→[University, Capital]: Figure 19
9. Experiment [City, Calling Code]→[Landmark, Capital]: Figure 20

10. Experiment [University, Calling Code]→[Landmark, Capital]: Figure 21

Every patching experiment is performed on at least 100 prompts. As we can see, the general trend is
that there is strong transferability of the bridge representation across the problem types, including
when the source and target types have no overlap, giving us causal evidence that head groups
(24,30;31), (35,22;23) are “resolving the bridge”.

Scaling constant for bridge intervention. We found that for some of the transfer experiments,
multiplying the patched representation for the heads (24,30;31), (35,22;23) improves the result, i.e.
there is a greater percentage of samples where the alternative answer is boosted into the top-10 (or
even top-1) answers of the model after intervention. Therefore, we also report those results. An
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intriguing property of this scaling constant is that it typically works best around 2.0. At 4.0, we
often observe saturation or even decline in the intervened alternative answer’s rank, such as in the
[University, Capital]→[City, Calling Code] experiment shown in Figure 16.
The output-concept heads. While the main interest of this work lies in the bridge-resolving mechanism
enabled by the sparse set of attention heads discussed above, we also present more analysis of the
output-concept heads, whose embedding tends to cluster with respect to the output concept (Capital
versus Calling Code). To localize these heads, we generate normal-alternative prompt pairs where
we only change the target/output type of the normal prompt to generate the alternative prompt, but
keep the Si’s to be identical across the prompt pairs for all i ≤ n. This helps us surface components
which are independent of the query and bridge value, and sensitive to the output/target type for the
ICL problem. The results are shown in Figure 22 and 23, where we run the intervention experiment
[Landmark, Calling Code]→[Landmark, Capital] (due to limitations in time and computing resources,
we could not sweep all the source-target combinations as of this version of the paper). As we can
see, these head groups with the strongest causal scores indeed tend to exhibit sensitivity to output
type, and insensitivity to source/input type and query and bridge value. Moreover, they are more
concentrated in the deeper layers of the model.

Statistics of alternative-type answers. A natural question to challenge the bridge-resolving mecha-
nism is as follows. Say we are performing intervention by sampling alternative prompts from the
problem type [University, Calling Code], and normal prompts from the type [City, Capital]: even
though the target types have little overlap in text, perhaps the model still assigns nontrivial confidence
to the “Capital” version of the alternative answer (which has target type “Calling Code”)? If that is
so, then it challenges our hypothesis about the role of the “bridge” representations, since we might
just be directly injecting the right version of the alternative answer into the model.

We show evidence to refute this. In particular, in Figure 24, we show that the model places trivial
confidence on the altered-type answer, even if they share the same bridge value. Therefore, we add
further evidence to the bridge-resolving mechanism.

The role of MLPs. We performed similar intervention experiments on the MLPs at the last token
position just like with the attention heads. They are observed to primarily process the output concept
type, and do not participate heavily in outputting the bridge concept representation. This is revealed
in Figure 25.

Smaller LLM exhibits weaker disentanglement. To contrast against our results for the 27B
model, we study a small model in the same family of Gemma 2 models, Gemma-2-2B. This smaller
model has significantly lower accuracies on the problems, measured at 20 shots. [City, Capital]:
71.67%, [University, Capital]: 25.83%, [Landmark, Capital]: 66.67%, [City, Calling Code]: 47.5%,
[University, Calling Code]: 57.5%, [Landmark, Calling Code]: 23.33%.

We perform an intervention experiment [University, Code]→[City, Capital] on Gemma-2-2B, similar
to the bridge-resolving head localization experiments we did on the 27B model. Intriguingly, we were
also able to surface a highly sparse set of attention heads which have nontrivial causal scores (but
much lower than that achieved by the 27B model). We find that these heads exhibit noticeable, but
noisy disentanglement with respect to the bridge representation. We show these results in Figure 26.
The weaker causal score of the bridge-resolving heads and their noisier concept disentanglement in
the 2B model suggests the conjecture that, the larger the model, the more specialized its concept-
processing components are — assuming that the model is well-trained. Such specialization likely
benefits the model’s generalization accuracy.
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(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 12: Gemma-2-27B [City, Capital]→[Landmark, Code] transfer experiments, intervening
head groups (24, 30; 31), (35, 22; 23). We show the percentage logit-difference variation in (a), and
reciprocal rank of the answer answer before and after intervention in the (b) series of figures, with
different scaling constants in {1.0, 1.5, 2.0, 4.0}. We observe strong causal effects of the two attention
head groups. Here, the scaling constant does not significantly affect the intervention performance.

(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 13: Gemma-2-27B [University, Capital]→[Landmark, Code] transfer experiments, intervening
head groups (24, 30; 31), (35, 22; 23). We show the percentage logit-difference variation in (a), and
reciprocal rank of the answer answer before and after intervention in the (b) series of figures, with
different scaling constants in {1.0, 1.5, 2.0, 4.0}. We observe strong causal effects of the two head
groups. Interesting, past a scaling constant of 1.5, we observe decline in intervention performance.

(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 14: Gemma-2-27B [City, Capital]→[University, Code] transfer experiments, intervening
head groups (24, 30; 31), (35, 22; 23). We show the percentage logit-difference variation in (a), and
reciprocal rank of the answer answer before and after intervention in the (b) series of figures, with
different scaling constants in {1.0, 1.5, 2.0, 4.0}. We observe strong causal effects of the two attention
head groups, boosting the alternative answer into top 1 around 60% of the time! Additionally, the
scaling constant does not significantly affect the intervention performance in this experiment.
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(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 15: Gemma-2-27B [Landmark, Capital]→[University, Code] transfer experiments, intervening
head groups (24, 30; 31), (35, 22; 23). We show the percentage logit-difference variation in (a), and
reciprocal rank of the answer answer before and after intervention in the (b) series of figures, with
different scaling constants in {1.0, 1.5, 2.0, 4.0}. We observe strong causal effects of the two attention
head groups. Here, the positive effects of the scaling constant saturates around 2.0.

(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 16: Gemma-2-27B [University, Capital]→[City, Code] transfer experiments, intervening
head groups (24, 30; 31), (35, 22; 23). We show the percentage logit-difference variation in (a),
and reciprocal rank of the answer answer before and after intervention in the (b) series of figures,
with different scaling constants in {1.0, 1.5, 2.0, 4.0}. Interestingly, we observe decline in the
intervention’s accuracy as we push the scaling constant from 2.0 to 4.0 (top-1 accuracy decreases
from around 50% to slightly above 40%), indicating a subtle regime in which the scaling constant
boosts intervention performance.

(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 17: Gemma-2-27B [Landmark, Capital]→[City, Code] transfer experiments, intervening
head groups (24, 30; 31), (35, 22; 23). We show the percentage logit-difference variation in (a), and
reciprocal rank of the answer answer before and after intervention in the (b) series of figures, with
different scaling constants in {1.0, 1.5, 2.0, 4.0}. We observe strong causal effects of the two attention
head groups.
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(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 18: Gemma-2-27B [City, Calling Code]→[University, Capital] transfer experiments, inter-
vening head groups (24, 30; 31), (35, 22; 23). At scaling constant 1.0 (i.e. natural intervention, no
additional scaling), the reciprocal rank of 0.1 for the alternative answer after intervention is at the
36th percentile, while before patching, as we can see, the reciprocal rank of the alternative answer is
mainly in the range of 10−2 to 10−5.

(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 19: Gemma-2-27B [Landmark, Calling Code]→[University, Capital] transfer experiments,
intervening head groups (24, 30; 31), (35, 22; 23). At scaling constant 1.0 (i.e. natural intervention,
no additional scaling), the reciprocal rank of 0.1 for the alternative answer after intervention is at the
41th percentile.

(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 20: Gemma-2-27B [City, Calling Code]→[Landmark, Capital] transfer experiments, inter-
vening the single head group (24, 30; 31). At scaling constant 1.0 (i.e. natural intervention, no
additional scaling), the reciprocal rank of 0.1 for the alternative answer after intervention is at the
34th percentile.
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(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 21: Gemma-2-27B [University, Calling Code]→[Landmark, Capital] transfer experiments,
intervening the single head group (24, 30; 31). At scaling constant 1.0 (i.e. natural intervention, no
additional scaling), the reciprocal rank of 0.1 for the alternative answer after intervention is at the
31st percentile.
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Figure 22: (Best viewed zoomed in) Cosine similarity map of the output-concept head groups (with
top causal scores) identified in Gemma-2-27B, along with the percent logit-difference variation of
the head groups, serving as the metric for the head groups’ causal effects. Observe that they are
mostly insensitive to the source type, query value, and bridge value, and primarily sensitive to the
output/target type. Note: in this set of visualizations, we are using “Italy” and “Spain” as the bridge
values.
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Figure 23: Cosine similarity map of the output-concept head groups identified in Gemma-2-27B.
Here, we construct four groups of prompts. The first two groups consist of multi-hop ICL problems
with Capital or Calling Code as the target type. The remaining two are created by randomly shuffling
the output of the normal multi-hop ICL samples, causing the problem to essentially demand randomly
outputting a Capital or a Calling Code; these are the “negative controls” we discussed in the main
text. We find the output-concept heads’ embeddings on the multi-hop prompts to align strongly with
those on the output-concept-only prompts, further confirming their role in the circuit.
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Figure 24: Distribution of Gemma-2-27B’s confidence on the correct- and incorrect-type answer
on the different problems. When we say “correct-class” answer, we simply mean that the answer’s
semantic type aligns with that of the problem’s target, e.g. the correct-type answer for a prompt
“Okinawa, Tokyo. Nantes, Paris. ... Shanghai, ” would be “Beijing”, while the incorrect-type answer
would be “86” (the calling code of China, which the city Shanghai belongs to). We observe a clear
separation in the LLM’s confidence between the two types of answers.
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MLP-33

MLP-29MLP-25 MLP-31

MLP-32

Figure 25: Functional roles of the MLPs in Gemma-2-27B. We perform patching experiments on
[University, Code]→[City, Capital] at the last token position, similar to how we localize the bridge-
resolving attention heads. We report the percentage logit-difference variation of the top-scoring MLPs,
along with their cosine similarity maps computed on prompts sampled with different combinations of
bridge values (“Italy” and “Spain”) and diverse set of source-target types. Perhaps unsurprisingly, the
MLPs at the last token position play a less interesting role: as seen in the cosine similarity maps for
the MLPs with the highest causal scores (fairly low compared to the attention heads), they primarily
discriminate against the output type. They do not appear to participate much in resolving the bridge
concept, as indicated by their lower causal scores, and the lack of sensitivity to the bridge entities in
the cosine-similarity plots.
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Figure 26: Results of the intervention experiment [University, Code]→[City, Capital], conducted on
Gemma-2-2B, with 20-shot ICL. On the left, we show the percentage logit difference variation of the
intervention experiment; on the right, we plot the cosine similarity map of the two head groups with
the highest causal scores, namely (15, 4; 5) and (22, 0; 1). We find that while the two attention head
groups exhibit nontrivial causal effects and disentanglement, they are, in comparison, much weaker
than those exhibited by the 27B model. This likely explains the significantly lower accuracy of the
2B model than the 27B model. This also suggests a conjecture: perhaps the larger the model, the
more specialized its concept-processing components are?
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(c)(i) 2-shot

(c)(iv) 20-shot

(b)(i) Patching experiment 1 (c)(ii) 4-shot

(c)(iii) 8-shot(b)(ii) Patching experiment 2

(a)(i) 2-shot (a)(ii) 4-shot

(a)(iii) 8-shot (a)(iv) 20-shot

Figure 27: This figure illustrates how the transferability and disentanglement of the bridge representa-
tion increases as we increase the number of in-context examples. Figure series (a) and (b) present the
transferability result, obtained by performing cross-problem-type patching, and measuring the causal
influence of the patched representation. In (a)(i) to (iv), we plot the percentage logit variation of the
attention heads found to output “bridge” values, measured on several intervention experiments. For
(b)(i) and (ii), we zoom in on head group (24,30;31), and show its causal effects on two patching
experiments, [University, Calling Code]→[City, Capital] and [Landmark, Calling Code]→[City,
Capital]. The x-axis is the number of in-context examples, and the y-axis is the 30th percentile
of the reciprocal rank of the alternative prompt’s answer. For (c)(i) to (iv), we plot the histogram
of the disentanglement strength of the representations of head group (24,30;31), with the y-axis in
percentage, and x-axis being cosine similarity.

A.3 MULTI-HOP MECHANISM FORMATION AND THE NUMBER OF IN-CONTEXT EXAMPLES

This sub-section focuses on illustrating the relation between the number of in-context examples
versus (1) how strong a role the multi-hop mechanism plays in the LLM’s inference (via causal
interventions), (2) disentanglement strength of key bridge-resolving attention heads. As we will show
below, there is a general positive correlation between the number of shots and the two factors.

More demonstrations =⇒ stronger causal score. Figure 27 visualizes the experimental results.
From Figure 27(a) and (b) and sub-figures, we observe a correlation between the number of shots
(ICL examples) and the bridge-resolving heads’ “causal importance” in the model’s inference. When
the number of shots is low, we find that they tend to exhibit weak causal influence on the model’s
inference. For instance, as (b)(i) shows, at 2 shots, the 30th percentile of the alternative answer’s rank
after patching at (24,30;31) is on the order of 103. This is in stark contrast to how strong this head
group’s causal influence is at 20 shots as we saw before.

More demonstrations =⇒ stronger disentanglement, with a catch. In Figure 27(c)(i) to (iv), we
observe that the intra-bridge cosine similarity tends to cluster better as the number of shots increase,
while the inter-bridge cosine similarities decay toward 0.2, with the two distributions overlapping less
and less. Interestingly, the bridge-disentanglement strength is still non-trivial with very few shots,
mirroring the causal-intervention results: regardless of how disentangled the representations are in
the very-few-shot regime, the LLM does not “realize” how it should utilize the multi-hop sub-circuit.
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A.4 THE COMPANY PUZZLES, ANOTHER MULTI-HOP ICL TASK

Problem setup. To complement our study on the Geography puzzles and for more generality of our
conclusion that sufficiently capable LLMs solve simple 2-hop ICL problems by resolving the bridge
entities first, we work with another set of problems on globally well-known companies in the world.
We collect data on 36 of them.

Here, our evidence is provided on a narrower range of source and target entity types, due to the
nature of the problem. In particular, we allow source entities to fall in {Products, Founders}, and
target entities to fall into {Founders, Headquarters City}. Furthermore, to obtain causal evidence
that the model is resolving the bridge values from the query before producing the actual answer,
we perform patching experiments with [Products, Founders]→[Founders, HQ City] and [Founders,
Products]→[Products, HQ City]. If we again observe that there is high rank of the alternative prompt’s
converted answer after patching a sparse set of attention heads on the final token position, then we
see significant causal evidence that the model resolves the bridge value during inference.

Some manual cleaning was needed in creating this dataset, on top of ChatGPT sampling: we primarily
filter out products which had company names in them, and companies whose products mostly contain
the company name. An example category of this would be banks and credit/debit card services,
e.g. Visa, Mastercard, HSBC, etc. For companies with multiple headquarters, we choose the most
well-known one out of them as the correct “Headquarter City” of the company; this sometimes counts
an old headquarter of the company as the correct one. Note that this causes us to under-estimate the
LLM’s accuracy with and without intervention!

Quantitative results. We primarily work with the 16-shot ICL setting due to limited compute. In
this setting, the [Product, Founder], [Product, HQ City] and [Founder, HQ City] have accuracies
73.5%, 80.7%, 88.6% respectively. We wish to note that this set of puzzles does rely on significantly
more obscure knowledge than the Geography puzzles, so lower accuracies and weaker multi-hop
links are expected overall.5

As Figures 28, 29 and 30 show, we again obtain evidence for the bridge-resolving heads. In particular,
we find that head groups (22, 2; 3), (24, 14; 15), (24, 30; 31), (28, 12; 13), (28, 26; 27), (35, 22; 23)
(0.8% of the total number of attention heads) exhibit the strongest causal effects in our experiments,
and their output representations exhibit strong disentanglement with respect to the companies.

(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 28: [Founder, Product]→[Product, HQ City] transfer experiments, intervening the head groups
(22, 2; 3), (24, 14; 15), (24, 30; 31), (28, 12; 13), (28, 26; 27), (35, 22; 23) (0.8% of the total number
of attention heads).

5We suspect that lower accuracy is not only due to the more obscure entities in this problem, but also because
of several ambiguities. For example, (1) Product names are oftentimes simply not presented alongside company
names, e.g. “Gatorade” is often not written alongside “PepsiCo”; (2) There can be confusion between company
founders and well-known product directors, especially in certain art/entertainment companies.
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(b)(i) x1.0 intervention (b)(ii) x1.5 intervention

(b)(iv) x4.0 intervention(b)(iii) x2.0 intervention

(a) % Logit difference variation

Figure 29: [Product, Founder]→[Founder, HQ City] transfer experiments, intervening the head
groups (22, 2; 3), (24, 14; 15), (24, 30; 31), (28, 12; 13), (28, 26; 27), (35, 22; 23) (0.8% of the total
number of attention heads).

(a) Ford vs. Nintendo

(b) Sony vs. BMW

(c) Intel vs. Honda

Figure 30: Cosine similarity of representations from the top-4 attention heads for resolving the bridge
entity in Company ICL problems. For each combination of Bridge choice and source-target type,
we sample 5 prompts to compare representation similarity on. We notice that the heads exhibit
disentanglement with respect to the bridge concepts (the companies), but individually, they are not
as capable in clearly resolving the bridge concepts in the Company problems as they do on the
easier Geography problems (the latter problem having relevant accessible knowledge on many more
websites than the former). This likely explains the model’s lower accuracies and somewhat weaker
intervention results on the Company problems, compared to the Geography problems.
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B EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS FOR SECTION 3

This section includes experimental details and additional experiments for problems with numerical or
continuous parameterization considered in Section 3.

Compute. The experiments in this section were performed on an internal cluster with a P100 and a
V100 GPU. We list training details such as batch sizes and iterations used for the experiments in their
respective sections.

B.1 MORE ON THE ADD-k PROBLEM

In this section, we investigate the effect of increasing the number of tasks on the results shown in
Fig. 8, where we showed that the task vectors for K = 4, 8, 16 offsets lie on a 1D linear manifold. In
these settings, the model reached ≈ 100% train and test accuracy.

Figure 31: 3D (left) and 2D (right) PCA projections of
the task vectors for the add-k problem with 32 offsets.
The task vectors lie on a 3D manifold that looks like
a (small) helix. From the 2D projection, we see that
alternating (odd and even) offsets are represented in two
separate arcs of the helix.

We consider a setting with 32 offsets with
gap between the offsets ki+1 − ki = 1. In
this setting, the train/test accuracies reach
only about 90%, which indicates this is
a harder problem for the model to solve.
Fig. 31 shows 3D and 2D PCA projections
of the task vectors. These explain about
96.1% and 84.48% of the variance, respec-
tively. We see that the task vectors lie on a
3D manifold that looks like a (small) helix,
with alternating (odd and even) offsets rep-
resented in two separate arcs of the helix.
This is significantly different from the 1D
linear manifold we observed with a smaller
number of offsets in Fig. 8. This type of ge-
ometry is reminiscent of the observations in
Zhou et al. (2024); Kantamneni & Tegmark
(2025), which study how pre-trained lan-
guage models do addition and find that these models encode numbers as a helix.

Training Details. The models were trained for 1000 iterations using AdamW optimizer with
learning rate 0.001 and weight decay 0.01. We use a linear learning-rate schedule with a warm-up
phase over the first 10% iterations. The train data contains 5000K sequences, we use a batch size of
500 for K = 4, 8, 16, and 2000 for K = 32.

B.2 MORE ON THE CIRCULAR-TRAJECTORY PROBLEM

In this section, we include further details about the experimental setup of the Circular-Trajectory
problem, and present some additional results.

Figure 32: 2D projection of task vectors for the Circular-Trajectory problem when the model is
trained on 32 radius values. The three plots show task vectors for clockwise (CW) trajectories,
counterclockwise (CCW) trajectories, and all trajectories considered together, respectively. We
observe that CW and CCW circle trajectories are represented on two manifolds in the 2D space.

In Fig. 10 in the paper, we show the geometry of task vectors for the Circular-Trajectory problem
for sequences where c = −1, i.e., the trajectories are clockwise (CW). In this section we look at
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the geometry of task vectors for sequences with counterclockwise (CCW) trajectories, as well as all
sequences considered together. In Fig. 32, we plot the 2D projection of task vectors for CW, CCW and
both taken together, respectively. We consider 32 radius values while training. The variance explained
by 2 PCs for the three plots is 93.55%, 96.32%, 89.1%, respectively. Darker colors correspond to
smaller radius values, and the two colormaps in the third subplot represent CW or CCW trajectories.
We observe that CW and CCW circle trajectories are represented on two manifolds in the 2D space.

Training Details. In this setting, we sample a new batch of sequences at every iteration. We use
batch size 64 and train the model on a total of 200 000 sequences. We use Adam optimizer with
learning rate 10−4 and weight decay 0.001. We use representations at position ⌊n

2 ⌋ as the task vector
following the process mentioned in Section 3.1, averaging over 100 sequences each. These settings
remain the same for the experiments in the next section.

B.3 MORE ON THE RECTANGULAR-TRAJECTORY PROBLEM

Figure 33: An illustration
of a sequence of points for
the Rectangular-Trajectory
problem with e = 5 points
per edge, and n = 15. See
text for details.

In this section we consider a Rectangular-Trajectory problem, param-
eterized by two parameters, namely the lengths of the two sides of
the rectangle, say (a, b). Specifically, the trajectories contain points
on axis-aligned rectangles centered at the origin. Let e denote the
number of points on each edge of the rectangle spaced uniformly. The
starting point of the sequence is randomly sampled from one of the e
points on the right vertical edge of the rectangle. The rest of the points
are obtained by traversing the rectangle CW or CCW, determined by
c = −1 or 1. Fig. 33 shows an example sequence.

Similar to Circular-Trajectory problem, each sequence is obtained by
first sampling a and b uniformly between 1 and 4, then sampling the
starting point and c = −1 or 1, and then following the aforementioned
process. For our experiments, we set e = 5 and n = 15 for this task.
The number of tasks K denotes the number of different combinations (a, b).

Figure 34: 2D projection of the
task vectors obtained for 64 (a, b)
combinations. Fixed color or trans-
parency level corresponds to fixed
a or b, respectively. The task vec-
tors lie on a (smooth) 2D manifold.

In Fig. 34, we plot the 2D projection of the task vectors obtained
for all (a, b) combinations lying on the 2D grid between a ∈
[1, 4] and b ∈ [1, 4]. Similar to the experiments in Fig. 10, we
plot the task vectors for trajectories with c = −1 here. We
consider K = 32 in this experiment. The first two PCs explain
91.97% variance. We observe that all the task vectors lie on a
2D manifold.

This setting goes beyond the Circular-Trajectory problem and
shows that transformers represent task vectors corresponding
to the problem parameters (radius for circles and edge lengths
for rectangles) in low-dimensional (smooth) manifolds in both
cases.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

C LIMITATIONS

There are a few limitations of this work, which we discuss below.

• We only look at English language queries for the Geography puzzles, so we do not evaluate how
mechanisms may change across different languages. The input language may correlate with the
model’s parametric knowledge that the model uses to recall the Bridge entity. A more thorough
study would compare model mechanisms for prompts across several languages, to ensure that the
results remain the same.

• The latent concepts that we test for all have easy to understand human representations, such as
numbers, countries, companies, or geometric shapes. This limits our study to a subset of possible
latent concepts that could be present in the ICL examples. There may be other, more intricate,
relationships between the ICL examples that the model is also representing in some way. It would
be ideal to provide ablations over the human-interpretability of the provided examples, to see if
this affects how the model represents the latent concepts.

D USE OF LARGE LANGUAGE MODELS (LLMS)

Frontier LLMs assisted in the process of curating the Country and Company datasets for our multi-hop
ICL experiments discussed in Section 2 and in Appendix A above. As we discussed at the beginning
of Appendix A.2, we rely on ChatGPT o3 (available at the time of dataset curation) to perform the
initial sampling of the countries and companies’ source and target entity data. Manual filtering and
cleaning of the datasets were then performed.

We did not use LLMs for writing, ideation, or finding related work.
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