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ABSTRACT

Randomized ensemble classifiers (RECs), where one classifier is randomly se-
lected during inference, have emerged as an attractive alternative to traditional en-
sembling methods for realizing adversarially robust classifiers with limited com-
pute requirements. However, recent works have shown that existing methods
for constructing RECs are more vulnerable than initially claimed, casting major
doubts on their efficacy and prompting fundamental questions such as: “When are
RECs useful?”, “What are their limits?”, and “How do we train them?”. In this
work, we first demystify RECs as we derive fundamental results regarding their
theoretical limits, necessary and sufficient conditions for them to be useful, and
more. Leveraging this new understanding, we propose a new boosting algorithm
(BARRE) for training robust RECs, and empirically demonstrate its effectiveness
at defending against strong ℓ∞ norm-bounded adversaries across various network
architectures and datasets. Our code is submitted as part of the supplementary
material, and will be publicly released on GitHub.

1 INTRODUCTION

Defending deep networks against adversarial perturbations (Szegedy et al., 2013; Biggio et al., 2013;
Goodfellow et al., 2014) remains a difficult task. Several proposed defenses (Papernot et al., 2016;
Pang et al., 2019; Yang et al., 2019; Sen et al., 2019; Pinot et al., 2020) have been subsequently
“broken” by stronger adversaries (Carlini & Wagner, 2017; Athalye et al., 2018; Tramèr et al., 2020;
Dbouk & Shanbhag, 2022), whereas strong defenses (Cisse et al., 2017; Tramèr et al., 2018; Cohen
et al., 2019), such as adversarial training (AT) (Goodfellow et al., 2014; Zhang et al., 2019; Madry
et al., 2018), achieve unsatisfactory levels of robustness1.

A popular belief in the adversarial community is that single model defenses, e.g., AT, lack the ca-
pacity to defend against all possible perturbations, and that constructing an ensemble of diverse,
often smaller, models should be more cost-effective (Pang et al., 2019; Kariyappa & Qureshi, 2019;
Pinot et al., 2020; Yang et al., 2020b; 2021; Abernethy et al., 2021; Zhang et al., 2022). Indeed,
recent deterministic robust ensemble methods, such as MRBoost (Zhang et al., 2022), have been
successful at achieving higher robustness compared to AT baselines using the same network archi-
tecture, at the expense of 4× more compute (see Fig. 1). In fact, Fig 1 indicates that one can simply
adversarially training larger deep nets that can match the robustness and compute requirements of
MRBoost models, rendering state-of-the-art boosting techniques obsolete for designing classifiers
that are both robust and efficient.

In contrast, randomized ensembles, where one classifier is randomly selected during inference, offer
a unique way of ensembling that can operate with limited compute resources. However, the recent
work of Dbouk & Shanbhag (2022) has cast major concerns regarding their efficacy, as they success-
fully compromised the state-of-the-art randomized defense of Pinot et al. (2020) by large margins
using their proposed ARC adversary. Furthermore, there is an apparent lack of proper theory on the
robustness of randomized ensembles, as fundamental questions such as: “when does randomization
help?” or “how to find the optimal sampling probability?” remain unanswered.

Contributions. In this work, we first provide a theoretical framework for analyzing the adversarial
robustness of randomized ensmeble classifiers (RECs). Our theoretical results enable us to better

1when compared to the high clean accuracy achieved in a non-adversarial setting
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methods:

networks:goal

4.5% robust accuracy

4 less FLOPs

Figure 1: The efficacy of employing randomized ensembles (⋆) for achieving robust and efficient
inference compared to AT (•) and deterministic ensembling MRBoost (♦) on CIFAR-10. Robustness
is measured using the standard ℓ∞ norm-bounded adversary with radius ϵ = 8/255.

understand randomized ensembles, revealing interesting and useful answers regarding their limits,
necessary and sufficient conditions for them to be useful, and efficient methods for finding the op-
timal sampling probability. Next, guided by our threoretical results, we propose BARRE, a new
boosting algorithm for training robust randomized ensemble classifiers achieving state-of-the-art ro-
bustness. We validate the effectiveness of BARRE via comprehensive experiments across multiple
network architectures and datasets, thereby demonstrating that RECs can achieve similar robustness
to AT and MRBoost, at a fraction of the computational cost (see Fig. 1).

2 BACKGROUND AND RELATED WORK

Adversarial Robustness. Deep neural networks are known to be vulnerable to adversarial perturba-
tions (Szegedy et al., 2013; Biggio et al., 2013). In an attempt to robustify deep nets, several defense
methods have been proposed (Katz et al., 2017; Madry et al., 2018; Cisse et al., 2017; Zhang et al.,
2019; Yang et al., 2020b; Zhang et al., 2022; Tjeng et al., 2018; Xiao et al., 2018; Raghunathan et al.,
2018; Yang et al., 2020a). While some heuristic-based empirical defenses have later been broken
by better adversaries (Carlini & Wagner, 2017; Athalye et al., 2018; Tramèr et al., 2020), strong de-
fenses, such as adversarial training (AT) (Goodfellow et al., 2014; Madry et al., 2018; Zhang et al.,
2019), remain unbroken but achieve unsatisfactory levels of robustness.

Ensemble Defenses. Building on the massive success of classic ensemble methods in machine
learning (Breiman, 1996; Freund & Schapire, 1997; Dietterich, 2000), robust ensemble methods
(Kariyappa & Qureshi, 2019; Pang et al., 2019; Sen et al., 2019; Yang et al., 2020b; 2021; Aber-
nethy et al., 2021; Zhang et al., 2022) have emerged as a natural solution to compensate for the un-
satisfactory performance of existing single-model defenses, such as AT. Earlier works (Kariyappa &
Qureshi, 2019; Pang et al., 2019; Sen et al., 2019) relied on heuristic-based techniques for inducing
diversity within the ensembles, and have been subsequently shown to be weak (Tramèr et al., 2020;
Athalye et al., 2018). Recent methods, such as RobBoost (Abernethy et al., 2021) and MRBoost
(Zhang et al., 2022), formulate the design of robust ensembles from a margin boosting perspective,
achieving state-of-the-art robustness for deterministic ensemble methods. This achievement comes
at a massive (4 − 5×) increase in compute requirements, as each inference requires executing all
members of the ensemble, deeming them unsuitable for safety-critical edge applications (Guo et al.,
2020; Sehwag et al., 2020; Dbouk & Shanbhag, 2021). Randomized ensembles (Pinot et al., 2020),
where one classifier is chosen randomly during inference, offer a more compute-efficient alternative.
However, their ability to defend against strong adversaries remains unclear (Dbouk & Shanbhag,
2022; Zhang et al., 2022). In this work, we show that randomized ensemble classifiers can be ef-
fective at defending against adversarial perturbations, and propose a boosting algorithm for training
such ensembles, thereby achieving high levels of robustness with limited compute requirements.
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Randomized Defenses. A randomized defense, where the defender adopts a random strategy for
classification, is intuitive: if the defender does not know what is the exact policy used for a certain
input, then one expects that the adversary will struggle on average to fool such a defense. Theoret-
ically, Bayesian Neural Nets (BNNs) (Neal, 2012) have been shown to be robust (in the large data
limit) to gradient-based attacks (Carbone et al., 2020), whereas Pinot et al. (2020) has shown that
a randomized ensemble classifier (REC) with higher robustness exists for every deterministic clas-
sifier. However, realizing strong and practical randomized defenses remains elusive as BNNs are
too computationally prohibitive and existing methods (Xie et al., 2018; Dhillon et al., 2018; Yang
et al., 2019) often end up being compromised by adaptive attacks (Athalye et al., 2018; Tramèr
et al., 2020). Even BAT, the proposed method of Pinot et al. (2020) for robust RECs, was recently
broken by Zhang et al. (2022); Dbouk & Shanbhag (2022). In contrast, our work first demystifies
randomized ensembles as we derive fundamental results regarding the limit of RECs, necessary and
sufficient conditions for them to be useful, and efficient methods for finding the optimal sampling
probability. Empirically, our proposed boosting algorithm (BARRE) can successfully train robust
RECs, achieving state-of-the-art robustness for RECs.

3 PRELIMINARIES & PROBLEM SETUP

Notation. Let F = {f1, ..., fM} be a collection of M arbitrary C-ary classifiers fi : Rd → [C].
A soft classifier, denoted by f̃ : Rd → RC , can be used to construct a hard classifier f(x) =

argmaxc∈[C][f̃(x)]c, where [v]c = vc. We use the notation f(·|θ) to represent parametric clas-
sifiers where f is a fixed mapping and θ ∈ Θ represents the learnable parameters. Let ∆M =
{v ∈ [0, 1]M :

∑
vi = 1} be the probability simplex of dimension M − 1. Given a probability

vector α ∈ ∆M , we construct a randomized ensemble classifier (REC) fα such that fα(x) = fi(x)
with probability αi. In contrast, traditional ensembling methods construct a deterministic ensemble
classifier (DEC) using the soft classifiers as follows2: f̄(x) = argmaxc∈[C][

∑M
i=1 f̃i(x)]c. Denote

z = (x, y) ∈ Rd×[C] as a feature-label pair that follows some unknown distributionD. Let S ⊂ Rd

be a closed and bounded set representing the attacker’s perturbation set. A typical choice of S in the
adversarial community is the ℓp ball of radius ϵ: Bp(ϵ) = {δ ∈ Rd : ∥δ∥p ≤ ϵ}. For a classifier
fi ∈ F and data-point z = (x, y), define Si(z) = {δ ∈ S : fi(x + δ) ̸= y} to be the set of valid
adversarial perturbations to fi at z.
Definition 1. For any (potentially random) classifier f , define the adversarial risk η:

η(f) = Ez∼D

[
max
δ∈S

Ef [1 {f(x+ δ) ̸= y}]
]

(1)

The adversarial risk measures the robustness of f on average in the presence of an adversary (at-
tacker) restricted to the set S. For the special case of S = {0}, the adversarial risk reduces to the
standard risk of f :

η0(f) = Ez∼D [Ef [1 {f(x) ̸= y}]] = P {f(x) ̸= y} (2)
The more commonly reported robust accuracy of f , i.e., accuracy against adversarially perturbed
inputs, can be directly computed from η(f). The same can be said for the clean accuracy and η0(f).

When working with an REC fα, the adversarial risk can be expressed as:

η(fα) ≡ η(α) = Ez∼D

[
max
δ∈S

M∑
i=1

αi1 {fi(x+ δ) ̸= y}

]
(3)

where we use the notation η(α) whenever the collection F is fixed. Let {ei}Mi=1 ⊂ {0, 1}M be the
standard basis vectors of RM , then we employ the notation η(fi) = η(fei

) ≡ η(ei) = ηi.

4 THE ADVERSARIAL RISK OF A RANDOMIZED ENSEMBLE CLASSIFIER

In this section, we develop our main theoretical findings regarding the adversarial robustness of any
randomized ensemble classifier. Detailed proofs of all statements and theorems can be found in
Appendix B.

2the normalizing constant 1
M

does not affect the classifier output
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Figure 2: Illustration of the equivalence in (6) using an example of three classifiers in R2. The
shaded areas represent regions in the attacker-restricted input space where each classifier makes an
error. All classifiers correctly classify x. The set U uniquely captures the interaction between z and
f1, f2, & f3 inside S.

4.1 PROPERTIES OF η

We start with the following statement:
Proposition 1. For any F = {fi}Mi=1, perturbation set S ⊂ Rd, and data distributionD, the adver-
sarial risk η is a piece-wise linear convex function ∀α ∈ ∆M . Specifically, ∃K ∈ N configurations
Uk ⊆ {0, 1}M ∀k ∈ [K] and p.m.f. p ∈ ∆K such that:

η(α) =

K∑
k=1

(
pk · max

u∈Uk

{
u⊤α

})
(4)

Before we explain the intuition behind Proposition 1, we first make the following observations:

Generality. Proposition 1 makes no assumptions about the classifiers F , i.e., it applies even to the
enigmatic deep nets. While the majority of theoretical results in the literature have been restricted
to ℓp-bounded adversaries, Proposition 1 holds for any closed and bounded perturbation set S. This
is crucial, as real-world attacks are often not restricted to ℓp balls around the input (Liu et al.,
2018; Duan et al., 2020). This generality is further inherited by all of our results, as they build on
Proposition 1.

Analytic Form. Proposition 1 allows us to re-write the adversarial risk in (3) using the analytic form
in (4), which is much simpler to analyze and work with. In fact, the analytic form in (4) enables us
to derive our main theoretical results in Sections 4.2 & 4.3, which include tight fundamental bounds
on η.

Optimal Sampling. The convexity of η implies that any local minimum α∗ is also a global min-
imum. The probability simplex is a closed convex set, thus a global minimum, which need not be
unique, is always achievable. Since η is piece-wise linear, then there always exists a finite set of
candidate solutions for α∗. For M ≤ 3, we efficiently enumerate all candidates in Section 4.2,
eliminating the need for any sophisticated search method. For larger M however, enumeration be-
comes intractable. In Section 4.4, we construct an optimal algorithm for finding α∗ by leveraging
the classic sub-gradient method (Shor, 2012) for optimizing sub-differentiable functions.

Intuition. Consider a data-point z ∈ Rd × [C], then for any δ ∈ S and α ∈ ∆M we have the per
sample risk:

r (z, δ,α) =

M∑
i=1

αi1 {fi(x+ δ) ̸= y} = u⊤α (5)

where u ∈ {0, 1}M such that ui = 1 if and only if δ is adversarial to fi at z. Since u is independent
of α, we thus obtain a many-to-one mapping from δ ∈ S to u ∈ {0, 1}M . Therefore, for any α
and z, we can always decompose the perturbation set S, i.e., S = G1 ∪ ... ∪ Gn, into n ≤ 2M

subsets, such that: ∀δ ∈ Gj : r (z, δ,α) = α⊤uj for some binary vector uj independent of α. Let
U = {uj}nj=1 be the collection of these vectors, then we can write:

max
δ∈S

r (z, δ,α) = max
δ∈G1∪...∪Gn

r (z, δ,α) = max
j∈[n]

{
max
δ∈Gj

r (z, δ,α)

}
= max

u∈U

{
u⊤α

}
(6)
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configuration 1 configuration 2 configuration 3 configuration 4 configuration 5

Figure 3: Enumeration of all K = 5 unique configurations with two classifiers and a data-point
around a set S. Note that since αi ≥ 0 ∀i, the 0 vector is redundant in Uk for k ∈ [4], which
explains why K = 5 and not more.

The main idea behind the equivalence in (6) is that we can represent any configuration of classifiers,
data-point and perturbation set using a unique set of binary vectors U . For example, Fig. 2 pictorially
depicts this equivalence using a case of M = 3 classifiers in R2 with S = B2(ϵ). This equivalence
is the key behind Proposition 1, since the point-wise max term in (6) is piece-wise linear and con-
vex ∀α ∈ ∆M . Finally, Proposition 1 holds due to the pigeon-hole principle and the linearity of
expectation.

4.2 SPECIAL CASE OF TWO CLASSIFIERS

With two classifiers only, we can leverage the analytic form of η in (4) and enumerate all possi-
ble classifiers/data-point configurations around S by enumerating all configurations Uk ⊆ {0, 1}2.
Specifically, Fig. 3 visualizes all K = 5 such unique configurations, which allows us to write
∀α ∈ ∆2:

η(α) = p1 ·max{α1, α2}+ p2 · 1 + p3 · α1 + p4 · α2 + p5 · 0 (7)
where p ∈ ∆5 is the p.m.f. of “binning” any data-point z into any of the five configurations, under
the data distribution z ∼ D. Using (7), we obtain the following result:
Theorem 1. For any two classifiers f1 and f2 with individual adversarial risks η1 and η2, respec-
tively, subject to a perturbation set S ⊂ Rd and data distribution D, if:

P {z ∈ R1} > |η1 − η2| (8)

where:
R1 = {z ∈ Rd × [C] : S1(z) ̸= ∅,S2(z) ̸= ∅,S1(z) ∩ S2(z) = ∅} (9)

then the optimal sampling probability α∗ = [1/2 1/2]
⊤ uniquely minimizes η(α) resulting in

η(α∗) = 1
2 (η1 + η2 − P {z ∈ R1}). Otherwise, α∗ ∈ {e1, e2} minimizes η(α), where eis are

the standard basis vectors of R2.

Theorem 1 provides us with a complete description of how randomized ensembles operate when
M = 2. We discuss its implications below:

Interpretation. Theorem 1 states that randomization is guaranteed to help when the condition in
(8) is satisfied, i.e., when the probability of data-points z (P {z ∈ R1}) for which it is possible to
find adversarial perturbations that can fool f1 or f2 but not both (see configuration 1 in Fig. 3),
is greater than the absolute difference (|η1 − η2|) of the individual classifiers’ adversarial risks.
Consequently, if the adversarial risks of the classifiers are heavily skewed, i.e., |η1−η2| is large, then
randomization is less likely to help, since condition (8) becomes harder to satisfy. This, in fact, is the
case for BAT defense (Pinot et al., 2020) since it generates two classifiers with η1 < 1 and η2 = 1.
Theorem 1 indicates that adversarial defenses should strive to achieve η1 ≈ η2 for randomization to
be effective. In practice, it is very difficult to make P {z ∈ R1} very large compared to η1 and η2
due to transferability of adversarial perturbations.

Optimality Condition. In fact, the condition in (8) is actually a necessary and sufficient condition
for η(α∗) < min{η1, η2}. That is, a randomized ensemble of f1 and f2 is guaranteed to achieve
smaller adversarial risk than either f1 of f2 if and only if (8) holds. This also implies that it is
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impossible to have a nontrivial3 unique global minimizer other than α∗ = [1/2 1/2]
⊤, which provides

further theoretical justification for why the BAT defense in (Pinot et al., 2020) does not work, where
α∗ = [0.9 0.1]

⊤ was claimed to be a unique optimum (obtained via sweeping α).

Simplified Search. Theorem 1 eliminates the need for sweeping α to find the optimal sampling
probability α∗ when working with M = 2 classifiers as done in (Pinot et al., 2020; Dbouk &
Shanbhag, 2022). We only need to evaluate η

(
[1/2 1/2]

⊤
)

and check if it is smaller than min{η1, η2}
to choose our optimal sampling probability. In Appendix C.1, we extend this result for M = 3.
Interestingly, Vorobeychik & Li (2014) derive a similar result for M = 2 for a different problem of
an adversary attempting to reverse engineer the defender’s classifier via queries.

Theoretical Limit. From Theorem 1, we can directly obtain a tight bound on the adversarial risk:
Corollary 1. For any two classifiers f1 and f2 with individual adversarial risks η1 and η2, respec-
tively, perturbation set S, and data distribution D:

min
α∈∆2

η(α) = η(α∗) ≥ min

{
1

2
max{η1, η2},min{η1, η2}

}
. (10)

In other words, it is impossible for a REC with M = 2 classifiers to achieve a risk smaller than the
RHS in (10). In the next section, we derive a more general version of this bound for arbitrary M .

4.3 TIGHT FUNDAMENTAL BOUNDS

A fundamental question remains to be answered: given an ensemble F of M classifiers with adver-
sarial risks η1, ..., ηM , what is the tightest bound we can provide for the adversarial risk η(α) of a
randomized ensemble constructed from F? The following theorem answers this question:
Theorem 2. For a perturbation set S, data distribution D, and collection of M classifiers F with
individual adversarial risks ηi (i ∈ [M ]) such that 0 < η1 ≤ ... ≤ ηM ≤ 1, we have ∀α ∈ ∆M :

min
k∈[M ]

{ηk
k

}
≤ η(α) ≤ ηM (11)

Both bounds are tight in the sense that if all that is known about the setup F , D, and S is {ηi}Mi=1,
then there exist no tighter bounds. Furthermore, the upper bound is always met if α = eM , and the
lower bound (if achievable) can be met if α =

[
1
m ... 1

m 0 ... 0
]⊤

, where m = argmink∈[M ]{
ηk

k }.

Upper bound: The upper bound in (11) holds due to the convexity of η (Proposition 1) and the fact
∆M = H

(
{ei}Mi=1

)
, whereH(X ) is the convex hull of the set of points X .

Implications of upper bound: Intuitively, we expect that a randomized ensemble cannot be worse
than the worst performing member (in this case fM ). A direct implication of this is that if all
the members have similar robustness ηi ≈ ηj ∀i, j, then randomized ensembling is guaranteed to
either improve or achieve the same robustness. In contrast, deterministic ensemble methods that
average logits (Zhang et al., 2022; Abernethy et al., 2021; Kariyappa & Qureshi, 2019) do not even
satisfy this upper bound (see Appendix C.2). In other words, there are no worst-case performance
guarantees with deterministic ensembling, even if all the classifiers are robust.

Lower bound: The main idea behind the proof of the lower bound in (11) is to show that ∀α ∈ ∆M :

η(α) ≥
M∑
i=1

(
(ηi − ηi−1) · max

j∈{i,...,M}
{αj}

)
= h(α) ≥ min

α∈∆M

h(α) = h(α∗) =
ηm
m

(12)

where η0
.
= 0, m = argmink∈[M ]{ηk/k}, and h can be interpreted as the adversarial risk of an REC

constructed from an optimal set of classifiers F ′ with the same individual risks as F . We make the
following observations:

Implications of lower bound: The lower bound in (11) provides us with a fundamental limit on
the adversarial risk of RECs viz., it is impossible for any REC constructed from M classifiers with

3that is different than e1 or e2
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sorted risks {ηi}Mi=1 to achieve an adversarial risk smaller than mink∈[M ]{ηk/k} = ηm/m. This
limit is not always achievable and generalizes the one in (10) which holds for M = 2. Theorem 2
states that if the limit is achievable then the corresponding optimal sampling probability α∗ =[
1
m ... 1

m 0 ... 0
]⊤

. Note that this does not imply that the optimal sampling probability is always
equiprobable sampling ∀F!

Additionally, the lower bound in (11) provides guidelines for robustifying individual classifiers in
order for randomized ensembling to enhance the overall adversarial risk. Given classifiers f1, ..., fm
obtained via any sequential ensemble training algorithm, a good rule of thumb for the classifier
obtained via the training iteration m+ 1 is to have:

ηm ≤ ηm+1 ≤
(
1 +

1

m

)
ηm (13)

Note that only for m = 1 does (13) become a necessary condition: If η2 > 2η1, then f1 will always
achieve better risk than an REC of f1 and f2. If a training method generates classifiers f1, ..., fM
with risks: η1 < 1 and ηi = 1 ∀i ∈ {2, ...,M}, i.e., only the first classifier is somewhat robust and
the remaining M − 1 classifiers are compromised (such as BAT), the lower bound in (11) reduces
to:

η(α) ≥ min

{
η1,

1

M

}
(14)

implying the necessary condition M ≥ ⌈η−1
1 ⌉ for RECs constructed from F to achieve better risk

than f1. Note: the fact that this condition is violated by (Pinot et al., 2020) hints to the existence of
strong attacks that can break it (Zhang et al., 2022; Dbouk & Shanbhag, 2022).

4.4 OPTIMAL SAMPLING

In this section, we leverage Proposition 1 to extend the results in Section 4.2 to provide a theoreti-
cally optimal and efficient solution for computing the optimal sampling probability (OSP) algorithm
(Algorithm 1) for M > 3.

In practice, we do not know the true data distribution D. Instead, we are provided a training set
z1, ..., zn, assumed to be sampled i.i.d. from D. Given the training set, and a fixed collection of
classifiers F , we wish to find the optimal sampling probability:

α∗ = argmin
α∈∆M

η̂(α) = argmin
α∈∆M

1

n

n∑
j=1

(
argmax

δ∈S

M∑
i=1

αi1 {fi(xj + δ) ̸= yj}

)
(15)

Note that the empirical adversarial risk η̂ is also piece-wise linear and convex in α, and hence all
our theoretical results apply naturally. In order to numerically solve (15), we first require access to
an adversarial attack oracle (attack) for RECs that solves ∀S,F , z, and α:

attack (F ,S,α, z) = argmax
δ∈S

M∑
i=1

αi1 {fi(x+ δ) ̸= y} (16)

Using the oracle attack, Algorithm 1 updates its solution iteratively given the adversarial error-rate
of each classifier over the training set. The projection operator Π∆M

in Line (15) of Algorithm 1
ensures that the solution is a valid p.m.f.. Wang & Carreira-Perpinán (2013) provide a simple and
exact method for computing Π∆M

. Finally, we state the following result on the optimality of OSP:
Theorem 3. The OSP algorithm output αT satisfies:

0 ≤ η̂(αT )− η̂(α∗) ≤
∥α(1) −α∗∥22 +Ma2

∑T
t=1 t

−2

2a
∑T

t=1 t
−1

−−−−→
T→∞

0 (17)

for all initial conditions α(1) ∈ ∆M , a > 0, where α∗ is a global minimum.

Theorem 3 follows from a direct application of the classic convergence result of the projected sub-
gradient method for constrained convex minimization (Shor (2012)). The optimality of OSP relies
on the existence of an attack oracle for (16) which may not always exist. However, attack algorithms
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such as ARC (Dbouk & Shanbhag (2022)) were found to yield good results in the common setting
of differentiable classifiers and ℓp-restricted adversaries.

Algorithm 1 The Optimal Sampling Probability (OSP) Al-
gorithm for Randomized Ensembles

1: Input: classifiers F = {fi}Mi=1, perturbation set S , at-
tack algorithm attack, training set {zj}nj=1, initial step-
size a > 0, and number of iterations T ≥ 1.

2: Output: optimal sampling probability α∗.
3: initialize α(1) ∈ ∆M , ηbest ← 1

4: /∗ we find that α(1) =
[

1
M ... 1

M

]⊤
performs well

5: for t ∈ {1, ..., T} do
6: g← 0, at ← a

t
7: for j ∈ {1, ..., n} do
8: δj ← attack

(
F ,S,α(t), zj

)
9: ∀i ∈ [M ]: gi ← gi + 1 {fi(xj + δj) ̸= yj}

10: end for
11: g← 1

ng ▷ sub-gradient of η(α(t))

12: η(t) ← g⊤α(t) ▷ η(α(t))
13: if η(t) ≤ ηbest then tbest ← t, ηbest ← η(t)

14: /∗ projection-update step
15: α(t+1) ← Π∆M

(
α(t) − atg

)
16: end for
17: return α(tbest)

Algorithm 2 The Boosting Algorithm for Robust Randomized En-
sembles (BARRE)

1: Input: Number of classifiers M , perturbation set S , training set
{zj}nj=1, learning rate ρ, mini-batch size B, number of epochs E,
OSP frequency Eo, OSP number of iterations To.

2: Output: Robust randomized ensemble classifier (F ,α)
3: initialize θ0 ∈ Θ, F ← ∅
4: for m ∈ {1, ...,M} do
5: θm ← θm−1, F ← F ∪ {f(·|θm)}, α←

[
1
m ... 1

m

]⊤
6: for e ∈ {1, ..., E} do
7: for mini-batch {zb}Bb do
8: compute ∀b ∈ [B]: δb ← attack (F ,S,α, zb)
9: update θm via SGD:

θm ← θm −
ρ

B

B∑
b=1

∇θm
l
(
f̃(xb + δb|θm), yb

)
10: end for
11: /∗ update α every Eo epochs
12: if e mod Eo = 0 then α← OSP(F ,S, {zj}nj=1, To)
13: end for
14: end for
15: return F ,α

5 A ROBUST BOOSTING ALGORITHM FOR RANDOMIZED ENSEMBLES

Inspired by BAT (Pinot et al., 2020) and MRBoost (Zhang et al., 2022), we leverage our results in
Section 4 and propose BARRE: a unified Boosting Algorithm for Robust Randomized Ensembles
described in Algorithm 2. Given a dataset {zj}nj=1 and an REC attack algorithm attack, BARRE
iteratively trains a set of parametric classifiers f(·|θ1), ..., f(·|θM ) such that the adversarial risk of
the corresponding REC is minimized. The first iteration of BARRE reduces to standard AT (Madry
et al., 2018). Doing so typically guarantees that the first classifier achieves the lowest adversarial
risk and η(α∗) ≤ η1, i.e., Theorem 3 ensures the REC is no worse than single model AT.

In each iteration m ≥ 2, BARRE initializes the m-th classifier f(·|θm) with θm = θm−1. The train-
ing procedure alternates between updating the parameters θm via SGD using adversarial samples
of the current REC and solving for the optimal sampling probability α∗ ∈ ∆m via OSP. Including
f(·|θm) in the attack (Line (8)) is crucial, as it ensures that the robustness of f(·|θm) is not com-
pletely compromised, thereby improving the bounds in Theorem 2. Note that for iterations m ≤ 3,
we replace the OSP procedure in Line (12) with a simplified search over a finite set of candidate
solutions (see Section 4.2 and Appendix C.1).

5.1 EXPERIMENTAL RESULTS

In this section, we validate the effectiveness of BARRE in constructing robust RECs.

Setup. Per standard practice, we focus on defending against ℓ∞ norm-bounded adversaries. We re-
port results for three network architectures with different complexities: ResNet-20 (He et al., 2016),
MobileNetV1 (Howard et al., 2017), and ResNet-18, across CIFAR-10 and CIFAR-100 datasets
(Krizhevsky et al., 2009). Computational complexity is measured via the number of floating-point
operations (FLOPs) required per inference. To ensure a fair comparison across different baselines,
we use the same hyper-parameter settings detailed in Appendix D.1.

Attack Algorithm. For all our robust evaluations, we will adopt the state-of-the-art ARC algorithm
(Dbouk & Shanbhag, 2022) which can be used for both RECs and single models. Specifically, we
shall use a slightly modified version that achieves better results in the equiprobable sampling setting
(see Appendix D.3). For training with BARRE, we adopt adaptive PGD (Zhang et al., 2022) for
better generalization performance (see Appendix D.4).

Benefit of Randomization. Table 1 demonstrates that BARRE can successfully construct RECs
that achieve competitive robustness (within ∼ 0.5%) compared to MRBoost-trained deterministic

8
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Table 1: Comparison between BARRE and MRBoost across different network architectures and
ensemble sizes on CIFAR-10. Robust accuracy is measured against an ℓ∞ norm-bounded adversary
using ARC with ϵ = 8/255.

Network Method M = 1 M = 2 M = 3 M = 4
Anat Arob FLOPs Anat Arob FLOPs Anat Arob FLOPs Anat Arob FLOPs

ResNet-20 MRBoost
73.18 41.99 81 M 75.22 44.68 162 M 76.13 46.09 243 M 76.96 46.34 324 M

BARRE 74.63 44.38 81 M 75.55 45.41 81 M 75.95 46.44 81 M

MobileNetV1 MRBoost
79.01 46.22 312 M 80.19 48.58 624 M 79.79 49.39 936 M 80.14 49.36 1.2 B

BARRE 79.58 48.32 312 M 79.53 48.75 312 M 79.54 49.38 312 M

ResNet-18 MRBoost
80.96 48.7 1.1 B 83.90 50.72 2.2 B 85.07 52.15 3.3 B 85.07 52.15 4.4 B

BARRE 82.66 50.51 1.1 B 83.40 51.57 1.1 B 83.54 52.13 1.1 B

ensembles, across three different network architectures on CIFAR-10. The benefit of randomization
can be seen for M ≥ 2, as we obtain massive 2 − 4× savings in compute requirements. Note that
both methods have the same4 memory footprint. These observations are further corroborated by
CIFAR-100 experiments in Appendix D.5.

Table 2: Comparison between BARRE and other methods at constructing robust randomized en-
semble classifiers across various network architectures and datasets. Robust accuracy is measured
against an ℓ∞ norm-bounded adversary using ARC with ϵ = 8/255.

Network FLOPs Method Size M
CIFAR-10 CIFAR-100

Anat [%] Arob [%] Anat [%] Arob [%]

ResNet-20 81 M

AT M = 1 73.18 41.99 38.34 17.69

IAT M = 5 73.90 45.77 38.57 19.65
MRBoost M = 5 75.89 46.66 41.69 21.04
BARRE M = 5 76.28 47.35 41.86 21.11

MobileNetV1 312 M

AT M = 1 79.01 46.22 51.87 23.45

IAT M = 5 78.89 49.57 51.41 25.74
MRBoost† M = 5 76.70 48.05 50.14 24.76
MRBoost M = 5 78.65 48.91 52.96 25.95
BARRE M = 5 79.55 49.91 52.95 27.53

ResNet-18 1.1 B

AT M = 1 80.96 48.72 53.85 24.15

IAT M = 4 80.99 51.43 54.30 26.73
MRBoost† M = 4 83.13 51.82 51.06 24.04
MRBoost M = 4 83.13 51.82 52.04 25.65
BARRE M = 4 83.54 52.13 54.63 26.93

† result obtained assuming equiprobable sampling instead of using OSP

BARRE vs. Other Methods. Due to the lack of dedicated randomized ensemble defenses, we es-
tablish baselines by constructing RECs from both MRBoost and independently adversarially trained
(IAT) models. We use OSP (Algorithm 1) to find the optimal sampling probability for each REC. All
RECs share the same first classifier f1, which is adversarially trained. Doing so ensures a fair com-
parison, and guarantees all the methods cannot be worse than AT. Table 2 provides strong evidence
that BARRE outperforms both IAT and MRBoost for both CIFAR-10 and CIFAR-100 datasets. In-
terestingly, we find that MRBoost ensembles can be quite ill-suited for RECs. This can be seen for
MobileNetV1, where the optimal sampling probability obtained was α∗ = [0.25 0.25 0.25 0.25 0]

⊤,
i.e., the REC completely disregards the last classifier. In contrast, BARRE-trained RECs utilize all
members of the ensemble.

6 CONCLUSION

We have demonstrated both theoretically and empirically that robust randomized ensemble classi-
fiers (RECs) are realizable. Theoretically, we derive the robustness limits of RECs, necessary and
sufficient conditions for them to be useful, and efficient methods for finding the optimal sampling
probability. Empirically, we propose BARRE, a new boosting algorithm for constructing robust
RECs and demonstrate its effectiveness at defending against strong ℓ∞ norm-bounded adversaries.

4ignoring the negligible memory overhead of storing α
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A THEORETICAL RATIONALE FOR BARRE

In this section, we expand on Section 5.1 and provide a more detailed rationale behind the steps in
BARRE.

Given a dataset {zj}nj=1 and an REC attack algorithm attack, BARRE iteratively trains a set of
parametric classifiers f(·|θ1), ..., f(·|θM ) in a boosting fashion. Note that the optimality of OSP
(Theorem 3) implies that a BARRE-trained REC is guaranteed to achieve better or the same perfor-
mance than the BEST performing member of the ensemble. This explains the choice of boosting
for BARRE, since the first iteration reduces to standard AT, the most effective method to date for
generating robust classifiers. Thus, BARRE trained RECs are guaranteed to perform better than AT.

In each iteration m ≥ 2, BARRE initializes the m-th classifier f(·|θm) with θm = θm−1. The train-
ing procedure alternates between updating the parameters θm via SGD using adversarial samples
of the current REC and solving for the optimal sampling probability α∗ ∈ ∆m via OSP. Includ-
ing f(·|θm) in the attack (Line (8)) is crucial, as it ensures that the robustness of f(·|θm) is not
completely compromised, thereby improving the bounds in Theorem 2.

Furthermore, the rationale behind the sequence of steps in BARRE can be better understood using
Theorem 1 (for the case of M = 2). Theorem 1 states that the optimal REC adversarial risk would
be η(α∗) = 1

2 (η1 + η2 − P {z ∈ R1}) (assuming (8) is met), therefore it is equally important to
minimize both η’s and maximize P {z ∈ R1}. BARRE does so by initially adversarially training a
robust classifier f1 (minimizing η1), then training f2 (initialized from f1 to minimizes η2) on the
adversarial examples of the REC of f1 and f2. Doing so increases P {z ∈ R1} while maintaining
η2 as low as possible.

13
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B OMITTED PROOFS AND DERIVATIONS

B.1 PROOF OF PROPOSITION 1

We provide the proof of Proposition 1 (restated below):

Proposition (Restated). For any F = {fi}Mi=1, perturbation set S ⊂ Rd, and data distribution
D, the adversarial risk η is a piece-wise linear convex function ∀α ∈ ∆M . Specifically, ∃K ∈ N
configurations Uk ⊆ {0, 1}M ∀k ∈ [K] and p.m.f. p ∈ ∆K such that:

η(α) =

K∑
k=1

(
pk · max

u∈Uk

{
u⊤α

})
(18)

Proof. Consider having one data-point z ∈ Rd × [C], then for any δ ∈ S and α ∈ ∆M we have:

r (z, δ,α) =

M∑
i=1

αi1 {fi(x+ δ) ̸= y} = u⊤α (19)

where u ∈ {0, 1}M such that ui = 1 if and only if δ is adversarial to fi at z. Since u is independent
of α, we thus obtain a many-to-one mapping from δ ∈ S to u ∈ {0, 1}M . Therefore, for any α
and z, we can always decompose the perturbation set S, i.e., S = G1 ∪ ... ∪ Gn, into n ≤ 2M

subsets, such that: ∀δ ∈ Gj : r (z, δ,α) = α⊤uj for some binary vector uj independent of α. Let
U = {uj}nj=1 be the collection of these vectors, then we can write:

max
δ∈S

r (z, δ,α) = max
δ∈G1∪...∪Gn

r (z, δ,α) = max
j∈[n]

{
max
δ∈Gj

r (z, δ,α)

}
= max

u∈U

{
u⊤α

}
(20)

The vectors {uj}nj=1 define a unique classifier and data-point configuration that is independent of
the sampling probability. The function maxδ r is thus convex and piece-wise linear in α.

Partitioning the data-point spaceR ⊆ Rd× [C] into K subsetsR = R1 ∪ ...∪RK such that all the
data-points z ∈ Rk share the same set “configuration” Uk, we obtain:

η(α) = Ez∼D

[
max
δ∈S

M∑
i=1

αi1 {fi(x+ δ) ̸= y}

]

=

∫
z∈R

pz(z) ·max
δ∈S

r (z, δ,α) dz

=

K∑
k=1

∫
z∈Rk

pz(z) ·max
δ∈S

r (z, δ,α) dz

=

K∑
k=1

∫
z∈Rk

pz(z) ·
(
max
u∈Uk

{
u⊤α

})
dz

=

K∑
k=1

(
max
u∈Uk

{
u⊤α

}
·
∫
z∈Rk

pz(z) dz

)

=

K∑
k=1

(
pk · max

u∈Uk

{
u⊤α

})

(21)

where the total size of the partition K is finite (exponential in the size M ) and p ∈ ∆K such that
pk = P {z ∈ Rk}. Finally, η is convex and piece-wise linear in α since the summation of convex
and piece-wise linear functions is also convex and piece-wise linear.

B.2 PROOF OF THEOREM 1

First, we state and prove this useful lemma:

14
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Lemma 1. Let h : R → R be a convex piece-wise linear, hence sub-differentiable, function of the
form:

h(x) = max{a1x+ b1, a2x+ b2}+ a3x+ b3 (22)
such that a1 < a2. We wish to minimize h over x ∈ [c, d] where c ≤ y ≤ d, and y is the intersection
point b2−b1

a1−a2
.

Then, the optimal value x∗ that minimizes h(x) in (22), is given by

x∗ =


y, if a3 ∈ (−a2,−a1)
c, if a3 ≥ −a1
d, if a3 ≤ −a2

Note: only in the first case is the solution unique.

Proof. From constrained convex optimization (Boyd et al. (2004); Shor (2012)), we know that x∗ is
the minimizer of h over [c, d] if there exists a sub-gradient g ∈ ∂h(x∗) such that:

g · (x− x∗) ≥ 0 ∀x ∈ [c, d] (23)

For x ̸= y, h is differentiable with ∇h = a3 + a1 (if x < y) or ∇h = a3 + a2 (if x > y), and for
x = y the sub-differential is given by ∂h(y) = {a3 + βa1 + (1− β)a2 : β ∈ [0, 1]}.
If a3 ∈ (−a2,−a1), then ∃β ∈ [0, 1] such that a3 + βa1 + (1 − β)a2 = 0, and thus 0 ∈ ∂h(y),
which is a sufficient condition for global minimization, thus x∗ = y. Furthermore, x∗ = y is unique,
since ∀x ̸= y, we will have ∇h = a1 + a3 < 0 (if x < y) or ∇h = a2 + a3 > 0 (if x > y) which
in both cases implies ∀z ̸= y ∃x ∈ [c, d] such that∇h(z)(x− z) < 0.

If a3 /∈ (−a2,−a1), then either a3 ≥ −a1 or a3 ≤ −a2. If a3 ≥ −a1, then a1 + a3 = ∇h(c) ≥ 0,
which implies that: (a1 + a3)(x − c) ≥ 0 ∀x ∈ [c, d], hence x∗ = c. Otherwise if a3 ≤ −a2, then
a2 + a3 = ∇h(d) ≤ 0, which implies that: (a2 + a3)(x− d) ≥ 0 ∀x ∈ [c, d], hence x∗ = d.

We now provide the proof of Theorem 1 (restated below):
Theorem (Restated). For any two classifiers f1 and f2 with individual adversarial risks η1 and η2,
respectively, subject to a perturbation set S ⊂ Rd and data distribution D, if:

P {z ∈ R1} > |η1 − η2| (24)
where:

R1 = {z ∈ Rd × [C] : S1(z) ̸= ∅,S2(z) ̸= ∅,S1(z) ∩ S2(z) = ∅} (25)

then the optimum sampling probability α∗ = (1/2, 1/2)
⊤ uniquely minimizes η(α) resulting in

η(α∗) = 1
2 (η1 + η2 − P {z ∈ R1}). Otherwise, α∗ ∈ {e1, e2} minimizes η(α), where eis are

the standard basis vectors of R2.

Proof. We know that, for M = 2, the adversarial risk η can be re-written ∀α ∈ ∆2:
η(α) = p1 ·max{α1, α2}+ p2 · 1 + p3 · α1 + p4 · α2 + p5 · 0 (26)

where pk = P {z ∈ Rk}, and the regions {Rk}Kk=1 partition the input space Rd × [C] as follows:

R1 = {z ∈ Rd × [C] : S1(z) ̸= ∅,S2(z) ̸= ∅,S1(z) ∩ S2(z) = ∅}
R2 = {z ∈ Rd × [C] : S1(z) ∩ S2(z) ̸= ∅}
R3 = {z ∈ Rd × [C] : S1(z) ̸= ∅,S2(z) = ∅}
R4 = {z ∈ Rd × [C] : S1(z) = ∅,S2(z) ̸= ∅}
R5 = {z ∈ Rd × [C] : S1(z) = S2(z) = ∅}

(27)

Using α1 = 1− α2 = α, we have ∀α ∈ [0, 1]:

η
(
(α, 1− α)

⊤
)
= h(α) = p1 ·max{α, 1− α}+ (p3 − p4) · α+ p2 + p4 (28)

where we wish to find α∗ ∈ [0, 1] that minimizes h(α). Applying Lemma 1 with:
a1 = −p1, b1 = p1, a2 = p1, b2 = 0, a3 = p3 − p4, b3 = p2 + p4 (29)

and utilizing η1 = η(e1) = p1+p2+p3 and η2 = η(e2) = p1+p2+p4, yields the main result.
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B.3 PROOF OF COROLLARY 1

We provide the proof of Corollary 1 (restated below):
Corollary. For any two classifiers f1 and f2 with individual adversarial risks η1 and η2, respec-
tively, perturbation set S, and data distribution D:

min
α∈∆2

η(α) = η(α∗) ≥ min

{
1

2
max{η1, η2},min{η1, η2}

}
. (30)

Proof. From Theorem 1, we have that:

η(α∗) = min

{
1

2
(η1 + η2 − P {z ∈ R1}) ,min{η1, η2}

}
(31)

Using the tight upper bound on P {z ∈ R1} ≤ min{η1, η2}, we obtain the main result.

B.4 PROOF OF THEOREM 2

B.4.1 USEFUL LEMMAS

We first state and prove a few useful lemmas that are vital for proving Theorem 2. While some lem-
mas are trivial and have been proven elsewhere, we nonetheless state their proofs for completeness.
Lemma 2. Let h : Rn → R be a convex function, and H(X ) ⊂ Rn be the convex hull of X =
{x1, ...,xd} where {xi}di=1 ∈ Rn, then there exists xm ∈ X such that:

max
u∈H(X )

h(u) = h(xm) (32)

Proof. Let u be any arbitrary vector inH(X ), that is ∃α ∈ ∆d:

u =

d∑
i=1

αixi (33)

Let m ∈ [d] such that h(xm) ≥ h(xi) ∀i ∈ [d]. From the convexity of h, we upper bound h(u) as
follows:

h(u) = h

(
d∑

i=1

αixi

)
≤

d∑
i=1

αih(xi) ≤
d∑

i=1

αih(xm) = h(xm)

d∑
i=1

αi = h(xm) (34)

Thus, (32) holds for any u ∈ H(X ).

Lemma 3 (Redistribution Lemma). ∀p, q such that 0 ≤ p ≤ q ≤ 1, ∀α ∈ ∆M , and ∀I,J ⊆ [M ]
such that I /∈ J /∈ I we have:

p ·max
i∈I
{αi}+ q ·max

j∈J
{αj} ≥ p · max

i∈I∪J
{αi}+ (q − p) ·max

j∈J
{αj}+ p · max

k∈I∩J
{αk} (35)

Proof.

p ·max
i∈I
{αi}+ q ·max

j∈J
{αj} = p · αi∗ + q · αj∗

= p · (αi∗ + αj∗) + (q − p) · αj∗

(a)
= p ·

(
max
i∈I∪J

{αi}+min{αi∗ , αj∗}
)
+ (q − p) · αj∗

(b)
≥ p · max

i∈I∪J
{αi}+ (q − p) · αj∗ + p · max

k∈I∩J
{αk}

= p · max
i∈I∪J

{αi}+ (q − p) ·max
j∈J
{αj}+ p · max

k∈I∩J
{αk}

(36)

where (a) holds because the maximum over I ∪ J is either αi∗ or αj∗ , and (b) holds since the
smallest of the two maximizers cannot be smaller than the maximizer of the smaller set I ∩ J .
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Lemma 4. Let {fi}Mi=1 be an arbitrary collection of C-ary classifiers with individual adversarial
risks ηi such that 0 < η1 ≤ ... ≤ ηM ≤ 1. For any data distribution D and perturbation set S we
have ∀α ∈ ∆M :

η(α) ≥
M∑
i=1

(
(ηi − ηi−1) · max

j∈{i,...,M}
{αj}

)
(37)

where η0
.
= 0.

Proof. From Proposition 1 we know that ∃K ∈ N, p ∈ ∆K , and Uk ⊆ {0, 1}M ∀k ∈ [K] such
that:

η(α) =

K∑
k=1

(
pk · max

u∈Uk

{
u⊤α

})
(38)

Let Lk ⊆ [M ] represent the set of classifier indices i1, ..., in that are active in the configuration Uk,
that is:

m ∈ Lk ⇐⇒ ∃v ∈ Uk such that vm = 1 (39)

We then lower bound η as follows:

η(α) =

K∑
k=1

(
pk · max

u∈Uk

{
u⊤α

})
≥

K∑
k=1

(
pk ·max

i∈Lk

{αi}
)

= η′(α) (40)

The bound trivially holds, since the sum of positive numbers is always larger than any summand. It
is noteworthy to point out that the RHS quantity η′(α) can be interpreted as the adversarial risk of
an auxiliary set of classifiers F ′ with same individual risks {ηi} such that for any z ∈ Rd × [C], the
classifiers have no common adversarial perturbations, i.e.:

M⋂
i=1

S ′i(z) = ∅ (41)

and:
η′i = η′(ei) =

∑
k:i∈Lk

pk = η(ei) = ηi (42)

Assume that the conditions of Lemma 3 are met by two terms in η′, i.e., ∃k1, k2 ∈ [K] such that
Lk1

/∈ Lk2
/∈ Lk1

and pk1
≤ pk2

, then we can apply the bound in Lemma 3 and obtain:

η′(α)−
∑

k∈[K]\{k1,k2}

(
pk ·max

i∈Lk

{αi}
)

= pk1
· max
i∈Lk1

{αi}+ pk2
· max
i∈Lk2

{αi}

≥ pk1
· max
i∈Lk1

∪Lk2

{αi}+ (pk2
− pk1

) · max
j∈Lk2

{αj}+ pk1
· max
k∈Lk1

∩Lk2

{αk}

= η′′(α)−
∑

k∈[K]\{k1,k2}

(
pk ·max

i∈Lk

{αi}
) (43)

where η′′(α) is the modified ensemble adversarial risk. The application of Lemma 3 can be un-
derstood as a way to “re-distribute” the classifiers’ adversarial vulnerabilities while preserving the
adversarial risk identities ∀i ∈ [M ]:

ηi = η′(ei) =
∑

k:i∈Lk

pk = η′′(ei) (44)

The main idea of this proof is to keep applying Lemma 3 to the modified ensemble adversarial risks
(if possible) to obtain a better lower bound. The process stops when the conditions are no longer
met, and we obtain an adversarial risk h(α):

η′(α) ≥ η′′(α) ≥ .. ≥ h(α) =

L∑
k=1

(
qk ·max

j∈Jk

{αj}
)

(45)
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Without loss of generality, we will assume that {Jk} are distinct and qk ̸= 0. Furthermore, since the
conditions of Lemma 3 cannot be met by any two sets in {Jk}, we must have (up to a re-ordering
of the indices):

JL ⊂ JL−1 ⊂ ... ⊂ J1 ⊆ [M ] (46)
We now make the following observations:

1. Due to (46), we have that L ≤M and for all i ∈ [M ], ∃mi ∈ [L] such that:

ηi =
∑

k:i∈Jk

qk =

mi∑
k=1

qk (47)

2. Since {ηi} are sorted, we get that mi+1 = mi + 1 if ηi < ηi+1 or mi+1 = mi otherwise

3. J1 = [M ] since η1 ̸= 0

4. For any two consecutive sets Jk and Jk+1, we can always find n ≥ 1 indices from [M ]
such that Jk = Jk+1 ∪ {i1, ..., in}. The indices i1, ..., in are consecutive, share the same
mi (i.e., ηil is the same for all l ∈ [n]), and also satisfy:

min
l∈[n]
{il} = max

j∈Jk+1

{j}+ 1 (48)

We first prove the lemma for the special case of distinct risks, i.e. ηi < ηi+1 ∀i.
Special Case. The risks are distinct, then we must have L = M , with every two consecutive sets
Jk and Jk+1 differing by one index. Therefore we have Jk = Jk+1 ∪ {k} and JM+1 = ∅.
Furthermore, we will get ηi − ηi−1 = qi ∀i ∈ [M ] with η0 = 0. Thus we can write:

h(α) =

M∑
k=1

(
qk ·max

j∈Jk

{αj}
)

=

M∑
i=1

(
(ηi − ηi−1) · max

j∈{i,...,M}
{αj}

)
(49)

General Case. For the general case we will have L ≤M distinct risks ηi1 < ... < ηiL and M − L
repeated risks, where i1 = 1. Thus we have qk = ηik − ηik−1

∀k ∈ [L], and ηi0 = η0 = 0 by
definition. Using observations 3 and 4, we have that Jk = {uk, ...,M} for some index uk ∈ [M ],
with u1 = 1. Thus we have uk+1 − uk − 1 ≥ 0 to be the number of of consecutive repeated risks
equal to ηik . Let {J ′

k} be the M −L index sets missing from {i ∈ [M ] : {i, ...,M}}, then we have:

h(α) =

L∑
k=1

(
qk ·max

j∈Jk

{αj}
)

=

L∑
k=1

((
ηik+1

− ηik
)
· max
j∈{uk,...,M}

{αj}
)

=

L∑
k=1

((
ηik+1

− ηik
)
· max
j∈{uk,...,M}

{αj}
)
+

M−L∑
k=1

(
0 ·max

j∈J ′
k

{αj}
)

(a)
=

M∑
i=1

(
(ηi − ηi−1) · max

j∈{i,...,M}
{αj}

)
(50)

where (a) holds due to the fact ηi − ηi−1 = 0 for all the merged M − L terms.

Lemma 5. Given a sequence {γi}Mi=0 such that 0 = γ0 < γ1 ≤ ... ≤ γM ≤ 1, the vector
α∗ =

[
1
m ... 1

m 0 ... 0
]⊤ ∈ ∆M is a solution to the following minimization problem:

min
α∈∆M

h(α) = min
α∈∆M

M∑
i=1

(
(γi − γi−1) · max

j∈{i,...,M}
{αj}

)
=

γm
m

(51)

where γm

m ≤
γi

i , ∀i ∈ [M ].
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Proof. We know that h is a piece-wise linear convex function over a closed and convex set, which
implies the existence of a global minimizer.

Define the mapping g : ∆M → [0, 1]M such that ∀i ∈ [M ]:

gi(α) = max
j∈{i,...,M}

{αj} − max
j∈{i+1,...,M}

{αj} (52)

We can re-write the function h via a simple re-arrangement to obtain:

h(α) =

M∑
i=1

γi ·
(

max
j∈{i,...,M}

{αj} − max
j∈{i+1,...,M}

{αj}
)

=

M∑
i=1

γi · gi(α) = γ⊤g(α) (53)

Define the decomposition over the probability simplex: ∆M = ∆1
M ∪ ∆2

M ∪ ... ∪ ∆M !
M , where

∀n ∈ [M !], ∃i1, i2, ..., iM such that ∀α ∈ ∆n
M we have:

αi1 ≥ αi2 ≥ αi3 ≥ ... ≥ αiM (54)

In other words, ∆n
M is the set of all probability vectors that share the same sorting indices. Since we

have M ! ways to arrange M numbers, the size of the decomposition will be M !. We now make the
following observations:

1. ∀n, ∆n
M is a convex set. quick proof : Let α,β ∈ ∆n

M , then ∃i1, i2, ..., iM such that αi1 ≥
... ≥ αiM and βi1 ≥ ... ≥ βiM . ∀λ ∈ [0, 1] we have q = λα + (1 − λ)β ∈ ∆M , since∑

qi =
∑

λαi + (1− λ)βi = 1 and qi ≥ 0. We also have ∀l ∈ [M − 1]:

qil = λαil + (1− λ)βil ≥ λαil+1
+ (1− λ)βil+1

= qil+1
(55)

2. ∀n, ∃Pn = {pn
1 , ...,p

n
M} ⊂ ∆n

M such that ∆n
M = H(Pn), whereH(X ) is the convex hull of the

set of points X . quick proof : Let i1, ..., iM be the sorted indices associated with an arbitrary subset
∆n

M . Construct the M probability vectors as follows: ∀k ∈ [M ] pnk,j = 1
k if j ∈ {i1, ..., ik} else

pnk,j = 0. It is easy to verify that pn
k ∈ ∆n

M , since
∑

j p
n
k,j = k/k = 1, and pnk,i1 ≥ ... ≥ pnk,iM .

Since ∆n
M is convex (Claim 1), we thus have thatH(Pn) ⊆ ∆n

M . What is left is to show that ∆n
M ⊆

H(Pn), which can be established if we show that ∀α ∈ ∆n
M , ∃λ ∈ ∆M such that α =

∑
k λkp

n
k .

We shall prove it by construction, specifically define:

λk = k · (αik − αik+1
) ≥ 0 (56)

This induces a valid convex coefficient vector λ, since
∑

k λk =
∑

k(αik−αik+1
)·k =

∑
k αik = 1.

It is also easy to verify that αil =
∑

k λkp
n
k,il

for all indices il ∈ [M ], since:

M∑
k=1

λkp
n
k,il

=
M

M
· (αiM − 0) +

M − 1

M − 1
· (αiM−1

− αiM ) + ...+
l

l
· (αil − αil+1

) = αil (57)

by construction of λ and Pn.

3. ∀n, the function g is linear over α ∈ ∆n
M . quick proof : Define the maximum index s(α, i) =

argmaxj∈{i,...,M}{αj}. By definition, α ∈ ∆n
M implies that s(i) = s(α, i) is independent of α.

Therefore ∀i ∈ [M ] we have gi(α) = αs(i) − αs(i+1) with the slight abuse of notation αM+1 = 0.
Therefore ∃Gn ∈ {−1, 0, 1}M×M such that g(α) = Gnα for all α ∈ ∆n

M .

Combining observations 1,2&3, we can re-write the original optimization problem as follows:

min
α∈∆M

h(α) = min
α∈∆1

M∪...∪∆M!
M

γ⊤g(α)

= min
n∈[M !]

{
min

α∈∆n
M

γ⊤g(α)

}
= min

n∈[M !]

{
min

α∈H(Pn)
γ⊤Gnα

}
(a)
= min

n∈[M !]

{
min
p∈Pn

γ⊤Gnp

}
= min

n∈[M !],k∈[M ]
γ⊤g(pn

k )

(58)

19



Under review as a conference paper at ICLR 2023

where (a) holds because the minimum of a linear function over the convex hull of a set of points X
is obtained at one of the points in X .

Thus, to solve the original optimization problem, we only need to evaluate M ! linear functions with
M vectors each, and pick the one that achieves the smallest value. Finally, we will now show that
the search space can be significantly reduced from M !×M to M possible solutions.

Let ∆n
M be an arbitrary subset of ∆M whose associated sorted indices are in1 , i

n
2 , ..., i

n
M , and Pn =

{pn
k}k are the associated extreme points. We first note that, ∀k ∈ [M ], g(pn

k ) =
[
0 ... 0 1

k 0 ... 0
]⊤

with jnk = max{in1 , ..., ink} is the non-zero index. Therefore, we have that ∀n, k:

h(pn
k ) = γ⊤g(pn

k ) =
γjnk
k

(59)

Equation (59) reveals that, amongst all vectors pn
k with fixed k, the smallest error is always achieved

by the subset n whose associated jnk index is the smallest, since the robust errors are always assumed
to be sorted. Furthermore, the smallest value that jnk can achieve is k, since it is the largest index
amongst k arbitrary indices from [M ]. Therefore, let ∆m

M be the subset whose sorting indices are
ik = k, i.e. α ∈ ∆m

M implies α1 ≥ ... ≥ αM . For this subset, we will always have jmk =
max{1, ..., k} = k which implies that ∀n ∈ [M !] and ∀k ∈ [M ]:

h(pn
k ) =

γjnk
k
≥ γk

k
= h(pm

k ) (60)

where pm
k =

[
1
k ... 1

k 0 ... 0
]⊤

. Combining (58)&(60) we obtain:

min
α∈∆M

h(α) = min
k∈[M ]

γ⊤g(pm
k ) = min

k∈[M ]

γk
k

=
γk∗

k∗
(61)

which can be achieved using α∗ =
[

1
k∗ ... 1

k∗ 0 ... 0
]⊤

.

B.4.2 MAIN PROOF

We now restate and prove Theorem 2:
Theorem (Restated). For a perturbation set S, data distribution D, and collection of M classifiers
F with individual adversarial risks ηi (i ∈ [M ]) such that 0 < η1 ≤ ... ≤ ηM ≤ 1, we have
∀α ∈ ∆M :

min
k∈[M ]

{ηk
k

}
≤ η(α) ≤ ηM (62)

Both bounds are tight in the sense that if all that is known about the setup F , D, and S is {ηi}Mi=1,
then there exist no tighter bounds. Furthermore, the upper bound is always met if α = eM , and the
lower bound (if achievable) can be met if α =

[
1
m ... 1

m 0 ... 0
]⊤

, where m = argmink∈[M ]{
ηk

k }.

Proof. We first prove the upper bound and then the lower bound.

Upper bound: From Proposition 1, we have that η is convex in α ∈ ∆M . Using ∆M =
H ({e1, ..., eM}) and applying Lemma 2, we get ∀α ∈ ∆M :

η(α) ≤ max
α∈∆M

η(α) = max
i∈[M ]

η(ei) = ηM (63)

This establishes the upper bound in (62). The bound is tight, since η(eM ) = ηM is achievable.

Lower bound: From Lemmas 4&5, we establish ∀α ∈ ∆M , the following result:

η(α) ≥
M∑
i=1

(
(ηi − ηi−1) · max

j∈{i,...,M}
{αj}

)
= h(α) ≥ min

α∈∆M

h(α) = h(α∗) =
ηm
m

(64)

where m = argmink∈[M ]{
ηk

k } and α∗ =
[
1
m ... 1

m 0 ... 0
]⊤

. This establishes the lower bound in
(62).

The bound is tight, since for fixed 0 < η1 ≤ ... ≤ ηM ≤ 1, we can construct F , S, and D such that
η(α) = h(α) and ∀i ∈ [M ] : η(ei) = h(ei) = ηi, as shown next.
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Let S ⊂ Rd be any closed and bounded set containing at least M distinct vectors {δj}Mj=1 ⊆
S. Let D be any valid distribution over R = Rd × [C] such that ∀i ∈ [M ]: P {z ∈ Ti} = ηi,
P {z ∈ TM+1} = 1, and ∅ = T0 ⊂ T1 ⊆ T2 ⊆ ... ⊆ TM ⊆ TM+1 ⊂ R. Finally, we construct
classifiers fi (∀i ∈ [M ]) to satisfy the following assignment ∀z ∈ TM+1:

fi(x+ δ) = y ∀δ ∈ S \ {δi} & fi(x+ δi) =

{
y if (x, y) /∈ Ti
y′ ̸= y otherwise

(65)

i.e., the i-th classifier decision fi(x+ δ) is incorrect only if δ = δi and z ∈ Ti.
Given the above construction, we establish

η(α) = Ez∼D

[
max
δ∈S

M∑
i=1

αi1 {fi(x+ δ) ̸= y}

]
(a)
=

∫
z∈TM+1

pz(z) ·

(
max
δ∈S

M∑
i=1

αi1 {fi(x+ δ) ̸= y}

)
dz

(b)
=

M∑
k=1

∫
z∈Tk\Tk−1

pz(z) ·

(
max
δ∈S

M∑
i=1

αi1 {fi(x+ δ) ̸= y}

)
dz

(c)
=

M∑
k=1

∫
z∈Tk\Tk−1

pz(z) ·
(

max
j∈{k,..,M}

{αj}
)

dz

=

M∑
k=1

[(
max

j∈{k,..,M}
{αj}

)∫
Tk\Tk−1

pz(z) dz

]
(d)
=

M∑
k=1

[
(ηi − ηi−1) · max

j∈{k,..,M}
{αj}

]
= h(α)

(66)

where: (a) holds because P {z ∈ TM+1} = 1; (b) holds because we can partition TM+1 into M + 1
sets: T1 ∪ (T2 \T1)∪ . . .∪ (TM+1 \TM ), and because the max term is 0 ∀z ∈ TM+1 \TM ; (c) holds
by construction of F and S, and (d) holds since ηi = P {z ∈ Ti} and Ti ⊆ Ti+1.

B.5 PROOF OF THEOREM 3

First, we state the classic result on the convergence of the projected sub-gradient method for convex
minimization (Shor (2012)):
Lemma 6 (Projected Sub-gradient Method). Let h : Rd → R be a a convex and sub-differentiable
function. Let C ⊂ Rd be a convex set. For iterations t = 1, .., T , define the projected sub-gradient
method:

x(t+1) = ΠC

(
x(t) − atg

(t)
)

(67)

h
(t+1)
best = min

{
h
(t)
best, h(x

(t+1))
}

(68)

where at = a/t for some positive a > 0, x(1) ∈ C is an arbitrary initial guess, h(1)
best = h(x(1)), and

g(t) ∈ ∂h(x(t)) is a sub-gradient of h at x(t). Let tbest designate the best iteration index thus far.
Then, if h has norm-bounded sub-gradients: ∥g∥2 ≤ G for all g ∈ ∂h(x) and x ∈ C, we have:

h
(t)
best − h∗ ≤

∥x(1) − x∗∥22 +G2
∑t

k=1 a
2
t

2
∑t

k=1 ak
−−−→
t→∞

0 (69)

where:
h∗ = h(x∗) = min

x∈C
h(x) (70)

We then prove Theorem 3 (restated below) via a direct application of Lemma 6:
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Theorem (Restated). The OSP algorithm output αT satisfies:

0 ≤ η̂(αT )− η̂(α∗) ≤
∥α(1) −α∗∥22 +Ma2

∑T
t=1 t

−2

2a
∑T

t=1 t
−1

−−−−→
T→∞

0 (71)

for any initial condition α(1) ∈ ∆M , a > 0, where α∗ is a global minimum.

Proof. The ensemble empirical adversarial risk η̂ is convex and sub-differentiable (Proposition 1),
being minimized over a convex set ∆M . At each iteration t in OSP, the vector g obtained at line (12)
is norm-bounded with G =

√
M , the vector g is also a sub-gradient of η̂ at α(t), therefore Lemma 6

applies.
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C ADDITIONAL THEORETICAL RESULTS

C.1 SPECIAL CASE OF THREE CLASSIFIERS

In this section, we derive a simplified search strategy for finding the optimal sampling probability
for the special case of M = 3, akin to Section 4.2. Similar to (7), we can enumerate all possible
classifiers/data-point configurations around S, which allows us to write ∀α ∈ ∆3:

η(α) = p1 ·max{α1, α2, α3}
+ p2 ·max{α1 + α2, α3}+ p3 ·max{α2 + α3, α1}+ p4 ·max{α1 + α3, α2}
+ p5 ·max{α1, α2}+ p6 ·max{α2, α3}+ p7 ·max{α1, α3}
+ p8 · α1 + p9 · α2 + p10 · α3 + p11 · 1 + p12 · 0

(72)

where p ∈ ∆12. Using (72), we obtain the following result:

Theorem 4. Define A ⊂ ∆3 to be the set of the following vectors:

A =

{[
1
0
0

]
,

[
0
1
0

]
,

[
0
0
1

]
,

[
1/2
1/2
0

]
,

[
0
1/2
1/2

]
,

[
1/2
0
1/2

]
,

[
1/2
1/4
1/4

]
,

[
1/4
1/2
1/4

]
,

[
1/4
1/4
1/2

]
,

[
1/3
1/3
1/3

]}
(73)

Then for any three classifiers f1, f2, and f3, perturbation set S ⊂ Rd, and data distribution D, we
have:

min
α∈∆3

η(α) = min
α∈A

η(α) (74)

The set A is optimal, in the sense that there exist no smaller set A′ such that (74) holds.

Theorem 4 simplifies the search for the optimal sampling probability significantly, as it is sufficient
to evaluate η at exactly 10 different candidate solutions, captured byA, and pick the best performing
one. Theorem 4 also guarantees that the search procedure is efficient, since every candidate solution
in A needs to be evaluated.

Proof. We shall use the same technique used in the proof of Lemma 5. We can decompose
∆3 into 6 such subsets ∆1

3, ...,∆
6
3, such that each subset contains vectors that share the same

sorting indices. These subsets are convex, and they can be represented as the convex hull of
three vectors. Due to the symmetry of the problem, we shall focus on one subset ∆1

3 =

H
({

(1, 0, 0)
⊤
, (1/2, 1/2, 0)

⊤
, (1/3, 1/3, 1/3)

⊤
})

where ∀α ∈ ∆1
3, we have: α1 ≥ α2 ≥ α3. Notice

that for any α ∈ ∆1
3, all the terms in (72) become linear in α, except for the term max{α2+α3, α1}.

Therefore, we can further decompose ∆1
3 into two convex subsets ∆1,1

3 and ∆1,2
3 , such that:

∆1,1
3 = {α ∈ ∆1

3 : α1 ≥ α2 + α3} ∆1,2
3 = {α ∈ ∆1

3 : α1 ≤ α2 + α3} (75)

and η is linear over both subsets (but not their union).

Claim: we have:

∆1,1
3 = H

({
(1, 0, 0)

⊤
, (1/2, 1/2, 0)

⊤
, (1/2, 1/4, 1/4)

⊤
})

∆1,2
3 = H

({
(1/3, 1/3, 1/3)

⊤
, (1/2, 1/2, 0)

⊤
, (1/2, 1/4, 1/4)

⊤
}) (76)

Since both ∆1,1
3 and ∆1,2

3 are convex, it is enough to show that:

∆1,1
3 ⊆ H

({
(1, 0, 0)

⊤
, (1/2, 1/2, 0)

⊤
, (1/2, 1/4, 1/4)

⊤
})

∆1,2
3 ⊆ H

({
(1/3, 1/3, 1/3)

⊤
, (1/2, 1/2, 0)

⊤
, (1/2, 1/4, 1/4)

⊤
}) (77)

for (76) to hold. For all α ∈ ∆1,1
3 , define:

λ1 = α1 − α2 − α3 ≥ 0, λ2 = 2 · (α2 − α3) ≥ 0, & λ3 = 4α3 ≥ 0 (78)
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Then we always have:

α = λ1 ·

[
1
0
0

]
+ λ2 ·

[
1/2
1/2
0

]
+ λ1 ·

[
1/2
1/4
1/4

]
(79)

where it is easy to verify that λ1 + λ2 + λ3 = 1. The same can be shown for any α ∈ ∆1,2
3 , using

the following:

λ1 = 2 · (α2 − α3) ≥ 0, λ2 = 4 · (α1 − α2) ≥ 0, & λ3 = 3 · (α2 + α3 − α1) ≥ 0 (80)

which establishes the claim in (76).

Using (76) and the linearity of η on each subset, we can write:

min
α∈∆1

3

η(α) = min

{
min

α∈∆1,1
3

η(α), min
α∈∆1,2

3

η(α)

}

= min

{
η

([
1
0
0

])
, η

([
1/2
1/2
0

])
, η

([
1/2
1/4
1/4

])
, η

([
1/3
1/3
1/3

])} (81)

Finally, repeating this procedure for the remainder 5 sets ∆2
3, ...,∆

6
3 establishes (74). To show that

the set A is minimal, we provide 10 constructions of η using the p vector in (72) such that the ith

vector α ∈ A is a unique (amongst A) global optimum of η characterized by the ith p vector (listed
below):

p1 =

[
0 0 0 0 0 0 0 0

1

2

1

2
0 0

]⊤
p2 =

[
0 0 0 0 0 0 0

1

2
0
1

2
0 0

]⊤
p3 =

[
0 0 0 0 0 0 0

1

2

1

2
0 0 0

]⊤
p4 =

[
0 0 0 0

1

2
0 0 0 0

1

2
0 0

]⊤
p5 =

[
0 0 0 0 0

1

2
0
1

2
0 0 0 0

]⊤
p6 =

[
0 0 0 0 0 0

1

2
0
1

2
0 0 0

]⊤
p7 =

[
0 0

1

2
0 0

1

2
0 0 0 0 0 0

]⊤
p8 =

[
0 0 0

1

2
0 0

1

2
0 0 0 0 0

]⊤
p9 =

[
0
1

2
0 0

1

2
0 0 0 0 0 0 0

]⊤
p10 = [1 0 0 0 0 0 0 0 0 0 0 0]

⊤

(82)

C.2 WORST CASE PERFORMANCE OF DETERMINISTIC ENSEMBLES

In Section 4.3, we showed via Theorem 2 that the adversarial risk of any randomized ensemble
classifier is upper bounded by the worst performing classifier in the ensemble F . In this section, we
will show that the same cannot be said regarding deterministic ensemble classifiers. That is, there
exist an ensemble F , data distribution D, and perturbation set S such that:

η(f̄) > max
i∈[M ]

η(fi) (83)
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where f̄ is the deterministic ensemble classifier constructed via the rule:

f̄(x) = argmax
c∈[C]

[
M∑
i=1

f̃i(x)

]
c

(84)

Consider the following setup:

1. two binary classifiers in R2:

fi(x) =

{
1 if w⊤

i x ≥ 0

2 otherwise
(85)

which can be obtained from the “soft” classifiers:

f̃i(x) =

[
w⊤

i x
−w⊤

i x

]
(86)

using fi(x) = argmaxc∈{1,2}[f̃i(x)]c, where w1 = [1 1]
⊤ and w2 = [1 − 1]

⊤.

2. a Ber(p) data distribution D over two data-points in R2 × [2]:

z1 = (x1, y1) =

([
−1
2

]
, 1

)
and z2 = (x2, y2) =

([
−1
−2

]
, 1

)
(87)

3. the ℓ2 norm-bounded perturbation set S = {δ : ∥δ∥ ≤ ϵ} for some 0 < ϵ < 1/
√
2.

We first note that for binary linear classifiers and ℓ2-norm bounded adversaries, we have that:

• the shortest distance between a point x and the decision boundary of linear classifier f with
weight w and bias b is:

ζ =
|w⊤x+ b|
∥w∥

(88)

• if f(x) ̸= y, then the optimal adversarial perturbation is given by:

δ = −sign
(
w⊤x+ b

) ϵw

∥w∥
(89)

We can now evaluate the adversarial risks of each classifier:

η1 = p ·
(
max
∥δ∥≤ϵ

1
{
w⊤

1 (x1 + δ) < 0
})

+ (1− p) ·
(
max
∥δ∥≤ϵ

1
{
w⊤

1 (x2 + δ) < 0
})

= p ·
(
1

{
1−
√
2ϵ < 0

})
+ (1− p) · (1 {−3 < 0}) = 1− p

(90)

where we use ϵ < 1/
√
2. Due to symmetry, we also get η2 = p.

The average ensemble classifier f̄ constructed from f1 and f2 is defined via the rule:

f̄(x) =

{
1 if x1 ≥ 0

2 otherwise
(91)

whose adversarial risk can be computed as follows:

η̄ = p ·
(
max
∥δ∥≤ϵ

1 {x1,1 + δ1) < 0}
)
+ (1− p) ·

(
max
∥δ∥≤ϵ

1 {x2,1 + δ1) < 0 < 0}
)

= p · (1 {−1 < 0}) + (1− p) · (1 {−1 < 0}) = p+ 1− p = 1

(92)

which is strictly greater than max{p, 1−p} ∀p ∈ (0, 1). Therefore, we have constructed an example
where deterministic ensembling is always worse than using any of the individual classifiers, which
proves that deterministic ensemble classifiers do not satisfy the upper bound.
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D ADDITIONAL EXPERIMENTS AND COMPARISONS

D.1 EXPERIMENTAL SETUP

In this section, we describe the complete experimental setup used for all our experiments.

Training. All models are trained for 100 epochs via SGD with a batch size of 256 and 0.1 initial
learning rate, decayed by 0.1 first at the 50th epoch and twice at the 75th epoch. We employ the
recently proposed margin-maximizing cross-entropy (MCE) loss from Zhang et al. (2022) with 0.9
momentum and a weight decay factor of 5 × 10−4. We use 10 attack iterations during training
with ϵ = 8/255 and a step size β = 2/255. For IAT, each classifier is indepdenelty trained from a
different random initialization, using a standard PGD adversary. For MRBoost, we use their public
implementation from GitHub to reproduce all their results. For BARRE, we use an adaptive PGD
(APGD) adversary (discussed in detail in Section D.4) as our training attack algorithm. We apply
OSP for To = 10 iterations every Eo = 10 epochs.

To avoid catastrophic overfitting (Rice et al., 2020), we always save the best performing checkpoint
during training. Since all the ensemble methods considered reduce to adversarial training for the
first iteration, we use a shared adversarially trained first classifier. Doing so ensures a fair com-
parison between different ensemble methods. For both CIFAR-10, and CIFAR-100 datasets, we
adopt standard data augmentation (random crops and flips). Per standard practice, we apply input
normalization as part of the model, so that the adversary operates on physical images x ∈ [0, 1]d.

Evaluation. For all our robust evaluations, we will adopt the state-of-the-art ARC algorithm (Dbouk
& Shanbhag, 2022) which can be used for both RECs and single models. Specifically, we use 20
iterations of ARC, with an attack strength ϵ = 8/255 and approximation parameter G = 2. Following
the recommendations of Dbouk & Shanbhag (2022), we use a step size of 2/255 when evaluating
single models (M = 1) and a step size of 8/255 when evaluating RECs (M ≥ 2).

D.2 INDIVIDUAL MODEL ROBUSTNESS

In Tables 3&4, we provide the clean and robust accuracies of all the individual classifiers constructed
via the different ensemble methods on CIFAR-10 and CIFAR-100, respectively. Robust accuracy is
measured using ARC.

As expected, only ensembles produced via IAT consist of classifiers achieving near-identical robust
and natural accuracies. In contrast, ensembles produced via MRBosst or BARRE witness a degra-
dation in individual classifier robust accuracy as the ensemble size grows. However, since MRBoost
was not initially designed for randomized ensemble classifiers, this degradation in robust accuracy
can be rather severe as seen for MobileNetV1 in both Tables 3&4. This explains why, for such en-
sembles, the optimal sampling probability obtained for the constructed REC completely disregards
the last classifier as highlighted in Section 5.1.

Table 3: Natural and robust accuracies of the individual classifiers of all ensembles methods trained
on CIFAR-10 (from Table 2). Robust accuracy is measured against an ℓ∞ norm-bounded adversary
using ARC with ϵ = 8/255.

Network Method f1 f2 f3 f4 f5
Anat Arob Anat Arob Anat Arob Anat Arob Anat Arob

ResNet-20
IAT

73.18 41.99
73.42 41.94 74.44 42.25 74.27 42.06 74.17 42.14

MRBoost 76.00 41.42 76.59 39.60 77.25 38.38 76.43 36.62
BARRE 76.08 41.18 77.40 39.87 77.12 39.07 77.60 37.01

MobileNetV1
IAT

79.01 46.22
79.17 46.21 79.05 46.60 78.44 46.11 78.76 46.74

MRBoost 80.11 44.52 77.54 42.03 77.94 39.36 68.89 33.40
BARRE 80.15 44.56 79.43 42.67 79.56 39.65 79.60 38.28

ResNet-18
IAT

80.96 48.72
80.64 48.23 81.24 48.83 81.13 48.70 − −

MRBoost 84.01 47.56 83.67 45.72 83.88 43.38 − −
BARRE 84.35 46.48 84.89 45.86 83.88 43.09 − −
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Table 4: Natural and robust accuracies of the individual classifiers of all ensembles methods trained
on CIFAR-100 (from Table 2). Robust accuracy is measured against an ℓ∞ norm-bounded adversary
using ARC with ϵ = 8/255.

NETWORK METHOD
f1 f2 f3 f4 f5

Anat Arob Anat Arob Anat Arob Anat Arob Anat Arob

RESNET-20
IAT

38.34 17.69
38.64 17.68 38.40 17.89 39.13 17.63 38.36 18.13

MRBOOST 41.69 17.29 42.69 17.67 42.92 17.44 42.83 16.11
BARRE 41.57 18.22 42.96 17.24 42.69 17.14 43.72 16.30

MOBILENETV1
IAT

51.87 23.45
51.46 23.01 50.61 23.00 51.21 23.40 51.89 23.56

MRBOOST 53.96 22.63 53.45 20.48 52.55 19.90 38.88 11.34
BARRE 52.75 22.90 53.61 21.21 54.31 18.67 51.99 18.02

RESNET-18
IAT

53.85 24.15
53.85 24.17 54.80 24.30 54.71 24.50 − −

MRBOOST 54.78 22.28 47.49 16.28 48.13 15.98 − −
BARRE 55.21 22.26 55.69 21.05 53.73 17.99 − −

D.3 ATTACKS FOR RANDOMIZED ENSEMBLES

Given a data-point z = (x, y) and a potentially random classifier f , the goal of an adversary is to
find an adversarial perturbation that maximizes the single-point expected adversarial risk:

δ∗ = argmax
δ:∥δ∥p≤ϵ

r(z, δ) = argmax
δ:∥δ∥p≤ϵ

Ef [1 {f(x+ δ) ̸= y}] = argmax
δ:∥δ∥p≤ϵ

P {f(x+ δ) ̸= y} (93)

where we adopt the ℓp norm-bounded adversary for the remainder of this section.

Projected gradient descent (PGD) (Madry et al., 2018) is perhaps the most popular attack algorithm
for solving (93) for the case of differentiable deterministic classifiers. Specifically, given a surro-
gate loss function l, such as the cross-entropy loss, PGD finds an adversarial δ iteratively via the
following:

δ(k) = Πp
ϵ

(
δ(k−1) + ηµp

(
∇xl

(
f̃
(
x+ δ(k−1)

)
, y
)))

(94)

where µp is the ℓp steepest direction projection operator, and Πp
ϵ is the projection operator on the ℓp

ball of radius ϵ.

In order to adapt PGD for evaluating randomized ensemble classifiers, Pinot et al. (2020) first pro-
posed adaptive PGD (APGD-L) using the expectation-over-transformation (EOT) method (Athalye

Table 5: Comparing the success of different attack algorithms at fooling various RECs using ℓ∞
norm-bounded attacks with ϵ = 8/255 on CIFAR-10. All the RECs are constructed with equiprobable
sampling.

Network Method APGD-L APGD-S ARC ARC-R

ResNet-20
IAT 49.31 49.34 46.73 45.77
MRBoost 49.65 49.61 47.74 46.66
BARRE 49.79 49.75 48.05 47.35

MobileNetV1
IAT 52.94 52.91 50.68 49.57
MRBoost 51.19 51.02 49.37 48.05
BARRE 52.16 51.94 51.16 49.91

ResNet-18
IAT 54.50 54.49 52.42 51.43
MRBoost 54.51 54.23 53.19 51.82
BARRE 54.52 54.07 53.62 52.13
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Figure 4: The robust (left) and natural (right) accuracies of an REC of two ResNet-20’s trained on
CIFAR-10 using BARRE vs. the training epochs of the second classifier f2, where the first classifier
f1 is pre-adversarially trained. Robust and natural accuracies are reported on the test set, using ℓ∞
norm-bounded adversaries with ARC and ϵ = 8/255.

et al., 2018), which uses (94) with the expected loss function as follows:

δ(k) = Πp
ϵ

(
δ(k−1) + ηµp

(
∇xE

[
l
(
f̃
(
x+ δ(k−1)

)
, y
)]))

(95)

Note that the discrete nature of randomized ensembles allows for an exact computation of the ex-
pectation in (95).

Recently, Zhang et al. (2022) proposed a stronger version of adaptive PGD, where the expectation is
taken at the softmax level (APGD-S). Using APGD-S, Zhang et al. (2022) were able to compromise
the BAT defense. Independently, Dbouk & Shanbhag (2022) studied the effectiveness of EOT-
based adaptive attacks for evaluating the robustness of RECs, and concluded that such methods are
fundamentally ill-suited for the task. Instead, they proposed the ARC attack (Algorithm 2 of (Dbouk
& Shanbhag, 2022)), which relied on iteratively updating the perturbation based on estimating the
direction towards the decision boundary of each classifier and using an adaptive step size method.

In this section, we propose a small modification to ARC (ARC-R) that proves to be quite more effec-
tive in the equiprobable setting. Specifically, instead of looping over the classifiers in a deterministic
fashion based on the order of the sampling probability vector, we propose using a randomized order
loop. This ensures that ARC is never biased towards certain classifiers. In fact, Table 5 demon-
strates that ARC-R is better than APGD-L (Pinot et al., 2020), APGD-S Zhang et al. (2022), and
ARC (Dbouk & Shanbhag, 2022) at evaluating the robustness of RECs on CIFAR-10, constructed
with equiprobable sampling across various network architectures and ensemble training methods.
Hence, we shall adopt this version of ARC for all our experiments.

D.4 ARC VS. ADAPTIVE PGD FOR BARRE

As highlighted in Section 5.1, we find that ARC, despite being the strongest adversary, leads to
poor performance when adopted as the training attack in BARRE. In this section, we investigate this
phenomenon, as we study the performance of BARRE using two different attacks during training,
APGD (Zhang et al., 2022) and ARC (Dbouk & Shanbhag, 2022). Specifically, we train two RECs
on CIFAR-10 using the ResNet-20 architecture. Both RECs share the same first classifier f1, which
is adversarially trained using standard PGD. The second classifier f2 is trained via either APGD or
ARC.

Figure 4 plots the evolution of both robust and clean accuracies of the two RECs across the 100
training epochs of f2, measured on the test set. Note that in both RECs, the robust accuracy is eval-
uated via the stronger ARC adversary. When evaluated on clean images, we find that BARRE with
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ARC leads to significantly more accurate RECs when compared to BARRE with APGD. However,
this comes at the expense of robust accuracy, as the REC obtained via BARRE with ARC is much
more vulnerable than the APGD counterpart. We hypothesize that the adversarial samples generated
via ARC during training do not generalize well to the test set. This explains why we observe that the
REC obtained via BARRE with ARC achieves much higher robust accuracies on the training set.
Thus, for better generalization performance, we shall adopt adaptive PGD during training in all our
experiments.

D.5 ADDITIONAL RESULTS

In this section, we complete the CIFAR-10 results reported in Table 1 for showcasing the bene-
fit of randomization. Specifically, Table 6 provides further evidence that BARRE can train RECs
of competitive robustness compared to MRBoost-trained deterministic ensembles, while requiring
significantly less compute.

Table 6: Comparison between BARRE and MRBoost across different network architectures and
ensemble sizes on CIFAR-100. Robust accuracy is measured against an ℓ∞ norm-bounded adversary
using ARC with ϵ = 8/255.

Network Method M = 1 M = 2 M = 3 M = 4
Anat Arob FLOPs Anat Arob FLOPs Anat Arob FLOPs Anat Arob FLOPs

ResNet-20 MRBoost
38.34 17.69 81 M 41.08 19.38 162 M 42.60 20.48 243 M 43.62 21.36 324 M

BARRE 39.95 19.13 81 M 40.96 19.85 81 M 41.40 21.41 81 M

MobileNetV1 MRBoost
51.87 23.45 312 M 54.41 25.73 624 M 54.91 26.63 936 M 55.03 26.97 1.2 B

BARRE 52.31 24.96 312 M 52.74 25.75 312 M 53.14 27.12 312 M

ResNet-18 MRBoost
53.85 24.15 1.1 B 55.83 25.99 2.2 B 55.39 26.09 3.3 B 55.80 26.50 4.4 B

BARRE 54.53 25.37 1.1 B 54.92 25.76 1.1 B 54.63 26.90 1.1 B
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