
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EQUIVARIANT NEURAL NETWORKS FOR GENERAL LIN-
EAR SYMMETRIES ON LIE ALGEBRAS

Anonymous authors
Paper under double-blind review

ABSTRACT

Encoding symmetries is a powerful inductive bias for improving the generalization
of deep neural networks. However, most existing equivariant models are limited
to simple symmetries like rotations, failing to address the broader class of gen-
eral linear transformations, GL(n), that appear in many scientific domains. We
introduce Reductive Lie Neurons (ReLNs), a novel neural network architecture
exactly equivariant to these general linear symmetries. ReLNs are designed to
operate directly on a wide range of structured inputs, including general n-by-n
matrices. ReLNs introduce a novel adjoint-invariant bilinear layer to achieve stable
equivariance for both Lie-algebraic features and matrix-valued inputs, without
requiring redesign for each subgroup. This architecture overcomes the limitations
of prior equivariant networks that only apply to compact groups or simple vector
data. We validate ReLNs’ versatility across a spectrum of tasks: they outperform
existing methods on algebraic benchmarks with sl(3) and sp(4) symmetries and
achieve competitive results on a Lorentz-equivariant particle physics task. In 3D
drone state estimation with geometric uncertinaty, ReLNs jointly process velocities
and covariances, yielding significant improvements in trajectory accuracy. ReLNs
provide a practical and general framework for learning with broad linear group
symmetries on Lie algebras and matrix-valued data.

1 INTRODUCTION

Leveraging the symmetries present in real-world data improves the generalization of neural networks.
When a model is equivariant, i.e., its outputs transform predictably with inputs under certain group
actions, it can learn more efficiently and generalize across scenarios with less data.

Most advances in equivariant deep learning target compact symmetry groups, such as rotations,
SO(3), or isometries, E(n), where strong geometric and algebraic tools support robust network
design (Bronstein et al., 2021; Cohen & Welling, 2016; Thomas et al., 2018; Satorras et al., 2021;
Finzi et al., 2020; Geiger & Smidt, 2022). These methods have led to practical gains. However,
many real-world phenomena, such as affine distortions, sensor anisotropy, and general changes of
basis, are governed by the broader general linear group GL(n) = {A ∈ Rn×n : det(A) ̸= 0}, for
which existing methods fail to provide exact equivariance. These more general symmetries are crucial
in a wide array of scientific domains, including robotics, particle physics, and computer vision, a
landscape we survey in Table 1.

Naive solutions, such as flattening matrices into vectors, discard essential geometric structure, while
methods based on spectral decompositions are brittle and numerically unstable (Magnus, 1985). This
leaves a gap for a numerically stable neural architecture capable of processing diverse geometric data
types equivariantly under arbitrary invertible linear transformations (Bronstein et al., 2021).

This work introduces Reductive Lie Neurons (ReLNs), a unified neural architecture that provides exact
equivariance to the adjoint action of the general linear group, GL(n), and its reductive subgroups,
enabling robust learning on both Lie-algebraic features and structured geometric data like covariances.
We resolve the central technical obstacle for non-semisimple algebras—the degeneracy of the
canonical Killing form—by introducing a learnable, provably non-degenerate, and Ad-invariant
bilinear form. This provides a mathematically stable mechanism for defining symmetry-preserving
nonlinearities, pooling, and invariant layers applicable to the reductive Lie algebra gl(n) = Rn×n.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

!"#$%&'(#)%&* !"#$%&'(#)%&+

,(#)#-&./-0#1%

!!""

#"
##"

$"

Figure 1: Examples of Lie groups and related manifolds in scientific applications. From left: the special linear
group SL(3) (image homography), the Lorentz group SO(1, 3) (spacetime symmetry), symplectic groups Sp(n)
(Hamiltonian mechanics), the SPD(3)⊕ R3 state space (probabilistic estimation), and the general linear group
GL(3) (modeling stress-strain in continuum mechanics). See Table 1 for a more detailed survey.

Table 1: A survey of common Lie groups and their applications in equivariant deep learning.
Group / Data Structure Application Reference

SO(3) 3D Point Clouds, State Estimation Lin et al. (2024a); Deng et al. (2021); Son et al. (2024)
SO+(1, 3) Particle Physics, Jet Tagging Bogatskiy et al. (2020); Finzi et al. (2021); Batatia et al. (2023)

SU(3) Quantum Chromodynamics (QCD) Favoni et al. (2022)

SL(3) Homography Classification, 3D Vision Lin et al. (2024a); Finzi et al. (2021)
Sp(4,R) Hamiltonian dynamics Lin et al. (2024a); Finzi et al. (2021)

SPD(n)† Geometric Uncertainty Processing -

GL(n) General Linear Transformations Basu et al. (2025); Finzi et al. (2021)
†Not a group. SPD(n) is the manifold of symmetric positive-definite matrices, representable as the quotient space GL(n)/O(n).

Our main contributions are:

1. We propose Reductive Lie Neurons (ReLNs), a novel, general-purpose, and numerically
stable network architecture for exact GL(n) adjoint equivariance.

2. We establish a connection between classical left-action equivariance and our adjoint-action
framework for orthogonal groups. Through a provably-equivariant embedding map, we
show that problems defined on standard vector actions—such as Lorentz transformations in
particle physics or 3D point cloud processing—can be solved within our unified architecture,
obviating the need for specialized model designs.

3. We establish the framework for geometric uncertainty-aware equivariant learning, enabling
models to treat matrix-valued data that transforms under congruence (e.g., covariance
tensors) as geometric objects.

4. We demonstrate the effectiveness of ReLNs through extensive experiments, showing that
they outperform prior methods on Lie-algebraic benchmarks and achieve significant im-
provements in accuracy and robustness on a challenging 3D drone state estimation task.

2 RELATED WORK

Encoding symmetry into neural architectures is a powerful inductive bias that improves data efficiency
and generalization (Bronstein et al., 2021). In geometric deep learning, the most mature area of
research focuses on enforcing equivariance to Euclidean isometries, transformations such as rotations
and rigid motions formalized by Lie groups like SO(n) and SE(n). For grid-like data, foundational
works include Group-Equivariant CNNs (Cohen & Welling, 2016) and Steerable CNNs (Weiler et al.,
2018; Weiler & Cesa, 2021). For unstructured data, a dominant paradigm uses features associated
with irreducible group representations (tensorial methods, E(n)-GNNs, and transformers (Thomas
et al., 2018; Fuchs et al., 2020; Satorras et al., 2021; Batatia et al., 2022; Battiloro et al., 2025;
Liao & Smidt, 2023; Assaad et al., 2023; Hutchinson et al., 2021)), with lightweight vector-based
alternatives also available (Deng et al., 2021; Son et al., 2024). Theoretical analyses have also
explored the universal approximation capabilities of such invariant networks (Maron et al., 2019).
Complementing these specialized layers are general, model-agnostic strategies like frame averaging
and canonicalization (Puny et al., 2022; Lin et al., 2024b; Kaba et al., 2023; Panigrahi & Mondal,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2024). Despite their success, most practical implementations are centered on scalar and vector
features. While frameworks such as Tensor Field Networks (Thomas et al., 2018) or EMLP (Finzi
et al., 2021) can handle higher-order tensor representations, scalable architectural design for general
matrix-valued quantities (e.g., covariances or inertia tensors transforming as Σ 7→ RΣR⊤) is still
limited in practice.

A major frontier is extending equivariance to non-compact groups like the general linear group
GL(n) and the Lorentz group SO+(1, 3). Much of the work on the Lorentz group, which is critical in
particle physics, has focused on designing specialized networks for the standard left action on vectors
(Bogatskiy et al., 2020; Finzi et al., 2021; Batatia et al., 2023; Zhdanov et al., 2024). In contrast, we
demonstrate that this left-action problem can be addressed within our universal, adjoint-equivariant
framework via an embedding map.

One line of work generalizes group convolution and kernel design, often leveraging Fourier analysis
(Xu et al., 2022; Helwig et al., 2023). This includes general frameworks for constructing equivariant
networks on arbitrary matrix groups (Basu et al., 2025), through matrix functions (Batatia et al.,
2024), and on reductive Lie groups (Batatia et al., 2023). Other approaches define kernels in the Lie
algebra (Finzi et al., 2020), use Lie group decompositions for integration (Mironenco & Forré, 2024),
or adapt canonicalization using infinitesimal generators of the Lie algebra (Shumaylov et al., 2025).

For these non-compact groups in general, the theoretical machinery underpinning many equivariant
models does not readily apply. One line of work generalizes group convolution and kernel design,
leveraging tools from Fourier analysis (Xu et al., 2022; Helwig et al., 2023), matrix functions (Batatia
et al., 2024), or operating directly on reductive Lie groups (Batatia et al., 2023). Other methods focus
on the Lie algebra, either by defining kernels within the algebra itself (Finzi et al., 2020) or using Lie
group decompositions for integration (Mironenco & Forré, 2024; Shumaylov et al., 2025). Another
approach leverages differential geometry, using tools such as partial differential operators (He et al.,
2022; Shen et al., 2020; Jenner & Weiler, 2022) and the algebra of differential invariants (Sangalli
et al., 2022; Li et al., 2024) to construct equivariant layers. A different generalist approach, taken by
methods like the Equivariant MLP and G-RepsNet (Finzi et al., 2021; Basu et al., 2025), is to solve
the equivariance constraint algebraically, though this often lacks specialized inductive biases like
locality.

In contrast to these manifold-focused approaches, a parallel line of work operates directly on the Lie
algebra. Lin et al. (2024a) introduced Lie Neurons, establishing a framework for adjoint-equivariance,
but their method is restricted to semisimple Lie algebras where the Killing form is non-degenerate.
This limitation precludes direct application to the reductive but non-semisimple algebra gl(n), whose
degenerate Killing form poses a central challenge. The high computational cost of group convolution
methods, combined with the semisimple constraints of existing Lie-algebraic techniques, limits
their direct applicability to robotics tasks that involve real-time processing, noisy measurements, or
uncertainty estimation (Eschmann et al., 2024; Yu & Sun, 2024). While traditional, model-based
algorithms like Kalman filters are designed to respect this geometry (Barrau & Bonnabel, 2016;
Hartley et al., 2020), they lack the flexibility.

Our work confronts this challenge with ReLNs, a practical, numerically well-conditioned architecture
for the full reductive group GL(n) and its subgroups. By introducing a learnable, non-degenerate,
and Ad-invariant bilinear form, our framework overcomes the key obstacle of the degenerate Killing
form in gl(n). This unified algebraic approach extends beyond strict Lie algebra elements to
other geometric features, such as covariance matrices, that transform under congruence, providing
a practical tool that sidesteps the complexities of prior methods requiring group integration or
degenerate invariants. Figure 2 situates ReLNs as a general framework for GL(n) transformations,
distinguishing our approach from architectures tailored to specialized subgroups.

3 PRELIMINARIES

Our work builds equivariant networks on the Lie algebra g = Lie(G), the tangent space of a Lie
group G at the identity e. We focus on the general linear group GL(n) and its Lie algebra gl(n),
aiming for equivariance under the adjoint action Adg : X 7→ gXg−1, g ∈ GL(n), X ∈ gl(n). A
central challenge arises from the structure of gl(n): it is a reductive Lie algebra, and the canonical
invariant inner product, the Killing form, is degenerate on gl(n). This degeneracy poses a critical

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Linear Transformation : GL(n)

SL(n)

E(n)
SO(n)

Reductive Lie Neurons* (Ours)
EMLP

(Finzi et al., 2021)

Lie Neurons* (Lin et al., 2024a)

Vector Neurons
(Deng et al., 2021) FER

(Son et al., 2024)
VN-Transformer

(Assaad et al., 2023)
TFN

(Thomas et al., 2018)

SE(3)-Transformer
(Fuchs et al., 2020)

EGNN
(Satorras et al., 2021)

LieConv (Finzi et al., 2020)

Equiformer
(Liao & Smidt, 2023)

e3nn
(Geiger & Smidt, 2022)

G-RepsNet
(Basu et al., 2025)

G-MACE (Batatia et al., 2023a)

Figure 2: A taxonomy of selected representative equivariant neural architectures, categorized by the symmetries
to which they are equivariant. This diagram situates our work, ReLNs, among other notable methods that are
often specialized for subgroups such as SL(n), SO(n), or the Euclidean group E(n). An asterisk (∗) denotes
methods equivariant to the group’s adjoint action.

problem, as it prevents the construction of expressive nonlinear layers, causing them to collapse into
linear maps and severely limiting the model’s expressive power. We address this by introducing a
learnable, non-degenerate bilinear form, enabling fully nonlinear equivariant operations. For details
of Lie theory and background, see Appendix A.

4 REDUCTIVE LIE NEURONS: ARCHITECTURE

We present ReLNs, a framework for building deep networks equivariant to the adjoint action of
the general linear group GL(n). The design centers on a learnable, non-degenerate, Ad-invariant
bilinear form on the reductive Lie algebra gl(n) and a complete toolbox of equivariant linear maps,
nonlinearities, pooling, and invariant readouts.

4.1 A GENERAL Ad-INVARIANT BILINEAR FORM FOR REDUCTIVE LIE ALGEBRAS

The primary obstacle to applying Lie-algebraic methods such as Lie Neurons (Lin et al., 2024a) to
gl(n) is the degeneracy of its Killing form. We resolve this by constructing a modified bilinear form
B̃ that restores non-degeneracy while preserving the crucial Ad-invariance property.

Definition 4.1 (Modified Bilinear Form on a Reductive Lie Algebra). If g is reductive, then g =
z(g) ⊕ [g, g], where z(g) is the center. Choose any Ad-invariant inner product ⟨·, ·⟩z on z(g) (for
connected G this is automatic since Ad|z(g) : G→ GL(z(g)) is locally constant. See Appendix A.2
for the formal definition of Ad) . For Zi ∈ z(g) and Xi ∈ [g, g] define

B̃(Z1+X1, Z2+X2) := ⟨Z1, Z2⟩z +B(X1, X2), (1)

where B denotes the Killing form on [g, g].

Proposition 4.1. The bilinear form B̃ is symmetric, Ad-invariant, and nondegenerate. Moreover,
z(g) and [g, g] are B̃-orthogonal, with B̃|[g,g] = B and B̃|z(g) = ⟨·, ·⟩z.

Proof sketch. B vanishes on z(g) and is Ad-invariant; by construction ⟨·, ·⟩z is Ad-invariant. Sym-
metry is immediate. Nondegeneracy follows since B is nondegenerate on the semisimple ideal and
⟨·, ·⟩z is nondegenerate on the center; orthogonality holds because B(z(g), [g, g]) = 0.

For our primary case g = gl(n,R) = RI ⊕ sl(n,R) we choose the canonical trace-based form

B̃(X,Y) = 2n · tr(XY) − tr(X) tr(Y), (2)

This form B̃ is the fundamental tool used throughout the ReLN architecture.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Encoded Geometric Feature

Encoded Geometric Feature

Velocity and Covariance Input

Transformed
Velocity and Covariance Input

Adjoint
Action 𝐴𝑑!

Adjoint
Action 𝐴𝑑!

Reductive
Lie Neurons

Reductive
Lie Neurons

Figure 3: Adjoint equivariance using a unified representation for diverse geometric inputs. Our framework
embeds inputs with different transformation rules, such as velocity (v 7→ Rv) and covariance (Σ 7→ RΣRT),
into a common Lie algebra. Therefore, they transform under the same adjoint action Adg , with which our
network f commutes as shown in the diagram.

Verification and Relation to Prior Bilinear Forms. Our concrete form in Eq. 2 satisfies the
conditions of Proposition 4.1. Decomposing a matrix X = X0 + 1

n tr(X)I (where X0 ∈ sl(n))
reveals that our form separates orthogonally:

B̃(X,Y) = 2n · tr(X0Y0)︸ ︷︷ ︸
Bsl(n)(X0,Y0)

+ tr(X)tr(Y)︸ ︷︷ ︸
Inner product on RI

. (3)

This decomposition directly shows how B̃ serves as a generalization of prior work. The first term is
the Killing form on the semisimple part, which is the tool used in Lie Neurons (Lin et al., 2024a).
The second term is a standard inner product on the center, which, under the isomorphism so(3) ≃ R3,
recovers the dot product used in Vector Neurons (Deng et al., 2021). Our single form thus unifies
these approaches, extending to the full reductive algebra gl(n) (details can be found in Appendix C).

4.2 THE RELN LAYER TOOLBOX

We represent multi-channel input as x ∈ RK×C , where each column xc ∈ RK corresponds to a
matrix Xc ∈ g (via the vee/hat isomorphism, Appendix A) .

ReLN-Linear. A linear map applied to the channel dimension f(x;W) = xW with W ∈ RC×C′

is strictly equivariant: the group acts on the left (geometric dimension) while W acts on the right
(channel dimension), and thus these operations commute (formal proof in Appendix D).

Equivariant Nonlinearities. We introduce two complementary nonlinear primitives; full defini-
tions, parameterizations, and stability prescriptions are deferred to Appendix D.

• ReLN-ReLU: To overcome the non-equivariance of elementwise activations, we use our
form B̃ to define a directional nonlinearity. Each vector feature xc is rectified along a
learnable direction dc via update rule:

• ReLN-ReLU Using B̃ to build an invariant gate, each channel feature is updated by

x′c = xc + max
(
0, B̃(x∧c , d

∧
c)
)
dc, (4)

where x∧c , d
∧
c ∈ g are the matrix forms of the channel feature and a learnable direction. Be-

cause B̃(·, ·) is Ad-invariant, the scalar gate is invariant and the vector update is equivariant.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Platonic solid classification (mean ± std over 5 runs). ID = in-distribution; RC = rotated-camera (10
random SO(3) test rotations). “+Aug” denotes training with random SO(3) augmentation of input homographies.
Higher is better (↑).

Model # Params ID Acc (mean ± std) RC Acc (mean ± std)

MLP 206,339 95.76% ± 0.65% 36.54% ± 0.99%
MLP + Aug 206,339 81.47% ± 0.77% 81.20% ± 2.34%
MLP (wider) 411,479 96.82% ± 0.53% 36.55% ± 0.34%
MLP (wider) + Aug 411,479 85.22% ± 1.46% 83.43% ± 0.51%

Lie Neurons 331,272 99.62% ± 0.25% 99.61% ± 0.14%
ReLN (Ours) 331,272 99.78% ± 0.04% 99.78% ± 0.04%

• ReLN-Bracket. Following prior work (Lin et al., 2024a), we include a layer that leverages
the Lie bracket (matrix commutator). This operation is an Ad-equivariant primitive on
the Lie algebra that creates nonlinear interactions by measuring the non-commutativity
of features. The layer applies two independent linear maps, parameterized by weights
Wa,Wb ∈ RC×C , to the input channels xin to produce two intermediate features, computes
their commutator, and injects the vectorized result as a shared residual:

xout = xin +
(
[(xinWa)

∧, (xinWb)
∧]

)∨
. (5)

Equivariant Pooling and Invariant Layers. The final components of the ReLN toolbox enable
feature aggregation and the production of invariant outputs.

• Max-Killing Pooling: To aggregate a set of features {Xn}Nn=1, where each Xn is a
multi-channel feature tensor, this layer selects the representative feature with the max-
imal projection onto a learnable direction. For each channel c, the index is found via
n∗(c) = argmaxn B̃(Xn,c, Dn,c), and the pooled feature is Xmax

c = Xn∗(c),c.

• Invariant Layer: To produce a group-invariant output, this layer contracts feature Xc using
the form B̃. The resulting scalar, yc = B̃(Xc, Xc), is invariant by construction.

Unifying geometric representations. By operating directly on n × n matrix representations,
ReLNs provide a unified primitive for vectors, matrices, and higher-order geometric objects (e.g.,
covariances). This allows ReLNs to handle a broader class of geometric inputs without resorting to
separate specialized architectures; empirical validation is presented in Section 5.3.

5 EXPERIMENTS

We evaluate ReLNs on a suite of tasks designed to highlight two complementary strengths: algebraic
generality on benchmarks and practical efficacy on a challenging, uncertainty-aware robotics task.
We compare against standard non-equivariant baselines (MLP, ResNet), the original Lie Neurons,
and a Vector Neurons–style baseline adapted for covariance inputs by eigendecomposition. For the
Top-Tagging benchmark we also report results versus established physics models used in prior work.

5.1 ALGEBRAIC BENCHMARKS ON SEMISIMPLE LIE ALGEBRAS

To verify that our general gl(n) framework correctly generalizes to semisimple subalgebras, we
evaluate ReLN on two Lie-algebraic benchmarks first introduced by Lie Neurons (Lin et al., 2024a).

5.1.1 PLATONIC SOLID CLASSIFICATION

We first validate our model on the Platonic solid classification benchmark from (Lin et al., 2024a),
testing the adjoint-equivariance where camera rotations induce a conjugation action on inter-face
homographies in SL(3). Full experimental details are provided in Appendix E.2.

The results, summarized in Table 2, confirm that non-equivariant baselines fail to generalize to rotated
camera views. This fundamental weakness is not resolved by data augmentation or increased model
capacity, as our wider MLP variant with approximately double the parameters shows negligible

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Regression performance and invariance error on sp(4). “Training Aug.” indicates whether Sp(4)
conjugation was applied during training.

Model Training Aug. # Params Test Aug. Invariance Error
ID SP(4)

MLP 256 Id 137,217 0.126 1.360 0.722
SP(4) 137,217 0.192 0.587 0.476

MLP 512 Id 536,577 0.107 0.906 0.585
SP(4) 536,577 0.123 0.446 0.374

Lie Neurons Id 263,170 5.83 × 10−4 5.84 × 10−4 3.84 × 10−7

ReLN (ours) Id 263,170 5.14 × 10−4 5.14 × 10−4 4.73 × 10−7

improvement on the out-of-distribution test set. In contrast, the ReLN model achieves near-perfect
accuracy with robustness, matching the performance of the Lie Neurons while demonstrating im-
proved results. Importantly, this result validates that our general gl(n) framework operates effectively
on common semisimple subalgebras, as its built-in adjoint-equivariance on the parent group yields
robust behavior when restricted to subgroups like SO(3) and SL(3).

5.1.2 INVARIANT FUNCTION REGRESSION ON sp(4).

To further probe our framework’s algebraic generality, our second benchmark involves regressing
a highly nonlinear invariant function on the real symplectic Lie algebra sp(4,R). The symplectic
algebra sp(2n) is the mathematical foundation of Hamiltonian mechanics, which describes any
physical system where energy is conserved. Our target is a scalar invariant defined for pairs X,Y ∈
sp(4,R):

g(X,Y) = sin
(
Tr(XY)

)
+ cos

(
Tr(Y Y)

)
− 1

2 Tr(Y Y)3 + det(XY) + exp
(
Tr(XX)

)
. (6)

We generate a dataset of 10k training and 10k test pairs by sampling from sp(4,R). We compare
ReLN against MLP baselines (trained with and without Sp(4) data augmentation) and the original
Lie Neurons. At test time, we report the standard MSE, MSE averaged over 500 random adjoint
actions, and the invariance error.

As shown in Table 3, non-equivariant MLPs are orders of magnitude less accurate and exhibit high
invariance error, failing to learn the group structure even with data augmentation. Our ReLN model
not only achieves the lowest MSE and near-zero invariance error, but also shows a modest but
consistent improvement over Lie Neurons. This suggests that our non-degenerate bilinear form
provides not only theoretical generality but also superior numerical conditioning in practice.

5.2 PARTICLE PHYSICS WITH LORENTZ GROUP SO(1, 3) EQUIVARIANCE

We test our framework on the Top-Tagging benchmark (Kasieczka et al., 2019), a task to distinguish
particle jets originating from top quarks against a large background from Quantum Chromodynamics.
Because these relativistic collisions are subject to the symmetries of spacetime, the task requires
equivariance under the Lorentz group SO(1, 3). We solve this left-action equivariant learning
problem by introducing a map that embeds the four-momentum p ∈ R1,3 of each constituent particle,
which combines its energy and 3D momentum, into the Lie algebra gl(5) as φ(p) =

(
04×4 p

p⊤η 0

)
,

where η = diag(−1, 1, 1, 1) is the Minkowski metric. As proven in Appendix F.1, this embedding
unifies left- and adjoint-action equivariance within a single Lie-algebraic framework. We adapt the
LorentzNet architecture by replacing its invariant feature computation with our proposed bilinear
form. To ensure a fair comparison, we created a parameter-matched version of LorentzNet. As shown
in Table 4, our model achieves competitive overall performance while demonstrating an advantage
on the background rejection metric. This result shows that our general Lie-algebraic approach can
effectively unify adjoint- and left-action equivariance in a parameter-efficient manner.

5.3 DRONE STATE ESTIMATION WITH GEOMETRIC UNCERTAINTY

We test our framework on a challenging drone state estimation task using a large-scale dataset of
aggressive, highly dynamic flights. The objective is to recover a 3D trajectory from a sequence

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Comparison of performance on the Top-Tagging dataset. Rej@30% denotes the background rejection at
30% signal efficiency (higher is better). Benchmark scores are as reported in the original publications.

Architecture #Params Accuracy AUC Rej@30% Reference

PELICAN 45k 0.943 0.987 2289 ± 204 Bogatskiy et al. (2022)
LorentzNet (original) 224k 0.942 0.987 2195 ± 173 Gong et al. (2022)
LorentzNet (param-matched) 84k 0.942 0.987 1821 ± 94 Our reproduction
LGN 4.5k 0.929 0.964 435 ± 95 Bogatskiy et al. (2020)
BIP 4k 0.931 0.981 853 ± 68 Munoz et al. (2022)
partT 2.14M 0.940 0.986 1602 ± 81 Qu et al. (2022)
ParticleNet 498k 0.938 0.985 1298 ± 46 Qu & Gouskos (2020)
EFN 82k 0.927 0.979 633 ± 31 Komiske et al. (2019)
TopoDNN 59k 0.916 0.972 295 ± 5 Pearkes et al. (2017)
LorentzMACE 228k 0.942 0.987 1935 ± 85 Batatia et al. (2023)

ReLN (Ours) 84k 0.942 0.987 1979 ± 87

of noisy velocity measurements and their corresponding time-varying covariances, where each
covariance matrix quantifies the uncertainty of its associated velocity measurement. This setup tests a
model’s ability to jointly process vector (v) and matrix (C) data in a geometrically consistent and
uncertainty-aware manner.

Experimental Setup. We created a large-scale synthetic dataset of 200 aggressive drone trajectories,
over 13 hours of challenging, high-speed flight (details in Appendix G). The network is trained to
regress the 3D position from a sequence of velocity and covariance measurements within a time
window. Our model is compared against non-equivariant ResNets and an SO(3)-equivariant baseline
using Vector Neurons (VN). Since VNs cannot directly process matrix inputs, we implement a method
that handles covariance matrices via an eigendecomposition-based strategy (details in Appendix G.3).

In contrast, our ReLN architecture treats both velocity and covariance as unified geometric objects
within a single algebraic space, gl(3). Specifically, the velocity vector v ∈ R3 is lifted to its matrix
representation in so(3) ⊂ gl(3). For the time-varying covariance C, we explore two representations
that also reside in gl(3): (1) the matrix C directly, and (2) its matrix logarithm logC, which respects
the geometry of the SPD(3) manifold. This unified representation ensures a measurement and its
uncertainty transform consistently under the adjoint action of SO(3). The final velocity estimate
is then equivariantly extracted by projecting the network’s matrix output onto its skew-symmetric
component. We test three ReLN variants: (1) velocity only, (2) velocity + covariance, and (3) velocity
+ log-covariance. Full implementation details are provided in Appendix G.

5.3.1 RESULTS AND ANALYSIS

Table 5: Performance on the drone trajectory dataset†. Best result in each column is shown in bold.
Model ID SO(3)

ATE ATE% RPE ATE ATE% RPE

Non-Equivariant Baselines
ResNet (Velocity only) 208.07 95.06 107.60 217.02 100.39 111.29
ResNet (Velocity + Covariance) 205.11 94.94 106.07 213.26 98.90 109.37

Equivariant Baselines
VN (Velocity only) 17.36 7.52 13.51 17.36 7.52 13.51
VN (Velocity + Covariance) 191.78 88.66 98.39 190.22 88.47 98.26

Our Equivariant Models
ReLN (Velocity only) 16.85 7.31 12.7 16.85 7.31 12.7
ReLN (Velocity + Covariance) 16.49 7.21 13.02 16.49 7.21 13.02
ReLN (Velocity + log-Covariance) 13.92 5.99 11.04 13.92 5.99 11.04

† Abbreviations and units: ID = in-distribution test (no rotation), SO(3) = test-time random SO(3) rotations. ATE = absolute trajectory error
(meters), ATE% = ATE relative to trajectory length (%), RPE = relative pose error (meters).

Our experiments, summarized in Table 5 and Figure 4, reveal a clear performance hierarchy where
the geometric representation of features is the critical factor.

Non-equivariant models fail to generalize. Non-equivariant models like ResNets fail to generalize
to rotated trajectories, and their performance does not improve when provided with covariance data.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Qualitative comparison of the best-case (middle), average (left), and challenging (right) test sequences.
ReLN models consistently track the ground truth (black) with high fidelity, especially when leveraging covariance.
Insets provide a magnified view of the two best-performing variants (ours) to highlight their accuracy.

Equivariance is necessary, but implementation design critically affects performance. Both VNs
and ReLNs establish strong velocity-only equivariant baselines. ReLNs show improved performance
due to its richer feature learning from both the Lie bracket and our bilinear nonlinearity form.
However, a method for incorporating covariance is crucial. The VN baseline, which decomposes
covariance, degrades the performance. This result confirms that separating the principle axes and
its corresponding scales (eigenvalues) prevents the network from learning the structure between a
measurement and its uncertainty.

Joint processing of velocity and covariance further improves performance. Integrating covariance
as a geometric object in our framework further reduces the ATE, showcasing the performance gains
from unified geometric representation on symmetry-preserving uncertainty handling.

Log-covariance ablation highlights mathematical and practical contributions. Finally, the ReLN
(Velocity + log-Covariance) model achieves the best performance. By processing covariance matrices
via the matrix logarithm, we demonstrate the power of extending Lie-algebraic architectures to
operate on manifold-valued data, such as the SPD(3) matrices representing geometric uncertainty.
This success establishes ReLNs as a practical and high-performance framework for uncertainty-aware
learning in dynamical systems.

Discussion Our results indicate that ReLNs operate effectively as a geometry- and uncertainty-
aware estimator that generalizes across random measurement-frame changes (i.e., arbitrary 3D
rotations). While the network is not a classical recursive Markovian filter, it learns to integrate
velocity measurements with their associated covariances using uncertainty-dependent weighting,
producing robust and accurate trajectory estimates. This behavior suggests ReLNs are suitable as
modular components in downstream systems that require handling of matrix-valued uncertainty.
Future work will investigate theoretical guarantees for the learned weighting, extensions to other
geometric matrix representations, and scalability to higher-dimensional structured geometric inputs.

6 CONCLUSION

This work introduces ReLNs, a unified neural architecture that provides exact equivariance to
the adjoint action of the general n × n matrix algebra gl(n) and its subgroups. ReLNs enable
efficient learning on Lie-algebraic features and structured geometric data, such as covariance matrices.
Furthermore, our work establishes a unified Lie-algebraic framework that handles both classical
left-action symmetries on vectors and native adjoint-actions on matrices within a single architecture.
ReLNs achieve state-of-the-art results on benchmarks and deliver large gains in a challenging drone
state estimation task by integrating uncertainty. We’ll apply our equivariant matrix processing
capability to a wider array of physical systems, including the dynamics of articulated robots and
large-scale sensor fusion, to further expand the boundaries of geometric deep learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Serge Assaad, Carlton Downey, Rami Al-Rfou’, Nigamaa Nayakanti, and Benjamin Sapp. VN-
transformer: Rotation-equivariant attention for vector neurons. Transactions on Machine Learning
Research, 2023. ISSN 2835-8856.

Axel Barrau and Silvere Bonnabel. The invariant extended kalman filter as a stable observer. IEEE
Transactions on Automatic Control, 62(4):1797–1812, 2016.

Sourya Basu, Suhas Lohit, and Matthew Brand. G-repsnet: A lightweight construction of equivariant
networks for arbitrary matrix groups. Transactions on Machine Learning Research, 2025. ISSN
2835-8856. URL https://openreview.net/forum?id=k1eYngOvf0.

Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gábor Csányi. Mace: Higher
order equivariant message passing neural networks for fast and accurate force fields. Advances in
Neural Information Processing Systems Conference, 35:11423–11436, 2022.

Ilyes Batatia, Mario Geiger, Jose M Munoz, Tess Smidt, Lior Silberman, and Christoph Ortner. A
general framework for equivariant neural networks on reductive lie groups. In Advances in Neural
Information Processing Systems Conference, 2023.

Ilyes Batatia, Lars Leon Schaaf, Gabor Csanyi, Christoph Ortner, and Felix Andreas Faber. Equivari-
ant matrix function neural networks. In International Conference on Learning Representations,
2024.

Claudio Battiloro, Ege Karaismailoglu, Mauricio Tec, George Dasoulas, Michelle Audirac, and
Francesca Dominici. E(n) equivariant topological neural networks. In International Conference on
Learning Representations, 2025.

Alexander Bogatskiy, Brandon Anderson, Jan Offermann, Marwah Roussi, David Miller, and Risi
Kondor. Lorentz group equivariant neural network for particle physics. In International Conference
on Machine Learning, pp. 992–1002. PMLR, 2020.

Alexander Bogatskiy, Timothy Hoffman, David W. Miller, and Jan T. Offermann. Pelican: Permu-
tation equivariant and lorentz invariant or covariant aggregator network for particle physics. In
Machine Learning and the Physical Sciences Workshop at NeurIPS 2022, 2022. arXiv:2211.00454
[hep-ph].

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Taco Cohen and Max Welling. Group equivariant convolutional networks. International Conference
on Machine Learning, 2016.

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J
Guibas. Vector neurons: A general framework for so (3)-equivariant networks. In Proceedings of
the IEEE International Conference on Computer Vision, pp. 12200–12209, 2021.

Jonas Eschmann, Dario Albani, and Giuseppe Loianno. Learning to fly in seconds. IEEE Robotics
and Automation Letters, 9(7):6336–6343, 2024.

Matteo Favoni, Andreas Ipp, David I. Müller, and Daniel Schuh. Lattice gauge equivariant convolu-
tional neural networks. Phys. Rev. Lett., 128:032003, Jan 2022.

Marc Finzi, Samuel S Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolu-
tional neural networks for equivariance to lie groups on arbitrary continuous data. International
Conference on Machine Learning, 2020.

Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing equivari-
ant multilayer perceptrons for arbitrary matrix groups. pp. 3318–3328. PMLR, 2021.

Fabian B Fuchs, Daniel E Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d roto-
translation equivariant attention networks. Advances in Neural Information Processing Systems
Conference, 2020.

10

https://openreview.net/forum?id=k1eYngOvf0

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mario Geiger and Tess E. Smidt. e3nn: Euclidean neural networks. ArXiv, abs/2207.09453, 2022.

Shiqi Gong, Qi Meng, Jue Zhang, Huilin Qu, Congqiao Li, Sitian Qian, Weitao Du, Zhi-Ming Ma,
and Tie-Yan Liu. An efficient lorentz equivariant graph neural network for jet tagging. Journal of
High Energy Physics, 2022(7):1–22, 2022.

Ross Hartley, Maani Ghaffari, Ryan M Eustice, and Jessy W Grizzle. Contact-aided invariant
extended kalman filtering for robot state estimation. International Journal of Robotics Research,
39(4):402–430, 2020.

Lingshen He, Yuxuan Chen, Zhengyang Shen, Yibo Yang, and Zhouchen Lin. Neural epdos: Spatially
adaptive equivariant partial differential operator based networks. In International Conference on
Learning Representations, 2022.

Jacob Helwig, Xuan Zhang, Cong Fu, Jerry Kurtin, Stephan Wojtowytsch, and Shuiwang Ji. Group
equivariant fourier neural operators for partial differential equations. International Conference on
Machine Learning, 2023.

Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, and
Hyunjik Kim. Lietransformer: Equivariant self-attention for lie groups. In International Conference
on Machine Learning, pp. 4533–4543. PMLR, 2021.

Erik Jenner and Maurice Weiler. Steerable partial differential operators for equivariant neural
networks. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=N9W24a4zU.

Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh.
Equivariance with learned canonicalization functions. In International Conference on Machine
Learning, pp. 15546–15566. PMLR, 2023.

Gregor Kasieczka, Tilman Plehn, Anja Butter, Kyle Cranmer, Dipsikha Debnath, Barry M Dillon,
Malcolm Fairbairn, Darius A Faroughy, Wojtek Fedorko, Christophe Gay, et al. The machine
learning landscape of top taggers. SciPost Physics, 7(1):014, 2019.

Patrick T Komiske, Eric M Metodiev, and Jesse Thaler. Energy flow networks: deep sets for particle
jets. Journal of High Energy Physics, 2019(1):1–46, 2019.

Yikang Li, Yeqing Qiu, Yuxuan Chen, Lingshen He, and Zhouchen Lin. Affine equivariant networks
based on differential invariants. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 5546–5556, 2024.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
graphs. In International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=KwmPfARgOTD.

Tzu-Yuan Lin, Minghan Zhu, and Maani Ghaffari. Lie Neurons: Adjoint-equivariant neural networks
for semisimple lie algebras. In International Conference on Machine Learning, pp. 30529–30545.
PMLR, 2024a.

Yuchao Lin, Jacob Helwig, Shurui Gui, and Shuiwang Ji. Equivariance via minimal frame averaging
for more symmetries and efficiency. In International Conference on Machine Learning, 2024b.

Jan R Magnus. On differentiating eigenvalues and eigenvectors. Econometric theory, 1(2):179–191,
1985.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In International Conference on Machine Learning, pp. 4363–4371. PMLR, 2019.

Mircea Mironenco and Patrick Forré. Lie group decompositions for equivariant neural networks. In
The Twelfth International Conference on Learning Representations, 2024.

Jose M Munoz, Ilyes Batatia, and Christoph Ortner. Boost invariant polynomials for efficient jet
tagging. Machine Learning: Science and Technology, 3(4):04LT05, 2022.

11

https://openreview.net/forum?id=N9W24a4zU
https://openreview.net/forum?id=N9W24a4zU
https://openreview.net/forum?id=KwmPfARgOTD
https://openreview.net/forum?id=KwmPfARgOTD

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Siba Smarak Panigrahi and Arnab Kumar Mondal. Improved canonicalization for model agnostic
equivariance. arXiv preprint arXiv:2405.14089, 2024.

Jannicke Pearkes, Wojciech Fedorko, Alison Lister, and Colin Gay. Jet constituents for deep neural
network based top quark tagging. arXiv preprint arXiv:1704.02124, 2017.

Omri Puny, Matan Atzmon, Edward J. Smith, Ishan Misra, Aditya Grover, Heli Ben-Hamu, and
Yaron Lipman. Frame averaging for invariant and equivariant network design. In International
Conference on Learning Representations, 2022.

Huilin Qu and Loukas Gouskos. Jet tagging via particle clouds. Physical Review D, 101(5):056019,
2020.

Huilin Qu, Congqiao Li, and Sitian Qian. Particle transformer for jet tagging. In International
Conference on Machine Learning, pp. 18281–18292. PMLR, 2022.

Mateus Sangalli, Samy Blusseau, Santiago Velasco-Forero, and Jesús Angulo. Differential invariants
for se (2)-equivariant networks. In C-ICIP, pp. 2216–2220. IEEE, 2022.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks.
In International Conference on Machine Learning, pp. 9323–9332. PMLR, 2021.

Zhengyang Shen, Lingshen He, Zhouchen Lin, and Jinwen Ma. Pdo-econvs: Partial differential
operator based equivariant convolutions. In International Conference on Machine Learning, pp.
8697–8706. PMLR, 2020.

Zakhar Shumaylov, Peter Zaika, James Rowbottom, Ferdia Sherry, Melanie Weber, and Carola-
Bibiane Schönlieb. Lie algebra canonicalization: Equivariant neural operators under arbitrary lie
groups. In International Conference on Learning Representations, 2025.

Dongwon Son, Jaehyung Kim, Sanghyeon Son, and Beomjoon Kim. An intuitive multi-frequency
feature representation for SO(3)-equivariant networks. In International Conference on Learning
Representations, 2024.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds.
arXiv preprint arXiv:1802.08219, 2018.

Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. Advances in Neural
Information Processing Systems Conference, pp. 14334–14347, 2021.

Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation
equivariant CNNs. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 849–858, 2018.

Yinshuang Xu, Jiahui Lei, Edgar Dobriban, and Kostas Daniilidis. Unified fourier-based kernel and
nonlinearity design for equivariant networks on homogeneous spaces. In International Conference
on Machine Learning, pp. 24596–24614. PMLR, 2022.

Ruixuan Yu and Jian Sun. Pose-transformed equivariant network for 3d point trajectory prediction.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pp. 5503–5512, 2024.

Maksim Zhdanov, David Ruhe, Maurice Weiler, Ana Lucic, Johannes Brandstetter, and Patrick
Forré. Clifford-steerable convolutional neural networks. In International Conference on Machine
Learning, pp. 61203–61228. PMLR, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LIE-THEORETIC PRELIMINARIES

This appendix provides an overview of key concepts and derivations from Lie group theory relevant
to our construction of GL(n)-equivariant neural networks referenced in the main text.

A.1 LIE GROUPS, LIE ALGEBRAS, HAT/VEE

A matrix Lie group G ⊂ GL(n) is a smooth subgroup of invertible matrices. Its Lie algebra
g = Lie(G) is the tangent space at the identity and is identified with a subspace of gl(n). Fix a basis
{Ei}mi=1 of g. The coordinate maps are:

∧ : Rm → g, x = (xi) 7→ x∧ =
∑
i

xiEi, ∨ : g→ Rm, X 7→ X∨. (7)

These maps let us implement algebra-valued features as Euclidean vectors in code.

The associated Lie algebra g = Lie(G) is the tangent space at the identity element e ∈ G. It carries a
bilinear, antisymmetric product called the Lie bracket, given by

[A,B] = AB −BA, (8)

in the case of GL(n) which captures the infinitesimal structure of the group near the identity. The
bracket quantifies non-commutativity of generators: [A,B] = 0 implies commutativity, whereas
[A,B] ̸= 0 indicates a non-trivial interaction.

A.2 REPRESENTATIONS AND THE ADJOINT

A representation Φ : G→ GL(V) differentiates to ϕ : g→ gl(V) by

ϕ(X) =
d

dt

∣∣∣∣
t=0

Φ(exp(tX)). (9)

The adjoint representation Ad : G→ GL(g) is defined to be the differential of group conjugation at
the identity

Adg(X) =
d

dt

∣∣∣∣
t=0

g(exp(tX))g−1. (10)

Therefore we get a map Ad : G→ GL(g). For matrix groups, this is given

Adg(X) = gXg−1, g ∈ G, X ∈ g, (11)

and differentiating yields the Lie-algebra adjoint adX(Y) = [X,Y]. One checks

Adg([X,Y]) = [AdgX,AdgY], adX([Y, Z]) = [adXY, Z] + [Y, adXZ]. (12)

A.3 VECTORIZED ADJOINT

Using the hat/vee maps, the adjoint action on the Lie algebra induces a corresponding action on the
vector coordinates. This vectorized action is a linear map represented by a matrix:

Admg : Rm → Rm, Admg (x) = (Adg(x
∧))∨. (13)

In practice we precompute or assemble the m×m matrix representing Admg (or apply it implicitly)
to implement left-multiplicative equivariant layers that act on vector features.

A.4 STRUCTURE OF LIE ALGEBRA: SEMISIMPLICITY AND REDUCTIVITY

Definition A.1 (Semisimple and Reductive Lie Algebras). A Lie algebra g is:

• Semisimple if it is a direct sum of simple Lie algebras (i.e., non-abelian and having no
nontrivial ideals).

• Reductive if it decomposes as g = s ⊕ z, where s is semisimple and z is the center (an
abelian Lie subalgebra).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Example A.1. The Lie algebra gl(n) decomposes as:

gl(n) = sl(n)⊕ RI, (14)

where sl(n) (traceless matrices) is semisimple, and RI (scalar matrices) forms the center.

This decomposition highlights the non-semisimple nature of gl(n), which plays a critical role in
understanding the degeneracy of certain invariant forms such as the Killing form. This degeneracy
hinders the application of standard tools in Lie-theoretic deep learning. Our work addresses this issue
in the context of GL(n)-equivariant architectures in lie algebra gl(n).

Theorem A.1 (Cartan criterion; standard). The Killing form B(X,Y) = tr(adX ◦ adY) is non-
degenerate iff g is semisimple.

In particular, because gl(n) contains the central scalar direction RI with adI = 0, the Killing form is
degenerate on gl(n).

A.5 INVARIANT BILINEAR FORMS; TRACE FORM

Definition A.2. A bilinear form B : g× g→ R is Ad-invariant if

B(AdgX,AdgY) = B(X,Y) ∀g ∈ G. (15)

On semisimple algebras the Killing form provides such an invariant, non-degenerate form. On gl(n)
we instead use the trace form:

⟨X,Y ⟩tr = tr(XY). (16)

Proposition A.1. The trace form is Ad-invariant on gl(n):

tr((gXg−1)(gY g−1)) = tr(gXY g−1) = tr(XY). (17)

Proof. tr((gXg−1)(gY g−1)) = tr(gXY g−1) = tr(XY) by cyclicity of trace.

The trace form is non-degenerate as a bilinear form on the vector space gl(n) and therefore provides
a practical substitute for the Killing form when designing Ad-invariant bilinear layers on gl(n).

A.6 KILLING FORM ON sl(n)

Restricted to sl(n) the Killing form simplifies and is non-degenerate; one frequently uses the
proportionality B(X,Y) ∝ tr(XY) on sl(n).

B PROOFS OF KEY THEOREMS

B.1 PROOF OF NON-DEGENERACY AND AD-INVARIANCE OF MODIFIED KILLING FORM Be

Let g be a real reductive Lie algebra.

Definition B.1 (Reductive decomposition). A Lie algebra g is reductive if g = z(g)⊕ [g, g], where
z(g) is the center and [g, g] is semisimple. This decomposition is canonical (both summands are
ideals).

Definition B.2 (Modified Killing form on a reductive Lie algebra). Fix any symmetric, posi-
tive–definite inner product ⟨·, ·⟩z on z(g), and let B denote the Killing form on the semisimple
ideal [g, g]. For Zi ∈ z(g) and Xi ∈ [g, g] define

B̃(Z1+X1, Z2+X2) := ⟨Z1, Z2⟩z + B(X1, X2). (18)

Remark 1 (Canonicity). On [g, g] the restriction (Killing form) is canonical. On z(g) there is no
canonical choice; any Ad-invariant positive-definite inner product works. The choice we make in the
case of gl(n) ensures that it agrees with the Killing form on the semisimple part sl(n), and the center
RI is normalized by a natural trace scale.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proposition B.1 (Block–orthogonality and restrictions). With notation as above,

B̃
(
z(g), [g, g]

)
= 0, B̃|z(g) = ⟨·, ·⟩z, B̃|[g,g] = B. (19)

Proposition B.2 (Non–degeneracy). B̃ is nondegenerate on g.

Proof. LetX = Z+W with Z ∈ z(g) andW ∈ [g, g]. If B̃(X, ·) ≡ 0, then testing against Y ∈ z(g)
yields ⟨Z, Y ⟩z = 0 for all Y , hence Z = 0; testing against Y ∈ [g, g] yields B(W,Y) = 0 for all Y ,
hence W = 0 by the non–degeneracy of B on the semisimple ideal. Thus X = 0.

Proposition B.3 (Ad–invariance on the identity component). B̃ is ad–invariant:

B̃([X,Y], Z) + B̃(Y, [X,Z]) = 0 for all X,Y, Z ∈ g, (20)

and hence B̃(AdgY,AdgZ) = B̃(Y,Z) for all g in the identity component G◦.

Proof. The restriction to [g, g] equals B, which is ad–invariant. If Z ∈ z(g) then [X,Z] = 0 for all
X , so any bilinear form on z(g) is automatically ad–invariant. Using Proposition B.1 and bilinearity
gives the displayed identity. Equivalence with Ad–invariance on G◦ follows by integrating the
infinitesimal relation along paths in G◦.

Remark 2 (Invariance for nonconnected groups). In case the group is nonconnected, and one desires
invariance under the full group G (not just G◦). The component group Γ = G/G◦ acts linearly on
z(g). In all practical cases, Γ will be a finite group. Then averaging any positive–definite ⟨·, ·⟩z over
Γ yields an Ad(G)–invariant inner product on the center:

⟨Z1, Z2⟩avgz =
1

|Γ|
∑
γ∈Γ

〈
AdγZ1, AdγZ2

〉
z
. (21)

Replacing ⟨·, ·⟩z by ⟨·, ·⟩avgz in 18 makes B̃ invariant under all of G.

C CONNECTIONS TO EXISTING BILINEAR FORMS

We demonstrate how the trace-based form B̃ (Eq. 2) unifies and recovers prior bilinear constructions
in the regimes used by Lie Neurons (Lin et al., 2024a) and Vector Neurons (Deng et al., 2021) . The
discussion below states precise conditions under which B̃ (i) equals the Killing-form contractions on
semisimple inputs and (ii) is proportional to the Vector Neuron inner product under the so(3) ≃ R3

isomorphism. Our single form applies on the full reductive algebra gl(n) including these specialized
approaches, which encompasses general n× n matrix-valued inputs.

C.1 REDUCTION TO THE KILLING FORM ON THE SEMISIMPLE IDEAL

Write X = X0 +
1
n tr(X)I with X0 ∈ sl(n). Using Eq. 2 we obtain

B̃(X,Y) = 2n tr(X0Y0) + n2
(
1
n trX

)(
1
n trY

)
. (22)

Hence, when inputs are restricted to the semisimple ideal [g, g] = sl(n) (so tr(X) = tr(Y) = 0), the
center contribution vanishes and

B̃|sl(n)(X,Y) = 2n · tr(XY) = Bsl(n)(X,Y), (23)

i.e. B̃ coincides with the (scaled) Killing form used in Lie Neurons. More generally, for any
semisimple subalgebra h ⊂ [g, g], the restriction B̃|h matches the Killing-form contraction on h up
to global scaling.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.2 so(3) EXAMPLE: RECOVERY OF THE VECTOR NEURON INNER PRODUCT

Recall the hat map (̂·) : R3 → so(3) with

v̂ =

[
0 −v3 v2
v3 0 −v1
−v2 v1 0

]
, tr(v̂ ŵ) = −2 v⊤w. (24)

For X = v̂ and Y = ŵ, Eq. 2 gives

B̃(X,Y) = 2n · tr(XY) = 2n · (−2 v⊤w) = (−4n) v⊤w, (25)

i.e. B̃ is proportional to the Euclidean inner product on R3. The proportionality constant depends
only on n; in practice this constant is absorbed by adjacent learnable linear layers or normalization,
yielding behaviour identical to the inner product used in Vector Neurons to harmless scaling.

These remarks justify using the single, nondegenerate B̃ across heterogeneous input types while
preserving compatibility with prior architectures.

D DETAILED LAYER FORMULATIONS

This section provides the precise mathematical definitions and equivariance proofs for the core compo-
nents of the ReLN architecture. We consider the input to a layer as a tensor x ∈ RK×C , representing
C feature channels where K = dim g. Each column xc ∈ RK is the vector representation of a
feature. We use the wedge (∧) and vee (∨) operators to map between the vector form xc and the
matrix form Xc ∈ g.

D.1 EQUIVARIANT LINEAR LAYER

The ReLN-Linear layer applies a linear map to the channel dimension of the input tensor x:

fReLN−Lin(x;W) = xW, where W ∈ RC×C′
. (26)

We omit any bias term to preserve exact equivariance.

Proof of Equivariance. The group action, Adg (defined in Equation 11), is a linear map that
multiplies each feature channel from the left. The weight matrix W multiplies the channel dimension
from the right. These operations commute, ensuring strict G-equivariance for any g ∈ G:

fReLN−Lin(Adg(x);W) = (Adgx)W

= Adg(xW)

= Adg(fReLN−Lin(x;W)).

(27)

D.2 EQUIVARIANT NONLINEARITIES

Standard pointwise activations break equivariance under non-orthogonal transforms. We introduce
two equivariant alternatives.

ReLN-ReLU. This layer rectifies a feature based on its alignment with a learnable direction. Given
the input tensor x, we first compute per-channel vector directions d = xU . The nonlinearity for the
input x is then defined as:

fReLN−ReLU(x) =

{
x, if B̃(x∧, d∧) ≤ 0,

x+ B̃(x∧, d∧)d, otherwise.
(28)

Since all operations—the linear map to compute di, the bilinear form B̃, and vector
addition/scaling—are equivariant, the entire function is equivariant. The leaky variant
fReLN−LeakyReLU(x) = αx+ (1− α) fReLN−ReLU(x) follows directly.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

ReLN-Bracket (Lie-bracket nonlinearity). This layer uses the matrix commutator, a natural
Ad-equivariant primitive, to create learnable interactions between channels. Let the input be a
batch of features represented by their vector coordinates, x ∈ RB×Cin×K . First, two independent
linear maps (with learnable weights Wa,Wb ∈ RCin×Cout) transform the input features into two
intermediate tensors, u, v ∈ RB×Cout×K . The Lie bracket is then computed channel-wise between
the corresponding feature vectors of u and v. This produces an update tensor, ∆x ∈ RB×Cout×K ,
where each vector is defined as:

(∆x)b,c′,: = [(ub,c′,:)
∧, (vb,c′,:)

∧]
∨
. (29)

This update is added to the input for a residual connection (requiring Cin = Cout for the shapes to
match):

fReLN−Bracket(x) = x+∆x. (30)

Each step in this process (linear map, the Lie bracket, and vee/hat operations) is equivariant under the
adjoint action, making the entire block equivariant fReLN−Bracket(Adgx) = Adg(fReLN−Bracket(x))
for all g ∈ G.

E EXPERIMENTAL DETAILS

Training and evaluation for all presented experiments, Platonic solid classification, invariant function
regression, top tagging, and drone state estimation, were conducted on a single NVIDIA GeForce
RTX 4090 GPU.

E.1 MODEL ARCHITECTURES AND IMPLEMENTATION DETAILS

Across all experiments, our proposed ReLN models are constructed by stacking ReLN-Linear, ReLN-
ReLU, and ReLN-Bracket layers. The specific number of layers and channel widths are adapted for
each task to ensure a fair comparison with baseline models in terms of parameter count.

Algebraic Benchmarks (sl(3) and sp(4)). For the Platonic solid classification and sp(4) invariant
regression tasks, our ReLN model directly adopts the architecture used by the Lie Neurons benchmark
model from Lin et al. (2024a). The primary modification is the replacement of their Killing form-
based nonlinearity and invariant layers with our proposed non-degenerate bilinear form B̃ (Eq. 2).
This setup allows for a direct comparison of the impact of the bilinear form, as all other architectural
hyperparameters are kept identical to the baseline.

Top Tagging. For the Top-Tagging task, our model is a modification of the LorentzNet architec-
ture (Gong et al., 2022). We adapt its Lorentz Group Equivariant Blocks (LGEBs) by replacing
the invariant feature computation with our proposed bilinear form. A detailed description of the
architecture, our modifications, and training protocol is provided in Appendix F.

Drone State Estimation. In this task, we compare our ReLN model against two baseline fami-
lies: a non-equivariant 1D ResNet and an equivariant Vector Neurons (VN) model. The specific
implementation details and architectural choices for each model are provided next in Appendix G.

E.2 PLATONIC SOLID CLASSIFICATION ON sl(3)

Overview. All experiments evaluate classification of Platonic solids (tetrahedron, octahedron,
icosahedron) from inter-face homographies computed in the image plane. For each model-family we
train 5 independent runs with different random seeds and report mean ± standard deviation. Training
uses fixed object and camera poses; at test time we report results on the in-distribution (ID) split and
the rotated-camera (RC) split (RC applies ten random SO(3) rotations to the camera frame). The
‘MLP (wider)’ denotes a capacity-matched (≈ 2× parameters) MLP used for a fairer comparison.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Common training hyperparameters (used across model families unless noted).
Hyperparameter Value

Optimizer Adam
Batch size 100
Number of independent runs (seeds) 5
Max epochs / stopping criterion 5000 epochs
Data augmentation (train) Random camera rotations applied to training examples when enabled
RC evaluation 500 random SO(3) rotations applied to each test example
Metric reported Classification accuracy (mean ± std across runs)

Table 7: Model-specific hyperparameters and implementation notes.
Model family Key choices Notes

Latent Feature Size (MLP Baseline) 256 As in Lin et al. (2024a).
Latent Feature Size (MLP Wider) 386 Increased width total parameters ≈ 2× baseline.
Learning rate (MLP models) 1 × 10−4

Learning rate (ReLNs/Lie Neurons models) 3 × 10−6 Lower LR chosen for stable training

F TOP TAGGING EXPERIMENT: FRAMEWORK, PROOF, AND IMPLEMENTATION

This appendix provides the complete details for our jet tagging experiment. We first present the
geometric framework and the mathematical proof of our Lorentz-equivariant embedding, and then
describe the model architecture and training protocol.

F.1 GROUP ACTION EQUIVARIANCE VIA EMBEDDING MAP

To process four-momenta within our Lie-algebraic framework, we require an embedding that translates
the action of the Lorentz group into an adjoint action on a matrix space. This is achieved by lifting
the four-vector into gl(5).

Definition F.1 (Lorentz-Compatible Embedding). Given a four-vector p ∈ R4 and the Minkowski
metric η = diag(1,−1,−1,−1), we define its embedding φ(p) into gl(5) as:

φ(p) =

[
04×4 p
p⊤η 0

]
. (31)

Theorem F.1 (Adjoint Equivariance). The embedding φ correctly models the Lorentz group action.
For any p ∈ R4 and Lorentz transformation Λ ∈ SO(1, 3), let G = diag(Λ, 1) ∈ GL(5). The map is
equivariant in the sense that the standard action on p corresponds to the adjoint action on φ(p):

AdG(φ(p)) = Gφ(p)G−1 = φ(Λp). (32)

Proof. We compute the left-hand side (LHS) of Eq. 32, which is the adjoint action:

AdG(φ(p)) =

[
Λ 0
0 1

] [
0 p
p⊤η 0

] [
Λ−1 0
0 1

]
=

[
0 Λp

p⊤ηΛ−1 0

]
. (33)

The right-hand side (RHS) is the lift of the transformed vector Λp:

φ(Λp) =

[
0 Λp

(Λp)⊤η 0

]
=

[
0 Λp

p⊤Λ⊤η 0

]
. (34)

For the LHS and RHS to be equal, we must show that ηΛ−1 = Λ⊤η. We start from the defining
property of SO(1, 3):

Λ⊤ηΛ = η. (35)

Right-multiplying Eq. 35 by Λ−1 yields the desired identity:

(Λ⊤ηΛ)Λ−1 = ηΛ−1 =⇒ Λ⊤η(ΛΛ−1) = ηΛ−1 =⇒ Λ⊤η = ηΛ−1. (36)

Since the condition holds, the proof is complete.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Remark 3 (Generalization to Orthogonal Groups). This embeddinging technique is not limited to the
Lorentz group and can be readily generalized to any orthogonal group O(n) or special orthogonal
group SO(n). For instance, in applications involving 3D point clouds where the symmetry is SO(3),
a vector p ∈ R3 would be embedded into the Lie algebra gl(4) as:

φ(p) =

[
03×3 p
p⊤ 0

]
(37)

The proof of equivariance follows the same structure, using the property of orthogonal matrices,
R⊤R = I (which implies R−1 = R⊤), instead of the Minkowski metric identity. This highlights the
broad applicability of our embedding strategy to any benchmark involving norm-preserving group
transformations.

F.2 EXPERIMENTAL IMPLEMENTATION

Dataset The experiment uses the Top-Tagging dataset (Kasieczka et al., 2019), which contains 2
million simulated proton-proton collision events. The dataset was generated with Pythia, Delphos,
and FastJet to model the ATLAS detector response. We use the standard 60%/20%/20% splits for
training, validation, and testing. Each jet is represented as a set of constituent particles, each with
four-momentum p = (E, px, py, pz).

Model Our model leverages the established architecture of LorentzNet (Gong et al., 2022), utilizing
its stack of Lorentz Group Equivariant Blocks (LGEBs) for message passing on the jet’s particle
cloud. While the original LorentzNet computes these features directly from the 4-momenta using the
Minkowski inner product, our approach introduces a modified bilinear form based feature extraction.
We first embed each pair of 4-momenta, pi and pj , from the Minkowski space R1,3 into the Lie
algebra gl(5) via the map p 7→ X(p). The invariant features for the message passing are then derived
from the bilinear form, B(·, ·), on this Lie algebraic space. The edge message mij is thus constructed
as:

mij = ϕe

(
hi, hj , ψ

(
B̃(X(pi), X(pi))

)
, ψ

(
B̃(X(pi), X(pj))

))
(38)

where hi, hj are scalar features, ϕe is an MLP, and ψ is a stabilizing nonlinearity. As shown in the
main results (Table 4), this approach leads to an advantage in background rejection when compared
against a parameter-matched LorentzNet baseline. The architectural differences are summarized in
Table 8.

Table 8: Architectural comparison for the Top-Tagging task.
Component LorentzNet (Original) Param-matched Baseline Ours (ReLN)

Number of LGEBs 6 5 5
Hidden feature dims 72 48 48
Edge feature computation Minkowski inner prod. Minkowski inner prod. Bilinear invariant form

Training Setup For a fair comparison, our training procedure closely follows the protocol estab-
lished in the LorentzNet (Gong et al., 2022). The model was trained for a total of 35 epochs on a
single NVIDIA RTX 4090 GPU. We used the AdamW optimizer with a weight decay of 0.01 and a
batch size of 128, matching the total effective batch size from the reference work. The learning rate
was managed by the paper’s specific three-stage schedule: a 4-epoch linear warm-up to an initial rate
of 1× 10−3, followed by a 28-epoch CosineAnnealingWarmRestarts schedule, and a final
3-epoch exponential decay. After each epoch, the model with the highest validation accuracy was
saved for final evaluation on the test set.

G DRONE EXPERIMENT DETAILS

This appendix provides the technical details for the drone state estimation experiment, including the
theoretical framework, dataset generation, model implementations, and formal proofs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G.1 GEOMETRIC FRAMEWORK FOR EQUIVARIANT COVARIANCE PROCESSING

Our approach leverages the geometry of symmetric positive-definite matrices. A covariance matrix C
is symmetric positive-definite, residing on the manifold SPD(3). A non-degenerate covariance matrix
C ∈ SPD(n) represents the anisotropic stretching of a general linear map, as seen via the polar
decomposition A = QP with Q ∈ O(n) and P ∈ SPD(n). Equivalently, there is a homogeneous-
space isomorphism: SPD(n) ∼= GL(n)/O(n), which motivates processing covariances in a
GL(n)-aware architecture.

While SPD(3) is not a Lie group, the matrix logarithm provides a canonical map to the vector space
of symmetric matrices Sym(3), which is a linear subspace of gl(3).

log : SPD(3) −→ Sym(3) ⊂ gl(3). (39)

This allows us to embed a geometric object from a curved manifold into a flat, Lie-algebra-compatible
space. The following theorem proves that the congruence transformation on C ∈ SPD(n) becomes
an adjoint action on its image logC ∈ Sym(n), thus preserving the equivariant structure required by
our model.
Theorem G.1 (Equivariance of the Logarithmic Map). For any C ∈ SPD(n) and any rotation matrix
R ∈ SO(n), the congruence transformation on C corresponds to an adjoint action on its logarithm:

log(RCR⊤) = R(logC)R⊤. (40)

Proof. The proof follows from the spectral theorem for real symmetric matrices.

1. Let the eigendecomposition ofC beC = V ΛV ⊤, where V is an orthogonal matrix (V ⊤V =
I) of eigenvectors and Λ is the diagonal matrix of corresponding positive eigenvalues.

2. By definition, the matrix logarithm of C is given by applying the logarithm to its eigenvalues:

logC := V (log Λ)V ⊤ (41)
where log Λ is the diagonal matrix of element-wise logarithms of the eigenvalues.

3. Consider the transformed matrix C ′ = RCR⊤. Substituting the decomposition of C yields:

C ′ = R(V ΛV ⊤)R⊤ = (RV)Λ(V ⊤R⊤) = (RV)Λ(RV)⊤ (42)
This is the eigendecomposition of C ′, where the new orthogonal matrix of eigenvectors is
V ′ = RV and the eigenvalues Λ are unchanged.

4. Applying the definition of the matrix logarithm to C ′ gives:

log(C ′) = V ′(log Λ)(V ′)⊤ = (RV)(log Λ)(RV)⊤ (43)

5. Rearranging the terms, we arrive at the desired identity:

log(C ′) = R
(
V (log Λ)V ⊤)R⊤ = R(logC)R⊤ (44)

This identity is critical, as it confirms that our adjoint-equivariant network can process either the raw
covariance C or its logarithm logC while perfectly preserving the SO(3) symmetry.

In the SO(3) regime used in our experiments, vectors (e.g., velocity v) are represented in the Lie
algebra so(3) so that the adjoint action coincides with ordinary rotation, AdR(v) = Rv. Conjugation
then implements the covariance congruence C 7→ RCR⊤. Consequently, ReLNs realize SO(3)-
equivariance by construction, avoiding the need for the model to learn these symmetries from data.

G.2 DATASET GENERATION.

We use the PyBullet engine to simulate 200 aggressive trajectories for a Crazyflie-like nano-quadrotor.
To generate realistic measurements, the instantaneous velocity is corrupted by Gaussian noise,
vnoisy ∼ N (vgt, Cv), where the covariance Cv varies with flight aggressiveness. The dataset
provides time series of noisy velocities, ground-truth covariances, and ground-truth trajectories for
evaluation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Trajectory Generation. The procedure begins with the procedural generation of a sequence of
20 to 40 random 3D waypoints within a flight volume of approximately 170m× 170m× 60m. The
waypoints are sampled from a uniform distribution to create diverse flight paths. To mimic the
complex dynamics of aggressive flight, each trajectory is randomly generated using a path with
random wiggles or a path featuring high-speed spiral maneuvers. These discrete waypoints are then
interpolated using a Catmull-Rom spline to create a smooth, C1 continuous target trajectory, which
is densely sampled at an 80 Hz control frequency. Each of the 200 sequences results in a unique
trajectory lasting approximately 2-4 minutes, totaling over 13 hours of simulated flight time. A
sample generated trajectory is shown in Figure 5.

(a) A sample trajectory with spiral maneuvers. (b) A sample trajectory with random wiggles.

Figure 5: Sample aggressive trajectories generated in the PyBullet simulator.

State-Dependent Noise Model. To simulate realistic sensor characteristics, the ground-truth veloc-
ity is corrupted by zero-mean Gaussian noise, vnoisy ∼ N (vgt, Cv). The covariance matrix Cv is
state-dependent, designed to scale with the drone’s speed. The standard deviation σv for each velocity
axis is computed using a sigmoid function of the velocity magnitude ∥vgt∥:

σv(∥vgt∥) = σmin + (σmax − σmin) ·
1

1 + exp(−λ(∥vgt∥ − vmid))
, (45)

where the variance on each axis is σ2
v . We set the minimum and maximum standard deviations to

σmin = 0.2m/s and σmax = 1.0m/s, respectively. The steepness λ is set to 0.8, and the midpoint
velocity vmid is dynamically adjusted based on the estimated average speed of each trajectory to
ensure a realistic noise profile.

G.3 BASELINE AND MODEL IMPLEMENTATION DETAILS

We compare ReLN against two baseline classes chosen to isolate the effect of geometric priors.

Non-equivariant baselines. We use a standard 1D ResNet architecture with temporal convolutional
blocks that processes flattened input sequences. The ResNet (velocity-only) model receives only
the 3D velocity vector. The ResNet (velocity + covariance) model receives the flattened 3 × 3
covariance matrix concatenated to the velocity vector.

Eigendecomposition-based SO(3)-Equivariant Baseline. This model adapts the 1D ResNet
backbone for SO(3) equivariance using VN layers. Since VNs cannot directly ingest matrices, we
decompose each covariance matrix C = V ΛV ⊤ and use a dual-stream design:

• an equivariant stream Feq = {v, e1, e2, e3} comprising the measured velocity v and the
three orthonormal eigenvectors ei, which together capture all directional information. This
stream is handled by the VNs backbone.

• an invariant stream Finv = {λ1, λ2, λ3} processes the corresponding eigenvalues
{λ1, λ2, λ3}, which encode orientation-independent scale information, using a standard
MLP.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The two latent features from both streams are fused at the final output layer. Eigenvector ambiguities
(sign or multiplicities) are resolved via a deterministic, rotation-equivariant canonicalization.

Reductive Lie Neurons (ReLNs). The ReLN model shares the same base architecture as the
VN model but incorporates ReLN-Bracket layer as an additional source of nonlinearity after the
initial feature extraction block. In contrast to the VN backbone, ReLNs provide a unified framework
for velocity and covariance processing. Velocities v ∈ R3 are lifted into the Lie algebra so(3)
via K = v∧, while covariance C (or logC) is treated as a structured geometric input. Both
transform under the same adjoint action: K ′ = RKR⊤ and C ′ = RCR⊤, enabling joint equivariant
processing. Although SPD(n) is not a Lie algebra or group, it is a subset of GL(n). By taking
the matrix logarithm, logC ∈ Sym(n) ⊂ gl(n), covariances are embedded into a linear subspace
compatible with Lie-algebra processing.

The network Φ fuses these inputs into a single matrix A ∈ R3×3, from which we extract the velocity
estimate:

Askew := 1
2 (A−A

⊤) ∈ so(3), v̂ = Vee(Askew). (46)

The extracted velocity is provably SO(3)-equivariant by construction. See Appendix H for the full
statement and proof.

G.4 TRAINING AND EVALUATION PROTOCOL

Problem Formulation The network is trained to predict the drone’s 3D position pt ∈ R3 at the end
of a given time window, based on a sequence of noisy velocity measurements and their corresponding
covariances within that window (e.g., a 1-second history). All models are trained by minimizing the
Mean Squared Error (MSE) between the predicted position p̂t and the ground-truth position pt,gt.
The loss function is defined as L = ∥p̂t − pt,gt∥22.

Dataset and Optimization. We partition the dataset using a standard 80:10:10 train/validation/test
split. All models are trained on identical splits to ensure fair comparison. Models are optimized using
the AdamW optimizer with a ReduceLROnPlateau learning rate scheduler based on validation loss.

Evaluation Metrics. We report the following pose-regression metrics over the test set:

• Absolute Trajectory Error (ATE): The root-mean-square error between the ground-truth
and predicted 3D positions over the entire trajectory, measured in meters.

• ATE%: The ATE normalized by the total trajectory length and expressed as a percentage
(100 × ATE/length). This metric provides a scale-invariant measure of error, which is
crucial for fairly comparing performance across our aggressive flight trajectories of varying
lengths.

• Relative Pose Error (RPE): The error measured over fixed-length sub-trajectories, captur-
ing local drift.

To explicitly validate equivariance, we also evaluate all models on the test set after applying a set of
random SO(3) rotations to the entire input sequence.

G.5 EIGENVECTOR CANONICALIZATION FOR THE VN BASELINE

To resolve ambiguities in the eigendecomposition C = V ΛV ⊤ for the VN baseline, we canonicalize
the eigenvector matrix V = [e1, e2, e3] as follows:

1. Right-handed Frame: If detV < 0, we set e3 ← −e3 to ensure detV = +1.
2. Sign Disambiguation: For each eigenvector ei with a distinct eigenvalue, we enforce a

consistent sign by ensuring v⊤ei ≥ 0. If not, we set ei ← −ei.
3. Multiplicity Handling: In the rare case of repeated eigenvalues, we use the projection of

the velocity vector v onto the corresponding eigenspace to deterministically define the first
basis vector, then complete the basis via Gram-Schmidt.

All steps use only equivariant operations, preserving the overall symmetry of the baseline.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

H PROOF OF SO(3)-EQUIVARIANCE FOR RELN VELOCITY EXTRACT WITH
COVARIANCE INPUTS

This section provides a formal proof for the SO(3)-equivariance of our Reductive Lie Neuron (ReLN)
architecture when processing a velocity vector and a covariance matrix. We first establish the
foundations for processing covariance matrices within a Lie-algebraic framework and then present
the main proof.

H.1 SO(3)-EQUIVARIANT VECTOR EXTRACTION VIA SKEW-SYMMETRIC PROJECTION

Our network, Φ, is designed to be adjoint-equivariant. It maps geometric inputs—such as a embedded
velocity K ∈ so(3) and a covariance matrix S ∈ SPD(3)—to a matrix feature A ∈ R3×3. The
inputs transform under the adjoint action of any rotation R ∈ SO(3):

K ′ = AdR(K) = RKR⊤, S′ = AdR(S) = RSR⊤. (47)

By construction, the network’s output feature A transforms according to the same law:

Φ(K ′, S′) = AdR
(
Φ(K,S)

)
= RΦ(K,S)R⊤. (48)

To obtain the final 3D velocity vector, we project the output matrix A onto its skew-symmetric
component and apply the vee operator. The following proposition formalizes the equivariance of this
extraction mechanism.
Proposition H.1 (Equivariance of Skew-Symmetric Extraction). Let a network Φ and its inputs
transform according to Eqs. 47 and 48. If a vector v̂ ∈ R3 is extracted from the output matrix
A = Φ(K,S) via the projection

Askew = 1
2 (A−A

⊤), v̂ = (Askew)
∨, (49)

then the vector v̂′ extracted from the transformed output A′ = Φ(K ′, S′) transforms covariantly as
v̂′ = Rv̂.

Proof. By the adjoint-equivariance property in Eq. 48, the network satisfies Φ(RKR⊤, RCR⊤) =
RΦ(K,C)R⊤ = RAR⊤. Let A′ = RAR⊤. The skew-symmetric component of the transformed
output A′ is:

A′
skew = 1

2 (A
′ −A′⊤)

= 1
2

(
RAR⊤ − (RAR⊤)⊤

)
= 1

2

(
RAR⊤ −RA⊤R⊤)

= R
(
1
2 (A−A

⊤)
)
R⊤

= RAskewR
⊤ = AdR(Askew).

(50)

The vee map, (·)∨ : so(3)→ R3, is itself an equivariant map satisfying (AdR(X))∨ = R (X∨) for
any X ∈ so(3). Applying this property yields the desired result:

v̂′ = (A′
skew)

∨ = (AdR(Askew))
∨ = R (Askew)

∨ = Rv̂. (51)

Remark 4. The proof relies on three properties: (i) both inputs transform under the adjoint action
X 7→ RXR⊤; (ii) the network Φ is equivariant to this action; and (iii) the output is projected onto
so(3) before the vee operator is applied. As established previously, these conditions hold whether the
network ingests the raw covariance S or its logarithm logS.

LARGE LANGUAGE MODEL (LLM) USAGE

We used a large language model (LLM) to aid in polishing the writing and improving grammatical
clarity of the manuscript. The LLM did not contribute to the research ideation, experiments, or
technical content; all scientific claims and results were generated solely by the authors.

23

	Introduction
	Related Work
	Preliminaries
	Reductive Lie Neurons: Architecture
	A General Ad-invariant Bilinear Form for Reductive Lie Algebras
	The ReLN Layer Toolbox

	Experiments
	Algebraic Benchmarks on Semisimple Lie Algebras
	Platonic Solid Classification
	Invariant Function Regression on sp(4).

	Particle Physics with Lorentz Group SO(1,3) Equivariance
	Drone State Estimation with Geometric Uncertainty
	Results and Analysis

	Conclusion
	Lie-theoretic preliminaries
	Lie groups, Lie algebras, hat/vee
	Representations and the adjoint
	Vectorized adjoint
	Structure of Lie Algebra: Semisimplicity and Reductivity
	Invariant bilinear forms; trace form
	Killing form on sl(n)

	Proofs of Key Theorems
	Proof of Non-degeneracy and Ad-invariance of Modified Killing Form Be

	Connections to existing bilinear forms
	Reduction to the Killing form on the semisimple ideal
	so(3) example: recovery of the Vector Neuron inner product

	Detailed Layer Formulations
	Equivariant Linear Layer
	Equivariant Nonlinearities

	Experimental Details
	Model Architectures and Implementation Details
	Platonic Solid Classification on sl(3)

	Top Tagging Experiment: Framework, Proof, and Implementation
	Group Action Equivariance via Embedding Map
	Experimental Implementation

	Drone Experiment Details
	Geometric Framework for Equivariant Covariance Processing
	Dataset Generation.
	Baseline and Model Implementation Details
	Training and Evaluation Protocol
	Eigenvector Canonicalization for the VN Baseline

	Proof of SO(3)-Equivariance for ReLN Velocity Extract with Covariance Inputs
	SO(3)-Equivariant Vector Extraction via Skew-Symmetric Projection

