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ABSTRACT

Encoding symmetries is a powerful inductive bias for improving the generalization
of deep neural networks. However, most existing equivariant models are limited
to simple symmetries like rotations, failing to address the broader class of gen-
eral linear transformations, GL(n), that appear in many scientific domains. We
introduce Reductive Lie Neurons (ReLNs), a novel neural network architecture
exactly equivariant to these general linear symmetries. ReLNs are designed to
operate directly on a wide range of structured inputs, including general n-by-n
matrices. ReLNs introduce a novel adjoint-invariant bilinear layer to achieve stable
equivariance for both Lie-algebraic features and matrix-valued inputs, without
requiring redesign for each subgroup. This architecture overcomes the limitations
of prior equivariant networks that only apply to compact groups or simple vector
data. We validate ReLNs’ versatility across a spectrum of tasks: they outperform
existing methods on algebraic benchmarks with sl(3) and sp(4) symmetries and
achieve competitive results on a Lorentz-equivariant particle physics task. In 3D
drone state estimation with geometric uncertinaty, ReLNs jointly process velocities
and covariances, yielding significant improvements in trajectory accuracy. ReLNs
provide a practical and general framework for learning with broad linear group
symmetries on Lie algebras and matrix-valued data.

1 INTRODUCTION

Leveraging the symmetries present in real-world data improves the generalization of neural networks.
When a model is equivariant, i.e., its outputs transform predictably with inputs under certain group
actions, it can learn more efficiently and generalize across scenarios with less data.

Most advances in equivariant deep learning target compact symmetry groups, such as rotations,
SO(3), or isometries, E(n), where strong geometric and algebraic tools support robust network
design (Bronstein et al., 2021; Cohen & Welling, 2016; Thomas et al., 2018; Satorras et al., 2021;
Finzi et al., 2020; Geiger & Smidt, 2022). These methods have led to practical gains. However,
many real-world phenomena, such as affine distortions, sensor anisotropy, and general changes of
basis, are governed by the broader general linear group GL(n) = {A ∈ Rn×n : det(A) ̸= 0}, for
which existing methods fail to provide exact equivariance. These more general symmetries are crucial
in a wide array of scientific domains, including robotics, particle physics, and computer vision, a
landscape we survey in Table 1.

Naive solutions, such as flattening matrices into vectors, discard essential geometric structure, while
methods based on spectral decompositions are brittle and numerically unstable (Magnus, 1985). This
leaves a gap for a numerically stable neural architecture capable of processing diverse geometric data
types equivariantly under arbitrary invertible linear transformations (Bronstein et al., 2021).

This work introduces Reductive Lie Neurons (ReLNs), a unified neural architecture that provides exact
equivariance to the adjoint action of the general linear group, GL(n), and its reductive subgroups,
enabling robust learning on both Lie-algebraic features and structured geometric data like covariances.
We resolve the central technical obstacle for non-semisimple algebras—the degeneracy of the
canonical Killing form—by introducing a learnable, provably non-degenerate, and Ad-invariant
bilinear form. This provides a mathematically stable mechanism for defining symmetry-preserving
nonlinearities, pooling, and invariant layers applicable to the reductive Lie algebra gl(n) = Rn×n.
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Figure 1: Examples of Lie groups and related manifolds in scientific applications. From left: the special linear
group SL(3) (image homography), the Lorentz group SO(1, 3) (spacetime symmetry), symplectic groups Sp(n)
(Hamiltonian mechanics), the SPD(3)⊕ R3 state space (probabilistic estimation), and the general linear group
GL(3) (modeling stress-strain in continuum mechanics). See Table 1 for a more detailed survey.

Table 1: A survey of common Lie groups and their applications in equivariant deep learning.
Group / Data Structure Application Reference

SO(3) 3D Point Clouds, State Estimation Lin et al. (2024a); Deng et al. (2021); Son et al. (2024)
SO+(1, 3) Particle Physics, Jet Tagging Bogatskiy et al. (2020); Finzi et al. (2021); Batatia et al. (2023)

SU(3) Quantum Chromodynamics (QCD) Favoni et al. (2022)

SL(3) Homography Classification, 3D Vision Lin et al. (2024a); Finzi et al. (2021)
Sp(4,R) Hamiltonian dynamics Lin et al. (2024a); Finzi et al. (2021)

SPD(n)† Geometric Uncertainty Processing -

GL(n) General Linear Transformations Basu et al. (2025); Finzi et al. (2021)
†Not a group. SPD(n) is the manifold of symmetric positive-definite matrices, representable as the quotient space GL(n)/O(n).

Our main contributions are:

1. We propose Reductive Lie Neurons (ReLNs), a novel, general-purpose, and numerically
stable network architecture for exact GL(n) adjoint equivariance.

2. We establish a connection between classical left-action equivariance and our adjoint-action
framework for orthogonal groups. Through a provably-equivariant embedding map, we
show that problems defined on standard vector actions—such as Lorentz transformations in
particle physics or 3D point cloud processing—can be solved within our unified architecture,
obviating the need for specialized model designs.

3. We establish the framework for geometric uncertainty-aware equivariant learning, enabling
models to treat matrix-valued data that transforms under congruence (e.g., covariance
tensors) as geometric objects.

4. We demonstrate the effectiveness of ReLNs through extensive experiments, showing that
they outperform prior methods on Lie-algebraic benchmarks and achieve significant im-
provements in accuracy and robustness on a challenging 3D drone state estimation task.

2 RELATED WORK

Encoding symmetry into neural architectures is a powerful inductive bias that improves data efficiency
and generalization (Bronstein et al., 2021). In geometric deep learning, the most mature area of
research focuses on enforcing equivariance to Euclidean isometries, transformations such as rotations
and rigid motions formalized by Lie groups like SO(n) and SE(n). For grid-like data, foundational
works include Group-Equivariant CNNs (Cohen & Welling, 2016) and Steerable CNNs (Weiler et al.,
2018; Weiler & Cesa, 2021). For unstructured data, a dominant paradigm uses features associated
with irreducible group representations (tensorial methods, E(n)-GNNs, and transformers (Thomas
et al., 2018; Fuchs et al., 2020; Satorras et al., 2021; Batatia et al., 2022; Battiloro et al., 2025;
Liao & Smidt, 2023; Assaad et al., 2023; Hutchinson et al., 2021)), with lightweight vector-based
alternatives also available (Deng et al., 2021; Son et al., 2024). Theoretical analyses have also
explored the universal approximation capabilities of such invariant networks (Maron et al., 2019).
Complementing these specialized layers are general, model-agnostic strategies like frame averaging
and canonicalization (Puny et al., 2022; Lin et al., 2024b; Kaba et al., 2023; Panigrahi & Mondal,
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2024). Despite their success, most practical implementations are centered on scalar and vector
features. While frameworks such as Tensor Field Networks (Thomas et al., 2018) or EMLP (Finzi
et al., 2021) can handle higher-order tensor representations, scalable architectural design for general
matrix-valued quantities (e.g., covariances or inertia tensors transforming as Σ 7→ RΣR⊤) is still
limited in practice.

A major frontier is extending equivariance to non-compact groups like the general linear group
GL(n) and the Lorentz group SO+(1, 3). Much of the work on the Lorentz group, which is critical in
particle physics, has focused on designing specialized networks for the standard left action on vectors
(Bogatskiy et al., 2020; Finzi et al., 2021; Batatia et al., 2023; Zhdanov et al., 2024). In contrast, we
demonstrate that this left-action problem can be addressed within our universal, adjoint-equivariant
framework via an embedding map.

One line of work generalizes group convolution and kernel design, often leveraging Fourier analysis
(Xu et al., 2022; Helwig et al., 2023). This includes general frameworks for constructing equivariant
networks on arbitrary matrix groups (Basu et al., 2025), through matrix functions (Batatia et al.,
2024), and on reductive Lie groups (Batatia et al., 2023). Other approaches define kernels in the Lie
algebra (Finzi et al., 2020), use Lie group decompositions for integration (Mironenco & Forré, 2024),
or adapt canonicalization using infinitesimal generators of the Lie algebra (Shumaylov et al., 2025).

For these non-compact groups in general, the theoretical machinery underpinning many equivariant
models does not readily apply. One line of work generalizes group convolution and kernel design,
leveraging tools from Fourier analysis (Xu et al., 2022; Helwig et al., 2023), matrix functions (Batatia
et al., 2024), or operating directly on reductive Lie groups (Batatia et al., 2023). Other methods focus
on the Lie algebra, either by defining kernels within the algebra itself (Finzi et al., 2020) or using Lie
group decompositions for integration (Mironenco & Forré, 2024; Shumaylov et al., 2025). Another
approach leverages differential geometry, using tools such as partial differential operators (He et al.,
2022; Shen et al., 2020; Jenner & Weiler, 2022) and the algebra of differential invariants (Sangalli
et al., 2022; Li et al., 2024) to construct equivariant layers. A different generalist approach, taken by
methods like the Equivariant MLP and G-RepsNet (Finzi et al., 2021; Basu et al., 2025), is to solve
the equivariance constraint algebraically, though this often lacks specialized inductive biases like
locality.

In contrast to these manifold-focused approaches, a parallel line of work operates directly on the Lie
algebra. Lin et al. (2024a) introduced Lie Neurons, establishing a framework for adjoint-equivariance,
but their method is restricted to semisimple Lie algebras where the Killing form is non-degenerate.
This limitation precludes direct application to the reductive but non-semisimple algebra gl(n), whose
degenerate Killing form poses a central challenge. The high computational cost of group convolution
methods, combined with the semisimple constraints of existing Lie-algebraic techniques, limits
their direct applicability to robotics tasks that involve real-time processing, noisy measurements, or
uncertainty estimation (Eschmann et al., 2024; Yu & Sun, 2024). While traditional, model-based
algorithms like Kalman filters are designed to respect this geometry (Barrau & Bonnabel, 2016;
Hartley et al., 2020), they lack the flexibility.

Our work confronts this challenge with ReLNs, a practical, numerically well-conditioned architecture
for the full reductive group GL(n) and its subgroups. By introducing a learnable, non-degenerate,
and Ad-invariant bilinear form, our framework overcomes the key obstacle of the degenerate Killing
form in gl(n). This unified algebraic approach extends beyond strict Lie algebra elements to
other geometric features, such as covariance matrices, that transform under congruence, providing
a practical tool that sidesteps the complexities of prior methods requiring group integration or
degenerate invariants. Figure 2 situates ReLNs as a general framework for GL(n) transformations,
distinguishing our approach from architectures tailored to specialized subgroups.

3 PRELIMINARIES

Our work builds equivariant networks on the Lie algebra g = Lie(G), the tangent space of a Lie
group G at the identity e. We focus on the general linear group GL(n) and its Lie algebra gl(n),
aiming for equivariance under the adjoint action Adg : X 7→ gXg−1, g ∈ GL(n), X ∈ gl(n). A
central challenge arises from the structure of gl(n): it is a reductive Lie algebra, and the canonical
invariant inner product, the Killing form, is degenerate on gl(n). This degeneracy poses a critical
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Linear Transformation : GL(n) 

SL(n) 

E(n) 
SO(n) 

Reductive Lie Neurons* (Ours)
EMLP

(Finzi et al., 2021)

Lie Neurons* (Lin et al., 2024a)

Vector Neurons
(Deng et al., 2021) FER

(Son et al., 2024)
VN-Transformer

(Assaad et al., 2023)
TFN

(Thomas et al., 2018)

SE(3)-Transformer
(Fuchs et al., 2020)

EGNN
(Satorras et al., 2021)

LieConv (Finzi et al., 2020)

Equiformer
(Liao & Smidt, 2023)

e3nn
(Geiger & Smidt, 2022)

G-RepsNet
(Basu et al., 2025)

G-MACE (Batatia et al., 2023a)

Figure 2: A taxonomy of selected representative equivariant neural architectures, categorized by the symmetries
to which they are equivariant. This diagram situates our work, ReLNs, among other notable methods that are
often specialized for subgroups such as SL(n), SO(n), or the Euclidean group E(n). An asterisk (∗) denotes
methods equivariant to the group’s adjoint action.

problem, as it prevents the construction of expressive nonlinear layers, causing them to collapse into
linear maps and severely limiting the model’s expressive power. We address this by introducing a
learnable, non-degenerate bilinear form, enabling fully nonlinear equivariant operations. For details
of Lie theory and background, see Appendix A.

4 REDUCTIVE LIE NEURONS: ARCHITECTURE

We present ReLNs, a framework for building deep networks equivariant to the adjoint action of
the general linear group GL(n). The design centers on a learnable, non-degenerate, Ad-invariant
bilinear form on the reductive Lie algebra gl(n) and a complete toolbox of equivariant linear maps,
nonlinearities, pooling, and invariant readouts.

4.1 A GENERAL Ad-INVARIANT BILINEAR FORM FOR REDUCTIVE LIE ALGEBRAS

The primary obstacle to applying Lie-algebraic methods such as Lie Neurons (Lin et al., 2024a) to
gl(n) is the degeneracy of its Killing form. We resolve this by constructing a modified bilinear form
B̃ that restores non-degeneracy while preserving the crucial Ad-invariance property.

Definition 4.1 (Modified Bilinear Form on a Reductive Lie Algebra). If g is reductive, then g =
z(g) ⊕ [g, g], where z(g) is the center. Choose any Ad-invariant inner product ⟨·, ·⟩z on z(g) (for
connected G this is automatic since Ad|z(g) : G→ GL(z(g)) is locally constant. See Appendix A.2
for the formal definition of Ad) . For Zi ∈ z(g) and Xi ∈ [g, g] define

B̃(Z1+X1, Z2+X2) := ⟨Z1, Z2⟩z +B(X1, X2), (1)

where B denotes the Killing form on [g, g].

Proposition 4.1. The bilinear form B̃ is symmetric, Ad-invariant, and nondegenerate. Moreover,
z(g) and [g, g] are B̃-orthogonal, with B̃|[g,g] = B and B̃|z(g) = ⟨·, ·⟩z.

Proof sketch. B vanishes on z(g) and is Ad-invariant; by construction ⟨·, ·⟩z is Ad-invariant. Sym-
metry is immediate. Nondegeneracy follows since B is nondegenerate on the semisimple ideal and
⟨·, ·⟩z is nondegenerate on the center; orthogonality holds because B(z(g), [g, g]) = 0.

For our primary case g = gl(n,R) = RI ⊕ sl(n,R) we choose the canonical trace-based form

B̃(X,Y ) = 2n · tr(XY ) − tr(X) tr(Y ), (2)

This form B̃ is the fundamental tool used throughout the ReLN architecture.

4
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Encoded Geometric Feature

Encoded Geometric Feature

Velocity and Covariance Input

Transformed
Velocity and Covariance Input

Adjoint
Action 𝐴𝑑!

Adjoint
Action 𝐴𝑑!

Reductive
Lie Neurons

Reductive
Lie Neurons

Figure 3: Adjoint equivariance using a unified representation for diverse geometric inputs. Our framework
embeds inputs with different transformation rules, such as velocity (v 7→ Rv) and covariance (Σ 7→ RΣRT ),
into a common Lie algebra. Therefore, they transform under the same adjoint action Adg , with which our
network f commutes as shown in the diagram.

Verification and Relation to Prior Bilinear Forms. Our concrete form in Eq. 2 satisfies the
conditions of Proposition 4.1. Decomposing a matrix X = X0 + 1

n tr(X)I (where X0 ∈ sl(n))
reveals that our form separates orthogonally:

B̃(X,Y ) = 2n · tr(X0Y0)︸ ︷︷ ︸
Bsl(n)(X0,Y0)

+ tr(X)tr(Y )︸ ︷︷ ︸
Inner product on RI

. (3)

This decomposition directly shows how B̃ serves as a generalization of prior work. The first term is
the Killing form on the semisimple part, which is the tool used in Lie Neurons (Lin et al., 2024a).
The second term is a standard inner product on the center, which, under the isomorphism so(3) ≃ R3,
recovers the dot product used in Vector Neurons (Deng et al., 2021). Our single form thus unifies
these approaches, extending to the full reductive algebra gl(n) (details can be found in Appendix C).

4.2 THE RELN LAYER TOOLBOX

We represent multi-channel input as x ∈ RK×C , where each column xc ∈ RK corresponds to a
matrix Xc ∈ g (via the vee/hat isomorphism, Appendix A) .

ReLN-Linear. A linear map applied to the channel dimension f(x;W ) = xW with W ∈ RC×C′

is strictly equivariant: the group acts on the left (geometric dimension) while W acts on the right
(channel dimension), and thus these operations commute (formal proof in Appendix D).

Equivariant Nonlinearities. We introduce two complementary nonlinear primitives; full defini-
tions, parameterizations, and stability prescriptions are deferred to Appendix D.

• ReLN-ReLU: To overcome the non-equivariance of elementwise activations, we use our
form B̃ to define a directional nonlinearity. Each vector feature xc is rectified along a
learnable direction dc via update rule:

• ReLN-ReLU Using B̃ to build an invariant gate, each channel feature is updated by

x′c = xc + max
(
0, B̃(x∧c , d

∧
c )
)
dc, (4)

where x∧c , d
∧
c ∈ g are the matrix forms of the channel feature and a learnable direction. Be-

cause B̃(·, ·) is Ad-invariant, the scalar gate is invariant and the vector update is equivariant.
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Table 2: Platonic solid classification (mean ± std over 5 runs). ID = in-distribution; RC = rotated-camera (10
random SO(3) test rotations). “+Aug” denotes training with random SO(3) augmentation of input homographies.
Higher is better (↑).

Model # Params ID Acc (mean ± std) RC Acc (mean ± std)

MLP 206,339 95.76% ± 0.65% 36.54% ± 0.99%
MLP + Aug 206,339 81.47% ± 0.77% 81.20% ± 2.34%
MLP (wider) 411,479 96.82% ± 0.53% 36.55% ± 0.34%
MLP (wider) + Aug 411,479 85.22% ± 1.46% 83.43% ± 0.51%

Lie Neurons 331,272 99.62% ± 0.25% 99.61% ± 0.14%
ReLN (Ours) 331,272 99.78% ± 0.04% 99.78% ± 0.04%

• ReLN-Bracket. Following prior work (Lin et al., 2024a), we include a layer that leverages
the Lie bracket (matrix commutator). This operation is an Ad-equivariant primitive on
the Lie algebra that creates nonlinear interactions by measuring the non-commutativity
of features. The layer applies two independent linear maps, parameterized by weights
Wa,Wb ∈ RC×C , to the input channels xin to produce two intermediate features, computes
their commutator, and injects the vectorized result as a shared residual:

xout = xin +
(
[(xinWa)

∧, (xinWb)
∧]

)∨
. (5)

Equivariant Pooling and Invariant Layers. The final components of the ReLN toolbox enable
feature aggregation and the production of invariant outputs.

• Max-Killing Pooling: To aggregate a set of features {Xn}Nn=1, where each Xn is a
multi-channel feature tensor, this layer selects the representative feature with the max-
imal projection onto a learnable direction. For each channel c, the index is found via
n∗(c) = argmaxn B̃(Xn,c, Dn,c), and the pooled feature is Xmax

c = Xn∗(c),c.

• Invariant Layer: To produce a group-invariant output, this layer contracts feature Xc using
the form B̃. The resulting scalar, yc = B̃(Xc, Xc), is invariant by construction.

Unifying geometric representations. By operating directly on n × n matrix representations,
ReLNs provide a unified primitive for vectors, matrices, and higher-order geometric objects (e.g.,
covariances). This allows ReLNs to handle a broader class of geometric inputs without resorting to
separate specialized architectures; empirical validation is presented in Section 5.3.

5 EXPERIMENTS

We evaluate ReLNs on a suite of tasks designed to highlight two complementary strengths: algebraic
generality on benchmarks and practical efficacy on a challenging, uncertainty-aware robotics task.
We compare against standard non-equivariant baselines (MLP, ResNet), the original Lie Neurons,
and a Vector Neurons–style baseline adapted for covariance inputs by eigendecomposition. For the
Top-Tagging benchmark we also report results versus established physics models used in prior work.

5.1 ALGEBRAIC BENCHMARKS ON SEMISIMPLE LIE ALGEBRAS

To verify that our general gl(n) framework correctly generalizes to semisimple subalgebras, we
evaluate ReLN on two Lie-algebraic benchmarks first introduced by Lie Neurons (Lin et al., 2024a).

5.1.1 PLATONIC SOLID CLASSIFICATION

We first validate our model on the Platonic solid classification benchmark from (Lin et al., 2024a),
testing the adjoint-equivariance where camera rotations induce a conjugation action on inter-face
homographies in SL(3). Full experimental details are provided in Appendix E.2.

The results, summarized in Table 2, confirm that non-equivariant baselines fail to generalize to rotated
camera views. This fundamental weakness is not resolved by data augmentation or increased model
capacity, as our wider MLP variant with approximately double the parameters shows negligible

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Regression performance and invariance error on sp(4). “Training Aug.” indicates whether Sp(4)
conjugation was applied during training.

Model Training Aug. # Params Test Aug. Invariance Error
ID SP(4)

MLP 256 Id 137,217 0.126 1.360 0.722
SP(4) 137,217 0.192 0.587 0.476

MLP 512 Id 536,577 0.107 0.906 0.585
SP(4) 536,577 0.123 0.446 0.374

Lie Neurons Id 263,170 5.83 × 10−4 5.84 × 10−4 3.84 × 10−7

ReLN (ours) Id 263,170 5.14 × 10−4 5.14 × 10−4 4.73 × 10−7

improvement on the out-of-distribution test set. In contrast, the ReLN model achieves near-perfect
accuracy with robustness, matching the performance of the Lie Neurons while demonstrating im-
proved results. Importantly, this result validates that our general gl(n) framework operates effectively
on common semisimple subalgebras, as its built-in adjoint-equivariance on the parent group yields
robust behavior when restricted to subgroups like SO(3) and SL(3).

5.1.2 INVARIANT FUNCTION REGRESSION ON sp(4).

To further probe our framework’s algebraic generality, our second benchmark involves regressing
a highly nonlinear invariant function on the real symplectic Lie algebra sp(4,R). The symplectic
algebra sp(2n) is the mathematical foundation of Hamiltonian mechanics, which describes any
physical system where energy is conserved. Our target is a scalar invariant defined for pairs X,Y ∈
sp(4,R):

g(X,Y ) = sin
(
Tr(XY )

)
+ cos

(
Tr(Y Y )

)
− 1

2 Tr(Y Y )3 + det(XY ) + exp
(
Tr(XX)

)
. (6)

We generate a dataset of 10k training and 10k test pairs by sampling from sp(4,R). We compare
ReLN against MLP baselines (trained with and without Sp(4) data augmentation) and the original
Lie Neurons. At test time, we report the standard MSE, MSE averaged over 500 random adjoint
actions, and the invariance error.

As shown in Table 3, non-equivariant MLPs are orders of magnitude less accurate and exhibit high
invariance error, failing to learn the group structure even with data augmentation. Our ReLN model
not only achieves the lowest MSE and near-zero invariance error, but also shows a modest but
consistent improvement over Lie Neurons. This suggests that our non-degenerate bilinear form
provides not only theoretical generality but also superior numerical conditioning in practice.

5.2 PARTICLE PHYSICS WITH LORENTZ GROUP SO(1, 3) EQUIVARIANCE

We test our framework on the Top-Tagging benchmark (Kasieczka et al., 2019), a task to distinguish
particle jets originating from top quarks against a large background from Quantum Chromodynamics.
Because these relativistic collisions are subject to the symmetries of spacetime, the task requires
equivariance under the Lorentz group SO(1, 3). We solve this left-action equivariant learning
problem by introducing a map that embeds the four-momentum p ∈ R1,3 of each constituent particle,
which combines its energy and 3D momentum, into the Lie algebra gl(5) as φ(p) =

(
04×4 p

p⊤η 0

)
,

where η = diag(−1, 1, 1, 1) is the Minkowski metric. As proven in Appendix F.1, this embedding
unifies left- and adjoint-action equivariance within a single Lie-algebraic framework. We adapt the
LorentzNet architecture by replacing its invariant feature computation with our proposed bilinear
form. To ensure a fair comparison, we created a parameter-matched version of LorentzNet. As shown
in Table 4, our model achieves competitive overall performance while demonstrating an advantage
on the background rejection metric. This result shows that our general Lie-algebraic approach can
effectively unify adjoint- and left-action equivariance in a parameter-efficient manner.

5.3 DRONE STATE ESTIMATION WITH GEOMETRIC UNCERTAINTY

We test our framework on a challenging drone state estimation task using a large-scale dataset of
aggressive, highly dynamic flights. The objective is to recover a 3D trajectory from a sequence

7
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Table 4: Comparison of performance on the Top-Tagging dataset. Rej@30% denotes the background rejection at
30% signal efficiency (higher is better). Benchmark scores are as reported in the original publications.

Architecture #Params Accuracy AUC Rej@30% Reference

PELICAN 45k 0.943 0.987 2289 ± 204 Bogatskiy et al. (2022)
LorentzNet (original) 224k 0.942 0.987 2195 ± 173 Gong et al. (2022)
LorentzNet (param-matched) 84k 0.942 0.987 1821 ± 94 Our reproduction
LGN 4.5k 0.929 0.964 435 ± 95 Bogatskiy et al. (2020)
BIP 4k 0.931 0.981 853 ± 68 Munoz et al. (2022)
partT 2.14M 0.940 0.986 1602 ± 81 Qu et al. (2022)
ParticleNet 498k 0.938 0.985 1298 ± 46 Qu & Gouskos (2020)
EFN 82k 0.927 0.979 633 ± 31 Komiske et al. (2019)
TopoDNN 59k 0.916 0.972 295 ± 5 Pearkes et al. (2017)
LorentzMACE 228k 0.942 0.987 1935 ± 85 Batatia et al. (2023)

ReLN (Ours) 84k 0.942 0.987 1979 ± 87

of noisy velocity measurements and their corresponding time-varying covariances, where each
covariance matrix quantifies the uncertainty of its associated velocity measurement. This setup tests a
model’s ability to jointly process vector (v) and matrix (C) data in a geometrically consistent and
uncertainty-aware manner.

Experimental Setup. We created a large-scale synthetic dataset of 200 aggressive drone trajectories,
over 13 hours of challenging, high-speed flight (details in Appendix G). The network is trained to
regress the 3D position from a sequence of velocity and covariance measurements within a time
window. Our model is compared against non-equivariant ResNets and an SO(3)-equivariant baseline
using Vector Neurons (VN). Since VNs cannot directly process matrix inputs, we implement a method
that handles covariance matrices via an eigendecomposition-based strategy (details in Appendix G.3).

In contrast, our ReLN architecture treats both velocity and covariance as unified geometric objects
within a single algebraic space, gl(3). Specifically, the velocity vector v ∈ R3 is lifted to its matrix
representation in so(3) ⊂ gl(3). For the time-varying covariance C, we explore two representations
that also reside in gl(3): (1) the matrix C directly, and (2) its matrix logarithm logC, which respects
the geometry of the SPD(3) manifold. This unified representation ensures a measurement and its
uncertainty transform consistently under the adjoint action of SO(3). The final velocity estimate
is then equivariantly extracted by projecting the network’s matrix output onto its skew-symmetric
component. We test three ReLN variants: (1) velocity only, (2) velocity + covariance, and (3) velocity
+ log-covariance. Full implementation details are provided in Appendix G.

5.3.1 RESULTS AND ANALYSIS

Table 5: Performance on the drone trajectory dataset†. Best result in each column is shown in bold.
Model ID SO(3)

ATE ATE% RPE ATE ATE% RPE

Non-Equivariant Baselines
ResNet (Velocity only) 208.07 95.06 107.60 217.02 100.39 111.29
ResNet (Velocity + Covariance) 205.11 94.94 106.07 213.26 98.90 109.37

Equivariant Baselines
VN (Velocity only) 17.36 7.52 13.51 17.36 7.52 13.51
VN (Velocity + Covariance) 191.78 88.66 98.39 190.22 88.47 98.26

Our Equivariant Models
ReLN (Velocity only) 16.85 7.31 12.7 16.85 7.31 12.7
ReLN (Velocity + Covariance) 16.49 7.21 13.02 16.49 7.21 13.02
ReLN (Velocity + log-Covariance) 13.92 5.99 11.04 13.92 5.99 11.04

† Abbreviations and units: ID = in-distribution test (no rotation), SO(3) = test-time random SO(3) rotations. ATE = absolute trajectory error
(meters), ATE% = ATE relative to trajectory length (%), RPE = relative pose error (meters).

Our experiments, summarized in Table 5 and Figure 4, reveal a clear performance hierarchy where
the geometric representation of features is the critical factor.

Non-equivariant models fail to generalize. Non-equivariant models like ResNets fail to generalize
to rotated trajectories, and their performance does not improve when provided with covariance data.
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Figure 4: Qualitative comparison of the best-case (middle), average (left), and challenging (right) test sequences.
ReLN models consistently track the ground truth (black) with high fidelity, especially when leveraging covariance.
Insets provide a magnified view of the two best-performing variants (ours) to highlight their accuracy.

Equivariance is necessary, but implementation design critically affects performance. Both VNs
and ReLNs establish strong velocity-only equivariant baselines. ReLNs show improved performance
due to its richer feature learning from both the Lie bracket and our bilinear nonlinearity form.
However, a method for incorporating covariance is crucial. The VN baseline, which decomposes
covariance, degrades the performance. This result confirms that separating the principle axes and
its corresponding scales (eigenvalues) prevents the network from learning the structure between a
measurement and its uncertainty.

Joint processing of velocity and covariance further improves performance. Integrating covariance
as a geometric object in our framework further reduces the ATE, showcasing the performance gains
from unified geometric representation on symmetry-preserving uncertainty handling.

Log-covariance ablation highlights mathematical and practical contributions. Finally, the ReLN
(Velocity + log-Covariance) model achieves the best performance. By processing covariance matrices
via the matrix logarithm, we demonstrate the power of extending Lie-algebraic architectures to
operate on manifold-valued data, such as the SPD(3) matrices representing geometric uncertainty.
This success establishes ReLNs as a practical and high-performance framework for uncertainty-aware
learning in dynamical systems.

Discussion Our results indicate that ReLNs operate effectively as a geometry- and uncertainty-
aware estimator that generalizes across random measurement-frame changes (i.e., arbitrary 3D
rotations). While the network is not a classical recursive Markovian filter, it learns to integrate
velocity measurements with their associated covariances using uncertainty-dependent weighting,
producing robust and accurate trajectory estimates. This behavior suggests ReLNs are suitable as
modular components in downstream systems that require handling of matrix-valued uncertainty.
Future work will investigate theoretical guarantees for the learned weighting, extensions to other
geometric matrix representations, and scalability to higher-dimensional structured geometric inputs.

6 CONCLUSION

This work introduces ReLNs, a unified neural architecture that provides exact equivariance to
the adjoint action of the general n × n matrix algebra gl(n) and its subgroups. ReLNs enable
efficient learning on Lie-algebraic features and structured geometric data, such as covariance matrices.
Furthermore, our work establishes a unified Lie-algebraic framework that handles both classical
left-action symmetries on vectors and native adjoint-actions on matrices within a single architecture.
ReLNs achieve state-of-the-art results on benchmarks and deliver large gains in a challenging drone
state estimation task by integrating uncertainty. We’ll apply our equivariant matrix processing
capability to a wider array of physical systems, including the dynamics of articulated robots and
large-scale sensor fusion, to further expand the boundaries of geometric deep learning.
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A LIE-THEORETIC PRELIMINARIES

This appendix provides an overview of key concepts and derivations from Lie group theory relevant
to our construction of GL(n)-equivariant neural networks referenced in the main text.

A.1 LIE GROUPS, LIE ALGEBRAS, HAT/VEE

A matrix Lie group G ⊂ GL(n) is a smooth subgroup of invertible matrices. Its Lie algebra
g = Lie(G) is the tangent space at the identity and is identified with a subspace of gl(n). Fix a basis
{Ei}mi=1 of g. The coordinate maps are:

∧ : Rm → g, x = (xi) 7→ x∧ =
∑
i

xiEi, ∨ : g→ Rm, X 7→ X∨. (7)

These maps let us implement algebra-valued features as Euclidean vectors in code.

The associated Lie algebra g = Lie(G) is the tangent space at the identity element e ∈ G. It carries a
bilinear, antisymmetric product called the Lie bracket, given by

[A,B] = AB −BA, (8)

in the case of GL(n) which captures the infinitesimal structure of the group near the identity. The
bracket quantifies non-commutativity of generators: [A,B] = 0 implies commutativity, whereas
[A,B] ̸= 0 indicates a non-trivial interaction.

A.2 REPRESENTATIONS AND THE ADJOINT

A representation Φ : G→ GL(V ) differentiates to ϕ : g→ gl(V ) by

ϕ(X) =
d

dt

∣∣∣∣
t=0

Φ(exp(tX)). (9)

The adjoint representation Ad : G→ GL(g) is defined to be the differential of group conjugation at
the identity

Adg(X) =
d

dt

∣∣∣∣
t=0

g(exp(tX))g−1. (10)

Therefore we get a map Ad : G→ GL(g). For matrix groups, this is given

Adg(X) = gXg−1, g ∈ G, X ∈ g, (11)

and differentiating yields the Lie-algebra adjoint adX(Y ) = [X,Y ]. One checks

Adg([X,Y ]) = [AdgX,AdgY ], adX([Y, Z]) = [adXY, Z] + [Y, adXZ]. (12)

A.3 VECTORIZED ADJOINT

Using the hat/vee maps, the adjoint action on the Lie algebra induces a corresponding action on the
vector coordinates. This vectorized action is a linear map represented by a matrix:

Admg : Rm → Rm, Admg (x) = (Adg(x
∧))∨. (13)

In practice we precompute or assemble the m×m matrix representing Admg (or apply it implicitly)
to implement left-multiplicative equivariant layers that act on vector features.

A.4 STRUCTURE OF LIE ALGEBRA: SEMISIMPLICITY AND REDUCTIVITY

Definition A.1 (Semisimple and Reductive Lie Algebras). A Lie algebra g is:

• Semisimple if it is a direct sum of simple Lie algebras (i.e., non-abelian and having no
nontrivial ideals).

• Reductive if it decomposes as g = s ⊕ z, where s is semisimple and z is the center (an
abelian Lie subalgebra).
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Example A.1. The Lie algebra gl(n) decomposes as:

gl(n) = sl(n)⊕ RI, (14)

where sl(n) (traceless matrices) is semisimple, and RI (scalar matrices) forms the center.

This decomposition highlights the non-semisimple nature of gl(n), which plays a critical role in
understanding the degeneracy of certain invariant forms such as the Killing form. This degeneracy
hinders the application of standard tools in Lie-theoretic deep learning. Our work addresses this issue
in the context of GL(n)-equivariant architectures in lie algebra gl(n).

Theorem A.1 (Cartan criterion; standard). The Killing form B(X,Y ) = tr(adX ◦ adY ) is non-
degenerate iff g is semisimple.

In particular, because gl(n) contains the central scalar direction RI with adI = 0, the Killing form is
degenerate on gl(n).

A.5 INVARIANT BILINEAR FORMS; TRACE FORM

Definition A.2. A bilinear form B : g× g→ R is Ad-invariant if

B(AdgX,AdgY ) = B(X,Y ) ∀g ∈ G. (15)

On semisimple algebras the Killing form provides such an invariant, non-degenerate form. On gl(n)
we instead use the trace form:

⟨X,Y ⟩tr = tr(XY ). (16)

Proposition A.1. The trace form is Ad-invariant on gl(n):

tr((gXg−1)(gY g−1)) = tr(gXY g−1) = tr(XY ). (17)

Proof. tr((gXg−1)(gY g−1)) = tr(gXY g−1) = tr(XY ) by cyclicity of trace.

The trace form is non-degenerate as a bilinear form on the vector space gl(n) and therefore provides
a practical substitute for the Killing form when designing Ad-invariant bilinear layers on gl(n).

A.6 KILLING FORM ON sl(n)

Restricted to sl(n) the Killing form simplifies and is non-degenerate; one frequently uses the
proportionality B(X,Y ) ∝ tr(XY ) on sl(n).

B PROOFS OF KEY THEOREMS

B.1 PROOF OF NON-DEGENERACY AND AD-INVARIANCE OF MODIFIED KILLING FORM Be

Let g be a real reductive Lie algebra.

Definition B.1 (Reductive decomposition). A Lie algebra g is reductive if g = z(g)⊕ [g, g], where
z(g) is the center and [g, g] is semisimple. This decomposition is canonical (both summands are
ideals).

Definition B.2 (Modified Killing form on a reductive Lie algebra). Fix any symmetric, posi-
tive–definite inner product ⟨·, ·⟩z on z(g), and let B denote the Killing form on the semisimple
ideal [g, g]. For Zi ∈ z(g) and Xi ∈ [g, g] define

B̃(Z1+X1, Z2+X2) := ⟨Z1, Z2⟩z + B(X1, X2). (18)

Remark 1 (Canonicity). On [g, g] the restriction (Killing form) is canonical. On z(g) there is no
canonical choice; any Ad-invariant positive-definite inner product works. The choice we make in the
case of gl(n) ensures that it agrees with the Killing form on the semisimple part sl(n), and the center
RI is normalized by a natural trace scale.
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Proposition B.1 (Block–orthogonality and restrictions). With notation as above,

B̃
(
z(g), [g, g]

)
= 0, B̃|z(g) = ⟨·, ·⟩z, B̃|[g,g] = B. (19)

Proposition B.2 (Non–degeneracy). B̃ is nondegenerate on g.

Proof. LetX = Z+W with Z ∈ z(g) andW ∈ [g, g]. If B̃(X, ·) ≡ 0, then testing against Y ∈ z(g)
yields ⟨Z, Y ⟩z = 0 for all Y , hence Z = 0; testing against Y ∈ [g, g] yields B(W,Y ) = 0 for all Y ,
hence W = 0 by the non–degeneracy of B on the semisimple ideal. Thus X = 0.

Proposition B.3 (Ad–invariance on the identity component). B̃ is ad–invariant:

B̃([X,Y ], Z) + B̃(Y, [X,Z]) = 0 for all X,Y, Z ∈ g, (20)

and hence B̃(AdgY,AdgZ) = B̃(Y,Z) for all g in the identity component G◦.

Proof. The restriction to [g, g] equals B, which is ad–invariant. If Z ∈ z(g) then [X,Z] = 0 for all
X , so any bilinear form on z(g) is automatically ad–invariant. Using Proposition B.1 and bilinearity
gives the displayed identity. Equivalence with Ad–invariance on G◦ follows by integrating the
infinitesimal relation along paths in G◦.

Remark 2 (Invariance for nonconnected groups). In case the group is nonconnected, and one desires
invariance under the full group G (not just G◦). The component group Γ = G/G◦ acts linearly on
z(g). In all practical cases, Γ will be a finite group. Then averaging any positive–definite ⟨·, ·⟩z over
Γ yields an Ad(G)–invariant inner product on the center:

⟨Z1, Z2⟩avgz =
1

|Γ|
∑
γ∈Γ

〈
AdγZ1, AdγZ2

〉
z
. (21)

Replacing ⟨·, ·⟩z by ⟨·, ·⟩avgz in 18 makes B̃ invariant under all of G.

C CONNECTIONS TO EXISTING BILINEAR FORMS

We demonstrate how the trace-based form B̃ (Eq. 2) unifies and recovers prior bilinear constructions
in the regimes used by Lie Neurons (Lin et al., 2024a) and Vector Neurons (Deng et al., 2021) . The
discussion below states precise conditions under which B̃ (i) equals the Killing-form contractions on
semisimple inputs and (ii) is proportional to the Vector Neuron inner product under the so(3) ≃ R3

isomorphism. Our single form applies on the full reductive algebra gl(n) including these specialized
approaches, which encompasses general n× n matrix-valued inputs.

C.1 REDUCTION TO THE KILLING FORM ON THE SEMISIMPLE IDEAL

Write X = X0 +
1
n tr(X)I with X0 ∈ sl(n). Using Eq. 2 we obtain

B̃(X,Y ) = 2n tr(X0Y0) + n2
(
1
n trX

)(
1
n trY

)
. (22)

Hence, when inputs are restricted to the semisimple ideal [g, g] = sl(n) (so tr(X) = tr(Y ) = 0), the
center contribution vanishes and

B̃|sl(n)(X,Y ) = 2n · tr(XY ) = Bsl(n)(X,Y ), (23)

i.e. B̃ coincides with the (scaled) Killing form used in Lie Neurons. More generally, for any
semisimple subalgebra h ⊂ [g, g], the restriction B̃|h matches the Killing-form contraction on h up
to global scaling.
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C.2 so(3) EXAMPLE: RECOVERY OF THE VECTOR NEURON INNER PRODUCT

Recall the hat map (̂·) : R3 → so(3) with

v̂ =

[
0 −v3 v2
v3 0 −v1
−v2 v1 0

]
, tr(v̂ ŵ) = −2 v⊤w. (24)

For X = v̂ and Y = ŵ, Eq. 2 gives

B̃(X,Y ) = 2n · tr(XY ) = 2n · (−2 v⊤w) = (−4n) v⊤w, (25)

i.e. B̃ is proportional to the Euclidean inner product on R3. The proportionality constant depends
only on n; in practice this constant is absorbed by adjacent learnable linear layers or normalization,
yielding behaviour identical to the inner product used in Vector Neurons to harmless scaling.

These remarks justify using the single, nondegenerate B̃ across heterogeneous input types while
preserving compatibility with prior architectures.

D DETAILED LAYER FORMULATIONS

This section provides the precise mathematical definitions and equivariance proofs for the core compo-
nents of the ReLN architecture. We consider the input to a layer as a tensor x ∈ RK×C , representing
C feature channels where K = dim g. Each column xc ∈ RK is the vector representation of a
feature. We use the wedge (∧) and vee (∨) operators to map between the vector form xc and the
matrix form Xc ∈ g.

D.1 EQUIVARIANT LINEAR LAYER

The ReLN-Linear layer applies a linear map to the channel dimension of the input tensor x:

fReLN−Lin(x;W ) = xW, where W ∈ RC×C′
. (26)

We omit any bias term to preserve exact equivariance.

Proof of Equivariance. The group action, Adg (defined in Equation 11), is a linear map that
multiplies each feature channel from the left. The weight matrix W multiplies the channel dimension
from the right. These operations commute, ensuring strict G-equivariance for any g ∈ G:

fReLN−Lin(Adg(x);W ) = (Adgx)W

= Adg(xW )

= Adg(fReLN−Lin(x;W )).

(27)

D.2 EQUIVARIANT NONLINEARITIES

Standard pointwise activations break equivariance under non-orthogonal transforms. We introduce
two equivariant alternatives.

ReLN-ReLU. This layer rectifies a feature based on its alignment with a learnable direction. Given
the input tensor x, we first compute per-channel vector directions d = xU . The nonlinearity for the
input x is then defined as:

fReLN−ReLU(x) =

{
x, if B̃(x∧, d∧) ≤ 0,

x+ B̃(x∧, d∧)d, otherwise.
(28)

Since all operations—the linear map to compute di, the bilinear form B̃, and vector
addition/scaling—are equivariant, the entire function is equivariant. The leaky variant
fReLN−LeakyReLU(x) = αx+ (1− α) fReLN−ReLU(x) follows directly.
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ReLN-Bracket (Lie-bracket nonlinearity). This layer uses the matrix commutator, a natural
Ad-equivariant primitive, to create learnable interactions between channels. Let the input be a
batch of features represented by their vector coordinates, x ∈ RB×Cin×K . First, two independent
linear maps (with learnable weights Wa,Wb ∈ RCin×Cout) transform the input features into two
intermediate tensors, u, v ∈ RB×Cout×K . The Lie bracket is then computed channel-wise between
the corresponding feature vectors of u and v. This produces an update tensor, ∆x ∈ RB×Cout×K ,
where each vector is defined as:

(∆x)b,c′,: = [(ub,c′,:)
∧, (vb,c′,:)

∧]
∨
. (29)

This update is added to the input for a residual connection (requiring Cin = Cout for the shapes to
match):

fReLN−Bracket(x) = x+∆x. (30)

Each step in this process (linear map, the Lie bracket, and vee/hat operations) is equivariant under the
adjoint action, making the entire block equivariant fReLN−Bracket(Adgx) = Adg(fReLN−Bracket(x))
for all g ∈ G.

E EXPERIMENTAL DETAILS

Training and evaluation for all presented experiments, Platonic solid classification, invariant function
regression, top tagging, and drone state estimation, were conducted on a single NVIDIA GeForce
RTX 4090 GPU.

E.1 MODEL ARCHITECTURES AND IMPLEMENTATION DETAILS

Across all experiments, our proposed ReLN models are constructed by stacking ReLN-Linear, ReLN-
ReLU, and ReLN-Bracket layers. The specific number of layers and channel widths are adapted for
each task to ensure a fair comparison with baseline models in terms of parameter count.

Algebraic Benchmarks (sl(3) and sp(4)). For the Platonic solid classification and sp(4) invariant
regression tasks, our ReLN model directly adopts the architecture used by the Lie Neurons benchmark
model from Lin et al. (2024a). The primary modification is the replacement of their Killing form-
based nonlinearity and invariant layers with our proposed non-degenerate bilinear form B̃ (Eq. 2).
This setup allows for a direct comparison of the impact of the bilinear form, as all other architectural
hyperparameters are kept identical to the baseline.

Top Tagging. For the Top-Tagging task, our model is a modification of the LorentzNet architec-
ture (Gong et al., 2022). We adapt its Lorentz Group Equivariant Blocks (LGEBs) by replacing
the invariant feature computation with our proposed bilinear form. A detailed description of the
architecture, our modifications, and training protocol is provided in Appendix F.

Drone State Estimation. In this task, we compare our ReLN model against two baseline fami-
lies: a non-equivariant 1D ResNet and an equivariant Vector Neurons (VN) model. The specific
implementation details and architectural choices for each model are provided next in Appendix G.

E.2 PLATONIC SOLID CLASSIFICATION ON sl(3)

Overview. All experiments evaluate classification of Platonic solids (tetrahedron, octahedron,
icosahedron) from inter-face homographies computed in the image plane. For each model-family we
train 5 independent runs with different random seeds and report mean ± standard deviation. Training
uses fixed object and camera poses; at test time we report results on the in-distribution (ID) split and
the rotated-camera (RC) split (RC applies ten random SO(3) rotations to the camera frame). The
‘MLP (wider)’ denotes a capacity-matched (≈ 2× parameters) MLP used for a fairer comparison.
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Table 6: Common training hyperparameters (used across model families unless noted).
Hyperparameter Value

Optimizer Adam
Batch size 100
Number of independent runs (seeds) 5
Max epochs / stopping criterion 5000 epochs
Data augmentation (train) Random camera rotations applied to training examples when enabled
RC evaluation 500 random SO(3) rotations applied to each test example
Metric reported Classification accuracy (mean ± std across runs)

Table 7: Model-specific hyperparameters and implementation notes.
Model family Key choices Notes

Latent Feature Size (MLP Baseline) 256 As in Lin et al. (2024a).
Latent Feature Size (MLP Wider) 386 Increased width total parameters ≈ 2× baseline.
Learning rate (MLP models) 1 × 10−4

Learning rate (ReLNs/Lie Neurons models) 3 × 10−6 Lower LR chosen for stable training

F TOP TAGGING EXPERIMENT: FRAMEWORK, PROOF, AND IMPLEMENTATION

This appendix provides the complete details for our jet tagging experiment. We first present the
geometric framework and the mathematical proof of our Lorentz-equivariant embedding, and then
describe the model architecture and training protocol.

F.1 GROUP ACTION EQUIVARIANCE VIA EMBEDDING MAP

To process four-momenta within our Lie-algebraic framework, we require an embedding that translates
the action of the Lorentz group into an adjoint action on a matrix space. This is achieved by lifting
the four-vector into gl(5).

Definition F.1 (Lorentz-Compatible Embedding). Given a four-vector p ∈ R4 and the Minkowski
metric η = diag(1,−1,−1,−1), we define its embedding φ(p) into gl(5) as:

φ(p) =

[
04×4 p
p⊤η 0

]
. (31)

Theorem F.1 (Adjoint Equivariance). The embedding φ correctly models the Lorentz group action.
For any p ∈ R4 and Lorentz transformation Λ ∈ SO(1, 3), let G = diag(Λ, 1) ∈ GL(5). The map is
equivariant in the sense that the standard action on p corresponds to the adjoint action on φ(p):

AdG(φ(p)) = Gφ(p)G−1 = φ(Λp). (32)

Proof. We compute the left-hand side (LHS) of Eq. 32, which is the adjoint action:

AdG(φ(p)) =

[
Λ 0
0 1

] [
0 p
p⊤η 0

] [
Λ−1 0
0 1

]
=

[
0 Λp

p⊤ηΛ−1 0

]
. (33)

The right-hand side (RHS) is the lift of the transformed vector Λp:

φ(Λp) =

[
0 Λp

(Λp)⊤η 0

]
=

[
0 Λp

p⊤Λ⊤η 0

]
. (34)

For the LHS and RHS to be equal, we must show that ηΛ−1 = Λ⊤η. We start from the defining
property of SO(1, 3):

Λ⊤ηΛ = η. (35)

Right-multiplying Eq. 35 by Λ−1 yields the desired identity:

(Λ⊤ηΛ)Λ−1 = ηΛ−1 =⇒ Λ⊤η(ΛΛ−1) = ηΛ−1 =⇒ Λ⊤η = ηΛ−1. (36)

Since the condition holds, the proof is complete.
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Remark 3 (Generalization to Orthogonal Groups). This embeddinging technique is not limited to the
Lorentz group and can be readily generalized to any orthogonal group O(n) or special orthogonal
group SO(n). For instance, in applications involving 3D point clouds where the symmetry is SO(3),
a vector p ∈ R3 would be embedded into the Lie algebra gl(4) as:

φ(p) =

[
03×3 p
p⊤ 0

]
(37)

The proof of equivariance follows the same structure, using the property of orthogonal matrices,
R⊤R = I (which implies R−1 = R⊤), instead of the Minkowski metric identity. This highlights the
broad applicability of our embedding strategy to any benchmark involving norm-preserving group
transformations.

F.2 EXPERIMENTAL IMPLEMENTATION

Dataset The experiment uses the Top-Tagging dataset (Kasieczka et al., 2019), which contains 2
million simulated proton-proton collision events. The dataset was generated with Pythia, Delphos,
and FastJet to model the ATLAS detector response. We use the standard 60%/20%/20% splits for
training, validation, and testing. Each jet is represented as a set of constituent particles, each with
four-momentum p = (E, px, py, pz).

Model Our model leverages the established architecture of LorentzNet (Gong et al., 2022), utilizing
its stack of Lorentz Group Equivariant Blocks (LGEBs) for message passing on the jet’s particle
cloud. While the original LorentzNet computes these features directly from the 4-momenta using the
Minkowski inner product, our approach introduces a modified bilinear form based feature extraction.
We first embed each pair of 4-momenta, pi and pj , from the Minkowski space R1,3 into the Lie
algebra gl(5) via the map p 7→ X(p). The invariant features for the message passing are then derived
from the bilinear form, B(·, ·), on this Lie algebraic space. The edge message mij is thus constructed
as:

mij = ϕe

(
hi, hj , ψ

(
B̃(X(pi), X(pi))

)
, ψ

(
B̃(X(pi), X(pj))

))
(38)

where hi, hj are scalar features, ϕe is an MLP, and ψ is a stabilizing nonlinearity. As shown in the
main results (Table 4), this approach leads to an advantage in background rejection when compared
against a parameter-matched LorentzNet baseline. The architectural differences are summarized in
Table 8.

Table 8: Architectural comparison for the Top-Tagging task.
Component LorentzNet (Original) Param-matched Baseline Ours (ReLN)

Number of LGEBs 6 5 5
Hidden feature dims 72 48 48
Edge feature computation Minkowski inner prod. Minkowski inner prod. Bilinear invariant form

Training Setup For a fair comparison, our training procedure closely follows the protocol estab-
lished in the LorentzNet (Gong et al., 2022). The model was trained for a total of 35 epochs on a
single NVIDIA RTX 4090 GPU. We used the AdamW optimizer with a weight decay of 0.01 and a
batch size of 128, matching the total effective batch size from the reference work. The learning rate
was managed by the paper’s specific three-stage schedule: a 4-epoch linear warm-up to an initial rate
of 1× 10−3, followed by a 28-epoch CosineAnnealingWarmRestarts schedule, and a final
3-epoch exponential decay. After each epoch, the model with the highest validation accuracy was
saved for final evaluation on the test set.

G DRONE EXPERIMENT DETAILS

This appendix provides the technical details for the drone state estimation experiment, including the
theoretical framework, dataset generation, model implementations, and formal proofs.
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G.1 GEOMETRIC FRAMEWORK FOR EQUIVARIANT COVARIANCE PROCESSING

Our approach leverages the geometry of symmetric positive-definite matrices. A covariance matrix C
is symmetric positive-definite, residing on the manifold SPD(3). A non-degenerate covariance matrix
C ∈ SPD(n) represents the anisotropic stretching of a general linear map, as seen via the polar
decomposition A = QP with Q ∈ O(n) and P ∈ SPD(n). Equivalently, there is a homogeneous-
space isomorphism: SPD(n) ∼= GL(n)/O(n), which motivates processing covariances in a
GL(n)-aware architecture.

While SPD(3) is not a Lie group, the matrix logarithm provides a canonical map to the vector space
of symmetric matrices Sym(3), which is a linear subspace of gl(3).

log : SPD(3) −→ Sym(3) ⊂ gl(3). (39)

This allows us to embed a geometric object from a curved manifold into a flat, Lie-algebra-compatible
space. The following theorem proves that the congruence transformation on C ∈ SPD(n) becomes
an adjoint action on its image logC ∈ Sym(n), thus preserving the equivariant structure required by
our model.
Theorem G.1 (Equivariance of the Logarithmic Map). For any C ∈ SPD(n) and any rotation matrix
R ∈ SO(n), the congruence transformation on C corresponds to an adjoint action on its logarithm:

log(RCR⊤) = R(logC)R⊤. (40)

Proof. The proof follows from the spectral theorem for real symmetric matrices.

1. Let the eigendecomposition ofC beC = V ΛV ⊤, where V is an orthogonal matrix (V ⊤V =
I) of eigenvectors and Λ is the diagonal matrix of corresponding positive eigenvalues.

2. By definition, the matrix logarithm of C is given by applying the logarithm to its eigenvalues:

logC := V (log Λ)V ⊤ (41)
where log Λ is the diagonal matrix of element-wise logarithms of the eigenvalues.

3. Consider the transformed matrix C ′ = RCR⊤. Substituting the decomposition of C yields:

C ′ = R(V ΛV ⊤)R⊤ = (RV )Λ(V ⊤R⊤) = (RV )Λ(RV )⊤ (42)
This is the eigendecomposition of C ′, where the new orthogonal matrix of eigenvectors is
V ′ = RV and the eigenvalues Λ are unchanged.

4. Applying the definition of the matrix logarithm to C ′ gives:

log(C ′) = V ′(log Λ)(V ′)⊤ = (RV )(log Λ)(RV )⊤ (43)

5. Rearranging the terms, we arrive at the desired identity:

log(C ′) = R
(
V (log Λ)V ⊤)R⊤ = R(logC)R⊤ (44)

This identity is critical, as it confirms that our adjoint-equivariant network can process either the raw
covariance C or its logarithm logC while perfectly preserving the SO(3) symmetry.

In the SO(3) regime used in our experiments, vectors (e.g., velocity v) are represented in the Lie
algebra so(3) so that the adjoint action coincides with ordinary rotation, AdR(v) = Rv. Conjugation
then implements the covariance congruence C 7→ RCR⊤. Consequently, ReLNs realize SO(3)-
equivariance by construction, avoiding the need for the model to learn these symmetries from data.

G.2 DATASET GENERATION.

We use the PyBullet engine to simulate 200 aggressive trajectories for a Crazyflie-like nano-quadrotor.
To generate realistic measurements, the instantaneous velocity is corrupted by Gaussian noise,
vnoisy ∼ N (vgt, Cv), where the covariance Cv varies with flight aggressiveness. The dataset
provides time series of noisy velocities, ground-truth covariances, and ground-truth trajectories for
evaluation.
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Trajectory Generation. The procedure begins with the procedural generation of a sequence of
20 to 40 random 3D waypoints within a flight volume of approximately 170m× 170m× 60m. The
waypoints are sampled from a uniform distribution to create diverse flight paths. To mimic the
complex dynamics of aggressive flight, each trajectory is randomly generated using a path with
random wiggles or a path featuring high-speed spiral maneuvers. These discrete waypoints are then
interpolated using a Catmull-Rom spline to create a smooth, C1 continuous target trajectory, which
is densely sampled at an 80 Hz control frequency. Each of the 200 sequences results in a unique
trajectory lasting approximately 2-4 minutes, totaling over 13 hours of simulated flight time. A
sample generated trajectory is shown in Figure 5.

(a) A sample trajectory with spiral maneuvers. (b) A sample trajectory with random wiggles.

Figure 5: Sample aggressive trajectories generated in the PyBullet simulator.

State-Dependent Noise Model. To simulate realistic sensor characteristics, the ground-truth veloc-
ity is corrupted by zero-mean Gaussian noise, vnoisy ∼ N (vgt, Cv). The covariance matrix Cv is
state-dependent, designed to scale with the drone’s speed. The standard deviation σv for each velocity
axis is computed using a sigmoid function of the velocity magnitude ∥vgt∥:

σv(∥vgt∥) = σmin + (σmax − σmin) ·
1

1 + exp(−λ(∥vgt∥ − vmid))
, (45)

where the variance on each axis is σ2
v . We set the minimum and maximum standard deviations to

σmin = 0.2m/s and σmax = 1.0m/s, respectively. The steepness λ is set to 0.8, and the midpoint
velocity vmid is dynamically adjusted based on the estimated average speed of each trajectory to
ensure a realistic noise profile.

G.3 BASELINE AND MODEL IMPLEMENTATION DETAILS

We compare ReLN against two baseline classes chosen to isolate the effect of geometric priors.

Non-equivariant baselines. We use a standard 1D ResNet architecture with temporal convolutional
blocks that processes flattened input sequences. The ResNet (velocity-only) model receives only
the 3D velocity vector. The ResNet (velocity + covariance) model receives the flattened 3 × 3
covariance matrix concatenated to the velocity vector.

Eigendecomposition-based SO(3)-Equivariant Baseline. This model adapts the 1D ResNet
backbone for SO(3) equivariance using VN layers. Since VNs cannot directly ingest matrices, we
decompose each covariance matrix C = V ΛV ⊤ and use a dual-stream design:

• an equivariant stream Feq = {v, e1, e2, e3} comprising the measured velocity v and the
three orthonormal eigenvectors ei, which together capture all directional information. This
stream is handled by the VNs backbone.

• an invariant stream Finv = {λ1, λ2, λ3} processes the corresponding eigenvalues
{λ1, λ2, λ3}, which encode orientation-independent scale information, using a standard
MLP.
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The two latent features from both streams are fused at the final output layer. Eigenvector ambiguities
(sign or multiplicities) are resolved via a deterministic, rotation-equivariant canonicalization.

Reductive Lie Neurons (ReLNs). The ReLN model shares the same base architecture as the
VN model but incorporates ReLN-Bracket layer as an additional source of nonlinearity after the
initial feature extraction block. In contrast to the VN backbone, ReLNs provide a unified framework
for velocity and covariance processing. Velocities v ∈ R3 are lifted into the Lie algebra so(3)
via K = v∧, while covariance C (or logC) is treated as a structured geometric input. Both
transform under the same adjoint action: K ′ = RKR⊤ and C ′ = RCR⊤, enabling joint equivariant
processing. Although SPD(n) is not a Lie algebra or group, it is a subset of GL(n). By taking
the matrix logarithm, logC ∈ Sym(n) ⊂ gl(n), covariances are embedded into a linear subspace
compatible with Lie-algebra processing.

The network Φ fuses these inputs into a single matrix A ∈ R3×3, from which we extract the velocity
estimate:

Askew := 1
2 (A−A

⊤) ∈ so(3), v̂ = Vee(Askew). (46)

The extracted velocity is provably SO(3)-equivariant by construction. See Appendix H for the full
statement and proof.

G.4 TRAINING AND EVALUATION PROTOCOL

Problem Formulation The network is trained to predict the drone’s 3D position pt ∈ R3 at the end
of a given time window, based on a sequence of noisy velocity measurements and their corresponding
covariances within that window (e.g., a 1-second history). All models are trained by minimizing the
Mean Squared Error (MSE) between the predicted position p̂t and the ground-truth position pt,gt.
The loss function is defined as L = ∥p̂t − pt,gt∥22.

Dataset and Optimization. We partition the dataset using a standard 80:10:10 train/validation/test
split. All models are trained on identical splits to ensure fair comparison. Models are optimized using
the AdamW optimizer with a ReduceLROnPlateau learning rate scheduler based on validation loss.

Evaluation Metrics. We report the following pose-regression metrics over the test set:

• Absolute Trajectory Error (ATE): The root-mean-square error between the ground-truth
and predicted 3D positions over the entire trajectory, measured in meters.

• ATE%: The ATE normalized by the total trajectory length and expressed as a percentage
(100 × ATE/length). This metric provides a scale-invariant measure of error, which is
crucial for fairly comparing performance across our aggressive flight trajectories of varying
lengths.

• Relative Pose Error (RPE): The error measured over fixed-length sub-trajectories, captur-
ing local drift.

To explicitly validate equivariance, we also evaluate all models on the test set after applying a set of
random SO(3) rotations to the entire input sequence.

G.5 EIGENVECTOR CANONICALIZATION FOR THE VN BASELINE

To resolve ambiguities in the eigendecomposition C = V ΛV ⊤ for the VN baseline, we canonicalize
the eigenvector matrix V = [e1, e2, e3] as follows:

1. Right-handed Frame: If detV < 0, we set e3 ← −e3 to ensure detV = +1.
2. Sign Disambiguation: For each eigenvector ei with a distinct eigenvalue, we enforce a

consistent sign by ensuring v⊤ei ≥ 0. If not, we set ei ← −ei.
3. Multiplicity Handling: In the rare case of repeated eigenvalues, we use the projection of

the velocity vector v onto the corresponding eigenspace to deterministically define the first
basis vector, then complete the basis via Gram-Schmidt.

All steps use only equivariant operations, preserving the overall symmetry of the baseline.
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H PROOF OF SO(3)-EQUIVARIANCE FOR RELN VELOCITY EXTRACT WITH
COVARIANCE INPUTS

This section provides a formal proof for the SO(3)-equivariance of our Reductive Lie Neuron (ReLN)
architecture when processing a velocity vector and a covariance matrix. We first establish the
foundations for processing covariance matrices within a Lie-algebraic framework and then present
the main proof.

H.1 SO(3)-EQUIVARIANT VECTOR EXTRACTION VIA SKEW-SYMMETRIC PROJECTION

Our network, Φ, is designed to be adjoint-equivariant. It maps geometric inputs—such as a embedded
velocity K ∈ so(3) and a covariance matrix S ∈ SPD(3)—to a matrix feature A ∈ R3×3. The
inputs transform under the adjoint action of any rotation R ∈ SO(3):

K ′ = AdR(K) = RKR⊤, S′ = AdR(S) = RSR⊤. (47)

By construction, the network’s output feature A transforms according to the same law:

Φ(K ′, S′) = AdR
(
Φ(K,S)

)
= RΦ(K,S)R⊤. (48)

To obtain the final 3D velocity vector, we project the output matrix A onto its skew-symmetric
component and apply the vee operator. The following proposition formalizes the equivariance of this
extraction mechanism.
Proposition H.1 (Equivariance of Skew-Symmetric Extraction). Let a network Φ and its inputs
transform according to Eqs. 47 and 48. If a vector v̂ ∈ R3 is extracted from the output matrix
A = Φ(K,S) via the projection

Askew = 1
2 (A−A

⊤), v̂ = (Askew)
∨, (49)

then the vector v̂′ extracted from the transformed output A′ = Φ(K ′, S′) transforms covariantly as
v̂′ = Rv̂.

Proof. By the adjoint-equivariance property in Eq. 48, the network satisfies Φ(RKR⊤, RCR⊤) =
RΦ(K,C)R⊤ = RAR⊤. Let A′ = RAR⊤. The skew-symmetric component of the transformed
output A′ is:

A′
skew = 1

2 (A
′ −A′⊤)

= 1
2

(
RAR⊤ − (RAR⊤)⊤

)
= 1

2

(
RAR⊤ −RA⊤R⊤)

= R
(
1
2 (A−A

⊤)
)
R⊤

= RAskewR
⊤ = AdR(Askew).

(50)

The vee map, (·)∨ : so(3)→ R3, is itself an equivariant map satisfying (AdR(X))∨ = R (X∨) for
any X ∈ so(3). Applying this property yields the desired result:

v̂′ = (A′
skew)

∨ = (AdR(Askew))
∨ = R (Askew)

∨ = Rv̂. (51)

Remark 4. The proof relies on three properties: (i) both inputs transform under the adjoint action
X 7→ RXR⊤; (ii) the network Φ is equivariant to this action; and (iii) the output is projected onto
so(3) before the vee operator is applied. As established previously, these conditions hold whether the
network ingests the raw covariance S or its logarithm logS.

LARGE LANGUAGE MODEL (LLM) USAGE

We used a large language model (LLM) to aid in polishing the writing and improving grammatical
clarity of the manuscript. The LLM did not contribute to the research ideation, experiments, or
technical content; all scientific claims and results were generated solely by the authors.
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