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Abstract

Contextual bandit algorithms aim to identify the optimal choice among a set of candidate arms,
based on their contextual information. Among others, neural contextual bandit algorithms
have demonstrated generally superior performance compared to conventional linear and kernel-
based methods. Nevertheless, neural methods can be inherently unsuitable for handling a large
number of candidate arms due to their high computational cost when performing principled
exploration. Motivated by the widespread availability of arm category information (e.g., movie
genres, retailer types), we formulate contextual bandits as a bi-level online recommendation
problem, and propose a novel neural bandit framework, named H2N-Bandit, which utilizes a
bi-level hierarchical neural architecture to mitigate the substantial computational cost found
in conventional neural bandit methods. To demonstrate its theoretical effectiveness, we
provide regret analysis under general over-parameterization settings, along with a guarantee
for category-level recommendation. To illustrate its effectiveness and efficiency, we conduct
extensive experiments on multiple real-world data sets, highlighting that H2N-Bandit can
significantly reduce the computational cost over existing strong non-linear baselines, while
achieving better or comparable performance under online recommendation settings.

1 Introduction

Contextual bandits are a type of multi-armed bandit (MAB) that leverages contextual information to navigate
the exploration-exploitation dilemma (Auer et al., 2002), in online settings without state transitions or
sequential dependencies. Unlike greedy algorithms that only exploit known information (He et al., 2017),
contextual bandits can utilize principled exploration strategies to achieve improved long-term outcomes,
making them valuable in various real-world applications, such as medical experiment (Durand et al., 2018)
and personalized recommendation (Li et al., 2010; Wu et al., 2016). For example, consider an online grocery
platform that decides which retailer to recommend. It can either exploit its knowledge of a user’s preferred
retailer or explore a new one to discover a potentially new match. Principled exploration strategies, such
as Upper Confidence Bound (UCB) (Li et al., 2010), enables the platform to balance this trade-off, by
adaptively exploring new options based on their levels of uncertainty. By intelligent exploration, the system
can effectively uncover user preferences and improve long-term satisfaction (Li et al., 2010; 2011).

Among various types of contextual bandit algorithms, neural contextual bandits (Zhou et al., 2020; Zhang
et al., 2021) have recently risen to prominence, due to the superior representation and learning capabilities of
neural networks. However, a nontrivial challenge arises from their computational cost, particularly when
dealing with a large pool of candidate arms (e.g., a large number of candidate retailers). One major reason is
that neural bandit methods with principled exploration typically require gradient computation for each arm to
support effective exploration, making them less viable in real-world applications (Jia et al., 2022). To address
this challenge, we leverage widely available arm hierarchical information (e.g., retailer types, movie genres) (Hu
et al., 2013; Zhu et al., 2021), for a refined recommendation strategy. Our approach differs from conventional
contextual bandit algorithms that operate in a "flat" action space (Li et al., 2010; Valko et al., 2013; Zhou
et al., 2020), by utilizing the arm category hierarchy to efficiently narrow down the candidate pool before the
final arm selection. Inspired by the potential of arm hierarchies to improve bandit performance and efficiency
(Hong et al., 2022; Zuo et al., 2022; Aouali et al., 2023), our work pioneers the hierarchical neural bandit
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framework. This formulation is uniquely capable of achieving strong recommendation outcomes in potentially
complex settings with unknown, arbitrary arm reward mappings (Zhou et al., 2020). Specifically, we formulate
a bi-level hierarchical strategy to improve efficiency: first, the category-level model selects a small subset
of high-potential arm categories. Second, with an arm-level model, the arm recommendation is performed
by only selecting from the candidates within this pre-filtered set. This approach can substantially reduce
computational cost, as the final selection is performed on a dramatically smaller pool of candidates, rather
than the entire candidate arm space. Distinct from conventional greedy recommendation methods that utilize
the item category information (Cai et al., 2021; He et al., 2016), we tackle the inherent exploitation-exploration
dilemma with bandit-based principled exploration.

Meanwhile, this bi-level hierarchical strategy can also adeptly navigate the exploitation-exploration dilemma
at the category level, facilitating more efficient exploration by preventing unnecessary effort on unpromising
categories. For example, consider a user with an unknown seafood allergy. Instead of learning this aversion
for individual arms (e.g., learning from arm contexts with category information), our hierarchical design can
aggregate feedback at a higher level. From negative interactions, the category-level model can perceive that
the entire "seafood" category is unpromising, allowing the system to prune seafood-related arms before the
computationally expensive arm-level scoring phase, yielding a dual benefit: significant computational savings
and more sample-efficient exploration, as the model learns to avoid unpromising options more efficiently.

Motivated by real-world application scenarios and to tackle the aforementioned challenges, we propose a novel
contextual bandit framework named Bi-level Hierarchical Neural Bandit (H2N-Bandit), which leverages the
arm category information to formulate a highly efficient yet effective recommendation strategy. To manage
the potentially vast number of candidate arms, H2N-Bandit formulates contextual bandits into a bi-level
hierarchical recommendation problem, where it initially reduces the size of the candidate pool by filtering arm
categories, thus streamlining the selection process for the final arm recommendation. Our H2N-Bandit not
only reduces the computational demands by utilizing a filtered pool of candidate arms, but also incorporates
two types of principled exploration strategies for category-level and arm-level recommendations. This bi-level
design improves efficiency while effectively addressing the exploitation-exploration dilemma across both levels.
Our main contributions can be summarized as follows:

Problem Formulation and Proposed Framework: We formulate and study the problem of hierarchical
neural contextual bandits, where a learner is expected to navigate a bi-level exploitation-exploration trade-off
across both arm categories and individual arms under unknown, potentially complex reward mappings. Unlike
existing hierarchical works that rely on assumed reward priors, H2N-Bandit is the first stochastic neural bandit
framework capable of handling arbitrary arm reward functions. By leveraging the arm-category hierarchy,
H2N-Bandit can perform principled exploration effectively and efficiently at both levels. This structural
design allows it to prune the candidate pool, focusing on promising arms and improving computational
efficiency, while maintaining strong recommendation performance.

Theoretical Analysis: Under general over-parameterization settings for neural bandit, we establish the first
regret analysis for hierarchical stochastic neural bandit. To handle the absence of true category rewards, we
develop a comprehensive theoretical framework that jointly optimizes both category and arm-level models.
Our framework achieves greater generality by avoiding the restrictive arm separateness and reward-prior
assumptions, which are common in existing works. We also provide a theoretical guarantee for category-level
recommendation of H2N-Bandit, demonstrating the effectiveness of our bi-level design and instantiation.

Experiments: Extensive experiments are performed on public real-world data sets, where we demonstrate
that our approach not only delivers better or comparable performance compared to strong existing stochastic
bandit baselines, but also offers a substantial advantage in computational efficiency. We further investigate
our framework’s properties and capabilities through additional experiments, including a parameter study, an
analysis of the category-level strategy, and an extension of H2N-Bandit to three-level hierarchy settings.

2 Related Works
With assumed linear reward mapping functions, linear contextual bandit algorithms (Chu et al., 2011; Li et al.,
2010; Auer et al., 2002; Abbasi-Yadkori et al., 2011) are first proposed to tackle the exploitation-exploration
dilemma. In particular, Lin-UCB (Chu et al., 2011; Li et al., 2010) utilizes linear regression, with the UCB for
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principled exploration. Afterward, to formulate the reward and confidence bound estimation for non-linear
settings, kernelized bandits (Valko et al., 2013; Krause & Ong, 2011; Deshmukh et al., 2017) assume the
reward mapping function belongs to the Reproducing Kernel Hilbert Space (RKHS). Meanwhile, collaborative
algorithms (Gentile et al., 2014; Li et al., 2019; Ban & He, 2021b; Gentile et al., 2017; Cesa-Bianchi et al.,
2013; Wu et al., 2016; Ban et al., 2024; Su et al., 2025) try to incorporate similar users based on the estimated
or known user correlations or perform user-item collaborative filtering (Li et al., 2016). Several works leverage
arm hierarchy information (Hong et al., 2022; Zuo et al., 2022; Aouali et al., 2023; Yang et al., 2020a; Sen
et al., 2021) but rely on pre-defined reward mapping priors tailored to specific settings. Yang et al. (2020a)
addresses resource-constrained linear bandits with budgeted recommendations, Hong et al. (2022) assumes a
tree-structured action space with known priors and fixed cardinality under Bayes regret, and Sen et al. (2021)
studies top-k bandits with realizability assumptions (e.g., known function class). These settings differ from
our stochastic neural bandit, as the pre-defined reward assumptions can fail in real-world applications.

Neural bandit algorithms leverage the representation power of neural networks, to relax structural assumptions
on reward mappings. Inspired by Neural Tangent Kernel (NTK) (Jacot et al., 2018), prior works apply
fully-connected (FC) neural networks for reward estimation, with NTK-based UCB (Zhou et al., 2020; Ban
et al., 2021; Ban & He, 2021a; Qi et al., 2022; Kassraie & Krause, 2022; Gu et al., 2024; Dai et al., 2023;
Ban et al., 2024) or Thompson Sampling (Zhang et al., 2021) for exploration. Meanwhile, Ban et al. (2022);
Qi et al. (2023) utilizes the second neural network to learn the confidence ellipsoid for adaptive exploration.
However, these approaches require searching across the entire candidate arm pool, which introduces additional
computational challenges, especially when the number of candidate arms is large in practice. While Osband
et al. (2023); Zhu & Van Roy (2023a;b) employ heuristic EpiNet-style uncertainty estimation for improved
efficiency, they typically assume a fixed, known action space and lack theoretical guarantees. This limits their
applicability in our stochastic neural bandit settings, where rigorous regret analysis is a critical requirement,
and the arm space is typically unknown, dynamic, or unbounded (Zhou et al., 2020; Zhang et al., 2021).

3 Problem Definition
Given a finite horizon T ∈ N+, consider a fixed pool C of arm categories, and each category c ∈ C is associated
with an unknown category context distribution. As arm contexts can include the background from both item
and user perspectives, a setup common in applications such as "Online Personalized News Recommendation"
(Li et al., 2010), it is natural to reason that arm contexts can capture information from both sides.

In each round t ∈ [T ], we will receive a subset of arm categories Ct ⊆ C. For instance, retailer categories
available can vary across regions (e.g., large wholesale chains are typically absent in rural areas). For each
category c ∈ Ct, the collection of Kc,t candidate arms is denoted by Xc,t = {x

(1)
c,t , . . . , x

(Kc,t)
c,t }, drawn from

the category-specific context distribution, with |Xc,t| = Kc,t. Consequently, the overall set of candidate arms,
irrespective of their categories, is given by Xt =

⋃
c∈Ct

Xc,t, with total size |Xt| = K. We generally have
|Xt| = K ≫ |Ct|. Thus, there are K candidate arms for selection in round t in total, following the stochastic
contextual bandit setting (Zhou et al., 2020). By definitions, an arm can belong to multiple categories: for
some c, c′ ∈ Ct, it is possible that Xc,t ∩ Xc′,t ̸= ∅. For example, a "Vegan Mexican" restaurant belongs to
both the "Vegan" and "Mexican" categories. With d-dimensional arm context x

(i)
c,t ∈ Xt, i ∈ [Kc,t], we consider

its reward r
(i)
c,t is given by

r
(i)
c,t = hA(x(i)

c,t) + ϵ
(i)
c,t (1)

where hA(·) represents the unknown arm-level reward mapping function, and ϵ is zero-mean α-sub-Gaussian
noise, consistent with prior studies (Zhou et al., 2020; Zhang et al., 2021). Considering practical scenarios
like online recommendation with normalized ratings, for an arbitrary arm x and its reward r, we consider the
bounded expected reward Eϵ[r] = hA(x) ∈ [0, 1], similar to Gentile et al. (2014; 2017); Ban & He (2021b); Qi
et al. (2023). In round t, the learner aims to choose one arm xt ∈ Xt with the maximal expected reward.

Learning Objective. Within the framework of stochastic contextual bandits, the learning goal of the learner
is selecting one arm xt ∈ Xt in each round t ∈ [T ], in order to minimize cumulative pseudo-regret:

R(T ) = Eϵ

[ ∑T

t=1
(r∗

t − rt)
]

(2)
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where rt is the reward of chosen arm xt; and r∗
t is the reward of optimal arm x∗

t , i.e., E[r∗
t |Xt] = hA(x∗

t ) =
max

x
(i)
c,t∈Xt

hA(x(i)
c,t). Motivated by this learning objective, we formulate our category reward definition below.

Category Reward Formulation. In round t, we define the expected category reward E[rc,t|Xc,t] as the
maximum expected reward among the arms within category c ∈ C. Let νc,t ∈ RdC be category representation
derived from contexts Xc,t. Then, with an unknown category-level mapping function hC(·), we formulate

E[rc,t|Xc,t] = hC(νc,t) = maxi∈[Kc,t] E[r(i)
c,t ] = hA(x∗

c,t), (3)

where x∗
c,t = arg max

x
(i)
c,t∈Xc,t

hA(x(i)
c,t) is the optimal arm in category c, and the expectation is taken over

the random reward noise. Our specific instantiated formulation of category representations ν and their
integration are detailed in Subsec. 4.1.

Design Motivation for Category-level Reward. In round t ∈ [T ], the learner aims to choose one arm
xt ∈ Xt with the highest expected reward. Here, our category reward (Eq. 3) is designed such that selecting the
best category c∗

t ∈ Ct naturally aligns with selecting the best arm x∗
t , i.e., hC(νc∗

t ,t) = maxc∈Ct
hC(νc,t) =

maxx∈Xt
hA(x) = hA(x∗

t ). Thus, the target of the category-level model will naturally be choosing B arm
categories C̃t ⊂ Ct, such that the highest-reward arms fall within them. This category-based formulation
underpins our divide-and-conquer workflow, reducing the computational complexity to O(|Ct| +

∣∣ ⋃
c∈C̃t

Xc,t

∣∣),
rather than O(K) in conventional neural bandit (e.g., Zhou et al. (2020); Zhang et al. (2021)). It also ensures
a close connection between category-level and arm-level models, which is crucial for our theoretical analysis.
On the other hand, alternative definitions (e.g., an average category reward) can misalign with the goal
of stochastic contextual bandits: choosing one optimal arm per round, as a high average reward does not
necessarily indicate the presence of the best arm. Complementary discussions are shown in Appendix C.

Notation. We apply vectors x, ν to denote arm context and category representation, respectively. Ct denotes
available arm categories in round t ∈ [T ], where each c ∈ Ct has arm collection Xc,t ⊂ Rd. We aggregate
candidate arms as Xt =

⋃
c∈Ct

Xc,t. For the category level, let C̃t ⊂ Ct denote selected categories. For the arm
level, we have the chosen arm xt ∈ X̃t, with X̃t =

⋃
c∈C̃t

Xc,t being the filtered candidate arms. For readers’
convenience, we have also included a notation table in Appendix A.

4 Proposed Framework
Overview of H2N-Bandit. Our pseudo-code is provided in Algorithm 1. With the arm-category hierarchy,
the category-level model is utilized to filter arm categories before the actual arm recommendation. Inspired
by the neural adaptive exploration (Ban et al., 2022; Qi et al., 2023), we implement two neural networks
f

(1)
C (·; Θ(1)

C ), f
(2)
C (·; Θ(2)

C ) to perform exploitation and exploration respectively, where ΘC refer to their
trainable parameters. The estimated category rewards and the exploration scores are applied for category
selection (lines 5-7, Algorithm 1), effectively narrowing down the entire pool of candidate arms, and significantly
reducing computational costs. Subsequently, the arm-level neural model is utilized to perform the precise
arm recommendation (lines 8-11, Algorithm 1). Here, we adopt the arm-level network fA(·; ΘA) for arm
reward estimation with trainable parameters ΘA, and employ UCB-based exploration. After selecting one
arm and obtaining its reward (lines 11 and 12, Algorithm 1), we update the neural models with Gradient
Descent (GD) (lines 12-16, Algorithm 1). We leverage two exploration strategies to balance performance and
computational efficiency. For the category-level model, where the number of choices is relatively small, we use
an adaptive exploration strategy known for its strong performance (Ban et al., 2022; Qi et al., 2023). For the
more computationally demanding arm-level model, we adopt a relatively lightweight UCB-based approach,
allowing us to leverage the performance benefits of bi-level exploration while maintaining overall efficiency.

4.1 First Level: Category-level Recommendation

Recall that each category c ∈ Ct, ∀t ∈ [T ] corresponds to a representation vector νc,t to encode the information
regarding its associated arm collection Xc,t. In this work, we formulate the category representation as

νc,t :=
[

1
|Xc,t|

( ∑
x

(i)
c,t∈Xc,t

x
(i)
c,t

)
; Std

(
Xc,t

)]
∈ RdC (4)
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Algorithm 1 Bi-level Hierarchical Neural Bandit (H2N-Bandit)
1: Input: Horizon T . GD iterations J . Learning rates ηC , ηA. Exploration coefficient α. Regularization

coefficient λ. Number of selected arm categories B.
2: Initialization: Initialize parameters [Θ(1)

C ]0, [Θ(2)
C ]0, and [ΘA]0. Initialize covariance matrix: Σ0 = λI.

3: for each round t ∈ [T ] do
4: Receive available categories Ct and their arms Xc,t, c ∈ Ct.

▷ First-stage (category-level) recommendation
5: Derive the representation νc,t for each arm category c ∈ Ct.
6: With category-level networks, calculate the overall score for each category c ∈ Ct, denoted by

FC(νc,t; [ΘC ]t−1) := f
(1)
C

(
νc,t; [Θ(1)

C ]t−1
)

+ f
(2)
C

(
∇f

(1)
C (νc,t); [Θ(2)

C ]t−1
)
.

7: Choose top-B arm categories C̃t = argmaxC̃t⊂Ct,|C̃t|=B

[∑
c∈C̃t

FC(νc,t; [ΘC ]t−1)
]

with highest overall

scores. Form the filtered candidate arm pool X̃t =
⋃

c∈C̃t
Xc,t.

▷ Second-stage (arm-level) recommendation

8: for each filtered candidate arm x
(i)
c,t ∈ X̃t do

9: Calculate the reward estimation fA(x(i)
c,t; [ΘA]t−1), and its UCB value UCBα(x(i)

c,t).
10: end for
11: Recommend arm xt = arg max

x
(i)
c,t∈X̃t

[
fA(x(i)

c,t; [ΘA]t−1) + UCBα(x(i)
c,t)

]
.

▷ Updating Neural Bandit Models
12: Receive reward rt, and update arm-level model fA with GD. Update gradient covariance matrix

Σt = Σt−1 + g(xt; [ΘA]t−1) · g(xt; [ΘA]t−1)⊺/m.
13: for each chosen arm category c ∈ C̃t do
14: Record νc,t, and its pseudo reward r̃c,t = min

{
max

x
(i)
c,t∈Xc,t

[fA(x(i)
c,t; [ΘA]t−1) + UCBα(x(i)

c,t)], 1
}

.
15: end for
16: Train category-level models f

(1)
C , f

(2)
C with collected category representations and pseudo rewards.

17: end for

with [·; ·] being the concatenation operation, and naturally dC = 2d. We recall that d is the context dimension.
Here, given the arm collection Xc,t of category c, we have Std(Xc,t) ∈ Rd being the element-wise standard
deviation w.r.t. each element of the arm context vector x

(i)
c,t ∈ Xc,t.

Formulation Intuition of Category Representation. The intuition is that we need to encode the context
spread for arm collection Xc,t within the context space. Here, with the first d elements (the average arm
context) representing the center context point, the second d elements in νc,t (i.e., Std(Xc,t)) formulate the
interval around that mean point, in terms of each dimension within the context space. With the representation
in Eq. 4, we encode the given arm contexts Xc,t as the dense hyper-ellipsoid. In this way, with a region that is
proportional to this ellipsoid (e.g., according to the 3σ rule), we can have each arm from Xc,t falling into this
region with a high probability. As a result, motivated by the "optimism-in-the-face-of-uncertainty" principle
(Abbasi-Yadkori et al., 2011; Yang et al., 2020b), we utilize this design of the category representation to
provide sufficient information.

4.1.1 Category Reward and Exploration Score Estimation.

With category representation νc,t, c ∈ Ct, we apply category exploitation network f
(1)
C (·; Θ(1)

C ) to estimate the
category reward (exploitation). It is also known that the confidence interval of reward estimation can be
expressed as a function of the reward estimation model gradients (i.e., the gradients of exploitation network
f

(1)
C ) (Ban et al., 2022; Zhou et al., 2020; Qi et al., 2023). Therefore, to learn this relationship, we adopt a

second category exploration network f
(2)
C (·; Θ(2)

C ) to calculate the exploration score for category c ∈ Ct. This
measures the "potential gain", i.e., E[rc,t|Xc,t] − f

(1)
C (νc,t; Θ(1)

C ), in terms of the category reward estimation.
In this case, the input of exploration network f

(2)
C will be the normalized gradient of the exploitation model:
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∇f
(1)
C (νc,t) := ∇Θf

(1)
C (νc,t; Θ(1)

C ), where we treat it as a column vector for notation simplicity. The estimated
exploration score is denoted by f

(2)
C

(
∇f

(1)
C (νc,t); Θ(2)

C

)
.

Category Selection. We select top-B categories (line 7, Algorithm 1) with the highest overall scores{
FC(νc,t; ΘC)

}
c∈Ct

:=
{

f
(1)
C (νc,t; Θ(1)

C ) + f
(2)
C (∇f

(1)
C (νc,t); Θ(2)

C )
}

c∈Ct

as the chosen arm categories C̃t. Then,

the chosen categories and their associated candidate arms X̃t =
⋃

c∈C̃t
Xc,t will be consequently applied for

the arm-level recommendation in Subsec. 4.2.
Remark 1 (Reducing Recommendation Complexity). For conventional stochastic neural bandit algorithms,
the computational cost is O(K), which can be significantly expensive as the learner needs to perform computa-
tionally intensive principled exploration for every candidate arm. On the other hand, H2N-Bandit operates
with the computational cost of O(|Ct| +

∣∣ ⋃
c∈C̃t

Xc,t

∣∣) where
∣∣ ⋃

c∈C̃t
Xc,t

∣∣ < K, |Ct| ≪ K, resulting in a
significant reduction of complexity.

Category-level Neural Networks. Recall that we adopt two separate networks f
(1)
C , f

(2)
C in terms of

exploitation and exploration respectively. Given the input category representation νc,t ∈ RdC , t ∈ [T ], we
first define the exploitation network f

(1)
C to be a FC network, with depth L ≥ 2 and width m ∈ N+:

f(νc,t; Θ(1)
C ) := ΘLϕ(ΘL−1ϕ(ΘL−2 . . . ϕ(Θ1νc,t))) (5)

where ϕ(·) is ReLU activation, Θ1 ∈ Rm×dC , Θl ∈ Rm×m, 2 ≤ l ≤ L − 1, ΘL ∈ R1×m. For notation
simplicity, we denote its parameters as a column vector: Θ(1)

C := [vec(Θ1)⊺, vec(Θ2)⊺, . . . , vec(ΘL)⊺]⊺, and
we use [Θ(1)

C ]t to represent the parameters Θ(1)
C , after being trained by GD in t-th round.

Analogously, we also apply an L-layer FC network (with width m) to be the exploration network f
(2)
C that

can be similarly represented by Eq. 5, with the trainable parameters Θ(2)
C . Note that the first-layer weight

matrices between these two networks will have different shapes, since f
(2)
C is taking the network gradients

∇f
(1)
C (·) as the input instead. Similar to existing works (Ban et al., 2022; Qi et al., 2023), we apply average

pooling to the original gradient vector ∇f
(1)
C (·) before feeding it into f

(2)
C , in order to reduce both runtime

and space complexity. We adopt this method in H2N-Bandit for all experiments (Section 6).

4.1.2 Efficient Category-level Training with Pseudo Rewards.

Recall that for category c ∈ C̃t, its expected category reward is defined as the highest expected arm reward
within the category-specific arm pool Xc,t (Eq. 3). Consequently, a key challenge is the lack of access to true
category rewards: we can only observe the reward rt for the chosen arm xt, which may not be the best arm
within the selected categories.

Pseudo Category Reward. To tackle this challenge, we know that the combination of reward point
estimation (fA(x)) and the corresponding UCB (i.e., UCBα(x) from Eq. 7) can offer an upper bound for the
expected arm reward for an arbitrary arm x with a high probability, based on derivations of our Theorem
5.1. Inspired by the principle of "optimism-in-the-face-of-uncertainty" (Abbasi-Yadkori et al., 2011), we use
this upper bound as the "pseudo reward" for training category-level models. This enables us to allocate
the pseudo-reward to each chosen category c ∈ C̃t, thereby enriching the training samples for category-level
networks. For each chosen category c ∈ C̃t and its candidate pool Xc,t, we define its clipped pseudo-reward

r̃c,t = min
{

1, max
x

(i)
c,t∈Xc,t

[fA(x(i)
c,t; [ΘA]t−1) + UCBα(x(i)

c,t)]
}

, (6)

corresponding to line 14 of Algorithm 1. The effectiveness of this formulation is supported by our theoretical
analysis (Section 5) and experiments (Section 6). Note that, since arm reward estimates and UCBs are already
computed (lines 8–10, Algorithm 1), we can directly reuse them to derive the category-level pseudo-rewards
without incurring additional computational costs.

Model Training. With collected category representations and pseudo rewards {νc,τ , r̃c,τ }
τ∈[t],c∈C̃τ

, we
define the training loss for the exploitation network f

(1)
C as L(1)

C (Θ) = 1
2

∑
τ∈[t]

∑
c∈C̃τ

∣∣f (1)
C (νc,τ ; Θ) − r̃c,τ

∣∣2,
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where the label is pseudo reward r̃. Meanwhile, since the input of the exploration network f
(2)
C is the gradients

of f
(1)
C , we can utilize the previous gradients and the potential gain to train the exploration network. Thus, we

formulate its loss: L(2)
C (Θ) = 1

2
∑

τ∈[t]
∑

c∈C̃τ

∣∣f (2)
C (∇f

(1)
C (νc,τ ); Θ) −

(
r̃c,τ − f

(1)
C (νc,τ ; [Θ(1)

C ]τ−1)
)∣∣2, and the

label is "potential gain" r̃ − f
(1)
C (x). With the loss functions above, we run Gradient Descent for J iterations

to update networks f
(1)
C and f

(2)
C , given the learning rate ηC (line 16, Algorithm 1).

4.2 Second Level: Arm-level Recommendation

Next, with the chosen categories C̃t ⊂ Ct, we need to recommend one arm xt ∈ X̃t from the filtered candidate
arms X̃t =

⋃
c∈C̃t

Xc,t accordingly.

Arm Reward Estimation and UCB. Given an arm x, we apply the arm-level neural network fA(·; ΘA) to
estimate its reward, and the reward estimation will naturally be the network output fA(x; ΘA). To achieve
arm-level exploration, we apply UCB-based strategy to reduce the computational cost. Given probability
constant δ ∈ (0, 1), we aim to formulate the UCB, such that P

(
|fA(x; ΘA) − hA(x)| > UCBα(x)

)
≤ δ, for

each arm x ∈ X̃t. Based on NTK norm S > 0 and the confidence ellipsoid derivations from Theorem 5.1,
with the probability at least 1 − δ, we have

UCBα(x) = O
(

α

√
log det(Σt−1)

det(λI) − 2 log(δ) + λ1/2S

)
· ∥g(x; [ΘA]t−1)/

√
m∥Σ−1

t−1
, (7)

where the covariance matrix Σt−1 = λI +
∑

τ∈[t] g(xτ ; [ΘA]τ−1) · g(xτ ; [ΘA]τ−1)⊺/m, with the regularization
coefficient λ > 0. Recall that in Eq. 1, α represents the variance proxy. If this value is the unknown prior, we
can treat α ≥ 0 as a tunable coefficient controlling exploration intensity, as in existing works (Zhou et al.,
2020; Zhang et al., 2021).

Arm Selection. Using reward estimation, along with the UCB scores and exploration coefficient α, we
recommend arm xt with the highest overall score from the candidate pool X̃t (line 11, Algorithm 1):

xt = arg max
x

(i)
c,t∈X̃t

[
fA(x(i)

c,t; ΘA) + UCBα(x(i)
c,t)

]
.

Upon the selection of arm xt, its actual reward rt will be revealed, following the stochastic bandit settings.

Arm-level Neural Network and Training. Similar to category-level models (Eq. 5), we also adopt an
L-layer FC network for reward estimation: fA(x; ΘA) := Θ′

Lϕ(Θ′
L−1ϕ(Θ′

L−2 . . . ϕ(Θ′
1 · x))), with the hidden

dimension m. Note that the input of fA will be the arm contexts with dimensionality d. Therefore, the
shape of the weight matrix in fA’s first layer would be Θ′

1 ∈ Rm×d. Analogous to category-level model,
ΘA := [vec(Θ′

1)⊺, vec(Θ′
2)⊺, . . . , vec(Θ′

L)⊺]⊺ ∈ RpA represents the trainable parameters. We also update fA via
Gradient Descent (line 12, Algorithm 1). With the chosen arms and their rewards {xτ , rτ }τ∈[t] up to round t,
we define the quadratic loss function with regularization as LA(Θ) = 1

2
∑

τ∈[t]
∣∣fA(xτ ; Θ)−rτ

∣∣2+ mλ
2 ∥Θ−Θ0∥2

2.
Then, we perform the Gradient Descent for J iterations, with learning rate ηA > 0.

5 Theoretical Analysis

Theoretical Contributions. First, we establish the regret analysis for hierarchical stochastic neural bandit
without assuming specific reward-mapping priors (e.g., Hong et al. (2022); Zuo et al. (2022); Aouali et al.
(2023); Yang et al. (2020a); Sen et al. (2021)), allowing arbitrary arm reward functions for greater generality.
Second, we propose a novel pipeline to address the challenge of the absence of true category-level rewards.
By leveraging pseudo-rewards derived from the arm-level model, we ensure joint optimization of the bi-level
models while maintaining theoretical guarantees. Third, we develop a novel theoretical proof framework
for our two-level exploration strategy, where category-level neural exploration refines arm candidate pool,
before arm-level UCB optimizes action choice, ensuring a balance between efficiency and performance. Fourth,
unlike prior works with arm separateness assumptions (e.g., Zhou et al. (2020); Zhang et al. (2021); Ban et al.
(2021; 2022)), we integrate novel confidence ellipsoids with martingale-based analysis to enable our regret
analysis, without relying on such assumptions. Finally, with a general regret bound in Theorem 5.1, Theorem
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5.2 can further tighten the bound under a mild "category margin" condition, highlighting the effectiveness of
our category-level filtering and bi-level formulation.

5.1 Preliminaries for Theoretical Analysis

Inspired by Zhou et al. (2020); Allen-Zhu et al. (2019), for initializing category-level f
(1)
C and f

(2)
C , we

draw each entry of Θl, ∀l ∈ [L − 1], from the Gaussian distribution N (0, 2/m); each entry of ΘL is drawn
from N (0, 1/m). For the arm-level model fA, we sample the entries of its intermediate weight matrices
Θ′

l, l ∈ [L − 1] from N (0, 4/m), while sampling the entries of Θ′
L from Gaussian distribution N (0, 2/m).

Analogous to Zhou et al. (2020); Zhang et al. (2021); Ban et al. (2022); Qi et al. (2023; 2024), we consider
unit-length arm contexts ∥x

(i)
c,t∥2 = 1, ∀i ∈ [Kc,t], c ∈ Ct, t ∈ [T ]. Without loss of generality, we apply a

normalization process inspired by Allen-Zhu et al. (2019); Zhou et al. (2020); Jia et al. (2022); Qi et al. (2024):

with unprocessed x̃
(i)
c,t, the corresponding normalized arm context will be x

(i)
c,t =

[
x̃

(i)
c,t

2·∥x̃
(i)
c,t∥2

, 1
2 ,

x̃
(i)
c,t

2·∥x̃
(i)
c,t∥2

, 1
2

]
.

We consequently have: (i) ∥x
(i)
c,t∥2 = 1; (ii) no two normalized arm contexts will be in opposite directions;

and (iii) fA(x(i)
c,t; [ΘA]0) = 0 with randomly initialized parameters [ΘA]0.

NTK Gram Matrices. Let x̃∗
t = arg maxx∈(

⋃
c∈C̃t

Xc,t) h(x) be the "best possible chosen" arm from

chosen categories C̃t, t ∈ [T ], along with the chosen arms {xt}t∈[T ] and optimal arms {x∗
t }t∈[T ], where x∗

t =
arg max

x
(i)
c,t∈Xt

hA(x(i)
c,t). Then, we simply merge these three arm collections as AT with cardinality |AT | = 3T ,

which can possibly contain duplicate arms. Meanwhile, we define ĀT := ({xt}t∈[T ] ∪ {x̃∗
t }t∈[T ] ∪ {x∗

t }t∈[T ])
as the union set; and consequently, ĀT will only contain unique arms from AT , s.t. |ĀT | ≤ |AT | = 3T .
Definition 1 (NTK Gram Matrix with Possibly Duplicate Arms (Jacot et al., 2018; Zhou et al., 2020)). Let
N denote the Gaussian distribution. With ReLU activation ϕ(·) and its derivative ϕ′(·), define following
recursive process. For l ∈ [L] and i, j ∈ {1, . . . , |AT |}, with M0

i,j = Ψ0
i,j = ⟨xi, xj⟩, let

Nl
i,j =

(
Ψl

i,i Ψl
i,j

Ψl
j,i Ψl

j,j

)
, Ψl

i,j = 2Ea,b∼N (0,Nl−1
i,j

)[ϕ(a)ϕ(b)],

Ml
i,j = 2Ml−1

i,j Ea,b∼N (0,Nl−1
i,j

)[ϕ
′(a)ϕ′(b)] + Ψl

i,j .

Given arm collection AT (|AT | = 3T ) with possibly duplicate arms, define its NTK Gram Matrix as
M = (ML + ΨL)/2 ∈ R3T ×3T .
Definition 2 (NTK Gram Matrix with Unique Arms). Follow the recursive process in Def. 1. For arm set
ĀT with unique arms, define its NTK matrix M̄ = (M̄L + Ψ̄L)/2 ∈ R|ĀT |×|ĀT |, where |ĀT | ≤ |AT |.
Remark 2. (Removing Arm Separateness Assumption) Most neural bandit works generally adopt arm
separateness assumptions, e.g., Zhou et al. (2020); Zhang et al. (2021); Ban et al. (2021); Dai et al. (2023);
Xu et al. (2020) assume minimum NTK matrix eigenvalue λ0 > 0; Ban et al. (2022); Qi et al. (2023) assume
the Euclidean separateness: ∥x − x′∥2 > 0 for any two observed candidate arms x, x′. They can be easily
violated when we have duplicate arm contexts. Inspired by Qi et al. (2024), we integrate refined confidence
ellipsoids with our novel martingale-based analysis to derive regret bounds without separateness assumptions,
enabling joint optimization of our bi-level models with two different exploration mechanisms.
Definition 3 (NTK Matrix Effective Dimension (Valko et al., 2013; Zhou et al., 2020; Zhang et al., 2021; Qi
et al., 2024)). Given horizon T , regularization coefficient λ (Eq. 7), and NTK matrix M, define effective
dimension d̃ of matrix M as d̃ = log det(I+M/λ)

log(1+T K/λ) , with respect to arm collection AT with |AT | = 3T .

5.2 Regret Analysis
We also would like to mention that our theoretical analysis results can also be readily generalized to other types
of neural architectures, such as Convolutional Neural Networks (CNNs) and ResNet with over-parameterization
(Allen-Zhu et al., 2019; Cao & Gu, 2019). Next, we present the main regret analysis result in Theorem 5.1,
considering both category-level and arm-level error.
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Theorem 5.1. Given the finite horizon T , for any δ ∈ (0, 1) and given λ, S, R, ξR > 0, suppose width
m ≥ Ω(poly(T, L, R, λ̄−1

0 , S−1) · KξR log(1/δ)), ηC = R2
√

m
, ηA = O

(
(TmL + mλ)−1)

, J ≥ Õ(TL/λ). Let
f

(1)
C , f

(2)
C , and fA be the L-layer FC networks with width m. Then, H2N-Bandit achieves the regret bound

R(T ) ≤ O
(√

T d̃ log(1 + TK/λ)
(
α

√
d̃ log(1 + TK/λ) − 2 log(δ) +

√
λS

))
+ O

(√
T log(1/δ) +

√
TξR

)
+ O(1),

with probability at least 1 − δ over the random initialization.
The proof is presented in Appendix D. Despite the category-level recommendation we applied to reduce the
computational cost, our regret bound is comparable with state-of-the-art results in neural bandit works (Zhou
et al., 2020; Zhang et al., 2021; Ban et al., 2021; Jia et al., 2022; Qi et al., 2022) with an overall regret of
Õ(d̃

√
T ). Our NTK Gram matrices (Defs. 1, 2) depend on at most 3T arms, different from prior works (e.g.,

Zhou et al. (2020); Zhang et al. (2021)) that rely on all TK candidate arms Xt, t ∈ [T ], leading to a compact
definition of effective dimension d̃. In addition, our parameter norm S can be tighter than in prior works
(e.g., Zhang et al. (2021); Zhou et al. (2020)), as our confidence ellipsoid around Θ0 only needs to hold for
arms in collection ĀT (|ĀT | ≤ 3T ), rather than all the TK observed candidate arms.

5.3 Category-level Recommendation Analysis

Different from the Subsection 5.2 above, for the next Theorem 5.2, we instead consider settings analogous to
those in existing works (Qi et al., 2022; Ban et al., 2022), where candidate arms Xt are sampled i.i.d. from a
context distribution. Meanwhile, we also suppose that the expected category rewards satisfy a mild ζ-margin
condition below, to ensure their separability and facilitate stronger theoretical results. That is, with the
optimal category c∗

t = arg maxc∈Ct
hC(νc,t) and second-optimal category c◦

t = arg maxc∈(Ct\c∗
t ) hC(νc,t), we

suppose there exist a constant ζ > 0, s.t.
∣∣E[rc∗

t ,t|Xc∗
t ,t] − E[rc◦

t ,t|Xc◦
t ,t]

∣∣ ≥ ζ, with notation from Eq. 3. Note
that there can be multiple optimal or second-optimal categories with identical expected rewards respectively.
As long as there is a gap ζ between the rewards of the optimal and second-optimal category(-ies), i.e., not all
arm categories have the same expected reward, this mild condition will consequently hold.
Theorem 5.2. Suppose f

(1)
C , f

(2)
C are L-layer FC networks with width m. Let m, L, J, ηC satisfy the conditions

in Theorem 5.1. Suppose H2N-Bandit chooses B categories in each round t. Then, given the category margin
ζ > 0, with the notation from Theorem 5.1 and Algorithm 1, when round t satisfies

t ≥ T̃ :=
( Õ

(
α

√
d̃2 − 2d̃ log(δ) + S

√
λd̃

)
+ O

(√
log(δ−1) +

√
ξR

)
B · ζ

)2
,

the optimal arm category c∗
t = arg maxc∈Ct hC(νc,t) is assured to be selected by the category-level model (i.e.,

c∗
t ∈ C̃t) with probability at least 1 − δ.

The proof is presented in Appendix E. According to Theorem 5.2, when t ≥ T̃ , H2N-Bandit is guaranteed to
choose the optimal arm category with a high probability, where we will consequently have zero "category-level"
error. Thus, for the second Big-O term on the RHS of Theorem 5.1 that corresponds to the category-level
error, we can replace the finite horizon T term with the Tmin = min{T, T̃} based on Theorem 5.2, and it
can lead to the alternative regret bound of R(T ) ≤ Õ(d̃

√
T ) + O

(√
Tmin log(δ−1) +

√
TminξR). Here, T̃ is

data-dependent, decreasing with smaller effective dimension d̃ and NTK norm S. More categories chosen
(i.e., larger B values) can also reduce T̃ by increasing the likelihood of selecting the optimal category.

6 Experiments
We conduct experiments on three real-world data sets with varying specifications. Meanwhile, our nine
baseline algorithms are: (1) Linear algorithms: Lin-UCB (Li et al., 2010), Lin-UCB-Category (Li et al.,
2010); (2) Kernelized algorithms: Kernel-UCB (Valko et al., 2013), KMTL-UCB (Deshmukh et al.,
2017), Kernel-UCB-Ind (Deshmukh et al., 2017); and (3) Neural algorithms with principled exploration:
Neural-UCB (Zhou et al., 2020), Neural-UCB-Category (Zhou et al., 2020), Neural-TS (Zhang et al., 2021),
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Figure 1: [Left Figure] Regret results on three recommendation data sets. [Right Figure] Regret vs. Running
Time (Linear baselines symbols: ◦; Kernel baselines: △; Neural baselines: □; H2N-Bandit: ⋆).

EE-Net (Ban et al., 2022). Here, Lin-UCB-Category and Neural-UCB-Category extend Linear-UCB (Chu
et al., 2011) and Neural-UCB (Zhou et al., 2020) respectively, by incorporating category-aware embeddings
(Qi et al., 2022), allowing them to also leverage arm category information. Kernel-UCB-Ind refers to
Kernel-UCB (Valko et al., 2013) under the disjoint setting (Li et al., 2010), where individual estimators are
learned for each arm category. Detailed descriptions and source code link are provided in Appendix B.1.

6.1 Experiment Results on Three Real Data Sets

MovieLens and Yelp Data Sets. Our first data set is MovieLens-20M (Harper & Konstan, 2015). With
genome-scores of user-specified tags, we choose the top 20 tags with the highest genome-score variance to
create the movie features p ∈ Rd′ (d′ = 20). The movies are classified into 19 categories based on their
genres: |C| = 19. We then obtain user features u ∈ Rd′ following existing works (Li et al., 2019; Ban et al.,
2022; Qi et al., 2022; 2023), by applying singular value decomposition (SVD) to the user-movie interaction
matrix. Then, 5,000 movies and 10,000 users with the most reviews are applied following existing works
(e.g., Li et al. (2019)). With a user ut sampled from the 10,000 users at each time step t, we follow the idea
of Generalized Matrix Factorization (GMF) (He et al., 2017; Zhou et al., 2021) to encode user information
and i-th item into the arm context through concatenation x̃

(i)
c,t = [uut

; pi] ∈ R2d′
, c ∈ Ct, i ∈ [Kc,t], and let

sampled arm pool size K = |Xt| = 1,000. We then append a constant of 0.01 to x̃
(i)
c,t to obtain x

(i)
c,t ∈ Rd,

before applying L2 normalization. Such a procedure leads to context dimensionality d = 41. Arm rewards
r

(i)
c,t are user ratings normalized into range [0, 1]. For Yelp data set (https://www.yelp.com/dataset), SVD

is analogously applied to extract user and item features with a hidden dimension of d′ = 20. Then, we apply
10,000 users and 4,000 restaurants from 20 categories (|C| = 20) with the highest number of reviews for
candidate selection. We then apply the above GMF procedure to obtain arm contexts x

(i)
c,t ∈ Xt ⊂ Rd (d = 41,

|Xt| = 1,000), incorporating user and item information. Arm rewards are user ratings normalized to [0, 1].

Amazon Data Set. For Amazon recommendation data set (He & McAuley, 2016), we select the items from
|C| = 10 categories, and each user-item pair (arm) is associated with a review and a corresponding rating. To
derive the arm context, we transform the review text into vector representations, by following the same text
processing procedure outlined in the "Sentires" package (Zhang et al., 2014; Li et al., 2020). The obtained arm
context maintains a dimensionality of d = 41, with the L2 normalization applied on arm contexts. Similar to
the Yelp and MovieLens data sets, we let |Xt| = 1,000 in each round, by sampling from transformed user-item
pairs (each treated as an arm); and we define the unknown arm reward as the normalized user rating scaled
to range [0, 1]. Complementary details are presented in Appendix B.1.

Main Results. On the left side of Fig. 1, H2N-Bandit consistently outperforms all these strong baselines.
The standard deviation of H2N-Bandit is also plotted as the red shaded area. Among these baselines,
the neural algorithms (Neural-UCB, EE-Net, Neural-TS) tend to outperform linear and kernel algorithms,
due to the representation power of neural networks. In addition, by leveraging the category information,
Neural-UCB-Category (Neu-Cat.) achieves better performance compared with the original Neural-UCB, on
the MovieLens and Yelp data sets. In contrast, Linear-UCB-Category (Lin-UCB-Cat.) generally performs
worse than the original Lin-UCB. This performance discrepancy is observed because the discrimination power
of linear models is limited, and they can possibly fail to learn the underlying mapping as well as effectively
leverage the category information encoded. Compared with Neural-UCB-Category, this observation further
supports the notion that neural methods are better-suited solutions for utilizing available category information.
Meanwhile, Kernel-UCB-Ind (Ker-Ind), which learns individual kernelized models for each category, suffers
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from the data sparsity issue and exhibits the worst performance among all the baselines. Our H2N-Bandit
outperforms the baselines by effectively balancing the category-level and arm-level exploitation-exploration.
Meanwhile, H2N-Bandit can take as little as 1/3 of the running time of other neural algorithms, which need
to enumerate all the candidate arms for arm-level exploration. In addition, in Subsec. 6.4, we empirically
demonstrate that H2N-Bandit can also be extended to three-level arm hierarchy settings, which results in
enhanced computational efficiency with only moderate performance degradation. This demonstrates the
compatibility and scalability of our H2N-Bandit framework, enabling practitioners to determine the specific
arm hierarchy based on their own application scenarios and data set characteristics, in order to strike a good
balance between computational costs and model performance.

Performance vs. Running Time. On the right side of Fig. 1, we compare with baselines regarding the
model performance and running time. Each colored dot represents one method, where the methods (dots)
in the lower left region are considered better in terms of both the running time and model performance.
From the results, H2N-Bandit achieves superior performance when compared to other baselines. Notably,
H2N-Bandit achieves competitive performance in terms of cumulative regret while requiring only one-third of
the running time of Neural-UCB. This aligns with our claim that category-level recommendation can strike
a good balance between the model performance and the computational cost. Furthermore, the kernelized
methods also suffer from the high computational cost issue, because the kernel evaluation has to be performed
between all the candidate arms and the past chosen arms, which can be extremely time-consuming.

6.2 Category-level Recommendation Analysis

2000 Round 9000 Round
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ex
pl

or
at

io
n 

Sc
or

e

-0.08

-0.17
-0.11

-0.14

+0.02

+0.02

Category Exploration Scores
(Annotations show change from 2k to 9k rounds)

American
Asian Fusion
Breakfast & Brunch
Salad
Nightlife
Japanese

H2N Bandit Neural-UCB
0

100

200

300

400

500

600

Ex
pl

or
at

io
n 

Re
wa

rd

+27.7%

Pure Exp. Reward on Yelp

Figure 2: Exploration results on Yelp Data set. [Left
Figure] The category-level exploration score change
from 2000 round to 9000 round. [Right Figure] Ex-
ploration cumulative reward comparison showcasing
the benefit of our category-level filtration.

Recall H2N-Bandit applies networks f
(1)
C (·), f

(2)
C (·) to

balance exploitation and exploration in category-level
recommendations. We further analyze its category-
level exploration behavior on the Yelp data set.

In the left figure of Fig. 2, we compare the category
exploration scores (i.e., outputs of f

(2)
C ) for six specific

arm categories. At round 2,000, H2N-Bandit actively
explores major categories like "American" restaurants,
which have more arms and user interactions than mi-
nor categories such as "Japanese." Early in the rec-
ommendation process, this helps H2N-Bandit build a
strong global understanding for high-quality recom-
mendations. By round 9,000, exploration scores shift
toward minor categories, as major categories have al-
ready been sufficiently explored. Notably, the "Asian"
category receives a negative score, since f

(2)
C can produce negative values. This indicates H2N-Bandit is

compensating for overly high estimated rewards in that category, encouraging exploration of underrepresented
categories for complementary information. Additionally, the average exploration score decreases over time,
as the system gathers more interactions from the environment, gradually favoring exploitation. On the
right side of Fig. 2, we compare with Neural-UCB in terms of exploration quality. Different from line 11
in Algorithm 1, we alternatively choose arm xt, t ∈ [T ] with "pure exploration", by only using the UCB:
xt = arg max

x
(i)
c,t∈X̃t

[
UCBα(x(i)

c,t)
]
, where X̃t =

⋃
c∈C̃t

Xc,t. Similarly, Neural-UCB will select arms solely
based on UCB values. As H2N-Bandit achieves a higher cumulative reward, its category-level recommendation
contributes to improved exploration quality.

6.3 Parameter Study

Next, we present a parameter study for the number of selected categories, B in Table 1, where the effect of B is
task-dependent. For the Yelp data set (20 total categories), a larger B can improve performance by increasing
the chance of selecting the optimal category, but we find B = 4 offers a good trade-off with computational
cost. In contrast, for the Amazon data set (10 categories), a larger B does not necessarily improve and can
degrade performance by reducing filtering effectiveness, leading to unnecessary arm-level exploration. Thus,
practitioners can tune B starting from smaller values to balance performance and efficiency.
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Figure 3: Regret (left three figures) and running time comparison (right three figures) for three-level
H2N-Bandit. [Kernel baselines: △; Neural baselines: □; H2N-Bandit and H2N-Bandit (3 levels): ⋆].

Data set B = 2 B = 4 B = 6 B = 8

Yelp 3354±26 3077±41 3159±50 2961±33
Amazon 2062±40 1623±42 1608±32 1753±27

Table 1: Regret w.r.t. chosen category quantity B

Data set α = 0 α = 0.1 α = 0.3 α = 0.5 No Cat. Exp.

Yelp 3212±22 3128±19 3077±41 3253±27 3345±23
Amazon 1809±36 1623±42 1658±23 1653±47 1761±27

Table 2: Regret w.r.t exploration coefficients α

Empirical results with different exploration coefficient α are in Table 2, where setting α ∈ [0.1, 0.3] generally
achieves satisfactory performance. It is worth noting that both no exploration (α = 0) and excessively high
exploration can negatively impact model performance. H2N-Bandit, equipped with category-level exploration
and a modest level of arm-level exploration, can effectively support arm recommendation. In addition,
we include results for the setting with no category-level exploration by disabling f

(2)
C , demonstrating that

equipping H2N-Bandit with category-level exploration is essential for achieving optimal performance.

6.4 Extension: Adapting H2N-Bandit to a Three-Level Arm Hierarchy

We also extend H2N-Bandit to a three-level hierarchy (hyper-category, category, and arm), by grouping
existing categories into three hyper-categories using K-means clustering on their mean arm contexts. To
handle this structure, we introduce an additional hyper-category model analogous to our original category-level
model; it uses a similar neural architecture, derives representations as in Eq. 4, and is trained on pseudo-labels
generated by the category-level networks. The recommendation becomes a three-stage filtering process from
hyper-category down to the final arm. We let |Xt| = 1,000, t ∈ [T ], and compare with kernelized and neural
baselines from Subsec. 6.1. Complementary details of the experimental settings are in Appendix B.2.

Based on the three line charts at the left of Fig. 3, incorporating a third-level (hyper-category-level) model
generally results in a slight performance degradation in terms of cumulative regret across the three real data
sets. For the Yelp data set, H2N-Bandit (3 levels) is able to outperform kernel-based baselines and maintain
comparable or close performance relative to strong neural baselines (e.g., Neural-UCB and Neural-TS).
However, for the remaining two data sets, MovieLens and Amazon, its performance tends to be slightly
inferior to these neural baselines. Regarding the running time results, H2N-Bandit (3 levels) improves the
efficiency of the two-level H2N-Bandit by significantly reducing the number of candidate arms for arm-level
selection through the hyper-category-level filtering. This demonstrates a trade-off between model performance
and computational efficiency in terms of arm hierarchy levels. While H2N-Bandit (3 levels) achieves the
shortest running time, our proposed H2N-Bandit (2 levels, Algorithm 1) can help strike a better balance
between model performance and computational cost.

7 Conclusion
We propose a novel neural bandit framework, H2N-Bandit, to leverage the available arm category information
in recommendation. It utilizes the bi-level hierarchical neural structure to tackle online recommendation
tasks, along with principled exploration strategies to address the exploitation-exploration dilemma. By
leveraging category-level recommendation, H2N-Bandit can significantly reduce the computational cost by
filtering the arms based on their categories, while simultaneously improving the arm-level recommendation.
Under standard neural bandit assumptions and over-parameterized neural network settings, we perform
regret analysis and provide the performance guarantee for the category-level recommendation. Extensive
experiments are conducted to show the effectiveness of H2N-Bandit against strong baselines, and the behaviors
of H2N-Bandit in terms of running time and category-level recommendation.
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Broader Impact Statement

This paper introduces H2N-Bandit, a novel hierarchical framework that advances neural contextual bandits
by making principled exploration computationally efficient for large-scale online recommendation. This
enhancement improves the utility and performance of such systems by intelligently leveraging category-level
information. While our work has broad applications, we do not foresee significant negative impacts. Potential
concerns, such as the amplification of biases present in the data, are general to the field of recommender
systems and not uniquely introduced by our method.

A Notation Table

In this section, to enhance the readability of readers, we include a table for the notation along with the
corresponding descriptions.

Notation - Description Table
Notation Description Notation Description
T Finite horizon K Total number of candidate arms in each round
x Arm context B Number of selected arm categories
ν Category representation vector R(T ) Cumulative pseudo-regret for T rounds
r Reward L Network depth / number of layers
d Arm context dimension m Network width / number of hidden units
dC Category representation dimension M NTK Gram matrix with possibly duplicate arms
AT , ĂT Arm collections / set for optimal and chosen arms M̆ NTK Gram matrix with non-duplicate arms
C Collection of all categories λ Regularization coefficient
Ct Received categories collection (in round t) ϵ Reward random noise
C̃t Selected categories collection (in round t) α Exploration coefficient
Xt Collection of all candidate arms (in round t) J Number of iterations for GD
Xc,t Candidate arms from category c (in round t) λ̆0 Minimum eigenvalue of the NTK matrix M
X̃t Candidate arms from selected categories C̃t (in round t) R Learning radius for category-level model
hA(·) Mapping function for arm reward ξR Regression difficulty with the radius R
hC(·) Mapping function for category reward S NTK norm parameter
f

(1)
C (·) Category-level exploitation network δ Probability parameter

f
(2)
C (·) Category-level exploration network ηC Category-level learning rate

FC(·) Shorthand for category overall score f
(1)
C (·) + f

(2)
C (·) ηA Arm-level learning rate

fA(·) Arm-level reward estimation network Σ Gradient covariance matrix
Θ Trainable network parameters g(·; Θ) Vector of network gradients w.r.t. parameters Θ
[Θ]t Network parameters trained by t-th round GD L(·) Loss function

Table 3: Notation Table

B Experiment Details and Complementary Experiments

B.1 Experiment Details

Here, for all the UCB-based baselines, we choose their exploration parameter from the range {0.01, 0.1, 1}
with grid search. Following experiment settings from the original papers of our baselines (Zhou et al., 2020;
Zhang et al., 2021; Ban et al., 2022), we set the number of layers L = 2 for all the deep learning models
including our proposed H2N-Bandit. We also set the network width with grid search m ∈ {100, 200, 300}.
The learning rate of all neural algorithms are selected by grid search from the range {0.0001, 0.001, 0.01}. For
all the algorithms, we choose the regularization parameter λ from the range {0.0001, 0.001, 0.01}. Then, we
choose the exploration coefficient α from the value range {0.2, 0.5, 1} for H2N-Bandit in terms of scaling. For
kernelized baselines, we apply the radial basis function (RBF) kernel, and choose the kernel bandwidth from
{0.01, 0.1, 1}. All experiments are performed on a server with Intel Xeon CPU and NVIDIA V100 GPUs.
The results are based on the experiments across 3 runs. 1.

Here, we would like to add the URLs for the data sets and the data processing package applied in the
experiments:

1Our code implementation is anonymously available: https://drive.google.com/file/d/1Tk9Kmf09shs2WxzaZPwVWkbmGzy_
kHRT/view?usp=sharing
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• MovieLens data set: https://grouplens.org/datasets/movielens/20m/

• Yelp Review data set: https://www.yelp.com/dataset

• Amazon data set: https://jmcauley.ucsd.edu/data/amazon/index_2014.html

• Sentires package for processing the Amazon data set: https://github.com/lileipisces/
Sentires-Guide

In addition, we also would like to include more detailed descriptions for our nine baseline algorithms:

• Lin-UCB represents Linear-UCB under the "pooling setting" (Li et al., 2010) where it applies a single
estimator for all arm categories.

• Lin-UCB-Category is Linear-UCB (Chu et al., 2011; Li et al., 2010) equipped with category-aware
embedding (Qi et al., 2022), where the category-aware embedding can encode the available arm
category information into the arm contexts.

• Kernel-UCB represents Kernel-UCB (Valko et al., 2013) under the "pooling setting" where it applies
a single estimator for all arm categories.

• KMTL-UCB (Deshmukh et al., 2017) estimates the "task similarities" with received contextual
information, by considering each arm category as a task. The estimations are based on a variant of
kernel ridge regression.

• Kernel-UCB-Ind is Kernel-UCB (Valko et al., 2013) under the "disjoint setting" (Li et al., 2010)
where it learns individual estimators for each arm category.

• Neural-UCB stands for Neural-UCB (Zhou et al., 2020) with a single neural network to evaluate the
reward, and calculate the upper confidence bounds with the network gradients.

• Neural-UCB-Category refers to Neural-UCB (Zhou et al., 2020) with Neural-UCB with category-aware
embedding (Qi et al., 2022) for utilizing the arm category information.

• Neural-TS (Zhang et al., 2021) utilizes a FC network to estimate the arm reward, along with a
Thompson sampling (Agrawal & Goyal, 2013) exploration strategy.

• EE-Net (Ban et al., 2022) utilizes two FC networks for exploitation as well as exploration respectively,
where the gradients of the first network is deemed as the input of the exploration (second) network.

B.2 Three-level Arm Hierarchy

In Subsec. 6.4, we further extend the bi-level H2N-Bandit to three-level hierarchy settings: (1) arm hyper-
category level; (2) arm-category level; and (3) arm-level recommendation. Here, for each of the three data
sets, we group the existing arm categories into three hyper-categories using K-means clustering, where the
category feature for clustering is determined by averaging the arm contexts associated with that category.
We also let |Xt| = 1,000, t ∈ [T ], and compare with kernelized and neural baselines from Subsec. 6.1.

To extend H2N-Bandit to the three-level hierarchy setting, we introduce an additional hyper-category-level
model. Similar to the original category-level model fC , the hyper-category-level model incorporates an
exploitation neural network for hyper-category reward estimation and an exploration network for computing
potential gains. Here, hyper-category representation is derived in a manner similar to Eq. 4, encoding
both the mean arm context information and variance information. In each round, the process consists of:
(1) hyper-category filtering, followed by (2) category-level selection (lines 7-9, Algorithm 1), and finally (3)
arm-level recommendation (lines 11-14, Algorithm 1). Since the true hyper-category reward is not accessible,
the hyper-category-level model is trained on pseudo-labels generated by the category-level networks, similar
to the training process of the category-level models from Subsec. 4.1.
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C Complementary Explanations for Category Reward Modeling and Definition

We first recall that in Remark 1, the computational complexity is O(|Ct| +
∑

c∈C̃t
|Xc,t|), where C̃t refers to

the chosen categories with the cardinality |C̃t| = B. In this work, our efficiency improvement comes from
the divide-and-conquer workflow based on the category information, which requires our category reward
formulation (Eq. 3). Here, we will need our category reward definition to achieve the above time complexity,
instead of the O(K) complexity in conventional neural bandit algorithms (Zhou et al., 2020; Zhang et al.,
2021). This is to make sure the category-level model can adequately learn the relationship between category
representations and corresponding category rewards. Meanwhile, we would like to mention that it is common
to introduce specific formulations in order to leverage the arm category information. For instance, (Hong
et al., 2022) assumes a tree structure with known distribution priors, and (Deshmukh et al., 2017) assumes
the reward mapping function is in the Reproducing Kernel Hilbert Space (RKHS) induced by the designated
kernel. The effectiveness of our formulation for leveraging the arm category information is also supported
by our experiment results, where we also include several baselines that are capable of leveraging the arm
category information (e.g., Linear-UCB-Category, Neural-UCB-Category, KMTL-UCB).

In addition, we would like to provide additional explanations for our formulation of the category reward.
Recall that under the stochastic contextual bandit settings (Zhou et al., 2020; Chu et al., 2011; Valko et al.,
2013), in each round t, the learner aims to choose one arm xt ∈ Xt with the maximum reward out of candidates
Xt as its recommendation. Here, our definition of the category reward aims to comply with the learner’s
objective in each round t ∈ [T ]. In this case, since the learner is only required to choose one arm in round t
with the maximum reward, the target of the category-level model will naturally be choosing B arm categories
C̃t ⊂ Ct, so that these chosen categories contain the arms with highest rewards among all candidate arms.
Therefore, our formulation helps align the category reward definition with our overall objective as well as the
target of the arm-level model: recommending one arm with the highest reward out of the filtered candidate
arms X̃t. In this case, we formulate the reward of the category as the maximum arm reward it contains.
Meanwhile, from the theoretical analysis perspective, our category reward formulation also enables us to
bridge the category-level model and the arm-level model. Otherwise, it will be implausible to make our regret
analysis pipeline feasible.

On the other hand, if we consider some other formulations, the category reward can fail to comply with
our objective and thus fail to capture the arm with the highest reward. For instance, let us alternatively
consider the category reward to be the average reward of all the arms in this category. In this case, the
category reward can intuitively fail to align with our overall learning objective: choosing one arm with the
highest reward in each round. This is because selecting arm categories with the highest category rewards
(e.g., average arm reward) does not necessarily guarantee the optimal arm is in the chosen categories, which
can lead to sub-optimal performances.

As an example, suppose we are working on the online movie recommendation task, under the stochastic
contextual bandit settings (Li et al., 2010; Valko et al., 2013; Zhou et al., 2020). Naturally, our objective is to
select one movie xt ∈ Xt with the maximum reward as our recommendation to the target user in each round.
Here, suppose the candidate arms Xt are made up with two kinds of movies: action movies and comedy
movies. Suppose the target user generally considers all the action movies to be average-to-good (arm rewards
in this category: mean=0.6, variance=0.03). For the comedy movies, there are a few pieces that are target
user’s favorites, but the target user also dislikes some of the comedy movies, which makes arm rewards in
"comedy" category: mean=0.5, variance=0.2. In this case, if we model the category reward to be the average
reward of all the arms in this category, we will be more likely to choose action movies. This can consequently
lead to sub-optimal results, even with a powerful arm-level model that can accurately estimate arm rewards.
This is because the arms (movies) with the highest rewards, i.e., comedy movie pieces that the target user
favorites, are located in the "comedy" category.

As a result, it helps justify our formulation that the goal of the category-level model should be choosing
category that contains the arm with maximum reward, based on category reward definition (Eq. 3).
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C.1 Categorical distribution and model performances.

Here, our theoretical analysis, which involves the category-level error and the arm-level error and considers
the worst-case scenario. In this case, different category distributions will not impair our theoretical results.

Recall that our objective is to choose the arm with maximum reward in each round. In this case, let us
consider two cases: (1) a heavy-tailed category with one highest reward arm, while the other arms are of low
rewards; (2) a category of arms with nearly averaged rewards. For case (1), it is obvious that the reward
margin between this highest-reward arm and the other sub-optimal arms will be large. Thus, it would be
easier for the arm-level model to distinguish this optimal arm for the arm-level recommendation. On the
other hand, for case (2), the reward discrepancy among arms within this category will be small, which makes
it harder for the arm-level model to distinguish the best arm within this category. In this case, although the
arm-level model may pull a sub-optimal arm, the single-round regret will be relatively smaller, because the
reward difference between the category-level optimal arm and the chosen arm will be small, due to the nature
of arm reward distribution within this category of case (2).

Therefore, there naturally exists a balance between (1) the arm-level reward estimation error and the single-
round regret, as well as (2) the arm reward discrepancy within the same category. Meanwhile, as we have
discussed, the category-level model naturally aims to choose B arm categories that contain arms with highest
rewards for arm-level recommendation. Thus, we formulate the category reward as the maximum arm reward
it contains, to reflect this property. As the category-level and arm-level models will be co-optimized along
with more rounds, they will become increasingly more accurate, in terms of both the category selection and
arm selection.

We would like to mention that under the stochastic contextual bandit settings, the learner will only receive
the arm reward for the chosen arm from the environment. In this case, the true arm category reward
will not necessarily be available, no matter what the category reward definition is. Since the arm reward
distribution within categories is unknown, this is also the exact reason why we train the category-model with
the pseudo-labels (lines 17-19, Algorithm 1 pseudo-code). Therefore, the category reward definition in Eq. 3
can be considered as our way of leveraging the category information. Meanwhile, since we will only receive
the reward for the chosen arm in each round, it can be impractical for the learner to gain a comprehensive
view regarding the category distribution. In this case, we utilize our category reward definition and the
bi-level neural architecture to strike a good balance between model performances and computational costs.

C.2 The trade-off between the category-level recommendation and the arm-level recommendation.

There are also natural trade-offs between the category-level recommendation and the arm-level recommenda-
tion, in terms of (1) the performance trade-off; (2) the computational complexity trade-off. And they directly
relate to the B value (line 1, Algorithm 1 pseudo-code), which is the number of categories chosen in each
round.

C.2.1 The performance trade-off between category-level recommendation and arm-level
recommendation

In Table 1, we conduct experiments with different B values, showing setting B to high values does not
necessarily lead to better performances. Here, although increasing the B values can intuitively increase the
possibility of choosing optimal categories, it can impose more burden for the arm-level model, which can lead
to sub-optimal performances as for Amazon data set in Table 1. Similarly, setting B to overly small values
can also lead to unsatisfactory performances, because it limits the power of the arm-level model. Therefore,
practitioners may need to choose B based on their specific scenarios, to balance the computational cost and
model performance.

C.2.2 Computational complexity and category-level identification trade-off

Recall that for Remark 1, our computational complexity is O(|Ct| +
∑

c∈C̃t
|Xc,t|), where C̃t refers to the

chosen categories with the cardinality |C̃t| = B. Thus, with more chosen categories (higher B values), it will
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lead to more candidate arms for arm-level recommendation (
∑

c∈C̃t
|Xc,t| value), which consequently increases

the computational complexity. On the other hand, as in Theorem 5.2, the optimal category is guaranteed to
be chosen by the category-level model with a high probability, when we have t ≥ T̃ . Based on the definition
of T̃ , we see that T̃ will decrease along with increasingly higher B values, which can lead to higher chances of
including the optimal arm category for arm-level recommendation.

D Proof of Cumulative Regret Bound (Proof of Theorem 5.1)

Here, we denote FC(·) = f
(1)
C (·)+f

(2)
C (·) as well as FA(·) = fA(·)+UCBα(·), for the sake of notation simplicity.

Recall that the learner is expected to choose one arm xt ∈ Xt in each round t ∈ [T ], in order to minimize the
cumulative pseudo-regret, denoted by

R(T ) = E[
T∑

t=1
(r∗

t − rt)]

where we have rt referring to the reward of the chosen arm xt ∈ Xt, and r∗
t being the reward for the optimal

arm, such that E[r∗
t |Xt] = max

x
(i)
c,t∈Xt

hA(x(i)
c,t). Under the over-parameterized neural networks settings

(Allen-Zhu et al., 2019; Cao & Gu, 2019), we can bound the approximation error of neural networks in terms
of the reward mapping functions hA(·), hC(·). Here, we aim to minimize the pseudo-regret for T rounds, with
xt, x∗

t ∈ Xt being the chosen arm and the optimal arm in round t ∈ [T ], the regret bound R(T ) is

R(T ) =
T∑

t=1
Rt =

T∑
t=1

Eϵ

[
r∗

t − rt

]
=

T∑
t=1

[
hA(x∗

t ) − hA(xt)
]

=
T∑

t=1

[
min{hA(x∗

t ) − hA(xt), 1}
]

where Rt is the regret for a single round t, and the last equality is because the expected reward is bounded,
hA(x) ∈ [0, 1], in our problem definition. Then, defining x̃∗

t = arg maxx∈
⋃

c∈C̃t
Xc,t

h(x) as the "best possibly

chosen" arm conditioned on the first-stage selected categories C̃t, we have

Rt = min{hA(x∗
t ) − hA(xt), 1}

= min{hA(x∗
t ) − hA(x̃∗

t ) + hA(x̃∗
t ) − hA(xt), 1}

= min{hC(νc∗
t ,t) − hC(νct,t)︸ ︷︷ ︸

category-level error

+ hA(x̃∗
t ) − hA(xt)︸ ︷︷ ︸

arm-level error

, 1}

where c∗
t is the optimal arm category, ct is the "chosen optimal" category ct = arg max

c∈C̃t
hC(νc,t). Here, we

see that the pseudo regret for each round t ∈ [T ] can be decomposed into two sub-components, namely the
category-level error and the arm-level error.

Next, we first proceed to bound the category-level error with the following steps. For the sake of notation
simplicity, for the derivation steps below, we hide the min-operation min{·, 1} by default, which will lead to

min{hC(νc∗
t ,t) − hC(νct,t), 1}

= hC(νc∗
t ,t) − FC(νct,t) + FC(νct,t) − hC(νct,t)

≤ hC(νc∗
t ,t) − FC(νc∗

t ,t) + FC(νct,t) − hC(νct,t)
≤ hC(νc∗

t ,t) − F∗
A(x∗

t ) + F∗
A(x∗

t ) − FC(νc∗
t ,t) + FC(νct,t) − FA(xt) + FA(xt) − hC(νct,t)

≤
∣∣hC(νc∗

t ,t) − F∗
A(x∗

t )
∣∣ +

∣∣F∗
A(x∗

t ) − FC(νc∗
t ,t)

∣∣ +
∣∣FC(νct,t) − FA(xt)

∣∣ +
∣∣FA(xt) − hC(νct,t)

∣∣
=

∣∣hA(x∗
t ) − F∗

A(x∗
t )

∣∣ +
∣∣F∗

A(x∗
t ) − FC(νc∗

t ,t)
∣∣ +

∣∣FC(νct,t) − FA(xt)
∣∣ +

∣∣FA(xt) − hC(νct,t)
∣∣

≤
∣∣hA(x∗

t ) − F∗
A(x∗

t )
∣∣ +

∣∣F∗
A(x∗

t ) − FC(νc∗
t ,t)

∣∣ +
∣∣FC(νct,t) − FA(xt)

∣∣ +
∣∣FA(xt) − hA(xt)

∣∣ +
∣∣hA(xt) − hC(νct,t)

∣∣
=

∣∣hA(x∗
t ) − F∗

A(x∗
t )

∣∣︸ ︷︷ ︸
I1

+
∣∣F∗

A(x∗
t ) − FC(νc∗

t ,t)
∣∣︸ ︷︷ ︸

I2

+
∣∣FC(νct,t) − FA(xt)

∣∣︸ ︷︷ ︸
I3

+
∣∣FA(xt) − hA(xt)

∣∣︸ ︷︷ ︸
I4

+
∣∣hA(xt) − hA(x̃∗

t )︸ ︷︷ ︸
I5

∣∣
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where F∗
A refer to the imaginary arm-level model trained with optimal arms and their rewards {x∗

τ , r∗
τ }τ∈[T ],

and we also have x̃∗
t = arg maxx∈

⋃
c∈C̃t

Xc,t
hA(x) being the best arm within the filtered arm pool

⋃
c∈C̃t

Xc,t,
i.e., the best arm within chosen arm categories. Here, the first inequality is due to the category selection
mechanism, and the second inequality is due to the arm pulling mechanism FA(x̃t) ≤ FA(xt), as well as
hA(xt) ≤ hA(x̃t) = hC(νct,t). As we have noticed, there are a total of five terms on the RHS that we need
to bound one by one. Here, terms I1, I4 refer to the estimation error of our processed arm-level model and
the imaginary arm-level model, which can be bounded by Lemma H.1 and Corollary H.2 respectively. Then,
terms I2, I3 refer to the approximation error of the category-level models, which measures how much the
category-level model output deviates from the pseudo label. These two terms can be bounded by Lemma F.1,
and Lemma F.2 respectively. With Lemma H.3, we can bound term I5 being the reward discrepancy between
the chosen arm xt and the optimal arm within the chosen categories x̃t.

Afterwards, for arm-level error hA(x̃∗
t ) − hA(xt), it is obvious that this error can be upper bounded by term

I5. Therefore, we can apply Lemma H.3 again to obtain the bound. Finally, by assembling all the results, we
will have

R(T ) =
T∑

t=1
Rt =

T∑
t=1

[
min{hA(x∗

t ) − hA(xt), 1}
]

≤
T∑

t=1

[
min

{ ∣∣hA(x∗
t ) − F∗

A(x∗
t )

∣∣︸ ︷︷ ︸
I1

+
∣∣F∗

A(x∗
t ) − FC(νc∗

t ,t)
∣∣︸ ︷︷ ︸

I2

+
∣∣FC(νct,t) − FA(xt)

∣∣︸ ︷︷ ︸
I3

+
∣∣FA(xt) − hA(xt)

∣∣︸ ︷︷ ︸
I4

+2 ·
∣∣hA(xt) − hA(x̃∗

t )
∣∣︸ ︷︷ ︸

I5

, 1
}]

Then, substitute these terms with their upper bounds with the above lemmas, we will have

R(T ) ≤
T∑

t=1

[
γt−1(α) · min{∥g(xt; [ΘA]t−1)/

√
m∥Σ−1

t−1
, 1} + O(m−1/6

√
log(m)t2/3λ−2/3L3)

+ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7)
+ γ∗

t−1(α) · min{∥g(x∗
t ; [Θ∗

A]t−1)/
√

m∥(Σ∗
t−1)−1 , 1} + O(m−1/6

√
log(m)t2/3λ−2/3L3)

+ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7)
+ γt−1(α) · min{∥g(xt; [ΘA]t−1)/

√
m∥Σ−1

t−1
, 1} + O(m−1/6

√
log(m)t2/3λ−2/3L3)

+ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7)
]

+ O
(√

T log(1
δ

)
)

+
√

TξR + O(T 2LR2
√

m
+ T 2R4/3L2√

log m

m1/3 )

+ O
(√

T log(1
δ

)
)

+
√

TξR + O(T 2LR2
√

m
+ T 2R4/3L2√

log m

m1/3 ) + O(TR4/3m−1/3L2
√

log m)

+ O(TξCR1/3m−1/12L3
√

log m)

22



Under review as submission to TMLR

Combining the terms, can further lead to

R(T ) ≤
T∑

t=1

[
2γt−1(α) · min{∥g(xt; [ΘA]t−1)/

√
m∥Σ−1

t−1
, 1} + O(m−1/6

√
log(m)t2/3λ−2/3L3)

+ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7)
+ γ∗

t−1(α) · min{∥g(x∗
t ; [Θ∗

A]t−1)/
√

m∥(Σ∗
t−1)−1 , 1} + O(m−1/6

√
log(m)t2/3λ−2/3L3)

+ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7)
]

+ O
(√

T log(1
δ

)
)

+ 2
√

TξR + O(T 2LR2
√

m
+ T 2R4/3L2√

log m

m1/3 ) + O(TR4/3m−1/3L2
√

log m)

+ O(TξCR1/3m−1/12L3
√

log m)
Afterwards, by applying Lemma I.9, Lemma I.10 and Lemma I.2, it leads to

R(T ) ≤ O
(√

T d̃ log(1 + TK/λ) ·
(
α

√
d̃ log(1 + TK/λ) − 2 log(δ) + λ1/2S

))
+ O

(√
T log(1

δ
) +

√
TξR

)
+ O(T 2LR2

√
m

+ T 2R4/3L2√
log m

m1/3 ) + O(TR4/3m−1/3L2
√

log m)

+ O(TξCR1/3m−1/12L3
√

log m)
+ O(Sm−1/6

√
log(m)T 1/6λ−1/6L2/7) + O(m−1/6

√
log(m)T 2/3λ−2/3L3)

≤ O
(√

T d̃ log(1 + TK/λ) ·
(
α

√
d̃ log(1 + TK/λ) − 2 log(δ) + λ1/2S

))
+ O

(√
T log(1

δ
) +

√
TξR

)
+ O(1)

where the last inequality is because we have sufficiently large network width m, as mentioned in Theorem 5.1,
which completes the proof.

E Guarantee for Choosing the Optimal Arm Category (Proof of theorem 5.2)

As mentioned in the main body, for the sake of theoretical analysis in this section, we suppose the candidate
arms Xt in each round t ∈ [T ] are randomly sampled from the context distribution D. Meanwhile, to derive the
performance guarantee for the category-level model in each round, we consider the preference scores to satisfy
the definition of the ζ-margin among arm categories. Here, we note that this definition is necessary for defining
the "optimal arm category" and deriving the performance guarantee for the category-level recommendation.
Otherwise, consider a scenario where we receive |Ct| = 10 categories all with the same category reward. In
this case, there will be no need to perform category-level recommendation, since choosing arbitrary categories
can lead to the highest category reward.

Recall that in each round, we will choose |C̃t| = B categories for the first-stage recommendation. With
the definition on the category margin, if the optimal category falls into the chosen ones, i.e., c∗

t ∈ C̃t,
the discrimination power of the category-level model must be enough. If the category-level can definitely
discriminate the optimal category c∗

t ∈ C̃t, we can consider that for all the other arm categories, we need to
make sure there is no overlap in terms of the confidence bounds with the optimal category. With a minimum
category reward interval ζ, denoting error(c) to be the estimation error in terms of category c’s reward, we
will have

EXt∼D

[
error(c∗

t ) + error(ct)
]

≤ ζ =⇒ E
[∣∣(hC(νc∗

t ,t) − FC(νc∗
t ,t))

∣∣ +
∣∣(hC(νct,t) − FC(νct,t))

∣∣] ≤ ζ

=⇒ E
[∣∣(hA(x∗

t ) − FC(νc∗
t ,t)) + (hA(x̃∗

t ) − FC(νct,t))
∣∣] ≤ ζ

=⇒ E
[∣∣(hA(x∗

t ) − FC(νc∗
t ,t)) + (hA(x̃∗

t ) − FC(νct,t))
∣∣] ≤ E

[∣∣hA(x∗
t ) − FC(νc∗

t ,t)
∣∣ +

∣∣hA(x̃∗
t ) − FC(νct,t)

∣∣]
≤ ζ
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By only considering the relationship between the chosen category and the optimal category, while omitting
the expectation E[·] notation for simplicity, we can satisfy the condition above by enabling

ζ ≥
∣∣hA(x∗

t ) − F∗
A(x∗

t )
∣∣ +

∣∣F∗
A(x∗

t ) − FC(νc∗
t ,t)

∣∣ +
∣∣hA(x̃∗

t ) − hA(x̃t)
∣∣ +

∣∣hA(x̃t) − FA(xt)
∣∣ +

∣∣FA(xt) − FC(νct,t)
∣∣

≥
∣∣hA(x∗

t ) − F∗
A(x∗

t ) + F∗
A(x∗

t ) − FC(νc∗
t ,t)

∣∣ +
∣∣hA(x̃∗

t ) − hA(x̃t) + hA(x̃t) − FA(xt) + FA(xt) − FC(νct,t)
∣∣

=
∣∣hA(x∗

t ) − F∗
A(x∗

t ) + F∗
A(x∗

t ) − FC(νc∗
t ,t)

∣∣ +
∣∣hA(x̃∗

t ) − FA(xt) + FA(xt) − FC(νct,t)
∣∣

≥
∣∣hA(x∗

t ) − FC(νc∗
t ,t)

∣∣ +
∣∣hA(x̃∗

t ) − FC(νct,t)
∣∣.

Furthermore, with B = |C̃t| tasks chosen in round t as well as the notation from Section D, for ct ∈ C̃t, and
we can further relax our objective, because as long as our overall estimation error is smaller than B · ζ, we
will be able to include c∗

t to C̃t. This consequently leads to

E
[ ∣∣hA(x∗

t ) − F∗
A(x∗

t )
∣∣︸ ︷︷ ︸

I1

+
∣∣F∗

A(x∗
t ) − FC(νc∗

t ,t)
∣∣︸ ︷︷ ︸

I2

+
∣∣FC(νct,t) − FA(xt)

∣∣︸ ︷︷ ︸
I3

+
∣∣FA(xt) − hA(xt)

∣∣︸ ︷︷ ︸
I4

+
∣∣hA(xt) − hA(x̃∗

t )︸ ︷︷ ︸
I5

∣∣]
≤ B · ζ

where there are a total of five terms on the LHS that we need to bound one by one. Here, terms I1, I4 refer
to the estimation error of our processed arm-level model and the imaginary arm-level model, which can be
bounded by Lemma H.1 and Corollary H.2 respectively. Then, terms I2, I3 refer to the approximation error
of the category-level models, which measures how much the category-level model output deviates from the
pseudo label. These two terms can be bounded by Corollary F.3, Corollary F.4 respectively. With Lemma
H.3, we can bound term I5 being the reward discrepancy between the chosen arm xt and the optimal arm
within the chosen categories x̃t. Afterwards, apply the upper bound for these terms, we will have

B · ζ ≥ 2γT (α) · min{∥g(xt; [ΘA]t−1)/
√

m∥Σ−1
t−1

, 1} + γ∗
T (α) · min{∥g(x∗

t ; [Θ∗
A]t−1)/

√
m∥(Σ∗

t−1)−1 , 1}

+ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7) + O(m−1/6
√

log(m)t2/3λ−2/3L3)

+ O
(√

1
t

log(1
δ

)
)

+
√

ξR

t
+ O( tLR2

√
m

+ tR4/3L2√
log m

m1/3 )

+ O(tR4/3m−1/3L2
√

log m) + O(tξCR1/3m−1/12L3
√

log m)
≥ 2γt−1(α) · min{∥g(xt; [ΘA]t−1)/

√
m∥Σ−1

t−1
, 1} + γ∗

t−1(α) · min{∥g(x∗
t ; [Θ∗

A]t−1)/
√

m∥(Σ∗
t−1)−1 , 1}

+ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7) + O(m−1/6
√

log(m)t2/3λ−2/3L3)

+ O
(√

1
t

log(1
δ

)
)

+
√

ξR

t
+ O( tLR2

√
m

+ tR4/3L2√
log m

m1/3 )

+ O(tR4/3m−1/3L2
√

log m) + O(tξCR1/3m−1/12L3
√

log m).

Then, for the min{∥g(xt; [ΘA]t−1)/
√

m∥Σ−1
t−1

, 1}, min{∥g(x∗
t ; [Θ∗

A]t−1)/
√

m∥(Σ∗
t−1)−1 , 1} terms, since we

have the candidate arms Xt drawn in an i.i.d. manner, we can follow an analogous approach as in the proof
of Corollary F.3. By constructing the martingale difference sequence and applying the Azuma-Hoeffding
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inequality, we will have

E
[

min{∥g(xt; [ΘA]t−1)/
√

m∥Σ−1
t−1

, 1}
]

= 1
t

∑
τ∈[t]

E
[

min{∥g(xτ ; [ΘA]t−1)/
√

m∥Σ−1
t−1

, 1}
]

≤ 1
t

∑
τ∈[t]

E
[

min{∥g(xτ ; [ΘA]t−1)/
√

m∥Σ−1
τ−1

, 1}
]

≤ 1
t

∑
τ∈[t]

E
[

min{∥g(xτ ; [ΘA]τ−1)/
√

m∥Σ−1
τ−1

, 1}
]

+ O(m−1/6
√

log(m)t2/3λ−2/3L3)

≤ 1
t

∑
τ∈[t]

∣∣ min{∥g(xτ ; [ΘA]τ−1)/
√

m∥Σ−1
τ−1

, 1}
∣∣ + O

(√
2
t

log(1
δ

)
)

+ O(m−1/6
√

log(m)t2/3λ−2/3L3)

≤ O

√
d̃

t
log(1 + tK/λ) + O

(√
2
t

log(1
δ

)
)

+ O(m−1/6
√

log(m)t2/3λ−2/3L3)

where the first inequality is because of Corollary 7.7.4. (a) from (Meyer, 2000), second inequality is because
of Lemma G.4, and the last inequality is based on Lemma I.9, Lemma I.10 and Lemma I.2. Similar bound
can also be obtained for term min{∥g(x∗

t ; [Θ∗
A]t−1)/

√
m∥(Σ∗

t−1)−1 , 1}.

Finally, by assembling all the results above, we can have

B · ζ ≥ O
(√

d̃

t
log(1 + tK/λ) ·

(
α

√
d̃ log(1 + tK/λ) − 2 log(δ) + λ1/2S

))
+ O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

+ O(m−1/6
√

log(m)t2/3λ−2/3L3)

+ O
(√

1
t

log(1
δ

) +
√

ξR

t

)
+ O( tLR2

√
m

+ tR4/3L2√
log m

m1/3 )

+ O(tR4/3m−1/3L2
√

log m) + O(tξCR1/3m−1/12L3
√

log m).

Then, with sufficiently large network width m indicated in Theorem 5.1, we can finally have

t ≥
(O

(√
d̃ log(1 + tK/λ) ·

(
α

√
d̃ log(1 + tK/λ) − 2 log(δ) + λ1/2S

))
+ O

(√
log(δ−1) +

√
ξR

)
+ O(1)

B · ζ

)2
.

F Bounding Estimation Error for the Category-level Model

Recall that the category-level models f
(1)
C , f

(2)
C are trained with the output of the arm-level model fA. As

shown in the main body, this will lead to the error term min{
∣∣FC(νct,t) − FA(xt)

∣∣, 1}, which bound the
output difference between the category-level model and the arm-level model. In order to derive the T -round
regret R(T ), after accumulating this error term for T rounds, we need to bound the following two terms∑

t∈[T ]

E
[

min{|FC(νct,t) − FA(xt)|, 1}
∣∣∣∣Xt

]
,

∑
t∈[T ]

E
[

min{|F∗
A(x∗

t ) − FC(νc∗
t ,t)|, 1}

∣∣∣∣Xt

]

where we recall FC(νct,t) = f
(1)
C (νct,t; [Θ(1)

C ]t−1) + f
(2)
C (∇f

(1)
C (νct,t); [Θ(2)

C ]t−1) represents the estimated score
for the chosen category ct, while on the other hand, we have FA(xt) = fA(xt; [ΘA]t−1) + UCBα(xt) being
the score from the arm-level model. Here, the first objective measures the approximation error of the
category-level model FC , which the second term measures the error of the imaginary category-level model
that has been trained on optimal arm categories. Then, we will proceed to introduce the following results.
Lemma F.1. Given past collected records, we suppose m, ηC , J satisfy the conditions in Theorem 5.1,
and randomly draw the parameter [Θ(1)

C ]t, [Θ(2)
C ]t ∼ {[Θ̂(1)

C ]τ , [Θ̂(2)
C ]τ }τ∈[t−1]. Consider the past records
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Pt = {νcτ ,τ , r̃cτ ,τ }τ∈[t−1] up to round t are generated by a policy. Then, with ξR > 0 and the probability at
least 1 − δ, given a pair of arm category and its pseudo reward {νct,t, r̃ct,t}, we have∑

τ∈[t]

E
[

min
{

|f (1)
C (νcτ ,τ ; [Θ(1)

C ]τ−1) + f
(2)
C (∇f

(1)
C (νcτ ,τ ); [Θ(2)

C ]τ−1) − r̃cτ ,τ |, 1
} ∣∣∣∣Xτ

]

≤ O
(√

t log(1
δ

)
)

+
√

tξR + O( t2LR2
√

m
+ t2R4/3L2√

log m

m1/3 )

where r̃cτ ,τ is the pseudo reward generated by the arm-level model FA(·), as defined in Algorithm 1.

Proof. We prove this Lemma following a similar approach as in Lemma C.1 from (Ban et al., 2022). First,
for the LHS, we have∣∣f (1)

C (νct,t;[Θ(1)
C ]t−1) + f

(2)
C (∇f

(1)
C (νct,t); [Θ(2)

C ]t−1) − r̃ct,t

∣∣
≤

∣∣f (1)
C (νct,t; [Θ(1)

C ]t−1)
∣∣ +

∣∣f (2)
C (∇f

(1)
C (νct,t); [Θ(2)

C ]t−1)
∣∣ +

∣∣r̃ct,t

∣∣ ≤ O(1)

based on the conclusion from Lemma G.1, as well as the value range for pseudo reward r̃. Then, we define
the following martingale difference sequence with regard to the previous records up to round τ ∈ [t], as

Vτ = E
[∣∣f (1)

C (νcτ ,τ ; [Θ(1)
C ]τ−1) + f

(2)
C (∇f

(1)
C (νcτ ,τ ); [Θ(2)

C ]τ−1) − r̃cτ ,τ

∣∣]
−

∣∣f (1)
C (νcτ ,τ ;[Θ(1)

C ]τ−1) + f
(2)
C (∇f

(1)
C (νcτ ,τ ); [Θ(2)

C ]τ−1) − r̃cτ ,τ

∣∣.
Since the records in set Pτ are sharing the same reward mapping function, we have the expectation

E[Vτ

∣∣Fτ ] = E
[
|f (1)

C (νcτ ,τ ; [Θ(1)
C ]τ−1) + f

(2)
C (∇f

(1)
C (νcτ ,τ ); [Θ(2)

C ]τ−1) − r̃cτ ,τ |
]

−E
[
|f (1)

C (νcτ ,τ ;[Θ(1)
C ]τ−1) + f

(2)
C (∇f

(1)
C (νcτ ,τ ); [Θ(2)

C ]τ−1) − r̃cτ ,τ |
∣∣Fτ

]
= 0.

where Fτ denotes the filtration given the past records. Then, we can have the mean value of Vτ across
different time steps being

1
t

∑
τ∈[t]

[Vτ ] = 1
t

∑
τ∈[t]

E
[∣∣f (1)

C (νcτ ,τ ; [Θ(1)
C ]τ−1) + f

(2)
C (∇f

(1)
C (νcτ ,τ ); [Θ(2)

C ]τ−1) − r̃cτ ,τ

∣∣]
−1

t

∑
τ∈[t]

∣∣f (1)
C (νcτ ,τ ;[Θ(1)

C ]τ−1) + f
(2)
C (∇f

(1)
C (νcτ ,τ ); [Θ(2)

C ]τ−1) − r̃cτ ,τ

∣∣.
with the expectation of zero. Then, we proceed to bound the expected estimation error of the exploitation
model with the estimation error from existing samples. Afterwards, by applying the Azuma-Hoeffding
inequality, with a constant δ ∈ (0, 1), we have

P
[

1
t

∑
τ∈[t]

E
[∣∣f (1)

C (νcτ ,τ ;[Θ(1)
C ]τ−1) + f

(2)
C (∇f
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t
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∣∣f (1)
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C ]τ−1) + f
(2)
C (∇f

(1)
C (νcτ ,τ ); [Θ(2)

C ]τ−1) − r̃cτ ,τ

∣∣ ≥ O(1) ·
√

2
t

log(1
δ

)
]

≤ δ.

As we have the parameter [Θ(1)
C ]t, [Θ(2)

C ]t ∼ {[Θ̂(1)
C ]τ , [Θ̂(2)

C ]τ }τ∈[t], with the probability at least 1 − δ, the
expected loss on [Θ(1)

C ]t could be bounded as

1
t

∑
τ∈[t]

E
[∣∣f (1)

C (νcτ ,τ ; [Θ(1)
C ]τ−1) + f

(2)
C (∇f

(1)
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C ]τ−1) − r̃cτ ,τ

∣∣]
≤ 1

t
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τ∈[t]

∣∣f (1)
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C (∇f

(1)
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∣∣ + O(1) ·
√

2
t

log(1
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)
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where for the second term on the RHS, we have

1
t

∑
τ∈[t]

∣∣f (1)
C (νcτ ,τ ; [Θ(1)

C ]τ−1) + f
(2)
C (∇f

(1)
C (νcτ ,τ ); [Θ(2)

C ]τ−1) − r̃cτ ,τ

∣∣
≤ 1√

t

√ ∑
τ∈[t]

∣∣f (1)
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(2)
C (∇f
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log m
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≤
√
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t
+ O( tLR2

√
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+ tR4/3L2√
log m

m1/3 )

where with the notation in Lemma G.7 and Lemma G.6, and we ca further have the definition for the first
term being ξR = inf

ΘC∈B([ΘC ]0, Rm− 1
4 )

[ 1
2

∑
τ∈[t]

∣∣f (1)
C (νcτ ,τ ; Θ(1)

C ) + f
(2)
C (∇f

(1)
C (νcτ ,τ ); Θ(2)

C ) − r̃cτ ,τ

∣∣2]
> 0,

with [ΘC ]0 be the initial parameters from either of the two category-level networks. Here, the inequality is
the application of Lemma G.7. Summing up all the components would complete the proof.

Meanwhile, apart from the sequence of chosen categories {νct,t}t∈[T ], we can also have comparable results for
other sequences of categories. Next, we will introduce the lemma in terms of the optimal categories in order
to prove the bound for our second objective.

Lemma F.2. Given past collected records, we suppose m, ηC , J satisfy the conditions in Theorem 5.1,
and randomly draw the parameter [Θ(1)

C ]t, [Θ(2)
C ]t ∼ {[Θ̂(1)

C ]τ , [Θ̂(2)
C ]τ }τ∈[t−1]. Consider the past records

Pt = {νc∗
τ ,τ , r̃∗

c∗
τ ,τ }τ∈[t−1] up to round t are generated by a policy. Then, with probability at least 1 − δ, given

a pair of arm category and its pseudo reward {νct,t, r̃ct,t}, we have

∑
τ∈[t]

E
[

min
{

|f (1)
C (νc∗

τ ,τ ; [Θ(1)
C ]τ−1) + f

(2)
C (∇f

(1)
C (νc∗

τ ,τ ); [Θ(2)
C ]τ−1) − r̃∗

c∗
τ ,τ |, 1

} ∣∣∣∣Xτ

]

≤ O
(√

t log(1
δ

)
)

+
√

tξR + O( t2LR2
√

m
+ t2R4/3L2√

log m

m1/3 )

+ O(tR4/3m−1/3L2
√

log m) + O(tξCR1/3m−1/12L3
√

log m)

where r̃∗
c∗

τ ,τ is the pseudo reward generated by the imaginary arm-level model F∗
A(·), which is trained by

optimal arms {x∗
τ , r∗

τ }τ∈[t].

Proof. The proof of this lemma follows an analogous approach as in Lemma F.1. Recall that our pro-
cessed category networks f

(1)
C (·; [Θ(1)

C ]), f
(2)
C (·; [Θ(2)

C ]) are trained by the records related to the chosen arms
and their rewards {xτ , rτ }τ∈[t]. Here, we first consider the alternative imaginary category-level models
f

(1),∗
C (·; [Θ(1),∗

C ]), f
(2),∗
C (·; [Θ(2),∗

C ]), and arm-level model f∗
A(·; [Θ∗

A]). These imaginary models are trained by
the records optimal arms as well as optimal arm categories.

Similar to Lemma F.1, based on Lemma G.1, we have the LHS of the objective bounded by O(1). Then, we
define the following martingale difference sequence with regard to the previous records up to round τ ∈ [t] in
terms of the optimal arms and categories, such that

V ∗
τ = E

[∣∣f (1),∗
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τ ,τ

∣∣.
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where we also have its expectation w.r.t. the filtration F ∗
τ , E[V ∗

τ

∣∣F ∗
τ ] = 0. Next, by applying the Azume-

Hoeffing inequality, with 1 > δ > 0, we can also have
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log(1
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)
]

≤ δ.

After applying Lemma G.6 and Lemma G.7, we will end up with
1
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log m
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where the last inequality is because the parameter sphere B([ΘC ]0, Rm−1/4) also includes the imaginary
model parameters. Noticing that the current bound is built upon the imaginary category-models, we then
need to further extend this bound to our processed category-level models.

With Lemma G.6, we know that the processed parameters [Θ(1)
C ]τ−1, [Θ(2)

C ]τ−1 as well as the imaginary ones
both fall into B([ΘC ]0, Rm−1/4). As a result, we can have∣∣f (1),∗
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where the inequality is by applying Lemma G.3. Then, for the last term on the RHS, supposing the input
gradients are normalized by a coefficient 1

O(mL) , we will have∣∣f (2),∗
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where the first inequality is by the triangular inequality, the second inequality is because of Lemma G.3, and
the final inequality is because of the fact that over-parameterized FC networks are Lipshitz continuous w.r.t.
some constant ξC > 0 (Allen-Zhu et al., 2019) as well as Lemma G.4.

In addition, apart from the performance guarantee for the T rounds altogether, we can further have the
performance guarantee in terms of each t ∈ [T ] round, if each candidate arm is drawn from a distribution in
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an i.i.d. manner. This can be done by extending the conclusion as well as the proof workflow from Lemma
F.1 and Lemma F.2.

Corollary F.3. Given past collected records, we suppose m, ηC , J satisfy the conditions in Theorem 5.1,
and randomly draw the parameter [Θ(1)

C ]t, [Θ(2)
C ]t ∼ {[Θ̂(1)

C ]τ , [Θ̂(2)
C ]τ }τ∈[t−1]. Consider the arms within

candidate arm pools {Xτ }τ∈[t] are drawn from a distribution D in the i.i.d. manner, and the past records
Pt = {νcτ ,τ , r̃cτ ,τ }τ∈[t−1] up to round t are generated by a policy. Then, with probability at least 1 − δ, given
a pair of arm category and its pseudo reward {νct,t, r̃ct,t}, we have

E
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log m

m1/3 )

where r̃ct,t is the pseudo reward generated by the arm-level model FA(·), as defined in Algorithm 1.

Proof. The proof of this corollary follows a comparable approach as in Lemma F.1. Similarly, based on the
conclusion from Lemma G.1 and the value range for pseudo reward r̃, we define the following martingale
difference sequence with regard to the previous records up to round τ ∈ [t], as

Vτ = E
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∣∣.
Since the records in set Pτ are sharing the same reward mapping function, we have the expectation
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where Fτ denotes the filtration given the past records. Then, we can have the mean value of Vτ across
different time steps being
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with the expectation of zero. Then, we proceed to bound the expected estimation error of the exploitation
model with the estimation error from existing samples. Afterwards, by applying the Azuma-Hoeffding
inequality, with the probability at least 1 − δ, the expected loss on [Θ(1)

C ]t could be bounded as
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where for the second term on the RHS, since we have Xτ ∼ D, τ ∈ [t] as well as [Θ(1)
C ]t, [Θ(2)

C ]t ∼
{[Θ̂(1)
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C ]τ }τ∈[t−1], it will lead to

Eνct,t

∣∣f (1)
C (νct,t; [Θ(1)

C ]t−1) + f
(2)
C (∇f

(1)
C (νct,t); [Θ(2)

C ]t−1) − r̃ct,t

∣∣
= 1

t

∑
τ∈[t]

∣∣f (1)
C (νcτ ,τ ; [Θ(1)

C ]τ−1) + f
(2)
C (∇f

(1)
C (νcτ ,τ ); [Θ(2)

C ]τ−1) − r̃cτ ,τ

∣∣
≤ 1√

t

√ ∑
τ∈[t]

∣∣f (1)
C (νcτ ,τ ; [Θ(1)

C ]τ−1) + f
(2)
C (∇f

(1)
C (νcτ ,τ ); [Θ(2)

C ]τ−1) − r̃cτ ,τ

∣∣2

+ O(1) + tLR2
√

m
+ O( tR4/3L2√

log m

m1/3 )

≤
√

ξR

t
+ O(1) + tLR2

√
m

+ O( tR4/3L2√
log m

m1/3 )

where with the notation from Lemma G.7 and Lemma G.6, we will also have the first term measuring the
regression difficulty being ξR = inf

ΘC∈B([ΘC ]0, Rm− 1
4 )
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, with [ΘC ]0 be the initial parameters from either of the two category-level networks. The inequality

is the application of Lemma G.7. Summing up all the components would complete the proof.

Corollary F.4. Given past collected records, we suppose m, ηC , J satisfy the conditions in Theorem 5.1,
and randomly draw the parameter [Θ(1)

C ]t, [Θ(2)
C ]t ∼ {[Θ̂(1)

C ]τ , [Θ̂(2)
C ]τ }τ∈[t−1]. Consider the arms within

candidate arm pools {Xτ }τ∈[t] are drawn from a distribution D in the i.i.d. manner, and the past records
Pt = {νc∗

τ ,τ , r̃∗
c∗

τ ,τ }τ∈[t−1] up to round t are generated by a policy. Then, with probability at least 1 − δ, given
a pair of arm category and its pseudo reward {νct,t, r̃ct,t}, we have
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t ,t; [Θ(1)
C ]t−1) + f

(2)
C (∇f

(1)
C (νc∗

t ,t); [Θ(2)
C ]t−1) − r̃∗

c∗
t ,t|, 1

} ∣∣∣∣Xt

]
≤ O

(√
1
t

log(1
δ

)
)

+
√

ξR

t
+ O( tLR2

√
m

+ tR4/3L2√
log m

m1/3 ) + O(R4/3m−1/3L2
√

log m)

+ O(ξCR1/3m−1/12L3
√

log m)

where r̃∗
c∗

t ,t is the pseudo reward generated by the imaginary arm-level model F∗
A(·), which is trained by optimal

arms {x∗
τ , r∗

τ }τ∈[t].

Proof. The proof of this corollary follows an analogous approach as in Lemma F.2 and Corollary F.3.
Similarly, we first consider the alternative imaginary category-level models f

(1),∗
C (·; [Θ(1),∗

C ]), f
(2),∗
C (·; [Θ(2),∗

C ]),
and arm-level model f∗

A(·; [Θ∗
A]). These imaginary models are trained by the records optimal arms as well as

optimal arm categories. Analogous to Lemma F.1, based on Lemma G.1, we have the LHS of the objective
bounded by O(1). Then, we define the following martingale difference sequence with regard to the previous
records up to round τ ∈ [t] in terms of the optimal arms and categories, such that

V ∗
τ = E

[∣∣f (1),∗
C (νcτ ,τ ; [Θ(1),∗

C ]τ−1) + f
(2),∗
C (∇f

(1),∗
C (νcτ ,τ ); [Θ(2),∗

C ]τ−1) − r̃∗
c∗

τ ,τ

∣∣]
−

∣∣f (1),∗
C (νcτ ,τ ;[Θ(1),∗

C ]τ−1) + f
(2),∗
C (∇f

(1),∗
C (νcτ ,τ ); [Θ(2),∗

C ]τ−1) − r̃∗
c∗

τ ,τ

∣∣.
where we also have its expectation w.r.t. the filtration F ∗

τ , E[V ∗
τ

∣∣F ∗
τ ] = 0. Next, by applying the Azume-

Hoeffing inequality, with 1 > δ > 0, we can also have

P
[

1
t

∑
τ∈[t]

E
[∣∣f (1),∗

C (νcτ ,τ ; [Θ(1),∗
C ]τ−1) + f

(2),∗
C (∇f

(1),∗
C (νcτ ,τ ); [Θ(2),∗

C ]τ−1) − r̃∗
c∗

τ ,τ

∣∣]
− 1

t

∑
τ∈[t]

∣∣f (1),∗
C (νcτ ,τ ; [Θ(1),∗

C ]τ−1) + f
(2),∗
C (∇f

(1),∗
C (νcτ ,τ ); [Θ(2),∗

C ]τ−1) − r̃∗
c∗

τ ,τ

∣∣ ≥ O(1) ·
√

2
t

log(1
δ

)
]

≤ δ.
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After applying Lemma G.6 and Lemma G.7, we will end up with

Eνc∗
t

,t

∣∣f (1),∗
C (νc∗

t ,t;[Θ(1),∗
C ]t−1) + f

(2),∗
C (∇f

(1),∗
C (νc∗

t ,t); [Θ(2),∗
C ]t−1) − r̃∗

c∗
t ,t

∣∣
= 1

t

∑
τ∈[t]

∣∣f (1),∗
C (νc∗

τ ,τ ; [Θ(1),∗
C ]τ−1) + f

(2),∗
C (∇f

(1),∗
C (νc∗

τ ,τ ); [Θ(2),∗
C ]τ−1) − r̃∗

c∗
τ ,τ

∣∣
≤ 1√

t

√ ∑
τ∈[t]

∣∣f (1),∗
C (νc∗

τ ,τ ; [Θ(1),∗
C ]τ−1) + f

(2),∗
C (∇f

(1),∗
C (νc∗

τ ,τ ); [Θ(2),∗
C ]τ−1) − r̃∗

c∗
τ ,τ

∣∣2

+ O(1) + tLR2
√

m
+ O( tR4/3L2√

log m

m1/3 )

≤
√

ξR

t
+ O(1) + tLR2

√
m

+ O( tR4/3L2√
log m

m1/3 ).

where the last inequality is because the parameter sphere B([ΘC ]0, Rm−1/4) also includes the imaginary
model parameters. Noticing that the current bound is built upon the imaginary category-models, we then
need to further extend this bound to our processed category-level models.

With Lemma G.6, we know that the processed parameters [Θ(1)
C ]τ−1, [Θ(2)

C ]τ−1 as well as the imaginary ones
both fall into B([ΘC ]0, Rm−1/4). As a result,∣∣f (1),∗

C (νc∗
τ ,τ ; [Θ(1),∗

C ]τ−1) + f
(2),∗
C (∇f

(1),∗
C (νc∗

τ ,τ ); [Θ(2),∗
C ]τ−1)

− f
(1)
C (νc∗

τ ,τ ; [Θ(1)
C ]τ−1) + f

(2)
C (∇f

(1)
C (νc∗

τ ,τ ); [Θ(2)
C ]τ−1)

∣∣
≤

∣∣f (1),∗
C (νc∗

τ ,τ ; [Θ(1),∗
C ]τ−1) − f

(1)
C (νc∗

τ ,τ ; [Θ(1)
C ]τ−1)

∣∣
+

∣∣f (2),∗
C (∇f

(1),∗
C (νc∗

τ ,τ ); [Θ(2),∗
C ]τ−1) − f

(2)
C (∇f

(1)
C (νc∗

τ ,τ ); [Θ(2)
C ]τ−1)

∣∣
≤ O(Rm−1/4

√
L) + O(R4/3m−1/3L2

√
log m)

+
∣∣f (2),∗

C (∇f
(1),∗
C (νc∗

τ ,τ ); [Θ(2),∗
C ]τ−1) − f

(2)
C (∇f

(1)
C (νc∗

τ ,τ ); [Θ(2)
C ]τ−1)

∣∣
where the inequality is by applying Lemma G.3. Then, for the last term on the RHS, supposing the input
gradients are normalized by a coefficient 1

O(mL) , we will have∣∣f (2),∗
C (∇f

(1),∗
C (νc∗

τ ,τ ); [Θ(2),∗
C ]τ−1) − f

(2)
C (∇f

(1)
C (νc∗

τ ,τ ); [Θ(2)
C ]τ−1)

∣∣
≤

∣∣f (2),∗
C (∇f

(1),∗
C (νc∗

τ ,τ ); [Θ(2),∗
C ]τ−1) − f

(2)
C (∇f

(1),∗
C (νc∗

τ ,τ ); [Θ(2)
C ]τ−1)

∣∣
+

∣∣f (2)
C (∇f

(1),∗
C (νc∗

τ ,τ ); [Θ(2)
C ]τ−1) − f

(2)
C (∇f

(1)
C (νc∗

τ ,τ ); [Θ(2)
C ]τ−1)

∣∣
≤ O(Rm−1/4

√
L) + O(R4/3m−1/3L2

√
log m)

+
∣∣f (2)

C (∇f
(1),∗
C (νc∗

τ ,τ ); [Θ(2)
C ]τ−1) − f

(2)
C (∇f

(1)
C (νc∗

τ ,τ ); [Θ(2)
C ]τ−1)

∣∣
≤ O(Rm−1/4

√
L) + O(R4/3m−1/3L2

√
log m) + O(ξCR1/3m−1/12L3

√
log m)

where the first inequality is by the triangular inequality, the second inequality is because of Lemma G.3, and
the final inequality is because of the fact that over-parameterized FC networks are Lipshitz continuous w.r.t.
some constant ξC > 0 (Allen-Zhu et al., 2019) as well as Lemma G.4.

G Lemmas For Category-level Neural Networks

Here, without the loss of generality, we use fC to denote both f
(1)
C and f

(2)
C , since these two models will

follow very similar patterns. To begin with, given the input feature vector x ∈ Rd, we denote the L-layer
fully-connected (FC) neural network with network width m by

fC(x; Θ) = ΘL(
L−1∏
l=1

DlΘl) · x, (8)
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where with ϕ being the ReLU activation, we define the intermediate hidden representations hl, l ∈ {0, . . . , L−1}
as

h0 = x, hl = ϕ(Θlhl−1), l ∈ [L − 1].
and we also have the binary diagonal matrix functioning as the ReLU activation being

Dl = diag(I{(Θlhl−1)1}, . . . , I{(Θlhl−1)m}), l ∈ [L − 1].

where I(·) is the indicator function. Afterwards, the corresponding gradients will naturally become

∇Θl
fC(x; Θ) =

{
[hl−1ΘL(

∏L−1
τ=l+1 Dτ Θτ )]⊺, l ∈ [L − 1]

h⊺
L−1, l = L.

(9)

Recall that for the category-level models, for l ∈ [L − 1], each entry of Θl is drawn from the Gaussian
distribution N (0, 2/m); Each entry of ΘL is drawn from the Gaussian distribution N (0, 1/m).
Lemma G.1. Suppose m, ηC , η2 satisfy the conditions in Theorem 5.1. Based on the Gaussian initialization
of weight matrices, with probability at least 1 − O(TkL) · exp(−Ω(mω2/3L)) over the random initialization,
for all t ∈ [T ], i ∈ [k], Θ satisfying ∥Θ − Θ0∥2 ≤ ω with ω ≤ O(L−9/2[log m]−3), it holds uniformly that

|fC(νc,t; Θ)| ≤ O(1).
∥∇ΘfC(νc,t; Θ)∥2 ≤ O(

√
L).

∥∇ΘLt(Θt)∥2 ≤ O(
√

L).

where Lt(Θ) = (fC(xt; Θ) − rt)2/2 is the L2 prediction loss in terms of the arm xt.

Proof. (1) is a simply application of Cauchy–Schwarz inequality.

|fC(xt; Θ)| = |ΘL(
L−1∏
l=1

DlΘl)νc,t| ≤ ∥ΘL(
L−1∏
l=1

DlΘl)∥2︸ ︷︷ ︸
I1

∥νc,t∥2 ≤ O(1)

where the inequality is based on the Lemma B.2 (Cao & Gu, 2019) and the fact that I1 ≤ O(1), and
∥νc,t∥2 = 1. For (2), it holds uniformly that

∥∇ΘfC(νc,t; Θ)∥2 = ∥vec(∇Θ1f)⊺, . . . , vec(∇ΘL
f)⊺∥2 ≤ O(

√
L)

where ∥∇Θ1f∥F ≤ O(1) is an application of Lemma B.3 (Cao & Gu, 2019) by removing
√

m.

For (3), we have ∥∇ΘLt(Θt)∥2 ≤ |L′
t| · ∥∇ΘfC(νc,t; Θ)∥2 ≤ O(

√
L).

Lemma G.2. Suppose m, ηC , η2 satisfy the conditions in Theorem 5.1. With probability at least 1 −
O(TkL) · exp(−Ω(mω2/3L)), for all t ∈ [T ], i ∈ [k], Θ, Θ′ satisfying ∥Θ − Θ0∥2, ∥Θ′ − Θ0∥2 ≤ ω with
ω ≤ O(L−9/2[log m]−3), it holds uniformly that

|fC(x; Θ) − fC(x; Θ′) − ⟨▽Θ′fC(x; Θ′), Θ − Θ′⟩| ≤ O(w1/3L2
√

log m)∥Θ − Θ′∥2.

Proof. Based on Lemma 4.1 (Cao & Gu, 2019), it holds uniformly that

|
√

mfC(x; Θ) −
√

mfC(x; Θ′) − ⟨
√

m▽Θ′fC(x; Θ′), Θ − Θ′⟩| ≤ O(w1/3L2
√

m log(m))∥Θ − Θ′∥2,

where
√

m comes from the different scaling of neural network structure. Removing
√

m completes the
proof.

Lemma G.3. Suppose m, ηC , η2 satisfy the conditions in Theorem 5.1. With probability at least 1 −
O(TkL) · exp(−Ω(mω2/3L)), for all t ∈ [T ], i ∈ [k], Θ, Θ′ satisfying ∥Θ − Θ0∥2, ∥Θ′ − Θ0∥2 ≤ ω with
ω ≤ O(L−9/2[log m]−3), it holds uniformly that

|fC(x; Θ) − fC(x; Θ′)| ≤O(ω
√

L) + O(ω4/3L2
√

log m) (10)
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Proof. Based on the LHS of the inequality in Lemma G.3, we have

|fC(x; Θ) − fC(x; Θ′)|
≤|⟨∇Θ′fC(x; Θ′), Θ − Θ′⟩| + O(ω1/3L2

√
log m)∥Θ − Θ′∥2

≤∥∇Θ′fC(x; Θ′)∥2 · ∥Θ − Θ′∥2 + O(ω1/3L2
√

log m)∥Θ − Θ′∥2

≤O(
√

L)∥Θ − Θ′∥2 + O(ω1/3L2
√

log m)∥Θ − Θ′∥2

The proof is completed.

Lemma G.4 (Theorem 5 in (Allen-Zhu et al., 2019)). Suppose m, ηC , η2 satisfy the conditions in Theorem
5.1. With probability at least 1 − O(TkL) · exp(−Ω(mω2/3L)), for all t ∈ [T ], i ∈ [k], Θ, Θ′ satisfying
∥Θ − Θ0∥2, ∥Θ′ − Θ0∥2 ≤ ω with ω ≤ O(L−9/2[log m]−3), it holds uniformly that

|∇ΘfC(x; Θ) − ∇ΘfC(x; Θ′)| ≤O(ω1/3L3
√

log m)∥∇ΘfC(x; Θ0)∥. (11)

Lemma G.5. Let Lt(Θ) = (fC(xt; Θ) − rt)2/2 being the L2 prediction loss in terms of the arm xt. Suppose
m, ηC , η2 satisfy the conditions in Theorem 5.1. With probability at least 1 − O(TkL2) exp[−Ω(mω2/3L)]
over randomness of Θ1, for all t ∈ [T ], and Θ, Θ′ satisfying ∥Θ − Θ0∥2 ≤ ω and ∥Θ′ − Θ0∥2 ≤ ω with
ω ≤ O(L−6[log m]−3/2), it holds uniformly that

Lt(Θ′) ≥ Lt(Θ) + ⟨∇ΘLt(Θ), Θ′ − Θ⟩ − ϵ

where ϵ = O(ω4/3L3√
log m)).

Proof. Let L′
t be the derivative of Lt with respective to fC(xt; Θ). Then, it holds that |L′

t| ≤ O(1) based on
Lemma G.1. Then, by convexity of Lt, we have

Lt(Θ′) − Lt(Θ)
(a)
≥L′

t[fC(xt; Θ′) − fC(xt; Θ)]
(b)
≥L′

t⟨∇fC(xt; Θ), Θ′ − Θ⟩ − |L′
t| · |fC(xt; Θ′) − fC(xt; Θ) − ⟨∇fC(xt; Θ), Θ′ − Θ⟩|

≥⟨∇ΘLt(Θ), Θ′ − Θ⟩ − |L′
t| · |fC(xt; Θ′) − fC(xt; Θ) − ⟨∇fC(xt; Θ), Θ′ − Θ⟩|

(c)
≥⟨∇Θ′Lt, Θ′ − Θ⟩ − O(ω4/3L3

√
log m))

≥⟨∇Θ′Lt, Θ′ − Θ⟩ − ϵ

where (a) is due to the convexity of Lt, (b) is an application of triangle inequality, and (c) is the application
of Lemma G.2. The proof is completed.

Lemma G.6. Suppose m, ηC , η2 satisfy the conditions in Theorem 5.1. With probability at least 1 −
O(TkL2) exp[−Ω(mω2/3L)] over randomness of Θ0, for any R > 0, it holds uniformly that

∥Θt − Θ0∥2 ≤ O(R/m1/4), t ∈ [T ].

Proof. Let ω ≤ O(R/m1/4). The proof follows a simple induction. Obviously, Θ0 is in the sphere B(Θ0, ω),
where the center is Θ0 and radius is ω. Suppose that Θ1, Θ2, . . . , ΘT ∈ B(Θ2

0, ω). We have, for any t ∈ [T ],

∥ΘT − Θ0∥2 ≤
T∑

t=1
∥Θt − Θt−1∥2 ≤

T∑
t=1

η∥∇Lt(Θt)∥ ≤
T∑

t=1
η
√

L

= O(TR2
√

L/
√

m) ≤ O(R/m1/4)

The proof is complete.
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Lemma G.7 (Theorem 2 in (Ban et al., 2022)). Let Lt(Θ) = (fC(xt; Θ) − rt)2/2. Suppose m, ηC , η2 satisfy
the conditions in Theorem 5.1. With probability at least 1 − O(TkL2) exp[−Ω(mω2/3L)] over randomness of
Θ1, given any R > 0 it holds that

T∑
t

Lt(Θt) ≤
T∑
t

Lt(Θ∗) + O(1) + TLR2
√

m
+ O(TR4/3L2√

log m

m1/3 ). (12)

where Θ∗ = arg infΘ∈B(Θ0,R)
∑T

t Lt(Θ).

Proof. Let Θ′ ∈ B(Θ1, R). In round t, based on Lemma G.6, for any t ∈ [T ], ∥Θt − Θ′∥2 ≤ ω ≤ O(R/m1/4).
Then, based on G.5, it holds uniformly

Lt(Θt) − Lt(Θ′) ≤⟨∇Lt(Θt), Θt − Θ′⟩ + ϵ,

where ϵ = O(ω4/3L2√
log m).

Therefore, for all t ∈ [T ], Θ′ ∈ B(Θ1, R), it holds uniformly

Lt(Θt) − Lt(Θ′)
(a)
≤ ⟨Θt − Θt+1, Θt − Θ′⟩

η
+ ϵ

(b)= ∥Θt − Θ′∥2
2 + ∥Θt − Θt+1∥2

2 − ∥Θt+1 − Θ′∥2
2

2η
+ ϵ

(c)
≤ ∥Θt − Θ′∥2

2 − ∥Θt+1 − Θ′∥2
2

2η
+ O(Lη) + ϵ

where (a) is because of the definition of gradient descent, (b) is due to the fact 2⟨A, B⟩ = ∥A∥2
F + ∥B∥2

F −
∥A − B∥2

F , (c) is by ∥Θt − Θt+1∥2
2 = ∥η∇ΘLt(Θt)∥2

2 ≤ O(η2L).

Then, for T rounds, we have
T∑

t=1
Lt(Θt) −

T∑
t=1

Lt(Θ′)
(1)
≤ ∥Θ1 − Θ′∥2

2
2η

+
T∑

t=2
∥Θt − Θ′∥2

2( 1
2η

− 1
2η

) +
T∑

t=1
Lη + Tϵ

≤∥Θ1 − Θ′∥2
2

2η
+

T∑
t=1

Lη + Tϵ

≤O( R2
√

mη
) +

T∑
t=1

Lη + Tϵ

(2)
≤O(1) + TLR2

√
m

+ O(TR4/3L2√
log m

m1/3 )

where (1) is by simply discarding the last term and (2) is by η = R2
√

m
and replacing ϵ with ω = O(R/m1/4).

H Bounding Errors for the Arm-level Model

In this section, we would like to prove the bound for arm-level recommendations. Recall that after filtering
the arm categories C̃t with the first-level, namely the category-level, recommendation, the arm-level model
intends to recommend one arm xt ∈

⋃
c∈C̃t

Xc,t accordingly, where Xc,t refers to the collection of arms for
each category c ∈ C̃t. First, we would like to restate the definition of the NTK Gram matrix as well as the
effective dimension again for readers’ reference.
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Definition 4 (NTK Matrix (Jacot et al., 2018; Zhou et al., 2020)). Let N denote the Gaussian distribution.
With, define

M0
i,j = Ψ0

i,j = ⟨xi, xj⟩, Nl
i,j =

(
Ψl

i,i Ψl
i,j

Ψl
j,i Ψl

j,j

)
Ψl

i,j = 2Ea,b∼N (0,Nl−1
i,j

)[ϕ(a)ϕ(b)]

Ml
i,j = 2Ml−1

i,j Ea,b∼N (0,Nl−1
i,j

)[ϕ
′(a)ϕ′(b)] + Ψl

i,j .

Then, given the chosen arms {xt}T
t=1 and the optimal arms {x∗

t }T
t=1, the Neural Tangent Kernel Gram Matrix

is defined accordingly as M = (ML + ΨL)/2 ∈ R3T ×3T .

Meanwhile, similar to existing neural bandit works (Zhou et al., 2020; Zhang et al., 2021), we have the
effective dimension definition regarding the NTK Gram matrix
Definition 5 (Effective Dimension (Zhou et al., 2020)). Given the chosen arms {xt}T

t=1 and the optimal
arms {x∗

t }T
t=1 over the finite horizon T , the effective dimension d̃ is defined as

d̃ = log det(I + M/λ)
log(1 + TK/λ) .

which measures the vanishing speed of eigenvalues of Gram matrix M.

The effective dimension here essentially measures the vanishing speed of the Gram matrix eigenvalues.

Apart from the NTK defined above, we also define the gradient mapping w.r.t. the neural network parameters
as following, where the gradient-based mapping will be close to the NTK-based mapping under the over-
parameterized settings. By applying the Lemma I.1 on the arm-level model, when it satisfies the conditions
in Theorem 5.1, we have the expected reward of an arm x ∈ Xt being

E[r|x] = hA(x) = ⟨g(x; [ΘA]0), Θ̄ − [ΘA]0⟩

where there exist parameters Θ̄ such that ∥Θ̄ − [ΘA]0∥ ≤ S/
√

m, S > 0. Meanwhile, we also denote the
following NTK regression parameters

Σ(0)
t−1 = λI +

∑
τ∈[t−1]

g(xτ ; [ΘA]0) · g(xτ ; [ΘA]0)⊺/m,

b
(0)
t−1 =

∑
τ∈[t−1]

g(xτ ; [ΘA]0) · rτ /
√

m,

Σt−1 = λI +
∑

τ∈[t−1]

g(xτ ; [ΘA]τ−1) · g(xτ ; [ΘA]τ−1)⊺/m,

bt−1 =
∑

τ∈[t−1]

g(xτ ; [ΘA]τ−1) · rτ /
√

m,

where {xτ , rτ }, τ ∈ [t] respectively stands for the chosen arms as well as their rewards, and g(x; ΘA) ∈ RpA

refer to the vectorized network gradients w.r.t. ΘA when taking x as the input. Then, with the above
definitions, we proceed to bound the recommendation error of the arm-level model.

H.1 Regret Bound for Arm-level Recommendation

Next, we would like to bound the arm-level recommendation error, which refers to FA(xt) − hC(νct,t). This
measures the difference between the arm-level model output and the arm category reward (i.e., the reward of
the optimal arm in the filtered arm categories x̃∗

t ). Here, the estimation error of the arm-level recommendation,
can be transformed to

min{FA(xt) − hC(νct,t), 1} = min{FA(xt) − hA(xt) + hA(xt) − hC(νct,t), 1}
≤

∣∣FA(xt) − hA(xt)
∣∣ +

∣∣hA(xt) − hC(νct,t)
∣∣

=
∣∣FA(xt) − hA(xt)

∣∣︸ ︷︷ ︸
Error for Reward Estimation

+
∣∣hA(xt) − hA(x̃∗

t )
∣∣︸ ︷︷ ︸

Reward Gap
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where we recall that x̃∗
t = arg maxx∈(

⋃
c∈C̃t

Xc,t)
[
hA(x)

]
refers to the optimal arm within the filtered candidate

arm pool. Here, the first term on the RHS refers to the estimation error of the arm-level model for the reward
of chosen arm xt, while the second term refers to the reward gap between the chosen arm xt and the optimal
arm in the filtered candidate pool x̃∗

t .

H.1.1 Term 1: Error for Reward Estimation

Here, we will have the following lemma for bounding the first term
∣∣FA(xt) − hA(xt)

∣∣.
Lemma H.1. Suppose the arm-level neural network fA(·; [ΘA]t−1) has been trained on chosen arms and
their rewards {xτ , rτ }τ∈[t−1], with J-iteration GD and learning rate η. Meanwhile, fA(·; [ΘA]t−1) is a L-layer
FC network with width m. Suppose we have m, J, η satisfying the conditions in Theorem 5.1. Then, with the
probability at least 1 − δ, we will have∣∣FA(xt) − hA(xt)

∣∣ ≤ 2γt−1(α) · ∥g(xt; [ΘA]t−1)/
√

m∥Σ−1
t−1

+ O(m−1/6
√

log(m)t2/3λ−2/3L3)

+ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7)

By definition in Lemma H.4 and Theorem 1, we have FA(xt) = fA(xt; [ΘA]t−1) + UCBα(xt), and the upper
confidence bound UCBα(xt) = γt−1(α) ·

√
g(xt; [ΘA]t−1)⊺Σ−1

t−1g(xt; [ΘA]t−1), where

Σt−1 = λI +
∑
τ∈[t]

g(xτ ; [ΘA]τ−1) · g(xτ ; [ΘA]τ−1)⊺

γt−1(α) = O
(

α ·

√
log det(Σt−1)

det(ΣλI)
− 2 log(δ) + λ1/2S

)

Proof. The proof of this lemma is following an analogous approach as in Lemma 5.2 of (Zhou et al., 2020).
Recall that we have the combination of reward estimation and the UCB being FA(x) = f(x; [ΘA]t−1) +
γt−1(α) ·

√
g(x; [ΘA]t−1)⊺Σ−1

t−1g(x; [ΘA]t−1). Meanwhile, consider an alternative being

F̃A(x) =
〈
g(x; [ΘA]t−1), [ΘA]t−1 − [ΘA]0

〉
+ γt−1(α) ·

√
g(x; [ΘA]t−1)⊺Σ−1

t−1g(x; [ΘA]t−1)

= max
ΘA∈Et−1

〈
g(x; [ΘA]t−1), ΘA − [ΘA]0

〉
where we also have the output difference |FA(x)−F̃A(x)| ≤ O(m−1/6

√
log(m)t2/3λ−2/3L3) based on Lemma

I.8. Afterwards, with Lemma I.1 and Lemma H.4, we will also have Θ̄A ∈ Et−1, and the objective can
therefore be transformed into∣∣FA(xt)−hA(xt)

∣∣ ≤
∣∣F̃A(xt) − hA(xt)

∣∣ + O(m−1/6
√

log(m)t2/3λ−2/3L3)
=

∣∣ max
ΘA∈Et−1

〈
g(xt; [ΘA]t−1), ΘA − [ΘA]0

〉
−

〈
g(xt; [ΘA]t−1), Θ̄A − [ΘA]0

〉∣∣
+ O(m−1/6

√
log(m)t2/3λ−2/3L3) + O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

=
∣∣ max

ΘA∈Et−1

〈
g(xt; [ΘA]t−1), ΘA − [ΘA]t−1

〉
−

〈
g(xt; [ΘA]t−1), Θ̄A − [ΘA]t−1

〉∣∣
+ O(m−1/6

√
log(m)t2/3λ−2/3L3) + O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

≤ ∥g(xt; [ΘA]t−1)/
√

m∥Σ−1
t−1

·
√

m ·
(
∥Θ̄A − [ΘA]t−1∥Σt−1 + max

ΘA∈Et−1
∥ΘA − [ΘA]t−1∥Σt−1

)
+ O(m−1/6

√
log(m)t2/3λ−2/3L3) + O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

≤ 2γt−1(α) · ∥g(xt; [ΘA]t−1)/
√

m∥Σ−1
t−1

+ O(m−1/6
√

log(m)t2/3λ−2/3L3)

+ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7)
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where the second inequality is by applying the Holder’s inequality, and the last inequality is by applying
Lemmas Lemma 5.2 in (Zhou et al., 2020), Lemma I.1, in terms of the confidence set Et−1.

Apart from this lemma that bounds the UCB for the chosen arm xt, we can also have the following corollary for
the UCB of the imaginary shadow model F∗

A(·). Here, with the optimal arm being x∗
t = arg maxx∈Xt

hA(x),
we can bound the UCB for reward estimation

∣∣hA(x∗
t ) − F∗

A(x∗
t )

∣∣, where we have the shadow model F∗
A

trained with past optimal arms and their rewards {xτ , rτ }τ∈[t−1]. Comparable to the sequence of chosen
arms {xτ }τ∈[t−1], The definition of γ∗

t−1(α)
Corollary H.2. Suppose the an imaginary arm-level neural network f∗

A(·; [Θ∗
A]t−1) has been trained on

the optimal arms and their rewards {x∗
τ , r∗

τ }τ∈[t−1], with J-iteration GD and learning rate η. Similarly,
f∗

A(·; [Θ∗
A]t−1) is a L-layer FC network with width m, and suppose we have m, J, η satisfying the conditions

in Theorem 5.1. Then, with the probability at least 1 − δ, we will have∣∣hA(x∗
t ) − F∗

A(x∗
t )

∣∣ ≤ 2γ∗
t−1(α) · ∥g(x∗

t ; [Θ∗
A]t−1)/

√
m∥(Σ∗

t−1)−1 + O(m−1/6
√

log(m)t2/3λ−2/3L3)

+ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7)

where we have F∗
A(xt) = f∗

A(xt; [Θ∗
A]t−1) + UCB∗

α(xt), and we also have UCB∗
α(x∗

t ) = γ∗
t−1(α) ·√

g
(
x∗

t ; [Θ∗
A]t−1

)⊺(Σ∗
t−1)−1g

(
x∗

t ; [Θ∗
A]t−1

)
, as well as

Σ∗
t−1 = λI +

∑
τ∈[t]

g(x∗
τ ; [Θ∗

A]τ−1) · g(x∗
τ ; [Θ∗

A]τ−1)⊺

γ∗
t−1(α) = O

(
α ·

√
log

det(Σ∗
t−1)

det(λI) − 2 log(δ) + λ1/2S

)

Proof. The proof of this corollary is similar to that of Lemma H.1. Analogously, consider an alternative of
F∗

A(·) being

F̃∗
A(x) =

〈
g(x; [Θ∗

A]t−1), [Θ∗
A]t−1 − [Θ∗

A]0
〉

+ γt−1(α) ·
√

g(x; [Θ∗
A]t−1)⊺(Σ∗

t−1)−1g(x; [Θ∗
A]t−1)

= max
Θ∗

A
∈Et−1

〈
g(x; [Θ∗

A]t−1), Θ∗
A − [Θ∗

A]0
〉

where we can also prove the output difference |F∗
A(x) − F̃∗

A(x)| ≤ O(m−1/6
√

log(m)t2/3λ−2/3L3) with a
similar approach as in Lemma I.8. Afterwards, with Lemma I.1 and Lemma H.4, we will also have Θ̄A ∈ E∗

t−1.
We have E∗

t−1 = {ΘA : ∥ΘA − [Θ∗
A]t−1∥Σ∗

t−1
≤ γ∗

t−1(α)/
√

m} being the confidence set centered around
the parameters [Θ∗

A]t−1 trained by optimal arms and their rewards. Then, the objective can therefore be
transformed into∣∣F∗

A(x∗
t ) − hA(x∗

t )
∣∣ ≤

∣∣F̃∗
A(x∗

t ) − hA(x∗
t )

∣∣ + O(m−1/6
√

log(m)t2/3λ−2/3L3)
≤ ∥g(x∗

t ; [ΘA]t−1)/
√

m∥Σ−1
t−1

·
√

m ·
(
∥Θ̄A − [Θ∗

A]t−1∥Σ∗
t−1

+ max
ΘA∈E∗

t−1

∥ΘA − [Θ∗
A]t−1∥Σ∗

t−1

)
+ O(m−1/6

√
log(m)t2/3λ−2/3L3) + O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

≤ 2γ∗
t−1(α) · ∥g(x∗

t ; [Θ∗
A]t−1)/

√
m∥(Σ∗

t−1)−1 + O(m−1/6
√

log(m)t2/3λ−2/3L3)

+ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7).

where the second inequality is by applying the Holder’s inequality, and the last inequality is by applying
Lemmas Lemma 5.2 in (Zhou et al., 2020), Lemma I.1, in terms of the confidence set of optimal arms E∗

t−1.
This is because for a given sequence of arms, which can be chosen arms {xt} or the optimal arms {x∗

t }, we
will be able to approximate the true reward mapping function and derive the confidence set for it.
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H.1.2 Term 2: Reward Gap

Next, we proceed to give the following lemma for bounding the second term,
∣∣hA(xt) − hA(x̃∗

t )
∣∣.

Lemma H.3. Suppose the arm-level neural network fA(·; [ΘA]t−1) has been trained on chosen arms and
their rewards {xτ , rτ }τ∈[t−1], with J-iteration GD and learning rate η. Meanwhile, fA(·; [ΘA]t−1) is a L-layer
FC network with width m. Suppose we have m, J, η satisfying the conditions in Theorem 5.1. Then, with the
probability at least 1 − δ, we will have∣∣hA(xt) − hA(x̃∗

t )
∣∣ ≤ 2γt−1(α) · ∥g(xt; [ΘA]t−1)/

√
m∥Σ−1

t−1
+ O(m−1/6

√
log(m)t2/3λ−2/3L3)

+ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7)

By definitions in Lemma H.4, we denote FA(xt) = fA(xt; [ΘA]t−1) + UCBα(xt), and UCBα(xt) = γt−1(α) ·√
g(xt; [ΘA]t−1)⊺Σ−1

t−1g(xt; [ΘA]t−1), where

γt−1(α) = O
(

α ·

√
log det(Σt−1)

det(λI) − 2 log(δ) + λ1/2S

)

Proof. The proof of this lemma is extends the proof of Lemma H.1. Following the workflow in Lemma H.1,
we continue to apply the alternative of the arm-selection mechanism as

F̃A(x) =
〈
g(x; [ΘA]t−1), [ΘA]t−1 − [ΘA]0

〉
+ γt−1(α) ·

√
g(x; [ΘA]t−1)⊺Σ−1

t−1g(x; [ΘA]t−1)

= max
ΘA∈Et−1

〈
g(x; [ΘA]t−1), ΘA − [ΘA]0

〉
where we also have the output difference |FA(x)−F̃A(x)| ≤ O(m−1/6

√
log(m)t2/3λ−2/3L3) based on Lemma

I.8. Next, with Lemma I.1, we can transform our objective to∣∣hA(xt) − hA(x̃∗
t )

∣∣ = hA(x̃∗
t ) − hA(xt)

≤
〈
g(x̃∗

t ; [ΘA]0), Θ̄A − [ΘA]0
〉

−
〈
g(xt; [ΘA]0), Θ̄A − [ΘA]0

〉
≤

〈
g(x̃∗

t ; [ΘA]t−1), Θ̄A − [ΘA]0
〉

−
〈
g(xt; [ΘA]t−1), Θ̄A − [ΘA]0

〉
+ O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

≤ max
ΘA∈Et−1

〈
g(x̃∗

t ; [ΘA]t−1), ΘA − [ΘA]0
〉

−
〈
g(xt; [ΘA]t−1), Θ̄A − [ΘA]0

〉
+ O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

= F̃A(x̃∗
t ) −

〈
g(xt; [ΘA]t−1), Θ̄A − [ΘA]0

〉
+ O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7),

where the first inequality is due to Lemma I.1, second inequality is due to Lemma I.7, third inequality is due
to the fact that Θ̄A ∈ Et−1, and the final equality is due to the definition of F̃A(·).

Next, by utilizing the relationship between the pulling mechanisms, we will have

F̃A(x̃∗
t ) −

〈
g(xt; [ΘA]t−1), Θ̄A − [ΘA]0

〉
+ O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

≤ FA(x̃∗
t ) −

〈
g(xt; [ΘA]t−1), Θ̄A − [ΘA]0

〉
+ O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

+ O(m−1/6
√

log(m)t2/3λ−2/3L3)
≤ FA(x∗

t ) −
〈
g(xt; [ΘA]t−1), Θ̄A − [ΘA]0

〉
+ O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

+ O(m−1/6
√

log(m)t2/3λ−2/3L3)

where the first inequality is due to to the difference between F̃A(x̃∗
t ) − FA(x̃∗

t ), and the second inequality is
due to the arm pulling mechanism that FA(x̃∗

t ) ≥ FA(x∗
t ). Afterwards, with Lemma I.1 and Lemma I.6, we
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will also have Θ̄A ∈ Et−1, and the objective can therefore be transformed into

∣∣FA(xt) − hA(xt)
∣∣ ≤

∣∣F̃A(xt) − hA(xt)
∣∣ + O(m−1/6

√
log(m)t2/3λ−2/3L3)

=
∣∣ max

ΘA∈Et−1

〈
g(xt; [ΘA]t−1), ΘA − [ΘA]0

〉
−

〈
g(xt; [ΘA]t−1), Θ̄A − [ΘA]0

〉∣∣
+ O(m−1/6

√
log(m)t2/3λ−2/3L3) + O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

=
∣∣ max

ΘA∈Et−1

〈
g(xt; [ΘA]t−1), ΘA − [ΘA]t−1

〉
−

〈
g(xt; [ΘA]t−1), Θ̄A − [ΘA]t−1

〉∣∣
+ O(m−1/6

√
log(m)t2/3λ−2/3L3) + O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

≤ ∥g(xt; [ΘA]t−1)/
√

m∥Σ−1
t−1

·
√

m ·
(
∥Θ̄A − [ΘA]t−1∥Σt−1 + max

ΘA∈Et−1
∥ΘA − [ΘA]t−1∥Σt−1

)
+ O(m−1/6

√
log(m)t2/3λ−2/3L3) + O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

≤ 2γt−1(α) · ∥g(xt; [ΘA]t−1)/
√

m∥Σ−1
t−1

+ O(m−1/6
√

log(m)t2/3λ−2/3L3)

+ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7)

where the second inequality is by applying the Holder’s inequality, and the last inequality is by applying
Lemmas Lemma 5.2 in (Zhou et al., 2020), Lemma I.1, in terms of the confidence set Et−1. Finally assembling
all the components will finish the proof.

H.2 Upper Confidence Bound for the Arm-level Reward Estimation

Recall that in the pseudo-code of our proposed framework H2N-Bandit (Algorithm 1), we utilize the UCB as
the exploration strategy for the arm-level model. Here, UCB essentially models the uncertainty of the reward
estimation, and measures how much the reward estimation can possibly deviates from the ground-truth
expected arm reward. In particular, with the arm-level reward estimation network fA(·; ΘA), with a small
probability δ > 0, recall that we aim to have P (|fA(x; ΘA) − hA(x)| > UCBα(x)) ≤ δ, where UCBα(·) refers
to the UCB associated with the tunable exploration coefficient α ≥ 0. Here, we formulate the following
lemma to derive the exact form of UCBα(·). The results in terms of the arm-level UCB will be used as the
exploration scores for the arm-level recommendation (line 8-11, Algorithm 1).

Lemma H.4. Suppose the arm-level neural network fA(·; [ΘA]t−1) has been trained on chosen arms and
their rewards {xτ , rτ }τ∈[t−1], with J-iteration GD and learning rate η. Meanwhile, fA(·; [ΘA]t−1) is a L-layer
FC network with width m. Suppose we have m, J, ηA satisfying the conditions in Theorem 5.1. Then, given
the candidate arm x ∈

⋃
c∈C̃t

Xc,t in the filtered candidate pool, with the probability at least 1 − δ, we will have

∣∣fA(x; [ΘA]t−1) − hA(x)
∣∣ ≤ γt−1(α) · ∥g(x; [ΘA]t−1)/

√
m∥Σ−1

t−1
+ O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

+ O(m−1/6
√

log(m)t2/3λ−2/3L3)

By definition in Lemma H.4 and Theorem 5.1, we denote FA(xt) = fA(xt; [ΘA]t−1) + UCBα(xt), where the
upper confidence bond UCBα(xt) = γt−1(α) ·

√
g(xt; [ΘA]t−1)⊺Σ−1

t−1g(xt; [ΘA]t−1), with the terms

Σt−1 = λI +
∑
τ∈[t]

g(xτ ; [ΘA]τ−1) · g(xτ ; [ΘA]τ−1)⊺

γt−1(α) = O
(

α ·

√
log det(Σt−1)

det(λI) − 2 log(δ) + λ1/2S

)

with network gradient vector g(x; ΘA) = vec(∇Θf(x; ΘA)) ∈ RpA .
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Proof. Applying the Lemma I.1, we can transform the objective to∣∣fA(x; ΘA) − hA(x)
∣∣ =

∣∣fA(x; ΘA) −
〈
g(x; [ΘA]0), Θ̄A − [ΘA]0

〉∣∣
≤

∣∣fA(x; ΘA) −
〈
g(x; [ΘA]t−1), Θ̄A − [ΘA]0

〉∣∣ + O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7)
≤

∣∣fA(x; ΘA) −
〈
g(x; [ΘA]t−1), [ΘA]t−1 − [ΘA]0

〉∣∣
+

∣∣〈g(x; [ΘA]t−1), [ΘA]t−1 − [ΘA]0
〉

−
〈
g(x; [ΘA]t−1), Θ̄A − [ΘA]0

〉∣∣
+ O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7)

where the first equality is to Lemma I.1, the first inequality is due to Lemma I.7 and Lemma I.1, and the last
inequality is because of the triangular inequality. Then, we proceed to separately bound the first and second
term on the RHS. For the first term, we will have∣∣fA(x; [ΘA]t−1) −

〈
g(x; [ΘA]t−1), [ΘA]t−1 − [ΘA]0

〉∣∣
=

∣∣fA(x; [ΘA]t−1) − fA(x; [ΘA]t−1) −
〈
g(x; [ΘA]t−1), [ΘA]t−1 − [ΘA]0

〉∣∣
≤ O(m−1/6

√
log(m)t2/3λ−2/3L3)

where the first equality is due to the fact that fA(x; [ΘA]0) = 0 based on our parameter initialization approach,
and the inequality is by applying Lemma I.8 and Lemma I.6. Then, for the second term, we will have∣∣〈g(x; [ΘA]t−1),[ΘA]t−1 − [ΘA]0

〉
−

〈
g(x; [ΘA]t−1), Θ̄A − [ΘA]0

〉∣∣
=

∣∣〈g(x; [ΘA]t−1), Θ̄A − [ΘA]t−1
〉∣∣

≤ ∥g(x; [ΘA]t−1)/
√

m∥Σ−1
t−1

·
√

m · ∥Θ̄A − [ΘA]t−1∥Σt−1

≤ γt−1(α) · ∥g(x; [ΘA]t−1)/
√

m∥Σ−1
t−1

where the first inequality is by applying the Holder’s inequality, and the last inequality is by applying Lemmas
Lemma 5.2 in (Zhou et al., 2020), Lemma I.1, in terms of the confidence set Et−1 and the fact that Θ̄A ∈ Et−1.
Finally, assembling all the components will finish the proof.

I Lemmas For Arm-level Neural Networks

Similar to the category-level models, we also apply the FC network for the arm-level prediction model.
But, since we are applying different initialization approaches for category-level model and arm-level model
respectively, the neural network behavior will diverge. Analogously, given the input feature vector x ∈ Rd,
we denote the L-layer FC neural network with network width m by

fA(x; Θ) = ΘL(
L−1∏
l=1

DlΘl) · x, (13)

where with ϕ being the ReLU activation, we define the intermediate hidden representations hl, l ∈ {0, . . . , L−1}
as

h0 = x, hl = ϕ(Θlhl−1), l ∈ [L − 1].
and we also have the binary diagonal matrix functioning as the ReLU activation being

Dl = diag(I{(Θlhl−1)1}, . . . , I{(Θlhl−1)m}), l ∈ [L − 1].

where I(·) is the indicator function. Afterwards, the corresponding gradients will naturally become

∇Θl
fA(x; Θ) =

{
[hl−1ΘL(

∏L−1
τ=l+1 Dτ Θτ )]⊺, l ∈ [L − 1]

h⊺
L−1, l = L.

(14)

For the arm-level model fA, for l ∈ [L − 1], each entry of Θl is drawn from the Gaussian distribution
N (0, 2/m); Each entry of ΘL is drawn from the Gaussian distribution N (0, 1/m).
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I.1 Theoretical Results with NTK Gram Matrices

To begin with, we will first introduce some results, in order to link the NTK matrices (Def. 1 and Def. 2)
with the reward mapping function h(·) and the gradient covariance matrix Σ (Algorithm 1).
Lemma I.1. There exist a positive constant C > 0 such that with probability at least 1 − δ, if network width
m satisfies the condition in Theorem 5.1, for any x ∈ AT , there exists a set of parameters Θ̄ such that

h(x) = ⟨g(x; Θ0), Θ̄ − Θ0⟩ (15)

where parameters Θ̄ satisfy ∥Θ̄ − Θ0∥ ≤ S/
√

m, along with the NTK norm S ≥
√

2h̆⊺M̆−1h̆, where the
expected reward vector h̆ = [h(x)]x∈ĂT

∈ R|ĂT |.

Proof. The proof of this lemma is inspired by that of Lemma 5.1 in (Zhou et al., 2020). However, we build
our proof upon the non-duplicate arms ĂT and the corresponding NTK Gram matrix M̆ (Def. 2), instead of
imposing the full-rank assumption on the conventional NTK matrix M (Def. 1). Here, we recall that the
matrix M̆ is naturally positive definite (λ̆0 = λmin(M̆) > 0), as it is the NTK Gram matrix built upon a set
of distinct arms.

Then, consider the gradient matrix with no-duplicate arms Ğ = [g(x; Θ0)]x∈ĂT
/
√

m ∈ Rp×|ĂT |, where p
represents the total number of parameters in the neural network. As a result, by applying conclusion from
Lemma I.3 and due to the fact that |ĂT | ≤ 3T , with the network width m ≥ Ω(L6 log(TL/δ)/ϵ), ∀ϵ > 0 and
the probability at least 1 − δ, we will have

∥Ğ⊺Ğ − M̆∥F ≤ |ĂT | · ϵ.

By setting ϵ = λ̆0
2|ĂT | , we will have

Ğ⊺Ğ ⪰ M̆ − ∥Ğ⊺Ğ − M̆∥F I ⪰ M̆ − λ̆0/2I ⪰ M̆/2 ≻ 0.

where the last two inequalities are due to the fact that M̆ ⪰ λ̆0I ≻ 0. Analogous to Lemma 5.1 in (Zhou
et al., 2020), we consider the singular value decomposition of Ğ being Ğ = P̆ĂQ̆⊺, where we naturally have
Ă ≻ 0 since M̆ is positive definite. Then, with the expected reward vector h̆ (Def. 2), we have

h̆ = (Q̆ĂP̆⊺) · (P̆Ă−1Q̆⊺) · h̆ =
√

m · Ğ⊺(Θ̄ − Θ0)

by considering there exists a set of parameters Θ̄ = Θ0 + (P̆Ă−1Q̆⊺) · h̆/
√

m.

Therefore, since h̆ =
√

m · Ğ⊺(Θ̄ − Θ0), we will have ∀x ∈ ĂT ,

h(x) = ⟨g(x; Θ0), Θ̄ − Θ0⟩.

Meanwhile, since Ğ⊺Ğ ⪰ M̆/2, we will have the Euclidean distance

m · ∥Θ̄ − Θ0∥2
2 = h⊺Q̆Ă−1P̆⊺ · P̆Ă−1Q̆⊺h = h⊺(Ğ⊺Ğ)−1h ≤ 2h⊺M̆−1h.

Finally, since the above results holds ∀x ∈ ĂT , due to the fact that ĂT contains all the unique arms of
the collection AT , we will directly have the above results regarding parameters Θ̄ feasible ∀x ∈ AT . This
completes the proof.

Lemma I.2. Suppose m satisfies the conditions in Theorem 5.1. Suppose the gradient matrix with randomly
initialized parameters is Σ(0) = λI +

∑
x∈A g(x; Θ0) · g(x; Θ0)⊺/m, upon an arbitrary subset A ⊆ AT of arm

collection AT . With probability at least 1 − δ over the initialization, the result holds:

log
(

det Σ(0)

det λI

)
≤ d̃ log(1 + TK/λ) + 1.
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Proof. First, recall that we have AT as the arm collection of: (i) the chosen arms {xt}T
t=1; (ii) the optimal

arms {x∗
t }T

t=1; (iii) and the imaginary ones {x̃t}T
t=1 chosen by the corruption-free model. This makes its

cardinality |AT | = 3T . Thus, for the left hand side, we have

log det(Σ(0))
det(λI) ≤ log det(λI +

∑
x∈AT

g(x; Θ0)g(x; Θ0)⊺/m) = det(λI + G0G⊺
0),

where we define gradient matrix G0 =
[
g(x; Θ0)/

√
m

]
x∈AT

∈ Rp×(3T ). Here, based on Lemma I.3, we can
bound the distance between the Gradient matrix product G⊺

0G0 and the NTK matrix M (Def. 1), as

∥G⊺
0G0 − M∥ ≤ 3T · 1

3T · O(
√

T/λ)
= 1

O(
√

T/λ)
,

by setting ϵ = 1
3T ·O(

√
T /λ) . The above results will hold, as long as we have the network width m ≥

Ω((TL)6 log(TL/δ)/λ4), matching the conditions in Theorem 5.1. As a result, we can have

log det(I + G⊺
0G0/λ)

= log det(I + H/λ + (G⊺
0G0 − H)/λ)

≤ log det(I + H/λ) + ⟨(I + H/λ)−1, (G⊺
0G0 − H)/λ⟩

≤ log det(I + H/λ) + ∥(I + H/λ)−1∥F ∥G⊺
0G0 − H∥F /λ

≤ log det(I + H/λ) + O(
√

T/λ) · ∥G⊺
0G0 − H∥F

≤ log det(I + H/λ) + 1
= d̃ log(1 + TK/λ) + 1.

The first inequality is because the concavity of log det(·) function; The third inequality is due to ∥(I +
Hλ)−1∥F ≤ ∥I−1∥F ≤

√
T ; The fourth inequality is by applying the above distance upper bound ∥G⊺

0G0 −
M∥ ≤ 1

O(
√

T /λ) . The last inequality is because of the choice the m; The last equality is because of the
Definition of d̃. The proof is completed.

Lemma I.3. With the randomly initialized network parameters Θ0 ∈ Rp and a collection of arms A ⊂ Rd,
define the gradient matrix GA = [g(x; Θ0)]x∈A ∈ Rp×|A|. Following the recursive procedure in Def. 1,
construct the NTK Gram matrix MA based on arms A. Then, with the probability at least 1 − δ, we will have

∥G⊺
AGA − MA∥F ≤ |A| · ϵ,

with the network width m ≥ Ω(L6 log(|A|L/δ)/ϵ4).

Proof. The proof of this lemma is analogous to the proof of Lemma B.1 in (Zhou et al., 2020). Based
on Theorem 3.1 from (Arora et al., 2019), we have that for any two arms x, x′ ∈ A, if the network width
m ≥ Ω(L6 log(L/δ)/ϵ4), we will have |⟨g(x; Θ0), g(x′; Θ0)⟩/m − MA[x, x′]| ≤ ϵ, where MA[x, x′] represents
the element in NTK Gram matrix MA that corresponds to arms x and x′. Next, taking the union bound
over all the arms in A, we will have

∥G⊺
AGA − MA∥F =

√∑
x∈A

∑
x′∈A

|⟨g(x; Θ0), g(x′; Θ0)⟩/m − MA[x, x′]|2 ≤ |A| · ϵ,

as long as the network width m ≥ Ω(L6 log(|A|L/δ)/ϵ4).
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I.2 Additional Theoretical Results under Over-parameterization

Lemma I.4. There exist a positive constant C > 0 such that with probability at least 1 − δ, if m ≥
CT 4L6 log(T 2L/δ)/λ4 for any x ∈

⋃
τ∈[t] Xτ , there exists a set of parameters Θ̄ such that with the neural

parameters Θt−1 trained on {xτ }t−1
τ=1, we have

|⟨g(x; Θ0), Θ̄ − Θ0⟩ − ⟨g(x; Θt−1), Θ̄ − Θ0⟩| ≤ O(Sm−1/6
√

log(m)t1/6λ−1/6L2/7)

where parameters Θ̄ satisfy ∥Θ̄ − Θ0∥ ≤ S/
√

m, S > 0 as shown in Lemma I.1.

Proof. This lemma is based on Lemma I.1. Here, our objective can be reformed into

|⟨g(x; Θ0), Θ̄ − Θ0⟩ − ⟨g(x; Θt−1), Θ̄ − Θ0⟩| = ∥Θ̄ − Θ0∥2 ·
(
g(x; Θ0) − g(x; Θt−1)

)
≤ S/

√
m ·

(
g(x; Θ0) − g(x; Θt−1)

)
≤ O(Sm−1/6

√
log(m)t1/6λ−1/6L2/7),

where the first inequality is due to Lemma I.1, and the second inequality is due to Lemmas I.5, I.6, and
Lemma I.7.
Lemma I.5 (Lemma B.3 in (Cao & Gu, 2019) ). There exist constants {Ci}2

i=1 such that for any δ > 0, if
we have

ω ≤ C1L−6(log m)−3/2,

then, with probability at least 1 − δ, for any ∥Θ − Θ0∥ ≤ ω and xt ∈ {xt}T
t=1 we have ∥g(xt; Θ)∥2 ≤ C2

√
mL.

Lemma I.6 (Lemma B.2 in (Zhou et al., 2020) ). For the L-layer full-connected network f trained with
J-iteration GD, there exist constants {Ci}5

i=1 ≥ 0 such that for δ > 0, if for all t ∈ [T ], η, m satisfy

2
√

t/(mλ) ≥ C1m−3/2L−3/2[log(TL2/δ)]3/2,

2
√

t/(mλ) ≤ C2 min{L−6[log m]−3/2, (m(λη)2L−6t−1(log m)−1)3/8},

η ≤ C3(mλ + tmL)−1,

m1/6 ≥ C4
√

log mL7/2t7/6λ−7/6(1 +
√

t/λ),

then, with probability at least 1 − δ, we have

∥Θt − Θ0∥ ≤ 2
√

t/(mλ)
∥Θt − Θ0 − Θ′∥ ≤ (1 − ηmλ)J/2

√
t/(mλ) + C5m−2/3

√
log mL7/2t5/3λ−5/3(1 +

√
t/λ).

Lemma I.7 (Theorem 5 in (Allen-Zhu et al., 2019)). With probability at least 1 − δ, there exist constants
C1, C2 such that if ω ≤ C1L−9/2 log−3 m, for ∥Θt − Θ0∥2 ≤ ω, we have

∥g(xt; Θt) − g(xt; Θ0)∥2 ≤ C2
√

log mω1/3L3∥g(xt; Θ0)∥2.

Lemma I.8 ( Lemma 4.1 in (Cao & Gu, 2019) ). There exist constants {C̄3
i=1} ≥ 0 such that for any δ ≥ 0,

if τ satisfies that
τ ≤ C̄2L−6[log m]−3/2,

then with probability at least 1 − δ, for all Θ1, Θ2 satisfying ∥Θ1 − Θ0∥ ≤ τ, ∥Θ2 − Θ0∥ ≤ τ and for any
xt ∈ {xt}T

t=1, we have

|f(x; Θ1) − f(x; Θ2) − ⟨(g(x; Θ2), Θ1 − Θ2)⟩| ≤ C̄3τ4/3L3
√

m log m.

Lemma I.9 ( Lemma 11 in (Abbasi-Yadkori et al., 2011), Lemma B.7 in (Zhou et al., 2020)). Suppose a
sequence of arms {x′

τ }τ∈[t], with an arbitrary arm x′
τ ∈ Xτ from each time step τ ∈ [t]. The gradient matrix

is denoted by Σt = λI +
∑

τ∈[t] g(x′
τ ; Θτ−1) · g(x′

τ ; Θτ−1)⊺/m. Then, we can have∑
τ∈[t]

min
{

∥g(xτ ; Θτ−1/
√

m)∥2
Σ−1

τ−1
, 1

}
≤ 2 log det(Σt)

det(λI) .
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Lemma I.10. Suppose m satisfies the conditions in Theorem 5.1. Suppose the gradient matrix can be
represented by Σ = λI +

∑
t∈[T ] g(x(i)

c,t; Θt−1) · g(x(i)
c,t; Θt−1)⊺/m, with the arm x

(i)
c,t ∈ {xt, x∗

t } from each time
step t. With probability at least 1 − δ over the initialization, the result holds:

∥Σ∥2 ≤ λ + O(TL),
∥Σ − Σ(0)∥F ≤ O(m−1/6

√
log(m)L4t7/6λ−1/6)

∥ log det(Σ)
det(λI) − log det(Σ(0))

det(λI) ∥F ≤ O(m−1/6
√

log(m)L4t5/6λ−1/6)

where the matrix with randomly initialized parameters is Σ(0) = λI +
∑

t∈[T ] g(x(i)
c,t; Θ0) · g(x(i)

c,t; Θ0)⊺/m.

Proof. Based on the Lemma I.5, for any t ∈ [T ], ∥g(x(i)
c,t; Θ0)∥2 ≤ O(

√
mL). Then, for the first item:

∥Σ(0)∥2 = ∥λI +
T∑

t=1
g(x(i)

c,t; Θ0)g(x(i)
c,t; Θ0)⊺/m∥2

≤ ∥λI∥2 + ∥
T∑

t=1
g(x(i)

c,t; Θ0)g(x(i)
c,t; Θ0)⊺/m∥2

≤ λ +
T∑

t=1
∥g(x(i)

c,t; Θ0)/
√

m∥2
2 ≤ λ + O(TL).

Then, the second and third inequalities in this lemma are the direct application of Lemma B.3 of (Zhou et al.,
2020). The proof is completed.
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