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Abstract. A central problem in biology is to understand how organisms
evolve and adapt to their environment by acquiring variations in the ob-
servable characteristics or traits of species across the tree of life. With the
growing availability of large-scale image repositories in biology and recent
advances in generative modeling, there is an opportunity to accelerate
the discovery of evolutionary traits automatically from images. Toward
this goal, we introduce Phylo-Diffusion, a novel framework for condi-
tioning diffusion models with phylogenetic knowledge represented in the
form of HIERarchical Embeddings (HIER-Embeds). We also propose two
new experiments for perturbing the embedding space of Phylo-Diffusion:
trait masking and trait swapping, inspired by counterpart experiments of
gene knockout and gene editing/swapping. Our work represents a novel
methodological advance in generative modeling to structure the embed-
ding space of diffusion models using tree-based knowledge. Our work also
opens a new chapter of research in evolutionary biology by using gener-
ative models to visualize evolutionary changes directly from images. We
empirically demonstrate the usefulness of Phylo-Diffusion in capturing
meaningful trait variations for fishes and birds, revealing novel insights
about the biological mechanisms of their evolution. 1
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1 Introduction

Given the astonishing diversity of life forms on the planet, an important end goal
in biology is to understand how organisms evolve and adapt to their environ-
1 Model and code can be found at imageomics.github.io/phylo-diffusion
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Fig. 1: Overview of Phylo-Diffusion framework. Every species in the tree of life (phy-
logenetic tree) is encoded to a HIERarchical Embedding (HIER-Embed) comprising of
four vectors (one for each phylogenetic level), which is used to condition a latent diffu-
sion model to generate synthetic images of the species. By structuring the embedding
space with phylogenetic knowledge, Phylo-Diffusion enables visualization of changes in
the evolutionary traits of a species (circled pink) upon perturbing its embedding.

ment by acquiring variations in their observable characteristics or traits (e.g .,
beak color, stripe pattern, and fin curvature) over millions of years in the process
of evolution. Our knowledge of species evolution is commonly represented in a
graphical form as the “tree of life” (also referred to as the phylogenetic tree [14],
see Figure 1), illustrating the evolutionary history of species (leaf nodes) and
their common ancestors (internal nodes). Discovering traits that are heritable
across the tree of life, termed evolutionary traits, is important for a variety of
biological tasks such as tracing the evolutionary timing of trait variations com-
mon to a group of species and analyzing their genetic underpinnings through
gene-knockout or gene-editing/swapping (e.g ., CRISPR [22]) experiments. How-
ever, quantifying trait variations across large groups of species is labor-intensive
and time-consuming, as it relies on expert visual attention and subjective defi-
nitions [28], hindering rapid scientific advancement [19].

The growing deluge of large-scale image repositories in biology [9, 30, 31]
presents a unique opportunity for machine learning (ML) methods to accelerate
the discovery of evolutionary traits automatically from images. In particular,
with recent developments in generative modeling such as latent diffusion models
(LDMs) [26], we are witnessing rapid improvements in our ability to control the
generation of high-quality images based on input conditioning of text or image
prompts. This is facilitating breakthroughs in a variety of commercial use-cases
of computer vision where we can analyze how changes in the input prompts
affect variations in the generated images [7, 27, 34]. We ask the question: can
we leverage LDMs to control the generation of biological images of organisms
conditioned on the position of a species in the tree of life? In other words, can
we encode the structure of evolutionary relationships among species and their
ancestors as input conditions in LDMs? This can help us analyze trait variations
in generated images across different branches in the phylogenetic tree, revealing
novel insights into the biological mechanisms of species evolution.
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Toward this goal, we introduce Phylo-Diffusion, a novel framework for
discovering evolutionary traits of species from images by conditioning diffusion
models with phylogenetic knowledge (see Figure 1). One of the core innovations
of Phylo-Diffusion is a novel HIERarchical Embedding (HIER-Embed) strat-
egy that encodes evolutionary information of every species as a sequence of four
vectors, one for each discretized level of ancestry in the tree of life (covering
different evolutionary periods). We also propose two novel experiments for ana-
lyzing evolutionary traits by perturbing the embedding space of Phylo-Diffusion
and observing changes in the features of generated images, akin to biological ex-
periments involving genetic perturbations. First, we introduce Trait Masking,
where one or more levels of information in HIER-Embed are masked out with
noise to study the disappearance of traits inherited by species at those levels.
This is inspired by gene knockout experiments [10], wherein one or more genes
are deactivated or “knocked out” to investigate the gene’s function, particularly
its impact on the traits of the organism. Second, we introduce Trait Swapping,
where a certain level of HIER-Embed in a reference species is swapped with the
embedding of a sibling node at the same level, similar in spirit to gene edit-
ing/swapping experiments made possible by the CRISPR technology [22]. The
goal of trait swapping is to visualize trait differences at every branching point
in the tree of life that results in the diversification of species during evolution.

Here are the main contributions of this paper. Our work represents a novel
methodological advance in the emerging field of knowledge-guided machine learn-
ing (KGML) [15–17] to structure the embedding space of generative models using
tree-based knowledge. Our work also opens a new chapter of research in evolu-
tionary biology by using generative models to visualize evolutionary changes
directly from images, which can serve a variety of biological use-cases. For ex-
ample, Phylo-Diffusion can help biologists automate the discovery of synapomor-
phies, which are distinctive traits that emerge on specific evolutionary branches
and are crucial for systematics and classification [33]. Our proposed experiments
of trait masking and swapping can also be viewed as novel image-based coun-
terparts to genetic experiments, which traditionally take years. Our work thus
enables biologists to rapidly analyze the impacts of genetic perturbations on
particular branches of the phylogenetic tree–a grand challenge in developmental
biology [5, 20]. We empirically demonstrate the usefulness of Phylo-Diffusion in
capturing meaningful trait changes upon perturbing its embedding for fishes and
birds, generating novel hypotheses of their evolution.

2 Related Works and Background

Interpretable ML: Discovering evolutionary traits from images requires the
identification and interpretation of fine-grained features in images that define
and differentiate species. Several methodologies have recently been developed in
the field of interpretable ML for localizing image regions that contain discrimina-
tory information of classes, including ProtoPNet [3], PIP-Net [21] and INTR [23].
Despite their effectiveness and applicability across a wide range of applications,
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these methods are not directly suited for our target application of discovering
evolutionary traits for two primary reasons. First, they are not designed to in-
corporate structured biological knowledge (e.g ., knowledge of the tree of life) in
the learning of interpretable features, and thus are unable to provide biologi-
cally meaningful explanations of feature differences across groups of species in
the phylogenetic tree, which is key to discovering evolutionary traits. Second,
since most methods in interpretable ML are designed for the task of classifica-
tion, it is non-trivial to integrate them in generative modeling frameworks to
produce synthetic images with controlled perturbations in the embedding space
similar to gene knockout and gene editing/swapping experiments, in contrast to
our proposed experiments in Phylo-Diffusion.

Phylogeny-guided Neural Networks (Phylo-NN): A recent work closely
aligned with our goal of discovering evolutionary traits directly from images
is Phylo-NN [6]. Phylo-NN uses an encoder-decoder architecture to represent
images of organisms as structured sequences of feature vectors termed “Im-
ageomes”, where different segments of Imageomes capture evolutionary infor-
mation from varying levels of ancestry in the phylogenetic tree. While Phylo-
NN shares several similarities with our proposed framework, Phylo-Diffusion, in
terms of motivations and problem formulations, there are also prominent dif-
ferences. The primary goal of Phylo-NN is specimen-level image reconstruction,
whereas Phylo-Diffusion considers a different goal of controlling image generation
at the species-level. As a result, Phylo-NN learns a unique Imageome sequence
for every organism, enabling us to study the variability in individuals from the
same species and the analysis of similarity in Imageome segments learned at
shared ancestry levels. On the other hand, Phylo-Diffusion learns a unique em-
bedding for every species and ancestor node in the tree of life, which serves as
input conditions to generate distributions of synthetic images. Phylo-Diffusion
thus uses hard constraints to ensure that all species with a common ancestor
learn the exact same embeddings at their shared ancestry levels, making it easy
to analyze trait commonalities and variations across groups of species, in con-
trast to Phylo-NN. Additionally, Phylo-Diffusion allows for perturbations in the
embedding space of generative models in biologically meaningful ways inspired
by gene knockout and gene editing/swapping experiments, going beyond the ca-
pabilities of Phylo-NN. We consider Phylo-NN as a baseline in our experiments
to compare its performance with Phylo-Diffusion.

Background on Latent Diffusion Models (LDMs): One of the state-of-
the-art approaches in generative modeling is the framework of Diffusion Mod-
els [13], which learns a target distribution p(x) by incrementally transforming a
noisy sample x generated from a Gaussian distribution N (0, I) into one that is
more likely to be generated from p(x) over a series of timesteps T . While early
frameworks of diffusion models (e.g ., DDPM [13], DDIM [29] and ADM [4]) suf-
fered from high computational costs and long training/inference times, Latent
Diffusion Models (LDMs) [26] are able to address these concerns to a large ex-
tent by operating in a compressed latent space, significantly accelerating their

4



Published as a conference paper at ECCV 2024

ability to generate high-resolution images. The basic idea of LDMs is to train
a separate auto-encoder to map an input image x into its latent representation
z0 = E(x) using encoder E , which when fed to decoder D produces a recon-
struction of the original image, x̃ = D(z̃0). LDMs employ diffusion models in
the compressed latent space z by modeling the conditional probability of the re-
verse diffusion process as z̃t−1 ∼ pθ(z̃t−1|z̃t, y, t), where y is the input condition.
This is implemented using a conditional denoising U-Net backbone ϵθ(zt, y, t)
with learnable parameters θ. LDMs also pre-process y using a domain-specific
encoder E = τϕ(y) trained alongside the U-Net backbone ϵθ to project y into
the intermediate layers of ϵθ using cross-attention mechanisms. The learnable
parameters of LDMs are trained by minimizing the following loss function:

L(θ, ϕ) = Ezt,y,t,ϵ∼N (0,I)

[
∥ϵ̂θ(zt, τϕ(y), t)− ϵ∥2

]
(1)

3 Proposed Framework of Phylo-Diffusion

3.1 Hierarchical Embedding (HIER-Embed)

Phylo-Diffusion uses a novel hierarchical embedding (HIER-Embed) strategy to
structure the embedding E of every species node using phylogenetic knowledge.
As a first step, we consider a discretized version of the phylogenetic tree involv-
ing four ancestral levels, level-1 to level-4, where every level corresponds to a
different range of time in the process of evolution. (See Appendix B for a de-
tailed characterization of the four ancestry levels for fish species used in this
study.) Given a set of n species, S = {S1, S2, S3, ..., Sn}, let us represent the
position of species Si ∈ S in the phylogenetic tree at the four ancestry levels as
{S1

i , S
2
i , S

3
i , S

4
i }, where Sl

i represents the ancestor node of Si at level-l. Hence,
if two species Si and Sj share common ancestors till level-k, then Sl

i = Sl
j for

l = 1 to k. We define the level-l embedding of species Si as:

El
i = Embed(Sl

i) ∈ Rd′
, (2)

where Embed(.) is a learnable embedding layer that provides a simple way to
store and look-up the trained embeddings of every node. The combined hierar-
chical embedding (HIER-Embed) of species Si is obtained by concatenating its
embeddings across all four levels as follows:

Ei = τ(Si) = Concat[ E1
i , E2

i , E3
i , E4

i ] ∈ Rd, (3)

where Concat[.] denotes the concatenation operation and y = Si is the input
condition used in LDMs. Note that different segments of Ei capture information
about the traits of Si acquired at different time periods of evolution. In partic-
ular, we expect the embedding vectors learned at earlier ancestry levels of Ei to
capture evolutionary traits of Si common to a broader group of species. On the
other hand, embeddings learned at later ancestry levels are expected to be more
specific to Si. In the following, we present two novel experiments for studying
evolutionary traits by perturbing the embedding space learned by HIER-Embed.
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Fig. 2: Schematic diagrams of the two proposed experiments for discovering evolution-
ary traits using Phylo-Diffusion.

3.2 Proposed Experiment of Trait Masking

The goal of this experiment is to verify if HIER-Embed is indeed able to capture
hierarchical information in its level-embeddings such that masking information
at lower levels of the embedding only erases traits acquired at later stages of evo-
lution while retaining trait variations learned at earlier levels. In other words, we
want to verify that the embeddings learned by HIER-Embed at level-l capture
information common to all descendant species that are part of the same sub-
tree at level-l. Figure 2a represents a schematic diagram of the process followed
for trait masking. We start with the combined embedding containing informa-
tion at all four levels, [E1,E2,E3,E4]. To examine what is learned at the last
level of this embedding, we mask it out by substituting it with Gaussian noise
defined as znoise ∼ N (0, I) ∈ Rd′

. This results in the perturbed embedding
[E1,E2,E3, znoise], effectively eliminating the species-level (or E4) information.
This masking should prompt the model to generate images that reflect only the
information learned up to the third level while obscuring species-level details. We
can extend this experiment by incrementally introducing noise at later levels,
e.g ., at both levels 3 & 4, and so on.

Expected Changes in Probability Distributions: Note that when all four
level embeddings are used, i.e. [E1,E2,E3,E4], the generated images are ex-
pected to be classified to a unique species Si. In terms of probability distribu-
tions, the probability of predicting species Si should be distinctly higher than the
probability of predicting any other species. However, when we mask out certain
level embeddings (i.e., mask out information at level 4), we are intentionally re-
moving information necessary to distinguish species Si from its siblings species
that are part of the same sub-tree (e.g., those that share a common ancestor
at level 3). For this reason, we expect the generated images to show higher
probabilities of being classified as any of the descendant species of the sub-tree,
compared to the other species that are outside of the sub-tree. To quantify this
behavior, we can measure the change in probability distributions for species
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Scientific
Name

Phylo-
Diffusion

Fig. 3: Comparing the quality of synthetic images generated by different conditioning
mechanisms in LDMs. Every row corresponds to a different species and we show two
samples per species for every conditioning mechanism. The order of species from top
to bottom is Cyprinus carpio, Notropis hudsonius, Lepomis auritus, Noturus exilis, and
Gambusia affinis.

within and outside the sub-tree after masking out an internal node. Since we
expect probabilities to increase only for species within the sub-tree, the mean
increase in probabilities for within-subtree species should be higher than that for
out-of-subtree species, as empirically demonstrated later in the Results Section.

3.3 Proposed Experiment of Trait Swapping

In trait swapping, we substitute the level-l embedding of a source species with
the level-l embedding of a sibling subtree at an equivalent level. Figure 2b shows
a schematic representation of the trait swapping experiment where the level-3
embedding (green) of a source species is replaced with its sibling level-3 em-
bedding (yellow). Images generated for this perturbed embedding are expected
to retain all of the traits of the source species except the swapped embedding,
which should borrow traits from the sub-tree rooted at the sibling node. Visu-
alizing trait differences in the generated images before and after trait swapping
can help us understand the evolutionary traits that branched at a certain level
(e.g ., those leading to the diversification of green and yellow sub-trees at level-3
in the example phylogeny of Figure 2b). In terms of the probability distribution,
similar to trait masking, we expect to see a drop in the probabilities of the source
species (pink), and simultaneously, we expect an increase in probabilities for all
the descendent species in subtree at node yellow, i.e. red and purple.

4 Evaluation Setup

Datasets: We use a collection of fish images as our primary dataset for eval-
uation. This dataset was procured from the Great Lakes Invasives Network
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Table 1: Quantitive comparison of generated images sampled using DDIM [29] (100
samples per class).

Model Type Method FID ↓ IS ↑ Prec. ↑ Recall ↑
GAN Phylo-NN 28.08 2.35 0.625 0.084
Diffusion Class Conditional 11.46 2.47 0.679 0.359
Diffusion Scientific Name 11.76 2.43 0.683 0.332
Diffusion Phylo-Diffusion (ours) 11.38 2.53 0.654 0.367

(GLIN) [1] Project, comprising a total of 5434 images spanning 38 fish species.
We obtained the phylogenetic tree of fish species from opentree [2] python pack-
age (see Appendix B for details on the phylogenetic tree). The raw museum
images were pre-processed and resized to 256 × 256 pixels and the dataset was
partitioned into training and validation sets, following a 75-25 split. We pro-
vide additional results on the CUB-200-2011 dataset [32] of bird species in Ap-
pendix H.

Baselines of Conditioning Mechanisms: (1) Class Conditional: One of the
simplest ways of encoding information about a species class is to map class labels
y ∈ [1, Nc] to a fixed d-dimensional embedding vector e ∈ Rd using a trainable
embedding layer. Note that the resulting embeddings are not designed to contain
any hierarchical information in contrast to HIER-Embed. (2) Scientific Name
Encoding: The scientific name of a species contains valuable biological informa-
tion typically comprising of a combination of the genus name and species name.
Since species that share their genus name are likely to contain common phylo-
genetic traits, we use them as a baseline for conditioning LDMs for discovering
evolutionary traits. Specifically, we employ a pre-trained frozen CLIP model [25]
to encode the scientific names of species into fixed d-dimensional embeddings.

Training details: We used d′ = 128 as the embedding dimension for each level
of HIER-Embed, which when concatenated across the four levels produces the
combined hierarchical embedding of d = 512 dimensions. Phylo-Diffusion uses
this d-dimensional embedding to condition LDMs through cross-attention in de-
noising the U-Net backbone and train LDMs without classifier-free guidance.
We used VQGAN [8] as the backbone encoder-decoder to achieve the latent
representations desired for LDMs with a downsampling factor of 4. All the mod-
els with different encoders are trained for 400k iterations, employing the best
model checkpoint if convergence occurs early. Additional hyperparameters, such
as learning rate, batch size, and U-Net architecture, are detailed in Appendix A.

5 Results

5.1 Quality of Generated Images

Table 1 compares the quality of generated images of baselines using the metrics
of Fréchet Inception Distance (FID) score, Inception Score (IS), and Precision,
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Table 2: Classification F1-Score on the 100 samples generated per class. The base
classifier has an accuracy of 85% on the test set.

Method F1-Score (in %) ↑
Phylo-NN 47.37
Class Conditional 81.99
Scientific Name 70.16
Phylo-Diffusion (ours) 82.21

Recall calculated in the feature space as proposed in [18]. Our results show that
Phylo-Diffusion is at par with state-of-the-art generative models, achieving an
FID of 11.38 compared to LDM’s 11.46. We show a sample of generated images
in Figure 3, with additional images provided in Appendix F. We also show the
robustness of Phylo-Diffusion’s results with varying numbers of phylogenetic
levels and embedding dimensions in Appendix G.

5.2 Classification Accuracy

We used a separate model for species classification, specifically a ResNet-18
model [12] trained using the same training/validation split as Phylo-Diffusion.
The primary objective behind building this classifier is to verify if images gen-
erated by Phylo-Diffusion contain sufficient discriminatory information to be
classified as their correct species classes. Table 2 compares the classification F1-
scores over 100 samples generated by baseline conditioning schemes. We can see
that the synthetic images generated by Phylo-Diffusion achieve the highest F1
score (82.21%), which is quite close to the F1 score of the base classifier on the
original test images (85%). We present additional results showing the general-
izability of Phylo-Diffusion in classifying generated images to unseen species in
Appendix G.

5.3 Matching Embedding Distances with Phylogenetic Distances

We investigate the quality of embeddings produced by baseline methods by com-
paring distances in the embedding space with the ground-truth (GT) phyloge-
netic distances computed from the tree of life, as illustrated in Figure 4. Ideally,
we expect distances in the embedding space of species pairs to be reflective of
their phylogenetic distances. For Class Conditional, we can see that the distance
matrix does not show any alignment with the GT phylogenetic distance matrix.
In the case of Scientific Name Encoding, the distance matrix exhibits notable
similarities to the phylogenetic distances, thanks to the hierarchical nature of
information contained in scientific names (i.e., genus-name & species-name).
However, one limitation of this encoding is its inability to capture inter-genus
similarities or differences. In contrast, HIER-Embed shows a distance matrix that
closely aligns with the GT phylogenetic distance matrix, validating its ability to
preserve evolutionary distances among species in its embedding space.

9
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(a) GT Phylogenetic
Distance

(b) Class Conditional
Encoding

(c) Scientific Name En-
coding

(d) Hierarchical Em-
bedding

Fig. 4: Comparing Cosine distances in the embedding space of species for varying
conditioning mechanisms.

Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4

Fig. 5: Left: class probability distributions of images generated by using embeddings
at all four levels for two species Lepomis gulosus and Lepomis macrochirus (shown in
green) that are part of the same sub-tree till level 3. Right: class probability distribu-
tions of images generated by masking level 4 (descendant species that have common
ancestry till level 3 are highlighted in green)

5.4 Trait Masking Results

To obtain classification probabilities or logits associated with generated images,
we employ the classifier detailed in Section 5.2. For the masked embeddings of
subtrees at level 3, defined as [E1,E2,E3, znoise], we analyze the logits of gener-
ated images and compare them with those generated without masking. Figure 5
demonstrates that for a specific subtree, in this case Lepomis, logits for species
within the subtree are higher compared to those for species outside it. This
outcome aligns with the expectation that Phylo-Diffusion, when provided with
information up to Level 3, can capture overarching characteristics of all species
within the given subtree. Additionally, Figure 5 presents probability distribu-
tions for species within the Lepomis subtree when the full set of hierarchical
encodings [E1,E2,E3,E4] is provided. It demonstrates that the probabilities
are significantly higher for the targeted class, as intended for image generation.
After masking, we observe that the generated images are very similar and cap-
ture common features of the Lepomis genus. For all our calculations and plots,
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Fig. 6: Box plot for the mean of difference in probabilities for species within the subtree
and out of subtree for level-3 and level-2.

we generate 100 images for each subtree and node. Appendix C contains addi-
tional histograms that detail logit distributions across all different subtrees at
each level, offering comprehensive insights into how the model discriminates and
learns the hierarchical structure across different levels and nodes.

Quantitative Evaluation of Probability Distrubtions: To quantitatively
evaluate the ability of Phylo-Diffusion to capture hierarchical information and
show desired changes in probability distributions after masking, we compute
the following metrics. Let us denote the set of all species in the data as S and
for a given sub-tree at an internal node i of level l, let us denote the subset
of descendant species as Sl

i = {S1, S2, . . . , Sn}. We first compute the reference
probabilities Pref of every species before masking (i.e., by using all four level
embeddings). Let us denote the probability of predicting a generated image
using all four embeddings of a descendant species Sj ∈ Sl

i into species class Sk

as PSj (Sk). The reference probability of a species Sk can then be given as:

Pref (Sk) =

{
1

|Sl
i |−1

∑
Sj∈Sl

i\Sk
PSj

(Sk), if Sk ∈ Sl
i ,

1
|Sl

i |
∑

Sj∈Sl
i
PSj

(Sk), if Sk ̸∈ Sl
i .

(4)

Note that when Sk is part of the sub-tree, i.e., Sk ∈ Sl
i , Pref (Sk) is computed

by averaging over |Sl
i | − 1 probability values since we exclude the case when Sk

is used to generate the images. On the other hand, when Sk is outside of the
sub-tree, i.e., Sk ̸∈ Sl

i , we average over all |Sl
i | probability values. Given these

reference probabilities values before masking, we can compute the change in
probability of predicting species Sk after masking as Pdiff (Sk) = Pmask(Sk) −
Pref (Sk), where Pmask(Sk) is the probability of predicting a generated image
after masking to Sk. We expect Pdiff to be larger for descendant species Sk ∈ Sl

i

compared to species that are outside of the sub-tree because of the dispersion
of probabilities in a sub-tree as a consequence of masking. We thus compute the
average Pdiff for species that belong to subtree Sl

i as P sub
diff (i, l) and species that

are outside the subtree Sl
i as P out

diff (i, l).
Figure 6 shows the box plot of P sub

diff and P out
diff across internal nodes at levels

2 and 3. We observe that species within the subtree exhibit a more pronounced
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increase in probabilities compared to species outside the subtree, aligning with
our expectations. Notably, this trend is consistently observed across both levels 2
and 3. More details of class-wise probability distribution shifts for each level are
provided in Appendix C. The outcomes of these experiments affirm that Phylo-
Diffusion effectively identifies unique features at Levels 2 and 3, and captures
shared features or traits of any chosen subtree at the internal nodes of the
phylogeny.

5.5 Trait Swapping Results

Figure 7 shows examples of trait swapping results enabled by Phylo-Diffusion.
For the first example (first row of Figure 7a), we swap the level-2 embedding
of source species Noturus exilis with level-2 embedding of its sibling group
Notropis/ Carassius. The goal here is to discover traits of Noturus exilis in-
herited at level-2 that differentiate it from other groups of species that branched
out at this point of time in evolution. We can see that the generated images
of the perturbed embedding (center) exhibit the absence of barbels (whiskers)
highlighted in purple, while the caudal (or tail) fin is beginning to fork (or split),
a trait adopted from Notropis (right). In contrast, other fins such as the dorsal,
pelvic, and anal fins highlighted in green remain similar to those of the source
species, Noturus exilis (left). This suggests that at level-2, Notropis and Notu-
rus species diverged by developing differences in two distinct traits, barbels and
forked caudal fins while keeping other traits intact.

For the second example (Figure 7a, row 2), we swap level-2 information of
Gambusia affinis (left) with that of Esox americanus (right). The generated
images of the perturbed embedding (center) exhibit a more pointed head high-
lighted in purple, and a slimmer body shape resembling Esox americanus. No-
tably, the perturbed species retains discoloration at the bottom from the source
species highlighted in green. Figure 7b presents probability distributions (or
logits) of Gambusia affinis before and after trait swapping using the classifier
detailed in Section 5.2. We observe a slight decrease in logits for Gambusia affinis
and an increase in logits for Esox americanus, consistent with our expectations.
In the third row of Figure 7a, we swap level-3 information of Lepomis gulosus
(left) with that of Morone genus (right). The resulting images from the per-
turbed embedding (center) capture the horizontal line pattern characteristic of
Morone genus, and the dorsal fin highlighted in purple begins to split. All these
examples suggest novel scientific hypotheses about differences in evolutionary
traits acquired by species at different ancestry levels, which can be validated by
biologists in subsequent studies. Note that our experiments are most effective at
levels near the species nodes, specifically at levels 2 & 3, since phylogenetic signal
is known to diminish as we move toward the root of the tree [11,24]. Additional
visualizations of trait swapping results are provided in Appendix D.

Comparisions with Phylo-NN: Figure 8 compares trait swapping results of
Phylo-Diffusion and Phylo-NN for the same set of example species. Figure 8a
shows trait swapping at level-3 for the source species of Lepomis gulosus (top)
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Generated images 
without perturbation 

(source)

Generated images 
after perturbation

Sample Images 
of species from 

swapped subtree

(a) Examples of traits swapping for species at level-2 (first two rows)
and level-3 (last row). The order of species from top to bottom is
Noturus exilis swapped with Notropis and Gambusia affinis swapped
with Esox americanus. The third row shows trait swapping at level-3
for Lepomis gulosus swapped with Morone.

Before Perturbations After Perturbations

(b) For Row 2 of Figure 7a, we show that the probability distribution
of Gambusia affinis decreases after the swapping traits at level-2, with
an increase in the probability distribution of Esox americanus.

Fig. 7: Examples of trait swapping results.

and target sub-tree of the Morone genus (bottom). In Phylo-NN, images gen-
erated by perturbing the Imageome sequences appear blurry (red circle), while
Phylo-Diffusion effectively captures the splitting of dorsal fin (purple circle) and
the horizontal stripe pattern of the Morone genus, while maintaining the fin
structure of Lepomis gulosus (green circle). Similarly, Figure 8b compares trait
swapping for Noturus miurus (top) with the target sub-tree of Notropis genus
(bottom) at level-2. For Phylo-NN, the perturbed images are almost identical to
the source species. However, Phylo-Diffusion shows visible trait differences such
as the absence of barbels and the caudal (or tail) fin beginning to fork or split
(purple circle), which are traits picked from the target sub-tree of Notropis genus.
Note that we had considered the same target sub-tree in Figure 7a row 1 and
observed similar trait differences in the generated images after perturbation, fur-
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(a) Swapping Level 3 traits for Lepomis gulo-
sus with Morone

PhyloNN Phylo-Diffusion

Generated images 
without perturbation 

(source)

Sample Images 
of species from 

swapped subtree

Generated images 
after perturbation

(b) Swapping Level 2 traits for Notorus mirurus
with Notropis

Fig. 8: Comparing Phylo-NN with Phylo-Diffusion for examples of trait swapping.

ther validating the ability of Phylo-Diffusion to discover consistent evolutionary
traits. We provide additional results comparing Phylo-Diffusion and Phylo-NN
trait swapping results in Appendix E.

6 Conclusions and Future Work

In this work, we introduced Phylo-Diffusion, a novel framework for discovering
evolutionary traits from images by structuring the embedding space of diffusion
models using tree-based knowledge. In the future, our approach can be extended
to work on other applications involving image data linked with phylogenies or
pedigrees. Our work also has limitations that need to be addressed in future re-
search. For example, while our current work is limited to discretized trees with a
fixed number of levels, future works can focus on discovering evolutionary traits
at every internal node of the phylogenetic tree with varying levels without per-
forming any discretization. Future works can also attempt to capture convergent
changes in evolution, i.e., changes that occur repeatedly in different branches of
the tree, and perform ancestral state reconstruction with uncertainty estimates.
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Supplementary Materials

Here is a summary of additional details and experiments included in the Appen-
dices.

1. Appendix A: Hyperparameter Settings and Training Details
2. Appendix B: Details about Phylogenetic Tree
3. Appendix C: Additional Details about Trait Masking Experiments
4. Appendix D: Additional Examples for Trait Swapping Experiments
5. Appendix E: Additional Comparisons with PhyloNN
6. Appendix F: Additional Samples of Generated Images
7. Appendix G: Ablation Results
8. Appendix H: CUB Dataset Results

A Hyperparameter Settings and Training Details

Table 3 lists all the hyperparameters for the models trained. We used cross-
attention as the conditioning mechanism for all the models and all the models
were trained from scratch. At the inference stage, we used DDIM [29]sampling
with 200 steps. For computing metrics like FID, IS, etc., we use ADM’s [4]
TensorFlow evaluation script.

Table 3: Hyperparameter settings of the baselines and Phylo-Diffusion.

Model Class Conditional Scientific Name Phylo-Diffusion

z -shape 64 × 64 × 3 64 × 64 × 3 64 × 64 × 3
Diffusion Steps 1000 1000 1000
Noise Schedule linear linear linear
Model Size 469M 902M 469M
Channels 224 224 224
Depth 2 2 2
Channel Multiplier 1,2,3,4 1,2,3,4 1,2,3,4
Attention resolutions 32, 16, 8 32, 16, 8 32, 16, 8
Number of Heads 32 32 32
Dropout - - -
Batch Size 8 8 8
Iterations 400k 400k 400k
Learning Rate 4e-5 4e-5 4e-5
Scale 1 1 1
Embedding Dimension 1 x 512 77 x 768 1 x 512
Transformers Depth 1 1 1

All diffusion models require about 7 days to train on a single A100 GPU for
both bird and fish datasets. Inference throughput is 0.9 samples/sec using DDIM
with 200 steps computed over generating 100 images per class. We do not have
any additional overheads in training and inference time compared to LDMs.
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B Details about Phylogenetic Tree

Figure 9 shows the phylogeny tree for all the species in the fish dataset along
with the information of the four discrete levels used in our study (marked by
different colored circles). Table 4 and 5 list out all the groupings (subtrees) made
after discretizing the tree into four levels where the fourth level is the species
itself.

Level-1 Level-2 Level-3 Level-4

2
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0

4
2

3

0

5

1

4
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3
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8
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7

5

Fig. 9: Phylogeny tree for fishes for all 38 species. Filled circles show nodes of the
subtrees defined at each of the four levels after discretization.
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Table 4: Phylogenetic groupings of fish species included in this study at different
ancestry levels.

Level Node at level Species groupings

3 Node 0 Alosa chrysochloris

Node 1 Carassius auratus, Cyprinus carpi

Node 2 Esox americanus

Node 3 Gambusia affinis

Node 4 Lepisosteus osseus, Lepisosteus platostomus

Node 5 Lepomis auritus, Lepomis cyanellus, Lepomis gibbosus, Lepomis
gulosus, Lepomis humilis, Lepomis macrochirus, Lepomis mega-
lotis, Lepomis microlophus

Node 6 Morone chrysops, Morone mississippiensis

Node 7 Notropis atherinoides, Notropis blennius, Notropis boops,
Notropis buccatus, Notropis buchanani, Notropis dorsalis,
Notropis hudsonius, Notropis leuciodus, Notropis nubilus,
Notropis percobromus, Notropis stramineus, Notropis telesco-
pus, Notropis texanus, Notropis volucellus, Notropis wickliffi,
Phenacobius mirabilis

Node 8 Noturus exilis, Noturus flavus, Noturus gyrinus, Noturus miu-
rus, Noturus nocturnus

2 Node 0 Alosa chrysochloris

Node 1 Carassius auratus, Cyprinus carpio, Notropis atherinoides,
Notropis blennius, Notropis boops, Notropis buccatus, Notropis
buchanani, Notropis dorsalis, Notropis hudsonius, Notropis
leuciodus, Notropis nubilus, Notropis percobromus, Notropis
stramineus, Notropis telescopus, Notropis texanus, Notropis
volucellus, Notropis wickliffi, Phenacobius mirabilis

Node 2 Esox americanus

Node 3 Gambusia affinis, Lepomis auritus, Lepomis cyanellus, Lep-
omis gibbosus, Lepomis gulosus, Lepomis humilis, Lepomis
macrochirus, Lepomis megalotis, Lepomis microlophus, Morone
chrysops, Morone mississippiensis

Node 4 Lepisosteus osseus, Lepisosteus platostomus

Node 5 Noturus exilis, Noturus flavus, Noturus gyrinus, Noturus miu-
rus, Noturus nocturnus
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Table 5: Phylogenetic groupings of species included in this study at different ancestry
levels (continued from Tab. 4)

Level Node at level Species groupings

1 Node 0 Alosa chrysochloris, Carassius auratus, Cyprinus carpio,
Notropis atherinoides, Notropis blennius, Notropis boops,
Notropis buccatus, Notropis buchanani, Notropis dorsalis,
Notropis hudsonius, Notropis leuciodus, Notropis nubilus,
Notropis percobromus, Notropis stramineus, Notropis telesco-
pus, Notropis texanus, Notropis volucellus, Notropis wickliffi,
Noturus exilis, Noturus flavus, Noturus gyrinus, Noturus miu-
rus, Noturus nocturnus, Phenacobius mirabilis

Node 1 Esox americanus, Gambusia affinis, Lepomis auritus, Lepomis
cyanellus, Lepomis gibbosus, Lepomis gulosus, Lepomis humilis,
Lepomis macrochirus, Lepomis megalotis, Lepomis microlophus,
Morone chrysops, Morone mississippiensis

Node 2 Lepisosteus osseus, Lepisosteus platostomus

C Additional Details about Trait Masking Experiments

Additional Visualizations of Changes in Probability Distributions af-
ter Masking: Figure 10, 11, 12, 13 and 14 show additional examples of changes
in probability distributions when level-4 information is replaced with noise. In
each figure, the first two plots display probability distributions (or logits) of
images generated using embeddings from all four levels, i.e. [E1,E2,E3,E4],
of two representative species sharing a common ancestry up to level-3 (high-
lighted in green). We show that the logits are higher for the targeted species as
expected. The third plot logits after masking level-4 embeddings, leading to a
dispersion of probabilities across all descendant species within the subtree up
to level-3 (highlighted in green). The only exception is Figure 13, where there
is some skewness in the logits of descendant species, which is likely due to the
data imbalance across classes at higher levels of the tree and also due to bi-
ases in the classifier (classifier test accuracy is 85% as reported in Section 5.2).
In this case, the classifier sometimes misclassifies Notropis boops as Notropis
blennius in the first plot and Notropis dorsails as Notropis buccatus in the sec-
ond plot. Consequently, the third plot for the Notropis subtree shows a higher
probability for Notropis blennius. Similarly, Figure 15, 16 and 17 provide ex-
amples of trait masking where both Level 3 and 4 are replaced with noise, i.e.
[E1,E2, znoise, znoise]. We observe a similar trend in the dispersion of probabil-
ities across all descendant species within the same subtree at level-2. In all trait
masking visualizations, we consistently observe that logits of generated images
of species within the subtree (highlighted in green) are higher than for species
outside the subtree. This demonstrates Phylo-Diffusion’s ability to effectively
capture hierarchical information at various levels of the phylogenetic tree.
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Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4

Fig. 10: Left: class probability distributions of images generated by using embeddings
at all four levels for two species Cyprinus carpio and Carassius auratus (shown in green)
that are part of the same sub-tree till level 3. Right: class probability distributions of
images generated by masking level 4 (descendant species that have common ancestry
till level 3 are highlighted in green)

Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4

Fig. 11: Left: class probability distributions of images generated by using embeddings
at all four levels for two species Lepisosteus osseus and Lepisosteus platostomus (shown
in green) that are part of the same sub-tree till level 3. Right: class probability distri-
butions of images generated by masking level 4 (descendant species that have common
ancestry till level 3 are highlighted in green)
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Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4

Fig. 12: Left: class probability distributions of images generated by using embeddings
at all four levels for two species Morone chrysops and Morone mississippiensis (shown
in green) that are part of the same sub-tree till level 3. Right: class probability distri-
butions of images generated by masking level 4 (descendant species that have common
ancestry till level 3 are highlighted in green)

Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4

Fig. 13: Left: class probability distributions of images generated by using embeddings
at all four levels for two species Notropis boops and Notropis dorsalis (shown in green)
that are part of the same sub-tree till level 3. Right: class probability distributions of
images generated by masking level 4 (descendant species that have common ancestry
till level 3 are highlighted in green)
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Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4

Fig. 14: Left: class probability distributions of images generated by using embeddings
at all four levels for two species Noturus exilis and Noturus falvus (shown in green)
that are part of the same sub-tree till level 3. Right: class probability distributions of
images generated by masking level 4 (descendant species that have common ancestry
till level 3 are highlighted in green)

Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4 & Level 3

Fig. 15: Left: class probability distributions of images generated by using embeddings
at all four levels for two species Notropis dorsalis and Phenacobius mirabilis (shown in
green) that are part of the same sub-tree till level 2. Right: class probability distribu-
tions of images generated by masking level 3 and level 4 (descendant species that have
common ancestry till level 2 are highlighted in green)
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Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4 & Level 3

Fig. 16: Left: class probability distributions of images generated by using embeddings
at all four levels for two species Lepomis megalotis and Lepomis auritus (shown in green)
that are part of the same sub-tree till level 2. Right: class probability distributions of
images generated by masking level 3 and level 4 (descendant species that have common
ancestry till level 2 are highlighted in green)

Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4 & Level 3

Fig. 17: Left: class probability distributions of images generated by using embeddings
at all four levels for two species Noturus exilis and Noturus flavus (shown in green)
that are part of the same sub-tree till level 2. Right: class probability distributions of
images generated by masking level 3 and level 4 (descendant species that have common
ancestry till level 2 are highlighted in green)
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Additional Quantitative Results of Trait Masking: Tables 6 and 7 show
the change in probabilities for different nodes at levels 3 and 2, respectively. We
can see that indeed P sub

diff is larger than P out
diff for all internal nodes at levels

2 and 3 (except node 5 at level 2), indicating that Phylo-Diffusion is capturing
the necessary hierarchical information required for the dispersion of probabilities
after masking. Figure 6 in the main paper shows the box plots of Tables 6 and
7. Table 8 summarizes this information by showing the average P sub

diff and P out
diff

for all nodes at a given level. It is important to note that for this experiment,
we focus on nodes that have more than one species in the defined subtree.

Table 6: Average change in probability distributions for every node at Level 3.

Node Subtree Out-of-Subtree
Node 1 0.1988 0.0018
Node 4 0.0952 0.0051
Node 5 0.0753 0.0007
Node 6 0.0903 0.0076
Node 7 0.0346 0.0006
Node 8 0.1472 0.0003

Table 7: Average change in probability distributions for every node at Level 2.

Node Subtree Out-of-Subtree
Node 1 0.0299 0.0023
Node 3 0.0449 0.0062
Node 4 0.0952 0.0051
Node 5 -0.0434 0.0292

Table 8: Average change in probability distributions across all nodes at a certain level.

Levels Subtree Out-of-Subtree
Level 3 0.1070 0.0027
Level 2 0.0316 0.0107
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D Additional Examples for Trait Swapping Experiments

Additional Visualizations of Trait Swapping Experiments: Figure 18
illustrates trait swapping for the source species Noturus exilis (left), where the
information at Level-2 is swapped with that of a sibling subtree at Node B
(right). The image in the center is generated using the trait swapped embedding.
This visualization of the perturbed species helps us study the trait changes that
would have branched out at level-2 between Node A and Node B.In the generated
image (center), we observe the absence of barbels(whiskers), and the caudal fin
(tail) is getting forked (or split) highlighted in pink, which are traits adopted
from species in the subtree at B (Notropis). Whereas other fins like the dorsal,
pelvic, and anal fin still resemble the source species Noturus exilis highlighted
in green. The same is also reflected in the change of probability distribution
after perturbations; the probability distribution of source species Noturus exilis
decreases and the probability of it being a Notropis increases slightly.

Similarly in Figure 19, for the studied species Lepomis gulosus (left), the
information at Level 3 is swapped with subtree at Node B (Morone). The per-
turbed species generated (center) captures traits from both lineages. The spotted
pattern in the body and fins is retained from Lepomis (Node A) but these spots
now start to follow the horizontal stripes pattern observed in Morone (species
at Node B). Additionally, the dorsal fin highlighted in pink starts to split into
two, with the left half retaining the spiny structure from Lepomis highlighted
in green. This observation suggests that the species at Node A and B possess
distinct traits at this level-3 branching node. The same is reflected in the shift
in probability distributions towards species in Node B after trait swapping.
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Before Perturbations After Perturbations

Fig. 18: Visualization of changes in traits after swapping information at Level 2 (Node
A) for Noturus exilis (left) with its sibling subtree at Node B(right) to generate per-
turbed species (center). Traits shared with the source species are outlined in green,
whereas those shared with the sibling subtree at Node B are outlined in pink.
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Fig. 19: Visualization of changes in traits after swapping information at Level 2 (Node
A) for Lepomis gulosus (left) with its sibling subtree at Node B(right) to generate
perturbed species (center). Traits shared with the source species are outlined in green,
whereas those shared with the sibling subtree at Node B are outlined in pink.
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E Additional Comparisons with PhyloNN

Figure 20 compares the trait swapping experiment for Phylo-Diffusion with the
PhyloNN baseline, where level-2 information of Gambusia affinis is replaced
with that of Esox americanus. In the highlighted pink circle, the face of the im-
age generated after perturbations (center) becomes more pointed, and the body
shape flattens to resemble Esox americanus. This perturbed image also retains
traits like the caudal (tail) fin and the black-spotted pattern towards the bottom
(highlighted in green) from the source species, Gambusia affinis. The differences
observed with Phylo-Diffusion are notable, whereas the PhyloNN generates a
perturbed image nearly identical to the original, showing no significant changes.

Similarly, Figure 21 shows a comparison after replacing level-2 information
of Notropis husonius with that of Noturus. For Phylo-Diffusion, the caudal (tail)
fin is vibily joining highlighted in pink, resembling the caudal fins of Noturus.
This change is analogous to Figure 18, where level-2 information of Noturus
was replaced with Notropis (vice-versa), resulting in the caudal (tail) fin getting
forked or split. Hence, this helps us understand that at Level-2, the two species
diverged to develop different caudal fins. However, for PhyloNN, the generated
image after trait-swapping is blurry, and most of the traits still closely resemble
close the source species, which is unlikely given that the level-2 embeddings have
been replaced.

Fig. 20: Comparison of PhyloNN with Phylo-Diffusion (ours) for trait swapping where
the Level-2 information (Node A) of Gambusia affinis is swapped with its sibling sub-
tree at Node B to generate perturbed species (center). Traits shared with the source
species are outlined in green, whereas those shared with the sibling subtree at Node B
are outlined in pink.

30



Published as a conference paper at ECCV 2024

Generated images without 
perturbation (Source)

Sample image of species 
from subtree at B

Generated images 
after perturbation 
(swapping A to B)

PhyloNN Phylo-Diffusion

Fig. 21: Comparison of PhyloNN with Phylo-Diffusion (ours) for trait swapping where
the Level-2 information (Node A) of Notropis husonius is swapped with its sibling
subtree at Node B to generate perturbed species (center). Traits shared with the source
species are outlined in green, whereas those shared with the sibling subtree at Node B
are outlined in pink.
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F Additional Samples of Generated Images

Figure 22 shows additional examples of generated images for different species
using Phylo-Diffusion. Each row of the figure depicts the generated images for
the same species while the different rows represent distinct species. Notably, we
observe inter-class variations among species belonging to the same class, such as
differences in fish orientation and size.

Fig. 22: Comparison of images of different species generated by HEIR-Embed where
the generated images for a given row depict variations for the same species while the
different rows represent distinct species. The order of species from top to bottom is
Lepisosteus osseus, Morone chrysops, Lepomis gulosus, Esox americanus, Carassius
auratus, Notropis blennius, Noturus exilis, Phenacobius mirabilis

G Ablation Results

G.1 Generalization to Unseen Species: Leave-three-out

As an additional ablation experiment, we conduct a leave-three-out experiment
by excluding three species from different subtrees during training to test the
model’s ability to generalize to new species and situate them in the phylogeny.
This experiment involves training the model excluding three species, Notropis
blennius, Noturus gyrinus, and Lepomis humilis that belong to different subtrees
as seen in Tab. 4. The generated images from the three subtrees after trait
masking closely resemble the actual images of the 3 species, with an F1 score
of 95.6 on a classifier trained to discriminate the 3 species. This experiment
underscores the robustness and accuracy of Phylo-Diffusion in embedding and
generating phylogenetically consistent images.
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G.2 Effect of Varying the Number of Levels in Phylo-Diffusion

To demonstrate the robustness of Phylo-Diffusion, we perform ablation experi-
ments with varying numbers of levels in the discretization of the phylogeny tree.
We show that the choice of the number of levels depends on the depth of the
phylogenetic tree and the internal nodes to be studied. We train models with
{2, 4, 6, 8} levels on the phylogeny shown in Figure 9. Table 9 demonstrates that
the model is robust to the choice of the number of levels.

Table 9: Quantitative results for Phylo-Diffusion with varying number of levels in the
discretized phylogeny tree.

# levels FID ↓ IS ↑ Prec. ↑ Recall ↑
2 11.84 2.45 0.67 0.36
4 11.38 2.53 0.65 0.37
6 11.41 2.49 0.66 0.37
8 11.77 2.50 0.67 0.37

G.3 Effect of Varying Embedding Dimensions in Phylo-Diffusion

We further evaluate the effect of varying the number of embedding dimensions
used in HIER-Embed on the performance of Phylo-Diffusion. In this experi-
ment, we trained Phylo-Diffusion by varying HIER-Embed’s dimension in the
following range of values: {16, 32, 64, 128, 256, 512, 1024}. Table 10 shows that
Phylo-Diffusion is quite robust to the choice of embedding dimension with min-
imal drop in performance as we reduce the embedding dimension even to small
values.

Table 10: Quantitative results for Phylo-Diffusion with varying embedding dimensions
of hierarchical embeddings.

Embedding Dim. FID ↓ IS ↑ Prec. ↑ Recall ↑
16 11.23 2.45 0.66 0.36
32 11.25 2.45 0.66 0.38
64 11.56 2.47 0.66 0.37
128 11.31 2.45 0.67 0.37
256 11.53 2.42 0.67 0.35
512 11.38 2.53 0.65 0.37
768 11.69 2.49 0.65 0.37
1024 11.51 2.48 0.67 0.36
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H CUB Dataset Results

To show the applicability of our approach on other datasets with larger and
deeper phylogenies, we perform additional experiments on 190 bird species from
the CUB-200-2011 dataset (see Table 11). We selected the set of bird species
based on whether we are able to obtain their phylogenetic knowledge from Bird
Tree, which are pre-processed similar to the fishes. We removed the background
of these images using segmentation masks to focus only on the body of the birds.

Table 11: Quantitative results on the new birds dataset (30 samples/class). The clas-
sifier has a base accuracy of 76% on the test set.

Method FID ↓ IS ↑ Prec. ↑ Recall ↑ F1 ↑
Class Conditional 6.8 3.2 0.70 0.49 0.68
Scientefic Name 8.5 3.1 0.65 0.48 0.18
Phylo-Diffusion (ours) 6.7 3.1 0.72 0.49 0.64

Trait Masking: Similar to fishes, Figure 23 shows the changes in probability
distributions when Level 3 & 4 information is replaced with noise. The first two
plots show the logits of images generated for Black-footed albatross and Sooty
albatross using embeddings from all the four levels. The third plot shows the
dispersion of logits across the three descendant species that are part of the sub-
tree defined till level 2, i.e., masking level 3 & 4. We see similar results for CUB
as well where the probability of classifying the generated images into any of
the descendant species that share a subtree (highlighted in green) is generally
greater than the species outside the subtree.

Probability Distributions when all four levels are used (L1 to L4) Probability Distributions after masking Level 4 & Level 3

Fig. 23: Left: class probability distributions of images generated by using embeddings
at all four levels for two species Black-footed albatross and Sooty albatross (shown in
green) that are part of the same sub-tree till level 2. Right: class probability distribu-
tions of images generated by masking level 3 and level 4 (descendant species that have
common ancestry till level 2 are highlighted in green).
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Trait Swapping: Figure 24 shows an example of the trait swapping experiment
on the birds dataset, similar to the experiments for fishes in the main paper. We
see that the image generated from the perturbed embedding (center) picks up
the trait of black coloration around the eye (purple circle) that is shared by the
target sub-tree (right) while traits like pointed beak (green circle) are retained
from the source species (left).

Generated images 
without perturbation 

(Source)

Sample image of 
species from 
subtree at B

Generated images 
after perturbation 

(swapping at Level 2)

Fig. 24: Visualization of changes in traits after swapping information at Level 2 for
Clark nutcracker (left) with its species from its sibling subtree (right) to generate
perturbed species (center). Traits shared with the source species are outlined in green,
whereas those shared with the sibling subtree at Node B are outlined in pink.
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