
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

S4D: STREAMING 4D REAL-WORLD RECONSTRUC-
TION WITH GAUSSIANS AND 3D CONTROL POINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Dynamic scene reconstruction using Gaussians has recently attracted increased
interest. Mainstream approaches typically employ a global deformation field
to warp a 3D scene in canonical space. However, the inherent low-frequency
nature of implicit neural fields often leads to ineffective representations of complex
motions. Moreover, their structural rigidity can hinder adaptation to scenes with
varying resolutions and durations. To address these challenges, we introduce a
novel approach for streaming 4D real-world reconstruction utilizing discrete 3D
control points. This method physically models local rays and establishes a motion-
decoupling coordinate system. By effectively merging traditional graphics with
learnable pipelines, it provides a robust and efficient local 6-degrees-of-freedom
(6-DoF) motion representation. Additionally, we have developed a generalized
framework that integrates our control points with Gaussians. Starting from an initial
3D reconstruction, our workflow decomposes the streaming 4D reconstruction into
four independent submodules: 3D segmentation, 3D control point generation,
object-wise motion manipulation, and residual compensation. Experimental results
demonstrate that our method outperforms existing state-of-the-art 4D Gaussian
splatting techniques on both the Neu3DV and CMU-Panoptic datasets. Notably,
the optimization of our 3D control points is achievable in 100 iterations and within
just 2 seconds per frame on a single NVIDIA 4070 GPU.

1 INTRODUCTION

Reconstructing real-world scenes is a longstanding challenge in computer graphics. Recently, 3D
Gaussian Splatting (3D-GS) Kerbl et al. (2023) have demonstrated remarkable success in producing
high-quality reconstructions for static scenes. This technique utilizes discrete Gaussians to model the
scene, attributing them with physically meaningful properties, and achieves rendering by "splatting"
these Gaussians onto the image plane. For dynamic scene reconstruction, current Gaussian Splatting
methods Yang et al. (2023b); Huang et al. (2023); Wu et al. (2023); Lin et al. (2023b) build upon
the concept introduced by dynamic NeRFs Park et al. (2021a;b); Pumarola et al. (2021). These
methods typically decompose scene motion into a canonical space and employ an implicit neural
field to capture global motion. However, the low-frequency characteristics and rigid structure of
implicit neural networks limit their ability to accurately handle complex motions or scenes with
diverse resolutions and varying lengths.

Compared to NeRF, one significant advantage of 3D-GS lies in its discrete structure. This structure
ensures that scene representation—via Gaussians—is concentrated at influential positions within the
scene, avoiding the inefficiencies of a global field that waste representational capacity on empty space.
Similarly, the global implicit neural field used for deformation faces a similar issue: only a small part
of the scene is dynamic, while the majority remains static. Therefore, a discrete, localized motion
representation holds promise, as it offers precise and flexible modeling of 3D motions at a local level.

Previous methods, both traditional Vedula et al. (1999) and learning-based Huang et al. (2023), have
attempted to represent local 3D motion in a discrete fashion. However, traditional methods often
struggle with complex 3D alignment challenges, while learning-based approaches face difficulties in
convergence due to their high degrees of freedom (DoF).

Our approach differs by integrating graphics and learnable pipelines. Recognizing that optical flow is
the 2D projection of scene flow, and that optical flow estimation Ranjan & Black (2017); Sun et al.
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(2018); Teed & Deng (2020); Kroeger et al. (2016) is a well-established technique, we simplify the
problem by introducing a novel local decoupling system. In this system, local 3D motion is decoupled
into the observable and hidden components. The observable component is tied to optical flow, while
the hidden component remains learnable. We refer to this new form of motion representation as the
"3D control point" approach.

Building on the introduced 3D motion representation, we present a novel generalized streaming
framework for 4D real-world reconstruction. Beginning with an initial 3D reconstruction, our
workflow breaks the streaming 4D reconstruction process into distinct submodules: 3D segmentation,
3D control point generation, object-wise motion manipulation, and residual compensation. This
structured approach helps to minimize topological errors and ensures a compact, robust representation.

Our key contributions are as follows:

• We model the 3D motions of dynamic objects discretely using an innovative method that
combines graphics techniques with learnable pipelines. This approach decouples the compo-
nents of 3D motion: observable part is tied to optical flow, while the hidden part is learned.
This motion representation, referred to as "3D control points," improves both convergence
speed and reconstruction accuracy.

• We introduce a generalized streaming pipeline that employs Gaussians and 3D control points
to reconstruct 4D real-world scenes. Our method establishes a new benchmark, achieving
state-of-the-art performance on the Neu3DV and CMU-Panoptic datasets.

2 RELATED WORK

2.1 4D RECONSTRUCTION

The recent Neural Radiance Field (NeRF) Mildenhall et al. (2021) approach has proven efficient for
scene reconstruction by utilizing a global continuous implicit representation of the scene. Subsequent
works have enhanced reconstruction quality by evolving from MLPs to grid-based structures. For
instance, Müller et al. (2022) introduced the Instant Neural Graphics Primitives method, while
Fridovich-Keil et al. (2022) proposed Plenoxels. Other methods, like Mip-NeRF Barron et al. (2021;
2022), modeled rays as cones to achieve anti-aliasing.

To accelerate rendering, various strategies have been proposed, such as pre-computation Wang et al.
(2023c; 2022); Fridovich-Keil et al. (2022); Yu et al. (2021) and hash coding Müller et al. (2022);
Takikawa et al. (2022).

Efforts to extend NeRF’s representation to dynamic scenes have also been explored. For instance,
Xian et al. (2021); Wang et al. (2021) challenged the static scene hypothesis by providing separate
representations over time. Mainstream methods Liu et al. (2022); Park et al. (2021a;b); Pumarola
et al. (2021); Song et al. (2023); Du et al. (2021); Li et al. (2021); Liu et al. (2023) decoupled motion
from the scene using a deformation field to warp the 3D scene at a canonical timestep.

Further advancements included expanding the grid Fang et al. (2022); Shao et al. (2023) and pla-
nar Cao & Johnson (2023); Fridovich-Keil et al. (2023) structures with a time dimension to boost
rendering speed and reconstruction quality. Other research Wang et al. (2023b); Li et al. (2023);
Lin et al. (2022; 2023a) focused on refining reconstruction quality by leveraging prior knowledge
of camera positions. Additional supervision information such as depth Attal et al. (2021) and op-
tical flow Wang et al. (2023a) was incorporated during training. NeRFPlayer Song et al. (2023),
notably, utilized self-supervised learning to segment dynamic scenes into static, deforming, and newly
appearing regions, applying tailored strategies to each.

Recently, 3D-GS Kerbl et al. (2023) introduced an elegant point-based rendering approach with
efficient CUDA implementations. The 4D reconstruction methods using Gaussians closely resemble
those in NeRF. For instance, Yang et al. (2023a) incorporated time-variant attributes into Gaussians,
while Dynamic-GS Luiten et al. (2023) directly learned dense Gaussian movements. 3DGStream
introduced Neural Transformation Cache to represent Gaussian motion on a frame-by-frame basis,
and Gaussian-Flow Lin et al. (2024) employed Dual-Domain Deformation Model to represent point-
wise movement. HiFi4G Jiang et al. (2023) combined an implicit method Wang et al. (2023d) for
surface reconstruction with a traditional graphics approach Sumner et al. (2007) for surface warping.
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Other studies Wu et al. (2023); Yang et al. (2023b); Huang et al. (2023); Lin et al. (2023b) represented
4D scenes by warping Gaussians in a canonical space using global implicit deformation fields.

2.2 3D MOTION REPRESENTATION

Decoupling 3D motion from the canonical scene offers significant advantages by reducing redundant
information in the time dimension. While implicit neural representations are compact, they often lack
the flexibility needed to adapt to varying scenes and require redesigns. Traditional graphics meth-
ods Sorkine (2005); Yu et al. (2004) have provided flexible deformation solutions while preserving
geometric details. Among these, Sumner et al. (2007) introduced sparse control points (ED-graph) to
represent the motion of dense surfaces, balancing compactness and flexibility.

HiFi4G Jiang et al. (2023) utilized the ED-graph approach directly, but its surface reconstruction
demands dense camera distribution and is time-consuming. SC-GS Huang et al. (2023) also adopted
the concept of sparse control points, yet direct optimization is difficult due to the high degrees of
freedom. Moreover, unlike meshes, the volumetric radiance representation of 3D Gaussians is not
well-suited for the thin nature of surfaces Huang et al. (2024).

To address these challenges, we propose a novel 3D control points method tailored for volumetric
radiance representations. By decoupling 3D motion into observable and hidden components, we
apply distinct strategies for motion acquisition. This approach leverages the strengths of traditional
graphics techniques and learnable pipelines, enabling precise and flexible motion representation
while maintaining the efficiency and compactness necessary for further applications.

3 METHODOLOGY

The streaming workflow is illustrated in Fig. 1. Our method consists of four independent modules:
3D segmentation, 3D control point generation, object-wise motion manipulation, and residual
compensation. Inputs include 3D Gaussians, 2D masks, and backward optical flow. The 3D
Gaussians Gt−1 are obtained either from the initial static scene reconstruction using 3D-GS Kerbl
et al. (2023) or from the previous frame. The 2D object masks, Mt−1, are generated via the SAM-
track method Cheng et al. (2023). Optical flows, Ft−1, are derived from established optical flow
methods Kroeger et al. (2016); Ranjan & Black (2017); Sun et al. (2018). Section 3.1 provides a brief
overview of each module, with detailed explanations following in subsequent sections.

Diff Gaussian 

Rasterization

3D Gaussians Gt-1

2D Masks

3D 

Segmentation

Motion 

Manipulation

Objects

Background

Residual 

Compensation

GS Residual3D Control Points

Operation Flow

Gradient Flow

Learnable Param.

Partial-Learnable Param.

Optical Flows

3D Control Points

Generation

3D Gaussians Gt

Key Frames UpdateAll Frames Update

Image

Figure 1: Streaming workflow. The workflow starts by segmenting the scene into a static background
and several moving objects using multiview masks combined with a Gaussian category voting
algorithm. Optical flow is then applied to create a partially learnable system of 3D control points.
Motion-related attributes of the Gaussians are manipulated on an object-wise basis. To prevent
reconstruction failures from error accumulation, Gaussian attributes are periodically updated in a
keyframe manner, capturing additional scene information as attribute residuals of the Gaussians.

3.1 OVERVIEW OF EACH MODULE

3D Segmentation. The goal of 3D segmentation is to label each Gaussian as either a moving object
or part of the static background. As outlined in Sec. 1, representing local motion discretely by an
object-wise approach is often more efficient than global methods. Consequently, defining the regions
where each local representation is applicable is crucial. To achieve this, we use multiview masks
and adopt a Gaussian category voting algorithm to divide the scene into dynamic objects and a static
background. Only Gaussians assigned to specific objects are influenced by the 3D control points.
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3D Control Points Generation. The goal of 3D Control Points Generation is to generate 3D control
points for all moving objects, which govern the motion of their associated Gaussians on an object-wise
basis. This module plays a pivotal role in our workflow. Direct optimization of 3D control points
is challenging due to their high degrees of freedom. To address this issue, we introduce a local
decoupling coordinate system that links partial parameters of the 3D control points with 2D optical
flow. This innovative approach effectively reduces the control points’ degrees of freedom from nine
to three, enabling faster convergence during optimization.

Object-wise Motion Manipulation. The goal of Object-wise Motion Manipulation is to control the
movement of Gaussians for each object using the 3D control points. Motion manipulation involves
transforming the position and rotation attributes of Gaussians from one timestep t − 1 to the next
t. By manipulating these attributes on an object-wise basis, each Gaussian is influenced only by
the control points associated with its category. This selective control method allows for accurate
handling of topology changes of spatially adjacent objects and improves the precision of discrete
motion representation.

Residual Compensation. The goal of Residual Compensation is to mitigate error accumulation and
ensure stable long-term reconstruction. This module activates only at keyframes. Specifically, during
non-keyframe intervals, Gaussian attributes are frozen, and updates are confined to the control points.
At keyframes, both Gaussian attributes and control points are optimized, enabling comprehensive
adjustments that preserve the continuity and accuracy of the scene reconstruction. It is important
to note that the term "residual" in this context refers to adjustments in the attributes of the existing
Gaussians, without the introduction of new Gaussians.

3.2 3D SEGMENTATION

A straightforward and efficient method for 3D segmentation is to leverage objects’ 2D masks
combined with a statistical method to categorize Gaussians based on their projections from multiple
viewpoints. We utilize the SAM-track method Cheng et al. (2023) to obtain continuous 2D object
masks and implement a Gaussian category voting strategy similar to the approach used in SA-GS Hu
et al. (2024). A notable improvement in our method is its ability to distinguish between multiple
objects in the foreground.

Specifically, each Gaussian is assigned a counter for every object category, with the total number of
counters corresponding to the number of 2D object masks. For each Gaussian g, we project it onto
the jth image plane. If the projection of the Gaussian falls within the boundary of the kth object’s
mask, the counter for that object’s category is incremented by one. This process is repeated across
all training views, denoted as Ck. After processing all views, we label each Gaussian as L based on
the category with the highest counter value, indicating its assigned object category. The complete
algorithm is summarized as follows:

Ck = Ck + 1 if Pjg ∈ mjk,

L = argmax(C).
(1)

3.3 3D CONTROL POINTS GENERATION AND LOCAL 6-DOF MOTION DECOUPLING

To effectively represent local 6-degrees-of-freedom (6-DoF) motion, the attributes of a 3D control
point must include its position, local spatial translation, and rotation. However, only a portion of this
motion is visible from a single viewpoint, which is captured as optical flow. To address this limitation,
we develop an advanced coordinate system termed the "ray coordinate system." This system correlates
observable 3D motion components with optical flow from a single viewpoint. Motion components
hidden from this viewpoint are optimized using global image loss, as their information is implicitly
captured across multiple views.

To streamline the representation of motion, we model a small cluster of localized rays from the
scene to the camera as parallel lights. This approach enables the rays to share a unified coordinate
system, focusing on local motion rather than individual point-wise motion. The reasoning behind
approximating these rays as nearly parallel is explained in Appendix .1. In this model, the z-axis of
the ray coordinate system aligns with the center ray of the cluster, which extends from the camera
towards the scene. The motion decoupling is depicted in Fig. 2(a) and Fig. 2(b).
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Figure 2: 3D Control Points. (a) We model the localized light as parallel rays. The motion parameters
of the 3D control points, represented by the black segments, are bound with local 2D motion priors
derived from the optical flow on the image plane. (b) The yellow segments remain learnable because a
small cluster of parallel rays cannot adequately represent these elements. To decouple these attributes,
we use Euler angles to represent rotational components. (c) The 3D control points spatially influence
adjacent Gaussian points. During non-keyframe intervals, the Gaussian attributes remain fixed, while
only the learnable components of the control points undergo optimization. At keyframes, the attributes
of the Gaussians are actively included in the optimization process. For effective interpolation, rotation
attributes are expressed in quaternion format.

For translations, the component perpendicular to the ray affects the 2D optical flows observed in the
image, while the component along the ray is not visible. Regarding rotation, when a cluster of rays is
parallel, one rotational component aligns with the normal vector of the rays, practically translating
perpendicular to them. This observable rotation appears in the 2D optical flows as rotation around the
cluster’s center. Other rotational components, corresponding to translations along the rays, are not
detectable in the image plane.

A projection relationship is established between the 2D motion information on the image plane and
the motion information carried by parallel light rays. Under the near-parallel hypothesis, points xi

within the neighborhood N of x0 share the ray coordinate system of r0, as depicted in Fig. 3(a).
Fig. 3(b) and Eq. 2 detail the translation information vr carried by rays near the image plane:

vr = f ∗ 1

N

∑
xi∈N

(
dxr

i

dt
,
dyri
dt

)T = f ∗ 1

N
[Rcr]:2,:2

[
K−1

]
:2,:2

∑
xi∈N

(ui, vi)
T, (2)

where (ui, vi) represents the optical flow of the points xi. The inverse intrinsic matrix K−1 converts
the optical flow from pixel units to base units (meters), and the rotation matrix Rcr transforms the
coordinate system from the camera to the ray coordinate system. The notation [·]:2,:2 refers to the
matrix’s first and second rows and columns. N represents the number of pixels in the neighborhood
N . The camera’s focal length, f , measured in meters, is used to convert the translation from the
normalized to the physical image plane, enhancing the interpretability of vr. It is crucial to note that
all measurements of u, v are in pixels, while X,Y, x, y, z are measured in meters.

Next, we back-project the translation information into the scene to obtain the control points’ 3D
positions and corresponding 2D translations, utilizing rough depth estimates derived from Gaussian
rasterization. Specifically, the critical ratio for this process is the depth zc relative to the focal length
f . The formulas for converting the translation and determining the position are presented in Equations
3 and 4, respectively:

Vr = (
dXr

dt
,
dY r

dt
)T =

zc

f
vr, (3)

Xc =
zc

f
(xc

0, y
c
0, f)

T. (4)
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Figure 3: Auxiliary Diagrams for Local Motion Mapping. (a) An illustration of angles, points,
and rays within the neighborhood of x0. (b) A quantitative depiction of motion projection. (c) A
comparison between Gaussians distributed on the ground truth surface and control points located
on a biased surface. The rough depth estimation can introduce biases in the predicted translations,
particularly due to rotational movements.

To exploit the motion prior information provided by optical flow, we convert the rotation representation
into the Euler angle format to facilitate decoupling. The formulation for angular velocity is specified
as follows:

ωr
z =

1

N

∑
xi∈N

(xr
i − xr

0)× vr
i

∥xr
i − xr

0∥
2 . (5)

Thus far, the motion decoupling process within the ray coordinate system is complete. We have
obtained the 3D position and 2D translation of control points, along with 1D rotation information
from a single viewpoint.

We also explored incorporating local macro rotation, as described in the ED-graph method Sumner
et al. (2007). However, this resulted in a decline in performance. We hypothesize that the performance
drop is due to structural differences between Gaussians and meshes: while meshes are tightly clustered
on the object surface, Gaussians are more loosely distributed due to their higher degrees of freedom.
Consequently, we omit the component concerning local macro rotation to minimize biases introduced
by rough depth estimations, as illustrated in Fig. 3(c). Although this adjustment introduces some
sparsity, it optimizes our motion manipulation approach for volumetric radiance representations like
Gaussians.

3.4 OBJECT-WISE MOTION MANIPULATION

For each moving object, the translation t and rotation q of a Gaussian G are determined by interpo-
lating the translation ti and rotation qi of the K-nearest spatially adjacent control points Ci within its
neighborhood N . The weights wi for this interpolation are inversely proportional to the Euclidean
distance between the points. Rotations initially expressed in Euler angles are converted to quaternions
to facilitate the interpolation process. For simplicity in the formulas, the normalization of quaternions
to unit quaternions is omitted.

(t,q) =
∑

Ci∈N
wi ∗ (ti,qi), (6)

wi =
1/ ∥XG −XCi

∥∑
Ci∈N 1/ ∥XG −XCi

∥
. (7)

3.5 RESIDUAL COMPENSATION

Our approach utilizes control points to predict 3D motion but suffers from error accumulation
over time due to two main factors. First, scene reconstruction relies on information from earlier
frames, which may fail to capture previously occluded areas, such as the sides or backs of objects.
Second, there are discrepancies between the predicted motion of the Gaussians and the ground truth,
particularly for Gaussians distant from neighboring control points.
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To mitigate error accumulation, we employ a strategy inspired by video coding techniques, specifically
residual coding Wiegand et al. (2003); Sze et al. (2014). Residual coding in video technology
compensates for differences between original and motion-compensated frames. Our model uses a
keyframe updating method to optimize Gaussians after object-wise motion manipulation, thereby
improving long-term streaming reconstruction.

As illustrated in Fig.2(c), during non-keyframes, Gaussian attributes remain fixed while only the
learnable components of the 3D control points C are optimized. The scene at non-keyframe t is
expressed as follows:

Gt = FCt(Gt−1), (8)

where F denotes object-wise motion manipulation. In keyframes, attributes of Gaussians are
optimized, but instead of reinitializing them, they inherit attributes from previous timestamps. This
approach enhances efficiency by updating only the attributes’ residuals R, which capture minor
deviations. The scene at keyframe t is represented as follows:

Gt = FCt
(Gt−1) + Rt, (9)

We also introduce the concept of Group of Scenes (GoS), similar to the Group of Pictures (GoP) in
video coding. Specifically, we segment the scene sequence into multiple groups of scenes (GoS),
with each group comprising scene information across N consecutive timesteps. Given the initial 3D
scene G0 with a GoS-N setting, the frame-by-frame representation for 4D scene evolves as follows:

G0,C1,C2, . . . ,CN−1, (RN ,CN ) ,CN+1,CN+2, . . . (10)

3.6 LOSS FUNCTION

The loss function is straightforward, as shown in Eqn. 11:

L = (1− λ)L1 + λLD−SSIM, (11)

where λ is set to 0.2 as recommended by 3D-GS Kerbl et al. (2023). Our motion modeling and
streaming pipeline is both efficient and robust, enabling our method to converge effectively without
requiring additional loss constraints. This results from the inherent design of our system, which
directly specifies the motion of the Gaussians from the structural framework, ensuring accurate and
stable convergence.

4 EXPERIMENT

4.1 DATASETS AND IMPLEMENTATION DETAILS

Neu3DV Dataset Li et al. (2021). The Neural 3D Video Synthesis Dataset includes six sequences,
originally captured at a resolution of 2704 × 2028, which were downsampled to 1352 × 1014 for
training purposes. The sequence ’flame_salmon_1’ contains 1200 frames, while the remaining five
sequences consist of 300 frames each. All sequences were recorded using 15 to 20 static cameras,
evenly distributed in a spherical configuration around the scene.

CMU-Panoptic Dataset Joo et al. (2017). The CMU-Panoptic Dataset comprises three sequences
that showcase complex, dynamic object motions. Each sequence has a resolution of 640 × 360 and
consists of 150 frames. The data was collected using 31 static cameras, with 27 used for training and
4 reserved for testing, all placed to form a fanned-out arrangement in front of the scene.

Implementation Details. All experiments were conducted on NVIDIA RTX 4070 GPUs. To
assess our control point method for motion representation, we compared it with Dynamic-GS Luiten
et al. (2023) and 4D-GS Wu et al. (2023), both maintaining a constant number of Gaussian points.
Using their official codes, we ensured identical 3D point initialization across methods. Following
4D-GS guidelines, we used COLMAP Schönberger & Frahm (2016); Schönberger et al. (2016) to

7
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initialize 3D points from the first training frames and adopted Dynamic-GS’s 10k-iteration initial
reconstruction. For subsequent frames, we trained with 500 iterations for keyframes and 100 for
non-keyframes, using a single Adam optimizer with fixed learning rates as in Dynamic-GS. For the
CMU-Panoptic Dataset, we reused the foreground mask provided by Dynamic-GS.

4.2 RECONSTRUCTION RESULTS

Quantitative Results. We first present aver-
age quantitative results including PSNR, SSIM,
and LPIPS in Table 1. Our method outper-
formed both Dynamic-GS Luiten et al. (2023)
and 4D-GS Wu et al. (2023) across all metrics.
Additionally, we provide per-scene quantita-
tive results in Tables 2 and 3. our approach
achieved state-of-the-art (SOTA) performance
in terms of PSNR for most scenes and achieved
superior SSIM and LPIPS scores for even
more scenes, which reflects enhanced subjec-
tive reconstruction quality. 4D-GS’s quantita-
tive results on the CMU-Panoptic dataset were
excluded because it struggled to handle vio-
lent scene motion, which led to object disap-
pearance, as depicted in Fig. 4. Notably, our
method demonstrated a significant advantage
in training time.

Table 1: Average reconstruction results for the
Neu3DV dataset. Training time is reported
in hours. Each cell is color-coded to denote
performance ranking: best for the top per-
formance, second for the second best, and
third for the third best.

Metrics PSNR↑ SSIM↑ LPIPS↓ Training
Time ↓

Dynamic-GS 27.65 0.9232 0.1313 57.35

4D-GS 30.49 0.9401 0.0998 6.88

Ours-GoS1 31.20 0.9468 0.0881 12.19

Ours-GoS5 31.23 0.9459 0.0906 3.94

Ours-GoS10 30.91 0.9437 0.0941 1.89

Table 2: Per-scene results for the Neu3DV dataset.

Scene sear_steak cook_spinach cut_roasted_beef

Metrics PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Dynamic-GS 31.38 0.9469 0.1119 29.98 0.9388 0.1179 29.64 0.9360 0.1248

4D-GS 31.62 0.9569 0.0808 32.79 0.9522 0.0926 32.13 0.9467 0.0959

Ours-GoS1 33.23 0.9654 0.0719 33.20 0.9586 0.0796 33.00 0.9609 0.0795

Ours-GoS5 33.72 0.9661 0.0704 32.91 0.9579 0.0819 33.23 0.9592 0.0835

Ours-GoS10 33.64 0.9655 0.0716 32.65 0.9553 0.0861 32.47 0.9555 0.0890

Scene flame_steak flame_salmon_1 coffee_martini

Metrics PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Dynamic-GS 30.41 0.9429 0.1121 20.19 0.8875 0.1583 24.29 0.8870 0.1630

4D-GS 29.28 0.9545 0.0836 28.27 0.9106 0.1289 28.87 0.9198 0.1168

Ours-GoS1 32.84 0.9645 0.0723 28.00 0.9173 0.1083 26.90 0.9140 0.1170

Ours-GoS5 33.18 0.9649 0.0707 27.65 0.9155 0.1127 26.71 0.9119 0.1242

Ours-GoS10 32.94 0.9631 0.0733 27.17 0.9127 0.1165 26.51 0.9100 0.1283

Table 3: Per-scene results for the CMU-Panoptic dataset.

Scene softball boxes basketball

Metrics PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Dynamic-GS 26.93 0.9076 0.1804 27.79 0.9069 0.1769 28.54 0.9032 0.1812

Ours-GoS2 27.48 0.9264 0.1374 27.88 0.9227 0.1413 27.72 0.9203 0.1423
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Dynamic-GS: PSNR/SSIM : 31.38/0.9469 4D-GS: PSNR/SSIM : 31.62/0.9569 Ours: PSNR/SSIM : 33.64/0.9655

Dynamic-GS: PSNR/SSIM : 29.16/0.9084 4D-GS: PSNR/SSIM : 28.98/0.9171 Ours: PSNR/SSIM : 29.78/0.9375

Figure 4: Subjective Comparison. Frame 60 of the "sear_steak" sequence from the Neu3DV dataset
and frame 74 of the "softball" sequence from the CMU-Panoptic dataset. We compared our method
to Dynamic-GS Luiten et al. (2023) and 4D-GS Wu et al. (2023) over six patches.
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Figure 5: Reconstruction quality correlation between the initial frame and the entire video.

Subjective Assessment. We provide subjective comparisons of different sequence patches in Fig. 4.
Dynamic-GS struggled with fixed global foreground labels and complex regularization, while 4D-GS
had difficulty handling violent motion due to its global deformation field. Our method, however, better
preserved details and textures, avoiding issues like excessive smoothing and object disappearance.
Subjective results demonstrated that our method excels in preserving and reconstructing details.
Comprehensive comparisons are available in the supplementary video.

Significance of Initial 3D Scene. The poor static scene reconstruction quality in the first frame
of the ’coffee_martini’ sequence negatively impacted the overall 4D reconstruction. To evaluate
the dependence of our 4D reconstruction on the initial 3D scene, we analyzed PSNR, SSIM, and
LPIPS-vgg metrics across sequences in the Neu3DV dataset. As shown in Fig. 5, scatter plots with a
dashed y = x line indicated similar quality between the initial 3D reconstructions and the overall 4D
reconstructions. Our method showed a strong alignment between the reconstruction quality of the
video sequence and the initial frame. This indicates that our method’s performance is constrained
by the initial static scene reconstruction, suggesting that improvements there could enhance overall
quality. Additionally, no new Gaussians were added during the sequence, highlighting the efficiency
of our method in utilizing the dynamic capabilities of the initial 3D scene.
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Covergance Speed. Our non-keyframes were optimized in under 2 seconds per frame, and
keyframes took approximately 40 seconds each. We anticipate further reductions in processing
time as we continue refining the implementation.

4.3 ABLATION STUDY

Points Parameter Comparison. In Tab. 4, we compared 3D points across various categories
to highlight the compactness of our control point method. Each Gaussian is characterized by 13
attributes, including 3D spherical harmonics, position, rotation, scale, and 1D opacity. The number of
parameters increases with higher degrees of spherical harmonics.

Table 4: Comparison between Gaussians and control points.

Points Category Points Num. Attr. Dim. Param. Num.

Scene Gaussians > 100k ≥ 13 > 1000k
Object Gaussians ∼ 10k ≥ 13 > 100k
Object Control Points 0.2k − 2.5k 3 0.6k − 7.5k

Effectiveness of 3D Control Points. In the GoS-10 configuration, we assessed the rendering quality
of three methods: ’No Control’ (no motion manipulation), ’Partial Control’ (using only projected
control points), and ’Full Control’ (combining projected and learned control points). PSNR metrics
for the first 30 frames of the ’sear_steak’ sequence are shown in Fig 6(a). The "No Control" method
degraded quickly, "Partial Control" showed moderate degradation, and "Full Control" maintained
quality longer. Keyframe updates reduced errors at timesteps 10 and 20. The PSNR gap indicates
that integrating projected and learned control points significantly improves reconstruction quality.

3D Motion Visualization. We visualized the 3D motion of Gaussians for our method in 6(b). The
track precisely described the person turning steaks or getting up to move boxes.
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1(a) (b)

Figure 6: (a) An example illustrating reconstruction quality degradation across frames under three
different settings of 3D control points. (b) Visualization of Gaussians’ 3D motion for the “sear_steak”
and the “boxes” sequences.

5 CONCLUSION AND DISCUSSION

We introduce a novel discrete 6-DoF motion decoupling model that combines traditional graphics
with learnable pipelines. This approach employs partially learnable control points for local 6-DoF
motion representation, enabling fast convergence and robust reconstruction for real-world datasets.
Additionally, we have developed an innovative workflow for streaming 4D real-world reconstruction
using Gaussians and 3D control points. Starting with an initial 3D scene reconstruction, our approach
progresses through several independent submodules, allowing each to be optimized individually
for future improvements. Our method outperforms existing state-of-the-art 4D Gaussian splatting
methods on real-world datasets. The workflow also has limitations: the quality of 4D reconstruction
highly depends on the initial static reconstruction, a factor that remains underexplored and presents
potential for further research. The current method does not support monocular videos due to its
reliance on multi-view initial frames. We plan to address these limitations in future work.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Arthur, Sergei Vassilvitskii, et al. k-means++: The advantages of careful seeding. In Soda,
volume 7, pp. 1027–1035, 2007.

Benjamin Attal, Eliot Laidlaw, Aaron Gokaslan, Changil Kim, Christian Richardt, James Tompkin,
and Matthew O’Toole. Törf: Time-of-flight radiance fields for dynamic scene view synthesis.
Advances in neural information processing systems, 34:26289–26301, 2021.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864,
2021.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5470–5479, 2022.

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130–141, 2023.

Yangming Cheng, Liulei Li, Yuanyou Xu, Xiaodi Li, Zongxin Yang, Wenguan Wang, and Yi Yang.
Segment and track anything. arXiv preprint arXiv:2305.06558, 2023.

Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenenbaum, and Jiajun Wu. Neural radiance
flow for 4d view synthesis and video processing. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 14304–14314. IEEE Computer Society, 2021.

Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias Nießner,
and Qi Tian. Fast dynamic radiance fields with time-aware neural voxels. In SIGGRAPH Asia
2022 Conference Papers, pp. 1–9, 2022.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5501–5510, 2022.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488, 2023.

Xu Hu, Yuxi Wang, Lue Fan, Junsong Fan, Junran Peng, Zhen Lei, Qing Li, and Zhaoxiang Zhang.
Semantic anything in 3d gaussians. arXiv preprint arXiv:2401.17857, 2024.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting for
geometrically accurate radiance fields. arXiv preprint arXiv:2403.17888, 2024.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-gs:
Sparse-controlled gaussian splatting for editable dynamic scenes. arXiv preprint arXiv:2312.14937,
2023.

Yuheng Jiang, Zhehao Shen, Penghao Wang, Zhuo Su, Yu Hong, Yingliang Zhang, Jingyi Yu, and
Lan Xu. Hifi4g: High-fidelity human performance rendering via compact gaussian splatting. arXiv
preprint arXiv:2312.03461, 2023.

Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei Tan, Lin Gui, Sean Banerjee, Timothy Scott
Godisart, Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser Sheikh. Panoptic
studio: A massively multiview system for social interaction capture. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1–14, 2023.

K Krishna and M Narasimha Murty. Genetic k-means algorithm. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 29(3):433–439, 1999.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Till Kroeger, Radu Timofte, Dengxin Dai, and Luc Van Gool. Fast optical flow using dense inverse
search. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part IV 14, pp. 471–488. Springer, 2016.

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time
view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6498–6508, 2021.

Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker, and Noah Snavely. Dynibar: Neural
dynamic image-based rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4273–4284, 2023.

Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai, Hujun Bao, and Xiaowei Zhou. Efficient
neural radiance fields for interactive free-viewpoint video. In SIGGRAPH Asia 2022 Conference
Papers, pp. 1–9, 2022.

Haotong Lin, Sida Peng, Zhen Xu, Tao Xie, Xingyi He, Hujun Bao, and Xiaowei Zhou. Im4d: High-
fidelity and real-time novel view synthesis for dynamic scenes. arXiv preprint arXiv:2310.08585,
2023a.

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dynamic
3d gaussian particle. arXiv preprint arXiv:2312.03431, 2023b.

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dynamic
3d gaussian particle. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21136–21145, 2024.

Jia-Wei Liu, Yan-Pei Cao, Weijia Mao, Wenqiao Zhang, David Junhao Zhang, Jussi Keppo, Ying
Shan, Xiaohu Qie, and Mike Zheng Shou. Devrf: Fast deformable voxel radiance fields for
dynamic scenes. Advances in Neural Information Processing Systems, 35:36762–36775, 2022.

Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu Tseng, Ayush Saraf, Changil Kim, Yung-Yu
Chuang, Johannes Kopf, and Jia-Bin Huang. Robust dynamic radiance fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13–23, 2023.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713, 2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):
1–15, 2022.

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M Seitz,
and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 5865–5874, 2021a.

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf: A higher-dimensional representation for
topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228, 2021b.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318–10327, 2021.

Anurag Ranjan and Michael J Black. Optical flow estimation using a spatial pyramid network. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4161–4170,
2017.

Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise view
selection for unstructured multi-view stereo. In European Conference on Computer Vision (ECCV),
2016.

Ruizhi Shao, Zerong Zheng, Hanzhang Tu, Boning Liu, Hongwen Zhang, and Yebin Liu. Tensor4d:
Efficient neural 4d decomposition for high-fidelity dynamic reconstruction and rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16632–16642, 2023.

Kristina P Sinaga and Miin-Shen Yang. Unsupervised k-means clustering algorithm. IEEE access, 8:
80716–80727, 2020.

Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong Yuan, Yi Xu, and Andreas
Geiger. Nerfplayer: A streamable dynamic scene representation with decomposed neural radiance
fields. IEEE Transactions on Visualization and Computer Graphics, 29(5):2732–2742, 2023.

Olga Sorkine. Laplacian mesh processing. Eurographics (State of the Art Reports), 4(4):1, 2005.

Robert W Sumner, Johannes Schmid, and Mark Pauly. Embedded deformation for shape manipulation.
In ACM siggraph 2007 papers, pp. 80–es. 2007.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 8934–8943, 2018.

Vivienne Sze, Madhukar Budagavi, and Gary J Sullivan. High efficiency video coding (hevc). In
Integrated circuit and systems, algorithms and architectures, volume 39, pp. 40. Springer, 2014.

Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Müller, Morgan McGuire, Alec Jacobson,
and Sanja Fidler. Variable bitrate neural fields. In ACM SIGGRAPH 2022 Conference Proceedings,
pp. 1–9, 2022.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part II 16, pp. 402–419. Springer, 2020.

Sundar Vedula, Simon Baker, Peter Rander, Robert Collins, and Takeo Kanade. Three-dimensional
scene flow. In Proceedings of the Seventh IEEE International Conference on Computer Vision,
volume 2, pp. 722–729. IEEE, 1999.

Chaoyang Wang, Ben Eckart, Simon Lucey, and Orazio Gallo. Neural trajectory fields for dynamic
novel view synthesis. arXiv preprint arXiv:2105.05994, 2021.

Chaoyang Wang, Lachlan Ewen MacDonald, Laszlo A Jeni, and Simon Lucey. Flow supervision for
deformable nerf. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21128–21137, 2023a.

Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei Song, and Huaping Liu. Mixed neural voxels
for fast multi-view video synthesis. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 19706–19716, 2023b.

Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yanshun Zhang, Yingliang Zhang, Minye
Wu, Jingyi Yu, and Lan Xu. Fourier plenoctrees for dynamic radiance field rendering in real-time.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13524–13534, 2022.

Peng Wang, Yuan Liu, Zhaoxi Chen, Lingjie Liu, Ziwei Liu, Taku Komura, Christian Theobalt,
and Wenping Wang. F2-nerf: Fast neural radiance field training with free camera trajectories.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4150–4159, 2023c.

Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt, and Lingjie Liu.
Neus2: Fast learning of neural implicit surfaces for multi-view reconstruction. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 3295–3306, 2023d.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview of the h. 264/avc
video coding standard. IEEE Transactions on circuits and systems for video technology, 13(7):
560–576, 2003.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. arXiv preprint
arXiv:2310.08528, 2023.

Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. Space-time neural irradiance fields
for free-viewpoint video. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9421–9431, 2021.

Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. Real-time photorealistic dynamic
scene representation and rendering with 4d gaussian splatting. arXiv preprint arXiv:2310.10642,
2023a.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. De-
formable 3d gaussians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint
arXiv:2309.13101, 2023b.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5752–5761, 2021.

Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and Heung-Yeung Shum.
Mesh editing with poisson-based gradient field manipulation. In ACM SIGGRAPH 2004 Papers,
pp. 644–651. 2004.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

.1 NEAR-PARALLEL LIGHT HYPOTHESIS

In the image plane, a small region with center x0 and the radius R is selected. Then the rays from
the projection center connected to each pixel in the region can be regarded as approximate parallel
light. We provided a detailed illustration in Fig. 7(a). For an arbitrary xi in the x0’s neighborhood,
we should prove that the angle θ between ray r0 and ray ri is a first-order small quantity.

r0

ri

x0

x0’s  Neighborhood Focal

α β
θ

Center of 
Projection

R

Image Center

xi

(a)

Frame i+1

Frame i Optical Flow 
Net

Sampling Grid 

Local Motion 
Calculator

2D Motion Pirors

2D Mask

(b)

Figure 7: (a) Illustration for angles, points, rays in x0’s neighborhood. (b) Workflow for acquiring
2D motion prior.

First, a plumb line is made from x0 to the ray ri, which is the shortest path from x0 to the ray and
can be denoted as:

∥xi − x0∥ · cosα, (12)

where ∥·∥ stands for the Euclidean distance, and α is the angle between the plumb line and line
pointing from x0 to xi. Then, using the cosine theorem, the distance from the projection center to x0

can be represented as:

f · 1/ cosβ, (13)

where f is the camera focal length, and β is the angle between the ray r0 and the major optical axis.
Next, using the sine theorem, θ can be characterized as :

θi = arcsin(
∥xi − x0∥

f
· cosα

1/ cosβ
). (14)

The second term is always a real number not greater than 1. Since ∥xi − x0∥ is always smaller than
R, θ remains small if the focal length f is much larger than the neighborhood radius R.

Thus far, the proof of Near-parallelism of localized rays is complete. In practice, With a normalized
focal length of more than 1000 pixels, it is perfectly acceptable to limit the calculation area to a radius
of 50 pixels.

.2 2D MOTION PRIOR ACQUISITION

We provide an intuitive workflow for the prior acquisition of 3D motion. The inputs consist of two
consecutive frames and an object-wise mask.

We first input two consecutive frames into the optical flow network, outputting a whole frame of
optical flow. Then, a corresponding sampling grid, based on the objects’ masks, is generated for
each object in the view. The local motion calculator is the abstract representation of the method we
introduced in Sec. 3.3. The final processed 2D motion prior binds with 3D control points.

Note that 3D control points are obtained from all training viewpoints independently. Thus, the 3D
control points collect all the training viewpoint control points. Hence, their distribution is much

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

denser than during single viewpoint control point acquisition, and the range of action of the control
points will be smaller. When sampling control points, a larger control point sampling interval should
be selected, and for each control point, a smaller range around it should be selected to compute the
motion prior.

.3 SPARSIFICATION FOR 3D CONTROL POINTS

We illustrated the relationship between the Gaussians and the control points in Fig. 8, where the
control points are uniformly distributed on the surfaces of objects. Further sparsification of these
control points led to notable gains in compactness with only minimal impact on performance.

Human/Dog : 1958/312
PSNR/SSIM : 33.64/0.9655

Human/Dog : 629/94
PSNR/SSIM : 33.48/0.9645

Human/Dog : 212/31
PSNR/SSIM : 33.42/0.9640

No Prune: Prune 70%: Prune 90%:

Figure 8: Schematic of Gaussians vs. control points for humans and dogs: We visualized the topology
using red and green line segments, with red lines connecting Gaussian points and green lines linking
to control points. We also included the number of control points for the first frame of both the human
and dog at various pruning rates, alongside the reconstruction quality of the entire sequence.

.4 3D CONTROL POINTS PRUNE

Further sparsification of 3D control points can be achieved using clustering methods Krishna &
Murty (1999); Sinaga & Yang (2020). Note that 3D control points are obtained from all training
viewpoints independently. And there exists no prior knowledge of objects’ geometry and motion. So
we aimed for an even distribution of the sparsified control points. We recommended the k-means++
approach Arthur et al. (2007) due to the large number of clustering centers, which requires a more
stable clustering initialization.

Table 5: Comparison between different optical flow methods.

O.F. Model Avg. 2D MSE↓ Rec. PSNR↑ Rec. SSIM↑ Rec. LPIPS↓

PWC Sun et al. (2018) 4.553e-5 33.39 0.9644 0.0737

SpyNet Ranjan & Black (2017) 1.509e-5 33.55 0.9649 0.0725

DIS Kroeger et al. (2016) 1.230e-5 33.64 0.9655 0.0716

.5 MORE DETAILED SETTINGS FOR FAIR COMPARISON

Dynamic-GS Luiten et al. (2023) Setting. 2D foreground masks and initial 3D points’ segmenta-
tion labels are required in this approach. To ensure a fair comparison, we merged our objects’ 2D
masks and used the approach proposed in Sec.3.2 to label the initial points. We shrank the training
iterations from 2k to 0.5k per frame when processing the CMU-Panoptic dataset.

4D-GS Wu et al. (2023) Setting. For the “flame_salmon_1” sequence, four times longer than the
other sequences, we expanded the training iterations from 17k to 68k to ensure a fair comparison.
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.6 MORE ADVANCED SUBMODULE LEADS TO BETTER RECONSTRUCTION RESULT

We investigated the impact of various optical flow methods Sun et al. (2018); Kroeger et al. (2016);
Ranjan & Black (2017) and determined that DIS Kroeger et al. (2016) achieved the most accurate 2D
optical flow predictions for Neu3DV dataset. Optical flow accuracy was quantified by the minimal
average MSE between the current frame and its warped predecessor. The lowest 2D errors correlated
with superior 3D reconstruction quality, suggesting that our pipeline’s performance could be further
improved by incorporating more advanced optical flow predictors. The positive correlation between
optical flow accuracy and reconstruction quality also demonstrates the effectiveness of our 3D motion
model.

.7 MORE SUBJECTIVE RESULTS AT NOVEL VIEWPOINT

We provided more subjective results from different sequences to intuitively evaluate our work.
We output the subjective results in the group of two rows, from left to right, top to bottom: GT,
Dynamic-GS, 4D-GS, Ours.

Figure 9: More subjective outputs.
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