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ABSTRACT

Dynamic scene reconstruction using Gaussians has recently attracted increased
interest. Mainstream approaches typically employ a global deformation field
to warp a 3D scene in canonical space. However, the inherent low-frequency
nature of implicit neural fields often leads to ineffective representations of complex
motions. Moreover, their structural rigidity can hinder adaptation to scenes with
varying resolutions and durations. To address these challenges, we introduce a
novel approach for streaming 4D real-world reconstruction utilizing discrete 3D
control points. This method physically models local rays and establishes a motion-
decoupling coordinate system. By effectively merging traditional graphics with
learnable pipelines, it provides a robust and efficient local 6-degrees-of-freedom
(6-DoF) motion representation. Additionally, we have developed a generalized
framework that integrates our control points with Gaussians. Starting from an initial
3D reconstruction, our workflow decomposes the streaming 4D reconstruction into
four independent submodules: 3D segmentation, 3D control point generation,
object-wise motion manipulation, and residual compensation. Experimental results
demonstrate that our method outperforms existing state-of-the-art 4D Gaussian
splatting techniques on both the Neu3DV and CMU-Panoptic datasets. Notably,
the optimization of our 3D control points is achievable in 100 iterations and within
just 2 seconds per frame on a single NVIDIA 4070 GPU.

1 INTRODUCTION

Reconstructing real-world scenes is a longstanding challenge in computer graphics. Recently, 3D
Gaussian Splatting (3D-GS) [Kerbl et al.| (2023) have demonstrated remarkable success in producing
high-quality reconstructions for static scenes. This technique utilizes discrete Gaussians to model the
scene, attributing them with physically meaningful properties, and achieves rendering by "splatting"”
these Gaussians onto the image plane. For dynamic scene reconstruction, current Gaussian Splatting
methods |Yang et al.| (2023b); Huang et al.| (2023); /Wu et al.| (2023)); |Lin et al.| (2023b) build upon
the concept introduced by dynamic NeRFs [Park et al.| (2021a;b); Pumarola et al.| (2021). These
methods typically decompose scene motion into a canonical space and employ an implicit neural
field to capture global motion. However, the low-frequency characteristics and rigid structure of
implicit neural networks limit their ability to accurately handle complex motions or scenes with
diverse resolutions and varying lengths.

Compared to NeRF, one significant advantage of 3D-GS lies in its discrete structure. This structure
ensures that scene representation—via Gaussians—is concentrated at influential positions within the
scene, avoiding the inefficiencies of a global field that waste representational capacity on empty space.
Similarly, the global implicit neural field used for deformation faces a similar issue: only a small part
of the scene is dynamic, while the majority remains static. Therefore, a discrete, localized motion
representation holds promise, as it offers precise and flexible modeling of 3D motions at a local level.

Previous methods, both traditional |Vedula et al.|(1999) and learning-based |Huang et al.|(2023), have
attempted to represent local 3D motion in a discrete fashion. However, traditional methods often
struggle with complex 3D alignment challenges, while learning-based approaches face difficulties in
convergence due to their high degrees of freedom (DoF).

Our approach differs by integrating graphics and learnable pipelines. Recognizing that optical flow is
the 2D projection of scene flow, and that optical flow estimation |[Ranjan & Black!(2017); Sun et al.
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(2018); |Teed & Deng) (2020); [Kroeger et al.|(2016) is a well-established technique, we simplify the
problem by introducing a novel local decoupling system. In this system, local 3D motion is decoupled
into the observable and hidden components. The observable component is tied to optical flow, while
the hidden component remains learnable. We refer to this new form of motion representation as the
"3D control point" approach.

Building on the introduced 3D motion representation, we present a novel generalized streaming
framework for 4D real-world reconstruction. Beginning with an initial 3D reconstruction, our
workflow breaks the streaming 4D reconstruction process into distinct submodules: 3D segmentation,
3D control point generation, object-wise motion manipulation, and residual compensation. This
structured approach helps to minimize topological errors and ensures a compact, robust representation.

Our key contributions are as follows:

* We model the 3D motions of dynamic objects discretely using an innovative method that
combines graphics techniques with learnable pipelines. This approach decouples the compo-
nents of 3D motion: observable part is tied to optical flow, while the hidden part is learned.
This motion representation, referred to as "3D control points," improves both convergence
speed and reconstruction accuracy.

* We introduce a generalized streaming pipeline that employs Gaussians and 3D control points
to reconstruct 4D real-world scenes. Our method establishes a new benchmark, achieving
state-of-the-art performance on the Neu3DV and CMU-Panoptic datasets.

2 RELATED WORK

2.1 4D RECONSTRUCTION

The recent Neural Radiance Field (NeRF) Mildenhall et al.| (2021)) approach has proven efficient for
scene reconstruction by utilizing a global continuous implicit representation of the scene. Subsequent
works have enhanced reconstruction quality by evolving from MLPs to grid-based structures. For
instance, [Miiller et al.| (2022)) introduced the Instant Neural Graphics Primitives method, while
Fridovich-Keil et al.| (2022) proposed Plenoxels. Other methods, like Mip-NeRF Barron et al.| (2021}
2022), modeled rays as cones to achieve anti-aliasing.

To accelerate rendering, various strategies have been proposed, such as pre-computation Wang et al.
(2023c} [2022); [Fridovich-Keil et al.| (2022); [Yu et al.|(2021)) and hash coding Miiller et al.[(2022);
Takikawa et al.| (2022).

Efforts to extend NeRF’s representation to dynamic scenes have also been explored. For instance,
Xian et al.|(2021)); [Wang et al.|(2021) challenged the static scene hypothesis by providing separate
representations over time. Mainstream methods [Liu et al.| (2022); [Park et al.| (202 1afb); Pumarola
et al.[(2021); Song et al.| (2023)); Du et al.| (2021); |L1 et al.| (2021); |[L1u et al.| (2023)) decoupled motion
from the scene using a deformation field to warp the 3D scene at a canonical timestep.

Further advancements included expanding the grid [Fang et al.[(2022); |Shao et al.| (2023)) and pla-
nar |Cao & Johnson|(2023)); Fridovich-Keil et al.| (2023)) structures with a time dimension to boost
rendering speed and reconstruction quality. Other research Wang et al|(2023b); [Li et al.| (2023);
Lin et al.| (20225 2023a)) focused on refining reconstruction quality by leveraging prior knowledge
of camera positions. Additional supervision information such as depth |Attal et al.[|(2021) and op-
tical flow [Wang et al.| (2023a) was incorporated during training. NeRFPlayer |Song et al.| (2023)),
notably, utilized self-supervised learning to segment dynamic scenes into static, deforming, and newly
appearing regions, applying tailored strategies to each.

Recently, 3D-GS [Kerbl et al.| (2023)) introduced an elegant point-based rendering approach with
efficient CUDA implementations. The 4D reconstruction methods using Gaussians closely resemble
those in NeRF. For instance, |Yang et al.| (2023a)) incorporated time-variant attributes into Gaussians,
while Dynamic-GS [Luiten et al.| (2023) directly learned dense Gaussian movements. 3DGStream
introduced Neural Transformation Cache to represent Gaussian motion on a frame-by-frame basis,
and Gaussian-Flow [Lin et al.| (2024) employed Dual-Domain Deformation Model to represent point-
wise movement. HiFi4G Jiang et al.|(2023) combined an implicit method Wang et al.| (2023d) for
surface reconstruction with a traditional graphics approach [Sumner et al.|(2007) for surface warping.
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Other studies Wu et al.|(2023));|Yang et al.|(2023b)); [Huang et al.|(2023)); Lin et al.|(2023b) represented
4D scenes by warping Gaussians in a canonical space using global implicit deformation fields.

2.2 3D MOTION REPRESENTATION

Decoupling 3D motion from the canonical scene offers significant advantages by reducing redundant
information in the time dimension. While implicit neural representations are compact, they often lack
the flexibility needed to adapt to varying scenes and require redesigns. Traditional graphics meth-
ods [Sorkine| (2005)); |Yu et al.| (2004) have provided flexible deformation solutions while preserving
geometric details. Among these, Sumner et al.|(2007) introduced sparse control points (ED-graph) to
represent the motion of dense surfaces, balancing compactness and flexibility.

HiFi4G Jiang et al.| (2023)) utilized the ED-graph approach directly, but its surface reconstruction
demands dense camera distribution and is time-consuming. SC-GS [Huang et al.|(2023)) also adopted
the concept of sparse control points, yet direct optimization is difficult due to the high degrees of
freedom. Moreover, unlike meshes, the volumetric radiance representation of 3D Gaussians is not
well-suited for the thin nature of surfaces |Huang et al.|(2024).

To address these challenges, we propose a novel 3D control points method tailored for volumetric
radiance representations. By decoupling 3D motion into observable and hidden components, we
apply distinct strategies for motion acquisition. This approach leverages the strengths of traditional
graphics techniques and learnable pipelines, enabling precise and flexible motion representation
while maintaining the efficiency and compactness necessary for further applications.

3 METHODOLOGY

The streaming workflow is illustrated in Fig. [T} Our method consists of four independent modules:
3D segmentation, 3D control point generation, object-wise motion manipulation, and residual
compensation. Inputs include 3D Gaussians, 2D masks, and backward optical flow. The 3D
Gaussians (G;_; are obtained either from the initial static scene reconstruction using 3D-GS [Kerbl
et al.|(2023) or from the previous frame. The 2D object masks, M;_1, are generated via the SAM-
track method |Cheng et al.| (2023)). Optical flows, F;_1, are derived from established optical flow
methods Kroeger et al.|(2016); Ranjan & Black](2017);|Sun et al.|(2018]). Section @] provides a brief
overview of each module, with detailed explanations following in subsequent sections.
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Figure 1: Streaming workflow. The workflow starts by segmenting the scene into a static background
and several moving objects using multiview masks combined with a Gaussian category voting
algorithm. Optical flow is then applied to create a partially learnable system of 3D control points.
Motion-related attributes of the Gaussians are manipulated on an object-wise basis. To prevent
reconstruction failures from error accumulation, Gaussian attributes are periodically updated in a
keyframe manner, capturing additional scene information as attribute residuals of the Gaussians.

3.1 OVERVIEW OF EACH MODULE

3D Segmentation. The goal of 3D segmentation is to label each Gaussian as either a moving object
or part of the static background. As outlined in Sec. [T} representing local motion discretely by an
object-wise approach is often more efficient than global methods. Consequently, defining the regions
where each local representation is applicable is crucial. To achieve this, we use multiview masks
and adopt a Gaussian category voting algorithm to divide the scene into dynamic objects and a static
background. Only Gaussians assigned to specific objects are influenced by the 3D control points.
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3D Control Points Generation. The goal of 3D Control Points Generation is to generate 3D control
points for all moving objects, which govern the motion of their associated Gaussians on an object-wise
basis. This module plays a pivotal role in our workflow. Direct optimization of 3D control points
is challenging due to their high degrees of freedom. To address this issue, we introduce a local
decoupling coordinate system that links partial parameters of the 3D control points with 2D optical
flow. This innovative approach effectively reduces the control points’ degrees of freedom from nine
to three, enabling faster convergence during optimization.

Object-wise Motion Manipulation. The goal of Object-wise Motion Manipulation is to control the
movement of Gaussians for each object using the 3D control points. Motion manipulation involves
transforming the position and rotation attributes of Gaussians from one timestep ¢ — 1 to the next
t. By manipulating these attributes on an object-wise basis, each Gaussian is influenced only by
the control points associated with its category. This selective control method allows for accurate
handling of topology changes of spatially adjacent objects and improves the precision of discrete
motion representation.

Residual Compensation. The goal of Residual Compensation is to mitigate error accumulation and
ensure stable long-term reconstruction. This module activates only at keyframes. Specifically, during
non-keyframe intervals, Gaussian attributes are frozen, and updates are confined to the control points.
At keyframes, both Gaussian attributes and control points are optimized, enabling comprehensive
adjustments that preserve the continuity and accuracy of the scene reconstruction. It is important
to note that the term "residual” in this context refers to adjustments in the attributes of the existing
Gaussians, without the introduction of new Gaussians.

3.2 3D SEGMENTATION

A straightforward and efficient method for 3D segmentation is to leverage objects’ 2D masks
combined with a statistical method to categorize Gaussians based on their projections from multiple
viewpoints. We utilize the SAM-track method |Cheng et al.|(2023)) to obtain continuous 2D object
masks and implement a Gaussian category voting strategy similar to the approach used in SA-GS Hu
et al.| (2024). A notable improvement in our method is its ability to distinguish between multiple
objects in the foreground.

Specifically, each Gaussian is assigned a counter for every object category, with the total number of
counters corresponding to the number of 2D object masks. For each Gaussian g, we project it onto
the j*" image plane. If the projection of the Gaussian falls within the boundary of the k*" object’s
mask, the counter for that object’s category is incremented by one. This process is repeated across
all training views, denoted as CY,. After processing all views, we label each Gaussian as L based on
the category with the highest counter value, indicating its assigned object category. The complete
algorithm is summarized as follows:

Cr=Cr+1 iijgEmjk, )
L = argmax(C).

3.3 3D CONTROL POINTS GENERATION AND LOCAL 6-DOF MOTION DECOUPLING

To effectively represent local 6-degrees-of-freedom (6-DoF) motion, the attributes of a 3D control
point must include its position, local spatial translation, and rotation. However, only a portion of this
motion is visible from a single viewpoint, which is captured as optical flow. To address this limitation,
we develop an advanced coordinate system termed the "ray coordinate system." This system correlates
observable 3D motion components with optical flow from a single viewpoint. Motion components
hidden from this viewpoint are optimized using global image loss, as their information is implicitly
captured across multiple views.

To streamline the representation of motion, we model a small cluster of localized rays from the
scene to the camera as parallel lights. This approach enables the rays to share a unified coordinate
system, focusing on local motion rather than individual point-wise motion. The reasoning behind
approximating these rays as nearly parallel is explained in Appendix [I] In this model, the z-axis of
the ray coordinate system aligns with the center ray of the cluster, which extends from the camera
towards the scene. The motion decoupling is depicted in Fig.[2(a)]and Fig.
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Figure 2: 3D Control Points. (a) We model the localized light as parallel rays. The motion parameters
of the 3D control points, represented by the black segments, are bound with local 2D motion priors
derived from the optical flow on the image plane. (b) The yellow segments remain learnable because a
small cluster of parallel rays cannot adequately represent these elements. To decouple these attributes,
we use Euler angles to represent rotational components. (c¢) The 3D control points spatially influence
adjacent Gaussian points. During non-keyframe intervals, the Gaussian attributes remain fixed, while
only the learnable components of the control points undergo optimization. At keyframes, the attributes
of the Gaussians are actively included in the optimization process. For effective interpolation, rotation
attributes are expressed in quaternion format.

For translations, the component perpendicular to the ray affects the 2D optical flows observed in the
image, while the component along the ray is not visible. Regarding rotation, when a cluster of rays is
parallel, one rotational component aligns with the normal vector of the rays, practically translating
perpendicular to them. This observable rotation appears in the 2D optical flows as rotation around the
cluster’s center. Other rotational components, corresponding to translations along the rays, are not
detectable in the image plane.

A projection relationship is established between the 2D motion information on the image plane and
the motion information carried by parallel light rays. Under the near-parallel hypothesis, points x;
within the neighborhood N of x, share the ray coordinate system of ry, as depicted in Fig. B(a)
Fig. and Eq.|2|detail the translation information v,. carried by rays near the image plane:

. 1 dr{ dyj v 1 1 T
v = f* NXEE;\/( dt ’ dt ) - f* N [RCT]:Q,:Q [K ]:2,:2 XZE.:N’(u“vi) ’ (2)

where (u;,v;) represents the optical flow of the points x;. The inverse intrinsic matrix K~ converts
the optical flow from pixel units to base units (meters), and the rotation matrix R, transforms the
coordinate system from the camera to the ray coordinate system. The notation [-]:2,:2 refers to the
matrix’s first and second rows and columns. N represents the number of pixels in the neighborhood
N. The camera’s focal length, f, measured in meters, is used to convert the translation from the
normalized to the physical image plane, enhancing the interpretability of v,.. It is crucial to note that
all measurements of u, v are in pixels, while X, Y, x, y, z are measured in meters.

Next, we back-project the translation information into the scene to obtain the control points’ 3D
positions and corresponding 2D translations, utilizing rough depth estimates derived from Gaussian
rasterization. Specifically, the critical ratio for this process is the depth z€ relative to the focal length
f. The formulas for converting the translation and determining the position are presented in Equations

and [4] respectively:

dX* dy" o s,
(7dt 7?) = 7V ) 3)

r

X = %(xs,ys,fﬁ. “
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Figure 3: Auxiliary Diagrams for Local Motion Mapping. (a) An illustration of angles, points,
and rays within the neighborhood of x(. (b) A quantitative depiction of motion projection. (c) A
comparison between Gaussians distributed on the ground truth surface and control points located
on a biased surface. The rough depth estimation can introduce biases in the predicted translations,
particularly due to rotational movements.

To exploit the motion prior information provided by optical flow, we convert the rotation representation
into the Euler angle format to facilitate decoupling. The formulation for angular velocity is specified
as follows:

oo Ly G v )

2
N S =i —xg

Thus far, the motion decoupling process within the ray coordinate system is complete. We have
obtained the 3D position and 2D translation of control points, along with 1D rotation information
from a single viewpoint.

We also explored incorporating local macro rotation, as described in the ED-graph method |Sumner|
et al[(2007). However, this resulted in a decline in performance. We hypothesize that the performance
drop is due to structural differences between Gaussians and meshes: while meshes are tightly clustered
on the object surface, Gaussians are more loosely distributed due to their higher degrees of freedom.
Consequently, we omit the component concerning local macro rotation to minimize biases introduced
by rough depth estimations, as illustrated in Fig. Although this adjustment introduces some
sparsity, it optimizes our motion manipulation approach for volumetric radiance representations like
Gaussians.

3.4 OBIJECT-WISE MOTION MANIPULATION

For each moving object, the translation t and rotation q of a Gaussian G are determined by interpo-
lating the translation t; and rotation q; of the K-nearest spatially adjacent control points C; within its
neighborhood N. The weights w; for this interpolation are inversely proportional to the Euclidean
distance between the points. Rotations initially expressed in Euler angles are converted to quaternions
to facilitate the interpolation process. For simplicity in the formulas, the normalization of quaternions
to unit quaternions is omitted.

(t.q) = Z w; * (ti, i), (6)

CiGN

w. — — VIXe —Xg,
" Yoen /X = Xe,|l

N

3.5 RESIDUAL COMPENSATION

Our approach utilizes control points to predict 3D motion but suffers from error accumulation
over time due to two main factors. First, scene reconstruction relies on information from earlier
frames, which may fail to capture previously occluded areas, such as the sides or backs of objects.
Second, there are discrepancies between the predicted motion of the Gaussians and the ground truth,
particularly for Gaussians distant from neighboring control points.
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To mitigate error accumulation, we employ a strategy inspired by video coding techniques, specifically
residual coding Wiegand et al.| (2003)); |Sze et al.| (2014). Residual coding in video technology
compensates for differences between original and motion-compensated frames. Our model uses a
keyframe updating method to optimize Gaussians after object-wise motion manipulation, thereby
improving long-term streaming reconstruction.

As illustrated in Fig2(c)l during non-keyframes, Gaussian attributes remain fixed while only the
learnable components of the 3D control points C are optimized. The scene at non-keyframe ¢ is
expressed as follows:

Gt = Fc,(Gt-1), ®

where F denotes object-wise motion manipulation. In keyframes, attributes of Gaussians are
optimized, but instead of reinitializing them, they inherit attributes from previous timestamps. This
approach enhances efficiency by updating only the attributes’ residuals R, which capture minor
deviations. The scene at keyframe ¢ is represented as follows:

Gt = Fc,(Gi—1) + Ry, ©)

We also introduce the concept of Group of Scenes (GoS), similar to the Group of Pictures (GoP) in
video coding. Specifically, we segment the scene sequence into multiple groups of scenes (GoS),
with each group comprising scene information across N consecutive timesteps. Given the initial 3D
scene Gy with a GoS-N setting, the frame-by-frame representation for 4D scene evolves as follows:

GO7(C17(C27"'7(CN717(RN7(CN)7(CN+17(CN+27" . (10)

3.6 Loss FUNCTION

The loss function is straightforward, as shown in Eqn. [T}
L= (1-XNL1+ Ap-ssmm, Y

where A is set to 0.2 as recommended by 3D-GS |Kerbl et al.| (2023). Our motion modeling and
streaming pipeline is both efficient and robust, enabling our method to converge effectively without
requiring additional loss constraints. This results from the inherent design of our system, which
directly specifies the motion of the Gaussians from the structural framework, ensuring accurate and
stable convergence.

4 EXPERIMENT

4.1 DATASETS AND IMPLEMENTATION DETAILS

Neu3DV Dataset |Li et al.[(2021). The Neural 3D Video Synthesis Dataset includes six sequences,
originally captured at a resolution of 2704 x 2028, which were downsampled to 1352 x 1014 for
training purposes. The sequence ’flame_salmon_1" contains 1200 frames, while the remaining five
sequences consist of 300 frames each. All sequences were recorded using 15 to 20 static cameras,
evenly distributed in a spherical configuration around the scene.

CMU-Panoptic Dataset Joo et al.|(2017). The CMU-Panoptic Dataset comprises three sequences
that showcase complex, dynamic object motions. Each sequence has a resolution of 640 x 360 and
consists of 150 frames. The data was collected using 31 static cameras, with 27 used for training and
4 reserved for testing, all placed to form a fanned-out arrangement in front of the scene.

Implementation Details. All experiments were conducted on NVIDIA RTX 4070 GPUs. To
assess our control point method for motion representation, we compared it with Dynamic-GS |Luiten
et al.| (2023) and 4D-GS [Wu et al.|(2023), both maintaining a constant number of Gaussian points.
Using their official codes, we ensured identical 3D point initialization across methods. Following
4D-GS guidelines, we used COLMAP Schonberger & Frahm|(2016)); Schonberger et al.|(2016)) to



Under review as a conference paper at ICLR 2025

initialize 3D points from the first training frames and adopted Dynamic-GS’s 10k-iteration initial
reconstruction. For subsequent frames, we trained with 500 iterations for keyframes and 100 for
non-keyframes, using a single Adam optimizer with fixed learning rates as in Dynamic-GS. For the
CMU-Panoptic Dataset, we reused the foreground mask provided by Dynamic-GS.

4.2 RECONSTRUCTION RESULTS

Quantitative Results. We first present aver- .
age quantitative results including PSNR, SSIM, ~ Table 1: Average reconstruction results for the
and LPIPS in Table [l Our method outper- ~ Neu3DV dataset. Training time is reported
formed both Dynamic-GS [Luiten et al(2023)  in hours. Each cell is color-coded to denote
and 4D-GS [Wu et al| (2023) across all metrics. performance ranking: best for the top per-
Additionally, we provide per-scene quantita-  formance, second for the second best, and
tive results in Tables [2] and [3] our approach third for the third best.

achieved state-of-the-art (SOTA) performance

in terms of PSNR for most scenes and achieved Metrics  PSNRT SSIM{ LPIPS. Training

superior SSIM and LPIPS scores for even Time |
more scenes, which reflects enhanced subjec-

tive reconstruction quality. 4D-GS’s quantita- Dynamic-GS ~ 27.65 0.9232 0.1313  57.35
tive results on the CMU-Panoptic dataset were 4D-GS 3049  0.9401 0.0998 6.88

excluded becagse it st'ruggled to hf«mdle'vm— Ours-Gos1 | 3120 Tolouca™ooss” 1219
lent scene motion, which led to object disap-

pearance, as depicted in Fig. ] Notably, our Ours-GoS5 [ 09459 00906  3.94
method demonstrated a significant advantage Ours-GoS10  30.91  0.9437 0.0941 = 1.89
in training time.

Table 2: Per-scene results for the Neu3DV dataset.

Scene sear_steak cook_spinach cut_roasted_beef

Metrics PSNRt  SSIMt LPIPS| PSNRT SSIMt LPIPS| PSNR{ SSIMT LPIPS|

Dynamic-GS 31.38 0.9469  0.1119 29.98 0.9388  0.1179 29.64 0.9360  0.1248
4D-GS 31.62 0.9569  0.0808 32.79 0.9522  0.0926 32.13 0.9467  0.0959
Ours-GoS1 33.23 0.9654  0.0719 33.20 0.9586  0.0796 33.00 0.9609  0.0795
Ours-GoS5 33.72 0.9661  0.0704 3291 0.9579  0.0819 33.23 0.9592  0.0835
Ours-GoS10 33.64 0.9655  0.0716 32.65 0.9553  0.0861 32.47 0.9555  0.0890

Scene flame_steak Sflame_salmon_1 coffee_martini

Metrics PSNRT  SSIMt LPIPS|, PSNR{T SSIMT LPIPS| PSNRT SSIM{  LPIPS|

Dynamic-GS 30.41 0.9429  0.1121 20.19 0.8875  0.1583 24.29 0.8870  0.1630
4D-GS 29.28 0.9545  0.0836 28.27 09106  0.1289 28.87 09198  0.1168
Ours-GoSl 32.84 0.9645  0.0723 28.00 0.9173  0.1083 26.90 09140  0.1170
Ours-GoS5 33.18 0.9649  0.0707 27.65 09155  0.1127 26.71 09119  0.1242
Ours-GoS10 32.94 0.9631 0.0733 27.17 09127  0.1165 26.51 0.9100  0.1283

Table 3: Per-scene results for the CMU-Panoptic dataset.

Scene softball boxes basketball
Metrics PSNRT SSIMtT LPIPS| PSNRfT SSIMtT LPIPS|, PSNRtT SSIMT  LPIPS|

Dynamic-GS 26.93 0.9076  0.1804 27.79 0.9069  0.1769 28.54 0.9032  0.1812
Ours-GoS2 27.48 0.9264  0.1374 27.88 0.9227  0.1413 27.72 0.9203  0.1423
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Dynamic-GS: PSNR/SSIM : 31.38/0.9469 4D-GS: PSNR/SSIM : 31.62/0.9569 Ours: PSNR/SSIM : 33.64/0.9655

S ——— —
Dynamic-GS: PSNR/SSIM : 29.16/0.9084 4D-GS: PSNR/SSIM : 28.98/0.9171 Ours: PSNR/SSIM : 29.78/0.9375

Figure 4: Subjective Comparison. Frame 60 of the "sear_steak" sequence from the Neu3DV dataset
and frame 74 of the "softball" sequence from the CMU-Panoptic dataset. We compared our method

to Dynamic-GS [Luiten et al|(2023) and 4D-GS (2023) over six patches.
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Figure 5: Reconstruction quality correlation between the initial frame and the entire video.

Subjective Assessment. We provide subjective comparisons of different sequence patches in Fig. [4]
Dynamic-GS struggled with fixed global foreground labels and complex regularization, while 4D-GS
had difficulty handling violent motion due to its global deformation field. Our method, however, better
preserved details and textures, avoiding issues like excessive smoothing and object disappearance.
Subjective results demonstrated that our method excels in preserving and reconstructing details.
Comprehensive comparisons are available in the supplementary video.

Significance of Initial 3D Scene. The poor static scene reconstruction quality in the first frame
of the ’coffee_martini’ sequence negatively impacted the overall 4D reconstruction. To evaluate
the dependence of our 4D reconstruction on the initial 3D scene, we analyzed PSNR, SSIM, and
LPIPS-vgg metrics across sequences in the Neu3DV dataset. As shown in Fig. [§] scatter plots with a
dashed y = z line indicated similar quality between the initial 3D reconstructions and the overall 4D
reconstructions. Our method showed a strong alignment between the reconstruction quality of the
video sequence and the initial frame. This indicates that our method’s performance is constrained
by the initial static scene reconstruction, suggesting that improvements there could enhance overall
quality. Additionally, no new Gaussians were added during the sequence, highlighting the efficiency
of our method in utilizing the dynamic capabilities of the initial 3D scene.
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Covergance Speed. Our non-keyframes were optimized in under 2 seconds per frame, and
keyframes took approximately 40 seconds each. We anticipate further reductions in processing
time as we continue refining the implementation.

4.3 ABLATION STUDY

Points Parameter Comparison. In Tab. ] we compared 3D points across various categories
to highlight the compactness of our control point method. Each Gaussian is characterized by 13
attributes, including 3D spherical harmonics, position, rotation, scale, and 1D opacity. The number of
parameters increases with higher degrees of spherical harmonics.

Table 4: Comparison between Gaussians and control points.

Points Category Points Num.  Attr. Dim. Param. Num.
Scene Gaussians > 100k > 13 > 1000k
Object Gaussians ~ 10k >13 > 100k
Object Control Points 0.2k — 2.5k 3 0.6k — 7.5k

Effectiveness of 3D Control Points. In the GoS-10 configuration, we assessed the rendering quality
of three methods: "No Control’ (no motion manipulation), ’Partial Control’ (using only projected
control points), and "Full Control’ (combining projected and learned control points). PSNR metrics
for the first 30 frames of the ’sear_steak’ sequence are shown in Fig[6(a)] The "No Control" method
degraded quickly, "Partial Control" showed moderate degradation, and "Full Control" maintained
quality longer. Keyframe updates reduced errors at timesteps 10 and 20. The PSNR gap indicates
that integrating projected and learned control points significantly improves reconstruction quality.

3D Motion Visualization. We visualized the 3D motion of Gaussians for our method in The
track precisely described the person turning steaks or getting up to move boxes.

Sear_Steak’s

(a) (b)

Figure 6: (a) An example illustrating reconstruction quality degradation across frames under three
different settings of 3D control points. (b) Visualization of Gaussians’ 3D motion for the “sear_steak”
and the “boxes” sequences.

5 CONCLUSION AND DISCUSSION

We introduce a novel discrete 6-DoF motion decoupling model that combines traditional graphics
with learnable pipelines. This approach employs partially learnable control points for local 6-DoF
motion representation, enabling fast convergence and robust reconstruction for real-world datasets.
Additionally, we have developed an innovative workflow for streaming 4D real-world reconstruction
using Gaussians and 3D control points. Starting with an initial 3D scene reconstruction, our approach
progresses through several independent submodules, allowing each to be optimized individually
for future improvements. Our method outperforms existing state-of-the-art 4D Gaussian splatting
methods on real-world datasets. The workflow also has limitations: the quality of 4D reconstruction
highly depends on the initial static reconstruction, a factor that remains underexplored and presents
potential for further research. The current method does not support monocular videos due to its
reliance on multi-view initial frames. We plan to address these limitations in future work.

10



Under review as a conference paper at ICLR 2025

REFERENCES

David Arthur, Sergei Vassilvitskii, et al. k-means++: The advantages of careful seeding. In Soda,
volume 7, pp. 1027-1035, 2007.

Benjamin Attal, Eliot Laidlaw, Aaron Gokaslan, Changil Kim, Christian Richardt, James Tompkin,
and Matthew O’Toole. Torf: Time-of-flight radiance fields for dynamic scene view synthesis.
Advances in neural information processing systems, 34:26289-26301, 2021.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855-5864,
2021.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5470-5479, 2022.

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130-141, 2023.

Yangming Cheng, Liulei Li, Yuanyou Xu, Xiaodi Li, Zongxin Yang, Wenguan Wang, and Yi Yang.
Segment and track anything. arXiv preprint arXiv:2305.06558, 2023.

Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenenbaum, and Jiajun Wu. Neural radiance
flow for 4d view synthesis and video processing. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 14304-14314. IEEE Computer Society, 2021.

Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias Niefiner,
and Qi Tian. Fast dynamic radiance fields with time-aware neural voxels. In SIGGRAPH Asia
2022 Conference Papers, pp. 1-9, 2022.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5501-5510, 2022.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbak Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479-12488, 2023.

Xu Hu, Yuxi Wang, Lue Fan, Junsong Fan, Junran Peng, Zhen Lei, Qing Li, and Zhaoxiang Zhang.
Semantic anything in 3d gaussians. arXiv preprint arXiv:2401.17857, 2024.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting for
geometrically accurate radiance fields. arXiv preprint arXiv:2403.17888, 2024.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. Sc-gs:
Sparse-controlled gaussian splatting for editable dynamic scenes. arXiv preprint arXiv:2312.14937,
2023.

Yuheng Jiang, Zhehao Shen, Penghao Wang, Zhuo Su, Yu Hong, Yingliang Zhang, Jingyi Yu, and
Lan Xu. Hifi4g: High-fidelity human performance rendering via compact gaussian splatting. arXiv
preprint arXiv:2312.03461, 2023.

Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei Tan, Lin Gui, Sean Banerjee, Timothy Scott
Godisart, Bart Nabbe, Iain Matthews, Takeo Kanade, Shohei Nobuhara, and Yaser Sheikh. Panoptic
studio: A massively multiview system for social interaction capture. /[EEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1-14, 2023.

K Krishna and M Narasimha Murty. Genetic k-means algorithm. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 29(3):433-439, 1999.

11



Under review as a conference paper at ICLR 2025

Till Kroeger, Radu Timofte, Dengxin Dai, and Luc Van Gool. Fast optical flow using dense inverse
search. In Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part IV 14, pp. 471-488. Springer, 2016.

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time
view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6498-6508, 2021.

Zhengqi Li, Qiangian Wang, Forrester Cole, Richard Tucker, and Noah Snavely. Dynibar: Neural
dynamic image-based rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4273-4284, 2023.

Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai, Hujun Bao, and Xiaowei Zhou. Efficient
neural radiance fields for interactive free-viewpoint video. In SIGGRAPH Asia 2022 Conference
Papers, pp. 1-9, 2022.

Haotong Lin, Sida Peng, Zhen Xu, Tao Xie, Xingyi He, Hujun Bao, and Xiaowei Zhou. Im4d: High-
fidelity and real-time novel view synthesis for dynamic scenes. arXiv preprint arXiv:2310.08585,
2023a.

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dynamic
3d gaussian particle. arXiv preprint arXiv:2312.03431, 2023b.

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dynamic
3d gaussian particle. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21136-21145, 2024.

Jia-Wei Liu, Yan-Pei Cao, Weijia Mao, Wenqgiao Zhang, David Junhao Zhang, Jussi Keppo, Ying
Shan, Xiaohu Qie, and Mike Zheng Shou. Devrf: Fast deformable voxel radiance fields for
dynamic scenes. Advances in Neural Information Processing Systems, 35:36762-36775, 2022.

Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu Tseng, Ayush Saraf, Changil Kim, Yung-Yu
Chuang, Johannes Kopf, and Jia-Bin Huang. Robust dynamic radiance fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13-23, 2023.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713, 2023.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99-106, 2021.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):
1-15, 2022.

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M Seitz,
and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 5865-5874, 2021a.

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M Seitz. Hypernerf: A higher-dimensional representation for
topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228, 2021b.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318-10327, 2021.

Anurag Ranjan and Michael J Black. Optical flow estimation using a spatial pyramid network. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4161-4170,
2017.

Johannes Lutz Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.

12



Under review as a conference paper at ICLR 2025

Johannes Lutz Schonberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise view
selection for unstructured multi-view stereo. In European Conference on Computer Vision (ECCV),
2016.

Ruizhi Shao, Zerong Zheng, Hanzhang Tu, Boning Liu, Hongwen Zhang, and Yebin Liu. Tensor4d:
Efficient neural 4d decomposition for high-fidelity dynamic reconstruction and rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16632-16642, 2023.

Kristina P Sinaga and Miin-Shen Yang. Unsupervised k-means clustering algorithm. IEEE access, 8:
80716-80727, 2020.

Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong Yuan, Yi Xu, and Andreas
Geiger. Nerfplayer: A streamable dynamic scene representation with decomposed neural radiance
fields. IEEE Transactions on Visualization and Computer Graphics, 29(5):2732-2742, 2023.

Olga Sorkine. Laplacian mesh processing. Eurographics (State of the Art Reports), 4(4):1, 2005.

Robert W Sumner, Johannes Schmid, and Mark Pauly. Embedded deformation for shape manipulation.
In ACM siggraph 2007 papers, pp. 80—es. 2007.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 8934-8943, 2018.

Vivienne Sze, Madhukar Budagavi, and Gary J Sullivan. High efficiency video coding (hevc). In
Integrated circuit and systems, algorithms and architectures, volume 39, pp. 40. Springer, 2014.

Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Miiller, Morgan McGuire, Alec Jacobson,
and Sanja Fidler. Variable bitrate neural fields. In ACM SIGGRAPH 2022 Conference Proceedings,
pp. 1-9, 2022.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Computer
Vision—ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings,
Part 11 16, pp. 402-419. Springer, 2020.

Sundar Vedula, Simon Baker, Peter Rander, Robert Collins, and Takeo Kanade. Three-dimensional
scene flow. In Proceedings of the Seventh IEEE International Conference on Computer Vision,
volume 2, pp. 722-729. IEEE, 1999.

Chaoyang Wang, Ben Eckart, Simon Lucey, and Orazio Gallo. Neural trajectory fields for dynamic
novel view synthesis. arXiv preprint arXiv:2105.05994, 2021.

Chaoyang Wang, Lachlan Ewen MacDonald, Laszlo A Jeni, and Simon Lucey. Flow supervision for
deformable nerf. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21128-21137, 2023a.

Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei Song, and Huaping Liu. Mixed neural voxels
for fast multi-view video synthesis. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 19706-19716, 2023b.

Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yanshun Zhang, Yingliang Zhang, Minye
Wu, Jingyi Yu, and Lan Xu. Fourier plenoctrees for dynamic radiance field rendering in real-time.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13524-13534, 2022.

Peng Wang, Yuan Liu, Zhaoxi Chen, Lingjie Liu, Ziwei Liu, Taku Komura, Christian Theobalt,
and Wenping Wang. F2-nerf: Fast neural radiance field training with free camera trajectories.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4150-4159, 2023c.

Yiming Wang, Qin Han, Marc Habermann, Kostas Daniilidis, Christian Theobalt, and Lingjie Liu.
Neus?2: Fast learning of neural implicit surfaces for multi-view reconstruction. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 3295-3306, 2023d.

13



Under review as a conference paper at ICLR 2025

Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview of the h. 264/avc
video coding standard. IEEE Transactions on circuits and systems for video technology, 13(7):
560-576, 2003.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. arXiv preprint
arXiv:2310.08528, 2023.

Wengqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. Space-time neural irradiance fields
for free-viewpoint video. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9421-9431, 2021.

Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. Real-time photorealistic dynamic
scene representation and rendering with 4d gaussian splatting. arXiv preprint arXiv:2310.10642,
2023a.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. De-
formable 3d gaussians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint
arXiv:2309.13101, 2023b.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5752-5761, 2021.

Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and Heung-Yeung Shum.
Mesh editing with poisson-based gradient field manipulation. In ACM SIGGRAPH 2004 Papers,
pp. 644-651. 2004.

14



Under review as a conference paper at ICLR 2025

APPENDIX

.1 NEAR-PARALLEL LIGHT HYPOTHESIS

In the image plane, a small region with center Xy and the radius R is selected. Then the rays from
the projection center connected to each pixel in the region can be regarded as approximate parallel
light. We provided a detailed illustration in Fig.[7(a)] For an arbitrary x; in the x’s neighborhood,
we should prove that the angle € between ray rq and ray r; is a first-order small quantity.

Image Center &

\
Xo’s Neighborhood \\Focal

Local Motion
Calculator

2D Motion Pirors

Center of
Projection 2D Mask Sampling Grid

(a) (b)

Figure 7: (a) Illustration for angles, points, rays in Xq’s neighborhood. (b) Workflow for acquiring
2D motion prior.

First, a plumb line is made from x to the ray r;, which is the shortest path from z( to the ray and
can be denoted as:

|lx; — %o]| - cos v, (12)

where ||-|| stands for the Euclidean distance, and « is the angle between the plumb line and line
pointing from x¢ to x;. Then, using the cosine theorem, the distance from the projection center to xg
can be represented as:

f-1/cosp, (13)
where f is the camera focal length, and /3 is the angle between the ray r( and the major optical axis.
Next, using the sine theorem, # can be characterized as :

Ix; — %o|| cosa

f 1/cosp

The second term is always a real number not greater than 1. Since ||x; — Xo|| is always smaller than
R, 0 remains small if the focal length f is much larger than the neighborhood radius R.

)- (14)

0; = arcsin(

Thus far, the proof of Near-parallelism of localized rays is complete. In practice, With a normalized
focal length of more than 1000 pixels, it is perfectly acceptable to limit the calculation area to a radius
of 50 pixels.

.2 2D MOTION PRIOR ACQUISITION

We provide an intuitive workflow for the prior acquisition of 3D motion. The inputs consist of two
consecutive frames and an object-wise mask.

We first input two consecutive frames into the optical flow network, outputting a whole frame of
optical flow. Then, a corresponding sampling grid, based on the objects’ masks, is generated for
each object in the view. The local motion calculator is the abstract representation of the method we
introduced in Sec. [3.3] The final processed 2D motion prior binds with 3D control points.

Note that 3D control points are obtained from all training viewpoints independently. Thus, the 3D
control points collect all the training viewpoint control points. Hence, their distribution is much
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denser than during single viewpoint control point acquisition, and the range of action of the control
points will be smaller. When sampling control points, a larger control point sampling interval should
be selected, and for each control point, a smaller range around it should be selected to compute the
motion prior.

.3 SPARSIFICATION FOR 3D CONTROL POINTS

We illustrated the relationship between the Gaussians and the control points in Fig. [8] where the
control points are uniformly distributed on the surfaces of objects. Further sparsification of these
control points led to notable gains in compactness with only minimal impact on performance.

Human/Dog : 629/94 Prune 90%: Human/Dog : 212/31
PSNR/SSIM : 33.64/0.9655 PSNR/SSIM : 33.48/0.9645 PSNR/SSIM : 33.42/0.9640

Human/Dog : 1958/312

No Prune: Prune 70%:

Figure 8: Schematic of Gaussians vs. control points for humans and dogs: We visualized the topology
using red and green line segments, with red lines connecting Gaussian points and green lines linking
to control points. We also included the number of control points for the first frame of both the human
and dog at various pruning rates, alongside the reconstruction quality of the entire sequence.

.4 3D CONTROL POINTS PRUNE

Further sparsification of 3D control points can be achieved using clustering methods
Murty| (1999)); Sinaga & Yang| (2020). Note that 3D control points are obtained from all training
viewpoints independently. And there exists no prior knowledge of objects’ geometry and motion. So
we aimed for an even distribution of the sparsified control points. We recommended the k-means++
approach [Arthur et al.| (2007) due to the large number of clustering centers, which requires a more
stable clustering initialization.

Table 5: Comparison between different optical flow methods.

O.F. Model Avg. 2DMSE|  Rec. PSNRT  Rec. SSIM  Rec. LPIPS)
PWC (2018 4553¢-5 3339 09644 00737
SpyNet|Ranjan & Black|(2017) 1.509¢e-5 33.55 0.9649 0.0725
DIS Kroeger et al | (2016) 1.230¢-5 33.64 09655 00716

.5 MORE DETAILED SETTINGS FOR FAIR COMPARISON

Dynamic-GS |Luiten et al.|(2023) Setting. 2D foreground masks and initial 3D points’ segmenta-
tion labels are required in this approach. To ensure a fair comparison, we merged our objects’ 2D
masks and used the approach proposed in Sec[3.2]to label the initial points. We shrank the training
iterations from 2k to 0.5k per frame when processing the CMU-Panoptic dataset.

4D-GS (2023) Setting. For the “flame_salmon_1" sequence, four times longer than the
other sequences, we expanded the training iterations from 17k to 68k to ensure a fair comparison.
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.6 MORE ADVANCED SUBMODULE LEADS TO BETTER RECONSTRUCTION RESULT

We investigated the impact of various optical flow methods (2018); [Kroeger et al | (2016);
Ranjan & Black|(2017) and determined that DIS [Kroeger et al|(2016) achieved the most accurate 2D

optical flow predictions for Neu3DV dataset. Optical flow accuracy was quantified by the minimal
average MSE between the current frame and its warped predecessor. The lowest 2D errors correlated
with superior 3D reconstruction quality, suggesting that our pipeline’s performance could be further
improved by incorporating more advanced optical flow predictors. The positive correlation between
optical flow accuracy and reconstruction quality also demonstrates the effectiveness of our 3D motion
model.

.7 MORE SUBJECTIVE RESULTS AT NOVEL VIEWPOINT

We provided more subjective results from different sequences to intuitively evaluate our work.
We output the subjective results in the group of two rows, from left to right, top to bottom: GT,
Dynamic-GS, 4D-GS, Ours.

Figure 9: More subjective outputs.
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