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Abstract1

Spoken dialogue is the most intuitive form of human-computer2

interaction, yet current speech language models often remain3

constrained to turn-based exchanges, lacking real-time adapt-4

ability such as user barge-in. We propose a novel duplex speech5

to speech (S2S) architecture featuring continuous user inputs6

and codec agent outputs with channel fusion that directly mod-7

els simultaneous user and agent streams. Using a pretrained8

streaming encoder for user input enables the first duplex S2S9

model without requiring speech pretrain. Separate architectures10

for agent and user modeling facilitate codec fine-tuning for bet-11

ter agent voices and halve the bitrate (0.6 kbps) compared to12

previous works. Experimental results show that the proposed13

model outperforms previous duplex models in reasoning, turn-14

taking, and barge-in abilities. The model requires significantly15

less speech data, as speech pretrain is skipped, which markedly16

simplifies the process of building a duplex S2S model from any17

LLMs. Finally, it is the first openly available duplex S2S model18

with training and inference code to foster reproducibility.19

Index Terms: duplex, speech-to-speech, conversation, barge-in20

1. Introduction21

Large language models (LLMs) [1–4] have made significant22

strides in natural language processing, sparking interest in mul-23

timodal models that extend beyond text. Speech, as a natural24

interface for human-computer interaction, is a key part of this25

trend. Recent studies suggest adapting LLMs to process speech26

prompts for various speech-to-text (STT) tasks [2, 4–9].27

While traditional systems often respond with text, speech28

outputs are more intuitive for human-computer interaction.29

Cascaded spoken dialogue systems, like AudioGPT [10], use30

text as an intermediate representation, involving sequential31

modules such as ASR, LLM, and TTS. However, these systems32

face drawbacks like high latency, lack of interactive behaviors,33

and loss of paralinguistics. To address these issues, research has34

shifted towards end-to-end speech-to-speech (S2S) modeling.35

Previous S2S models focus on half-duplex, turn-based in-36

teractions. For instance, SpeechGPT [11], initialized from37

LLaMA, undergoes sequential fine-tuning on speech-only data38

and multimodal instruction sets to handle spoken question-39

answer (QA) tasks. Similarly, USDM [12] extends Mistral’s40

pretraining with interleaved speech-text data for enhanced mul-41

timodal understanding. GLM-4-voice [13] efficiently tokenizes42

speech using one codebook and large-scale speech-text pretrain-43

ing for downstream tasks like ASR, TTS, and SQA.44

Several pioneering or concurrent full-duplex S2S models45

have been recently proposed [14–17]. However, these sys-46

tems face increased complexity in model, data, and compu-47

tation, which hinders their widespread research and adoption.48

The introduction of additional submodules for turn-taking be- 49

tween user and agent increases system complexity and reduces 50

the end-to-end nature of the models. Moreover, the extensive 51

speech-text pretraining required on top of the LLM backbone is 52

resource-intensive and limits scalability to any LLMs. Finally, 53

using codecs to model user and agent interactions simultane- 54

ously necessitates a delicate balance between speech perception 55

and generation, presenting another significant challenge. 56

To tackle the above problems, we propose a novel duplex 57

S2S system with the following contributions: 1) A novel duplex 58

S2S architecture featuring continuous user inputs and codec 59

agent outputs with channel fusion that directly models simulta- 60

neous text and speech of both the user and agent. 2) We demon- 61

strate several key advantages over existing duplex models: The 62

use of a pretrained encoder as input enables the first duplex S2S 63

model without speech pretraining requirement; As the agent 64

and user are modeled by the codec and the pretrained encoder 65

separately, this facilitates codec fine-tuning toward better agent 66

voices. 3) We propose a set of systematic metrics to evaluate 67

conversational behaviors such as turn-taking and barge-in. Fi- 68

nally, it is the first open duplex S2S model with both training 69

and inference code pubicly available to foster reproducibility. 70

2. Related Work 71

Interest in full-duplex S2S models has grown in the past year. 72

Key challenges here include handling simultaneous user and 73

agent streams and enabling turn-taking. Systems like [16,18,19] 74

model single-channel interactions but use external signals, such 75

as stopping commands [19] or submodules [16], to decide when 76

to respond. Models like SyncLLM [20] and OmniFlatten [17] 77

achieve full-duplex conversation by employing time chunking 78

methods, embedding time information into LLMs for synchro- 79

nization. This interleaving processing allows the model to han- 80

dle user inputs like barge-in with low latency. 81

Our duplex S2S model is trained without speech-text pre- 82

training, unlike [14]. In multi-turn conversation, we align text 83

and speech at the turn level, which simplifies data preparation 84

compared to word-level alignment. Compared to [15, 18, 19], 85

our model predicts text and speech simultaneously without re- 86

quiring an explicit TTS component. Our speech codec model 87

uses parallel codebooks (see details in Sec. 3.2) and enables 88

speech generation with minimal latency. Our design further en- 89

ables codec fine-tuning for improved agent voices while halving 90

the required bitrate of previous works (0.6 kbps). 91

3. Model Architecture 92

To achieve duplex behavior, our S2S model takes two input 93

streams simultaneously: user speech stream, and agent speech 94

and text stream. As shown in Fig. 1, the user speech is first 95



Figure 1: The proposed duplex S2S model without requiring speech-text pretraining. Our model includes a streaming speech encoder,
a personalized codec, and an LLM. The model is trained to predict both text and audio channels in parallel with turn-level alignments.

encoded to generate continuous embeddings by the speech en-96

coder using an 80-ms frame rate. We use a 100M stream-97

ing speech encoder from a CTC model [21]. We initialize the98

backbone LLM using the TinyLlama-1.1B-chat model [22]. A99

modality adapter is used between the speech encoder and the100

text LLM. To obtain the agent embeddings in training, we use101

a codec model [23] to generate 12.5 Hz speech codes for the102

agent speech. LLM vocabulary is extended to include extra to-103

kens from speech codec with zero initialization. The two in-104

puts are time-aligned and summed as the input to the text LLM105

(similar to [24]). Both our speech encoder and text LLM are106

causal and thus streaming. In training, we fine-tune both the107

speech encoder and the backbone LLM. Text and speech loss108

are weighted differently in training (see Sec. 5.1). Our model is109

trained by multi-channel next token prediction similar to [1].110

3.1. Simultaneous Agent Text and Speech Prediction111

As shown in Fig. 1, we encode speech using 4 codebooks at112

a rate of 12.5 frames per second [23], and text targets are to-113

kenized into a separate channel. We align the text and speech114

tokens at the turn level based on their start time. We prepend115

separate <BOS> tokens for text and speech at the beginning of116

the turn and append <EOS> at the end of the turn. The gap be-117

tween text and speech tokens are padded by text pad ID. We also118

tried word-level alignment between text and speech as in [14]119

and did not find improvement. Empirically, we find that the120

model tends to learn agent text first. Therefore, we introduce a121

small delay (i.e., one token) to the speech channels for improved122

speech quality without introducing significant latency.123

3.2. Personalization-friendly Speech Tokenization124

We employ a partially causal neural audio codec to transform125

raw speech signals into streaming tokenized representations.126

Given an audio signal a, the codec generates a two-dimensional127

acoustic matrix, CT×N = CodecModel(a), where T denotes128

the downsampled sequence length, and N represents the num-129

ber of codebooks per timestep. Each element in CT×N is an130

m-bit discrete code. We adopt the state-of-the-art NanoCodec131

[23], which achieves reasonable-quality audio compression at132

0.6 kbps with a frame rate of 12.5 frames per second, employ-133

ing N = 4 independent codebooks. The codec leverages Finite134

Scalar Quantization (FSQ) [25], ensuring independence among135

codebooks. This independence removes the need for additional136

models or delay mechanisms, allowing all N codebooks to be137

Table 1: Synthetic training data with multi-turn and barge-in.

Task Dataset #Hours Speech Multi-turn Barge-in

ASR-QA 20k Mix Augment ×
Spoken MS MARCO 0.2k TTS Augment ×

QA Alpaca 0.2k TTS Augment ×
Internal SFT 3k TTS Real ✓

Conv- UltraChat 3k TTS Augment ✓
ersation Topic 0.3k TTS Augment ✓

Figure 2: Duplex training data format. Our duplex data consists
of separate user and agent streams including turn taking and
barge-in behavior. Here, the user barges in at the second turn.

predicted in parallel at each timestep, thereby enabling fully 138

parallel modeling with low latency. 139

Our duplex design allows us to personalize the pretrained 140

codec for agent voices to further enhance audio quality. This 141

is enabled by modeling the agent and user separately with the 142

speech codec and a pretrained causal speech encoder. In the 143

experimental section, we will evaluate the benefits of speech 144

and reasoning quality resulting from codec personalization. 145

4. Duplex Data for Training 146

Table 1 summarizes our training data which can be categorized 147

into spoken QA and multi-turn conversations. 148

4.1. Single-turn synthetic and real spoken QA 149

Our most basic training data structure consists of a single-turn 150

spoken QA between the user and agent. We use a multi-speaker 151

TTS model [26] to synthesize the context, questions and an- 152

swers from MS MARCO [27] and Alpaca [28]. To mitigate 153

overfitting to synthetic data, we follow [29] to create additional 154

synthetic QA pairs using the Mixtral-8x22B LLM from English 155

ASR-labeled data (8k public 1 and 12k in-house). This data 156

is then synthesized using the same TTS, denoted as ASR-QA. 157

1A subset from the NeMo ASR set in [21].



The resultant user speech contains both TTS and real data. An158

evaluation set used in Sec. 5.2 is created from the public data159

portion. We use a fixed speaker to generate agent speech and160

randomly select speakers for user speech.161

We create duplex training data from the aforementioned162

user-agent QA pairs. First, we split a pair of utterances into163

two streams, corresponding to the user and agent portions sep-164

arately, and then insert silence into the agent stream when the165

user speaks, and vice versa. This gives us two streams of speech166

(shown as the first turn in Fig.2). This duplex structure enables167

the model to listen and speak simultaneously at any time. To168

prevent the agent from barging in unexpectedly, we insert a169

0.64s silence between user and agent before the agent speaks.170

4.2. Augment with Multi-turn and Barge-in171

In order for the model to learn the ability for multi-turn con-172

versation, we also create duplex data that includes two or more173

turns of conversation between the user and agent (e.g., Fig. 2).174

First, we synthesize 3k hours of duplex data from a text-based175

multi-turn Internal SFT dataset to form multi-turn spoken QA.176

To ensure a more conversational flow, we limit each turn of the177

text SFT data, which is typically very long, to under 25 seconds.178

Second, we augment the single-turn data from Sec. 4.1 by ran-179

domly concatenating two QA pairs from the same dataset. The180

multi-turn data topics focus on role-playing, daily topics, scien-181

tific topics, etc. Moreover, when creating multi-turn data, we182

allow the user to barge in by cutting off the agent speech. After183

the cutoff, we keep a small duration (0.64 s) of agent speech to184

account for barge-in latency, and pad the rest of the agent turn185

with silence. As we show in later results, this straightforward186

approach enables the model to learn barge-in behavior.187

4.3. Conversational data188

To enhance the model’s conversation ability on daily topics,189

we create Topic and UltraChat datasets (totaling 3.3k hours as190

shown in Table 1). For both datasets, we first generate 4-turn191

text-based conversations and then synthesize them using a TTS192

model [26]. For Topic, we randomly choose a topic between193

user and agent and prompt the Meta-Llama-3.1-70B-Instruct194

model [4] to generate a conversation. The topics are randomly195

chosen from the everyday-conversation dataset [30], which cov-196

ers 63 everyday and science topics. To generate concise replies197

for efficient training, we restrict the words of each turn to be198

30 words in the prompt. The generated conversations are then199

synthesized into speech and prepared to the duplex data format.200

For UltraChat, we randomly sample a chat conversation from201

the UltraChat dataset [31] to use as contextual information in202

the prompt to generate a 4-turn conversation similar to Topic.203

5. Experiment Details204

5.1. Training Details205

We implement the model with PyTorch using the NeMo Toolkit206

[32], and the model is trained on 32 A100 (80G) GPUs with a207

batch duration of 1000 sec per GPU. The speech encoder is ini-208

tialized from a 100M streaming pretrained encoder with 80ms209

right context [21], and the LLM is initialized from the 1.1B210

TinyLlama [22]. We use a 32k SentencePiece tokenizer for text,211

and a personalized 0.6 kbps NanoCodec [23] for speech by de-212

fault. Ablations for personalization are presented in Sec. 6.3.213

The speech codes have 4 channels, with a vocabulary size of214

4,037 for each channel. Text and speech channel training loss215

are weighted by 3 and 1 respectively. We use FusedAdam, and 216

an inverse Square Root Annealing learning rate (LR) schedule 217

for optimization. The LR schedule starts with an initial learning 218

rate of 3e-4 with a warm-up of 2500 steps. Gradient clipping is 219

applied at the threshold of 1.0 to stabilize training. 220

5.2. Evaluation Data and Metrics 221

Our evaluation data consists of: 1) multi-turn conversations: Ul- 222

traChat, Roleplay (part of Internal SFT), and Topic, and 2) spo- 223

ken QA reasoning: ASR-QA and Alpaca. We select one shard 224

for each dataset in Sec. 4, which is unseen during training, for 225

this evaluation. To evaluate model performance on a more chal- 226

lenging scenario where the user frequently interrupts the agent, 227

we create an evaluation set called Impatient. When creating Im- 228

patient, we halve the silence time between the current and the 229

next user turn (from the original duration in the ASR-QA set) to 230

increase the chance of the agent being interrupted by the user. 231

By doing this, the interruption cases for our model and Moshi 232

(more details in Sec. 6.1) in the Impatient dataset are as high as 233

95.4% and 96.7%, respectively. 234

In terms of evaluation metrics, we evaluate the reason- 235

ing ability of our model using GPT scores generated by 236

gpt-4o-mini-2024-07-18 ranging from 0 to 10 based on the 237

hypotheses and references of all the agent turns. The reason- 238

ing quality is evaluated using the aforementioned multi-turn 239

and spoken QA reasoning datasets. The hypotheses of agent 240

turns are produced by transcribing the generated speech using 241

the ASR model nvidia/parakeet-tdt ctc-110m. 242

We evaluate turn-taking ability and speech generation qual- 243

ity using the UltraChat and Impatient datasets. We use two 244

types of metrics to measure the turn-taking ability: barge-in per- 245

formance and 1st response latency (see Table 2). For barge-in 246

performance, we introduce the following metrics: 1) Barge-in 247

latency: The time delay between the user’s speech onset and 248

the agent stopping its response; 2) Success rate: The percent- 249

age of cases where the agent successfully stops speaking within 250

1.5 seconds after the user interruption; and 3) False alarm rate: 251

The frequency at which the agent incorrectly barges in while 252

the user speaks. Additionally, if the user stops speaking within 253

0.1s, the event is not counted as a false alarm, as we found that 254

Moshi tends to proactively respond. The 1st response latency is 255

defined as the time taken by the agent to respond to the 1st user 256

turn. To evaluate the speech quality, we compute the UTMOS 257

[33] using the generated agent speech after removing silence. 258

6. Results and Comparison 259

6.1. Conversation and Speech Generation Quality 260

We first evaluate the turn-taking and speech generation quality 261

of our model in Table 2. Compared to Moshi, our model has 262

significantly higher barge-in success rate (94.5% v.s. 55.1%), 263

the same false alarm rates, and lower barge-in latency (0.69s 264

v.s. 0.81s). We observe that, in multi-turn conversations, Moshi 265

often initiates dialogue more proactively, leading to user barge- 266

in failures for both UltraChat and Impatient. 267

We cannot directly compare our 1st response latency with 268

Moshi’s as Moshi almost always responds before the user fin- 269

ishes talking and thus does not fit for this metric. We also note 270

that our 1st response latency is affected by our data generation, 271

as we always add a 0.64-second silence after the user turns to 272

ensure no unexpected agent barge-in. Further reducing this de- 273

lay is our future work. Lastly, we report UTMOS and our model 274

generates better quality speech than Moshi by up to 0.4. 275



Table 2: Comparison of turn-taking and speech generation quality.

Dataset Model Barge-in Performance 1st Response UT
Success ↑ False Alarms ↓ Latency (s) ↓ Latency (s) ↓ MOS ↑

UltraChat Ours 83.0% 0.0% 0.52 0.72 4.3
Moshi 56.0% 0.0% 0.63 n/a 3.9

Impatient Ours 94.5% 0.0% 0.69 0.92 4.0
Moshi 55.1% 0.0% 0.81 n/a 3.8

Table 3: Reasoning quality of multi-turn conversation and spo-
ken QA. GT+LLM denotes an optimal cascaded system which
feeds every ground-truth user turn to the LLM.

GPT Score Multiturn Conversation Spoken QA
UltraChat Roleplay Topic ASR-QA Alpaca

Ours 3.5 4.6 6.1 7.8 2.9
Moshi 3.4 1.7 2.8 1.9 1.7

GT+LLM 6.4 4.9 5.5 5.8 5.0

Table 4: Evaluation of audio reconstruction and the resultant
S2S quality across different codecs.

Codec Bitrate Audio Reconstruction S2S
kbps MOS↑ CER↓ SECS↑ ASR-BLEU↑

Mimi[14] 1.1 4.16 3.00 0.65 n/a

Nano[23] 1.2 4.67 1.44 0.77 18.1
Nano[23] 0.6 4.54 3.55 0.57 16.2
+personalized 0.6 4.75 1.36 0.94 18.7

6.2. Reasoning Quality276

In Table 3, we compare the reasoning ability of our model to277

Moshi [14] and an optimal cascaded system formed by feeding278

every ground-truth user turn text to LLM (i.e., GT+LLM in Ta-279

ble 3). The backbone of our model, TinyLlama, is used as the280

LLM. We report the aforementioned GPT scores on two types of281

test sets: multi-turn conversation and spoken QA. Compared to282

Moshi, our model shows better scores on all datasets despite the283

fact that our model uses much less data and smaller backbone.284

Compared to the optimal cascaded system, our model shows285

competitive results, better on two and worse on three sets. The286

slightly worse performance of end-to-end versus cascaded is not287

new and has been shown by other research [2, 11, 14, 29]. Fu-288

ture works include i) a more fair comparison with full pipeline289

(VAD, streaming ASR and TTS, LLM), and ii) improving the290

reasoning of duplex S2S models.291

6.3. Speech Codec Personalization292

We personalize the codec to our agent voice by fine-tuning the293

codec on 21k ground-truth utterances from the target speaker.294

The model is evaluated on 228 test samples that are not seen295

during training. Perceptual quality is assessed using estimated296

Mean Opinion Scores (MOS) with Torchaudio-Squim [34]. In-297

telligibility is measured by computing the Character Error Rate298

(CER), comparing transcriptions from the Massively Multilin-299

gual Speech (MMS) model [35] for both ground-truth and re-300

constructed audio. Speaker similarity is evaluated using the301

Speaker Encoder Cosine Similarity (SECS) [36], computed302

with the state-of-the-art ECAPA2 speaker encoder [37].303

Table 4 presents the evaluation results for the 1.1 kbps Mimi304

Codec [14], 1.2 kbps, and 0.6 kbps versions of NanoCodec [23],305

and the proposed personalized version of 0.6 kbps NanoCodec.306

Personalization significantly enhances the performance of the307

0.6 kbps NanoCodec. Notably, despite operating at nearly half 308

the bitrate, our personalized codec outperforms both Mimi and 309

NanoCodec at 1.2 kbps across all audio reconstruction metrics 310

on the target speaker. 311

As an ablation study, we further train our duplex S2S mod- 312

els with different codecs (last three rows in Table 4). For sim- 313

plicity, we report ASR-BLEU, which is calculated based on the 314

reference agent texts and ASR transcripts of generated agent 315

speech. Results on ASR-QA in Table 4 indicate that personal- 316

ization enhances duplex modeling as well, leading to improved 317

perceptual quality and higher BLEU scores. 318

6.4. Listening Duplex Conversation Examples 319

We include representative listening examples in an anonymous 320

demo page2. Specifically, the following capabilities of our du- 321

plex S2S model on unseen data are highlighted: 322

Robustness with frequent interruption. In the example 323

of Fig. 3 and the webpage, the user interrupts the agent three 324

times in 15 seconds, and leaves limited time for the agent to 325

respond. Despite these challenges, the agent still demonstrates 326

robust conversational behavior in handling frequent barge-in.

Figure 3: Multi-turn conversation with frequent barge-in.
327

Unseen reasoning problem. Beyond leveraging learned 328

knowledge to generate responses, the agent also demonstrates 329

the ability to utilize contextual information, effectively summa- 330

rizing the main topic of each conversation in Fig. 4 and webpage 331

that was unseen during training. 332

Figure 4: Spoken QA example on an unseen topic.

7. Conclusion 333

We introduced a novel duplex S2S architecture that models si- 334

multaneous user and agent streams without requiring speech 335

pretraining. Our data-efficient approach maintains end-to-end 336

modeling of conversation reasoning and behaviors. Experimen- 337

tal results show competitive performance in reasoning, barge-in, 338

and turn-taking. Our open-sourced training and inference code 339

will also be a valuable resource for future research. 340

2https://anonymous598e.github.io/INTERSPEECH2025-DEMO/
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