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Abstract

Real-world applications of machine learning (ML) models often confront data distribution
shifts, wherein discrepancies exist between the training and test data distributions. In the
common multi-domain multi-class setup, as the number of classes and domains scales up,
it becomes infeasible to gather training data for every domain-class combination. This
challenge naturally leads the quest for models with Compositional Generalization (CG)
ability, where models can generalize to unseen domain-class combinations. To delve into the
CG challenge, we develop CG-Bench, a suite of CG benchmarks derived from existing real-
world image datasets, and observe that the prevalent pretraining-finetuning paradigm on
foundational models, such as CLIP and DINOv2, struggles with the challenge. To address
this challenge, we propose Compositional Feature Alignment (CFA), a simple two-stage
finetuning technique that i) learns two orthogonal linear heads on a pretrained encoder with
respect to class and domain labels, and ii) fine-tunes the encoder with the newly learned head
frozen. We theoretically and empirically justify that CFA encourages compositional feature
learning of pretrained models. We further conduct extensive experiments on CG-Bench for
CLIP and DINOv2, two powerful pretrained vision foundation models. Experiment results
show that CFA outperforms common finetuning techniques in compositional generalization,
corroborating CFA’s efficacy in compositional feature learning.

1 Introduction

Over the past decade, machine learning has emerged as a transformative technology, driving advancements
across various domains such as computer vision (He et al., 2016a;b), natural language processing (Devlin
et al., 2019; Brown et al., 2020), biology (Jumper et al., 2021), etc. These innovations have been fueled
by the development of increasingly sophisticated models, the availability of large-scale datasets, and
the growth of computational power. However, a crucial obstacle persists in applying machine learning
models to real-world scenarios: their performance tends to degrade significantly when confronted with data
distribution shifts (Koh et al., 2021; Gulrajani & Lopez-Paz, 2021; Santurkar et al., 2021), where the data
distribution during testing differs from that used in training.

In an effort to overcome this problem, the machine learning research community has turned its attention to
Out-of-Distribution (OOD) generalization, with the goal of developing models that are robust under data
distribution shifts. Existing research primarily investigates various types of data distribution shifts, such as
domain generalization (Gulrajani & Lopez-Paz, 2021; Koh et al., 2021), subpopulation shift (Santurkar et al.,
2021; Yang et al., 2023), input corruption (Deng et al., 2009), and spurious correlation (Sagawa et al., 2020).
While generalizing to these different type of distribution shifts has garnered significant attention, there exists
another realistic yet understudied challenge in OOD generalization: compositional generalization (CG).

Within the multi-domain, multi-class context, assumes we have E domains (i.e., environments) and K
classes, leading to E ˆ K pairs of domain and class combinations, which could be formulated as elements
in a E ˆ K matrix as shown in Figure 1. In domain generalization (DG), the learner has access to data
from all the classes and all the domains and aims to make predictions on data from a new, unseen domain.
Nonetheless, in real-world scenarios, given the large number of categories, e.g., 1000 classes in ImageNet,
one cannot always collect the complete data from all the domains. Put in another word, the training
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Figure 1: Compositional generalization (CG) vs. domain generalization (DG). Masked entries are unseen
domain-class combinations, while unmasked ones exist in the training dataset.

data might not cover all the possible combinations of domains and classes, as represented by each cell in
the matrix in Figure 1. This sparsity pattern becomes especially pronounced when the number of classes
or environments is large because collecting comprehensive training data for each combination becomes a
formidable task. In such cases, a key challenge arises: can the model generalize to unseen domain-class
combinations? This is the compositional generalization (CG) challenge we aim to tackle in this work.

The CG challenge manifests ubiquitously across various real-world applications. For example, data
distribution shifts in certain existing DG datasets, such as iWildCam (Beery et al., 2020; Koh et al., 2021),
are more accurately characterized by CG than DG. Moreover, we find that the widely-used method of
finetuning pretrained (foundation) models struggles to tackle the CG challenge. This emphasizes the need
for the machine learning community to recognize and address this emerging distribution shift challenge with
innovative solutions.

Our Contributions In our attempt to tackle this challenge, we draw inspiration from existing lines of
research such as invariant risk minimization (IRM) (Arjovsky et al., 2019) and invariant-feature subspace
recovery (ISR) (Wang et al., 2022). In particular, Wang et al. (2022) showed that under certain structural
conditions in the data generative process, post-processing methods via subspace projection can effectively
learn invariant features that can generalize across unseen domains from the same data generative process
but under different interventions on non-causal factors. Empirically, we find that if the learned features (i.e.,
the outputs of the last hidden layer) conform to a compositional structure where the subspace of domain-
related features is orthogonal to that of class-related features, the corresponding model can generalize across
unknown domain-class pairs. Motivated by this observation, to induce features that match this compositional
structure, we introduce a two-stage finetuning approach termed Compositional Feature Alignment (CFA),
which is also inspired by recent progress in the literature of neural collapse (Papyan et al., 2020; Zhu et al.,
2021; Yang et al., 2022).

More specifically, upon the features given by the encoder, we construct two heads, one for predicting the
target label of interest and the other for predicting the domain index. Note that the two-head architecture
is not new, and has been widely used in domain adversarial neural networks (Ganin & Lempitsky, 2015;
Zhao et al., 2018). However, different from domain adversarial neural networks where adversarial training
through minimax optimization is needed, our proposed method is computationally lightweight and can be
divided into two stages.

CFA first identifies a proper compositional feature structure via a two-head regularized linear probing (i.e.,
training linear heads with the encoder frozen). Subsequently, the encoder undergoes finetuning with the
heads being frozen. Leveraging tools from the neural collapse literature, we theoretically prove that CFA
can effectively align features with the compositional feature structure under mild assumptions. Furthermore,
we construct a synthetic Color-CIFAR dataset to examine CFA empirically and observe that CFA can indeed
align features with the desired compositional feature structure.
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Figure 2: Illustration of a desired compositional feature structure for compositional generalization.

To facilitate the studies of compositional generalization, we curate a suite of benchmarks for the composi-
tional generalization challenge, building on four real-world image datasets: OfficeHome (Venkateswara et al.,
2017), DomainNet (Peng et al., 2019), WILDS-iWildCam (Beery et al., 2020), and WILDS-FMoW (Christie
et al., 2018). We consider two powerful pretrained vision encoders, CLIP (Radford et al., 2021) and DI-
NOv2 (Oquab et al., 2023), with ViT-B (Dosovitskiy et al., 2021) architecture, and apply different finetuning
methods to them, including linear probing, full finetuning, LP-FT (Kumar et al., 2022), reweighting and
our proposed CFA. Extensive experimental results on CG-Suite show that CFA-finetuned models can indeed
generalize to unseen domain-class combinations better than other finetuning methods. We hope that the
curated CG-Suite can facilitate future research on compositional generalization.

2 Compositional Feature Alignment

The key to the CG challenge is to identify and encode the compositional relationship between classes and
domains by learning the features. Hence, it is important to first understand what kind of feature struc-
tures are desired for compositional generalization. To this end, we first provide a formal definition of the
compositional feature structure, and then explain our motivations behind the definition.
Definition 1 (Compositional Feature Structure). For any input x from class y P t1, . . . , Ku and domain e P

t1, . . . , Eu, its feature z P Rd satisfies the compositional feature structure as long as z can be decomposed as:

Class Feature: z1 „ N pµy
1, Σy

1q P Rd1 ,

Domain Feature: z2 „ N pµe
2, Σe

2q P Rd2
Total Feature: z “ R

»

–

z1
z2

znoise

fi

fl

where znoise P Rd´d1´d2 represent noise features irrelevant to classes and domains, and R P Rdˆd is a
full-rank orthonormal matrix. Note that µy

1, Σy
1 have dependence on y, while µe

2, Σe
2 rely on e.

Fig. 2 provides a visualization of this compositional feature structure for a simple setup of 2 classes and 3
domains, where one domain-class combination is absent in the training set. It is evident that class features
and domain features exist in orthogonal subspaces, as required by Definition 1. In this case, a linear classifier
that exclusively utilizes class features and disregards domain and noise features can effectively generalize the
unseen domain-class combination.

It is noteworthy that even with the perfect alignment of learned features to this compositional structure
on all training data, there is no guarantee that features from unseen domain-class combinations will still
conform to this structure.

2.1 Method: Training with Frozen Orthogonal Heads under Normalization
Though we have defined an ideal feature structure for compositional generalization, the neural features
produced by pretrained models may not align with this structure. In this section we introduce our method
to encourage the learned features to follow the above structure. At a high level, the proposed method
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Figure 3: Illustration of our proposed method, Compositional Feature Alignment (CFA).

contains two stages of finetuning from pretrained models. We include an auxiliary linear head for domain
prediction, complementing the pre-existing class prediction head. The first stage involves multi-label linear
probing, which adjusts the two heads to achieve an optimal compositional feature structure. In the second
stage, we fine-tune the encoder, while keeping the two heads frozen. The final product is a finetuned encoder
that generates features in alignment with the predetermined compositional feature structure from stage one.
The two stages, diagrammatically represented in Fig. 3, are detailed below, followed by a discussion on our
rationale behind the algorithm design.
Stage 1 (Multi-Label Linear Probing). We begin with a pretrained encoder, Φp¨q that maps inputs to d-
dimensional features of unit norm, where d ą K ` E). We construct two linear heads without bias terms,
denoted by W1 P RKˆd and W2 P REˆd. Keeping Φp¨q frozen, we train these heads with two cross-entropy
loss terms, which take into account both class and domain labels. An orthogonality constraint ensures W1
and W2 span orthogonal subspaces.

Mathematically, the optimization objective of the first stage can be written as

min
W1,W2

1
N

ÿ

px,y,eqPDtrain

1
K

ℓCEpβ1 ¨ W1Φpxq, yq ` λ
1
E

ℓCEpβ2 ¨ W2Φpxq, eq (1)

s.t. β1, β2, λ ą 0 and W1 P UpdqK , W2 P UpdqE , W1W T
2 “ 0 (2)

where Dtrain represents the training set, ℓCE is the cross-entropy loss, β1, β2 are inverse temperature param-
eters (also called as logit scale in CLIP (Radford et al., 2021)), Updq denotes the set of d-dimensional unit
vectors, and 0 stands for the zero matrix.
Stage 2 (finetuning with Frozen Heads). We then freeze the trained W1 and W2, and proceed to fine-tune
the encoder Φp¨q end-to-end, using the same multi-label cross-entropy loss function.

The optimization objective of this finetuning stage can be expressed as

min
Φ

1
N

ÿ

px,y,eqPD

1
K

ℓCEpβ1 ¨ W1Φpxq, yq ` λ
1
E

ℓCEpβ2 ¨ W2Φpxq, eq (3)

The following discussion explains our motivations and reasoning underlying the algorithm design:

• Freezing Head for Feature Alignment: Recent work on neural collapse indicate that during the train-
ing of a multi-class classifier using cross-entropy loss, freezing the linear head according to a simplex struc-
ture can guide the features to align with the frozen head (Zhu et al., 2021; Yang et al., 2022). This observa-
tion implies that the features of data in class y to collapse in the direction of the row vector of the classifier
corresponding to class y. In addition, we empirically observe that the head-freezing technique does not
compromise the model’s performance compared to end-to-end finetuning. We include the details regarding
this experiment in an ablation study in Appendix C. Inspired by these, we devise the two-stage strategy
where the Stage 1 determines the optimal head weights for our compositional feature structure, and the
Stage 2 finetunes the encoder with frozen head weights to align the features with the feature structure.

• Linear Probing Two Orthogonal Heads: Unlike research work on neural collapse that focus
exclusively on class prediction (Papyan et al., 2020; Zhu et al., 2021; Yang et al., 2022), our work also
accounts for the effects of domains, as outlined in Definition 1. We therefore introduce an auxiliary
head, W2, for domain prediction, alongside the original class prediction head denoted as W1. Thus,
for a sample x, the encoder, W1, and W2 predict the class and domain labels based on the feature
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Φpxq. Definition 1 implicitly poses an orthogonality requirement on domain-related and class-related
features since R is an orthonormal matrix. To meet this feature orthogonality requirement, we impose
an orthogonality constraint on the two heads (i.e., W1W T

2 “ 0).
• Normalizing Features and Weights to Address Data Imbalance: While Zhu et al. (2021); Yang

et al. (2022) provide a theoretical justification for head freezing, their theory assumes class-balanced
training data. In the case of data imbalance, Thrampoulidis et al. (2022) shows that the head and
features may become misaligned. Upon reviewing the technical details of Thrampoulidis et al. (2022), we
find that this misalignment can be rectified by normalizing features and head weights to a hyper-sphere.
This normalization ensures constant norms for features and head weights, thereby ensuring alignment
(cf. Theorem 1). Consequently, we assume that the features produced by the encoder Φ are also
normalized to unit norm, which is a common practice in modern vision model pretraining such as CLIP
(Radford et al., 2021), SimCLR (Chen et al., 2020), MoCo (He et al., 2020), DINO (Caron et al., 2021).
Additionally, we impose the head normalization constraint W1 P UpdqK , W2 P UpdqE in (2), a technique
already employed in CLIP (Radford et al., 2021)1.

2.2 Theoretical Guarantee

In the algorithm above, Stage 1 is relatively simple, comprising a joint minimization problem over two
linear heads. In contrast, Stage 2 is more complex, as it optimizes a neural encoder using two heads under
two cross-entropy loss terms. We offer theoretical justification for Stage 2 below, demonstrating that the
finetuned encoder can indeed align features with the two frozen orthogonal heads produced by Stage 1,
thereby creating a feature structure that meets the requirement in Definition 1.

In line with recent research on neural collapse (Mixon et al., 2020; Fang et al., 2021; Zhu et al., 2021;
Thrampoulidis et al., 2022), we adopt the unconstrained feature model (UFM) or layer-peeled model, where
z “ Φpxq is treated as a free optimization variable in Rd for every input x.

We denote Z “ rϕpx1q, . . . , ϕpxnqs P RdˆN , Y “ ry1, . . . , yN s, and E “ re1, . . . , eN s as the stack of features,
class labels, and environment labels, respectively. In the context of the unconstrained feature model, the
optimization objective of Stage 2 is transformed to:

min
Z

1
KN

ℓCEpβ1 ¨ W1Z, Yq ` λ
1

EN
ℓCEpβ2 ¨ W2Z, Eq s.t. Z P UpdqN (4)

Theorem 1 (Feature Alignment). Assuming the feature dimension d is no smaller than K `E, and training
data exists for each class and domain (though not necessarily for each domain-class combination), and W1
and W2 are normalized and span orthogonal subspaces such that W1 P UpdqK , W2 P UpdqE and W1W T

2 “ 0.
Additionally, we assume β1, β2 are sufficiently large. The global minimum of (4) results in the following:
for any i P rN s, denote zi as the i-th column vector of Z, we have

z˚
i “ W T

1 ayi
` W T

2 bei
(5)

where ayi
P RK is a vector depending on the class label yi, and bei

P RE is a vector relying on the domain
label ei.

This theorem, intuitively, demonstrates that upon optimizing (4) to a global minimum, for any training
sample from class y in environment e, its corresponding feature z˚ can be decomposed as a linear combination
of two vectors depending on y and e, respectively, and the two vectors live in orthogonal feature subspaces.
This indicates that the learned features conform to a compositional feature structure satisfying Definition 1.
The complete proof is found in Appendix B, where we leverage theoretical tools from Thrampoulidis et al.
(2022) in the proof.

1Recent studies show that weight normalization for the linear head (without bias) can enhance the performance of fine-tuned
CLIP (Goyal et al., 2022; Wang et al., 2023).
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3 Empirical Studies

3.1 Benchmark Development of CG-Bench
We create CG-Bench, a compositional generalization benchmark built on four datasets previously designed
for DG research: Office-Home (Venkateswara et al., 2017), DomainNet (Peng et al., 2019), and iWildCam
(Beery et al., 2020) & FMoW (Christie et al., 2018) from the WILDS benchmark (Koh et al., 2021). These
datasets span a wide range of application scenarios from common object recognition in web-crawled images to
wildlife recognition from camera traps and building recognition from satellite images. Due to the page limit,
we elaborate on the motivation for creating the CG-bench and the curation procedure by taking DomainNet
as an example. Additional details regarding benchmark curation can be found in Appendix A.

DomainNet (Peng et al., 2019) consists of objects in different art styles. In the DomainNet dataset,
there are K “ 345 classes and E “ 6 domains: {Clipart, Infograph, Painting, Quickdraw, RealImage,
Sketch}. In addressing the DG challenge, prior research using DomainNet typically employed a leave-one-out
cross-validation strategy. This involves training the model on data from five of the domains and subsequently
evaluating its performance on the sixth, omitted domain. In addition to the DG task, it’s worth noting that
the CG challenge is intrinsically present within DomainNet. To underscore this point, we carried out a
preliminary experiment using CLIP.

CG Challenge in DomainNet We randomly divide DomianNet into training and evaluation sets, with an
80:20 split. A CLIP model is fully fine-tuned on this training data, and evaluated on validation data from all
domain-class combination. We also gathered zero-shot accuracy of the CLIP model for comparison. As a final
step, we examined the test accuracies for each domain-class combination, correlating them with the count of
their respective training data samples. We only focus on hard domain-class combinations that the zero-shot
accuracy is below 30%, and visualize evaluation results over these combinations inFigure 4a. Firstly, we notice
that certain domain-class combinations possess minimal or even no training samples (e.g., some combinations
have only 2 images and neither of them is sampled into the training set). This observation aligns with our
considered CG scenario. Within this CG context, both the fine-tuned and zero-shot models encounter
difficulties in achieving high test accuracy when the training data for a specific domain-class combination is
insufficient. This leads us to conclude that the CG challenge is inherently present in DomainNet, and current
zero-shot and fine-tuned models fail to address. Consequently, we are motivated to establish a benchmark
for a methodical investigation of this challenge.

Benchmark Curation Setup Consider data belonging to E domains (i.e., environments) and K classes,
resulting in an EˆK matrix of domain-class combinations (such as the demo shown in Fig. 1). A binary mask
Mid P t0, 1uEˆK is applied to this matrix to indicate in-distribution domain-class combinations, ensuring
that each row or column contains both 0 and 1 so that the training data includes all classes and domains,
while some domain-class combinations may be absent. The complementary binary mask (Mood “ 1 ´ Mid)
represents OOD domain-class combinations.

CG Curation of DomainNet We form a E ˆ K class-environment matrix for DomainNet and evaluate
the zero-shot accuracy for every domain-class combination. The resulting data distribution is visualized
in Figure 4b. We designate the combinations that fall within the lowest 20% of zero-shot accuracies as
the out-of-distribution (OOD) set, while the top 80% constitute the in-distribution (ID) set. To ensure
comprehensive representation, each row/column contains at least one entry from the ID set. The ID data is
then further segregated into a training set and an ID validation set at a 9:1 ratio. Meanwhile, the OOD data
is divided between OOD validation and test sets. When evaluating a model trained on the main training
dataset, we assess its performance across the ID validation, OOD validation, and OOD test subsets. For this
benchmark, our key metric is the average top-1 accuracy for both the ID and OOD sets.

3.2 Evaluations
Baselines We take the OpenAI’s ViT-B/16 CLIP (Radford et al., 2021) and the Meta’s ViT-B/14 DINOv2
(Oquab et al., 2023) as the pretrained model for each benchmark and implement three finetuning strategies as
the baseline: full finetuning, linear probing then full finetuning (LP-FT ) and reweighting. LP-FT
(Kumar et al., 2022) is a simple two-stage finetuning strategy that addresses the problem that full finetuning
can distort pretrained features and often underperforms linear-probing on out-of-distribution data. Note:
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Figure 4: Test accuracy statistics for each domain-class combination on DomainNet dataset. Left: The
test accuracy compared with the number of training data. Points are median accuracy while the shading
area is bounded by 25% and 75% quantiles. Right: The number of domain-class combinations at different
zero-shot test accuracies.

Table 1: Test accuracy(%) and F1-macro scores (%) of different methods on CG-Bench. Bold values mark
the highest accuracy or F1 score. The OOD accuracy of FMoW is the worst region accuracy. The highest
accuracy values and those within a range of 0.2 are in bold.

OfficeHome DomainNet iWildCam FMoWModel Methods
ID Acc OOD Acc ID Acc OOD Acc ID Acc OOD Acc ID F1 OOD F1 ID Acc OOD Acc

Zero-Shot 89.2 50.3 61.7 6.6 13.7 6.9 11.7 9.2 20.4 18.8
Linear Probing 90.9 41.0 72.7 4.7 72.5 14.4 42.1 22.5 37.7 27.6
Fine-Tuning 94.3 51.0 82.0 7.5 74.5 16.5 43.8 22.2 65.8 38.7
Fine-Tuning (WiSE) 93.7 52.5 76.4 8.7 67.0 13.7 31.6 17.0 49.5 40.6
LP-FT 93.5 43.9 81.5 5.3 74.0 17.0 42.5 26.6 65.9 40.2
LP-FT (WiSE) 93.0 42.8 79.4 5.3 74.4 18.2 44.5 28.7 56.6 36.3
Reweight-E 94.0 51.9 81.2 7.4 75.3 17.2 45.2 24.3 62.4 41.8
Reweight-E (WiSE) 93.6 53.1 75.9 8.5 68.5 13.7 32.9 18.0 46.8 41.7
Reweight-YˆE 93.7 52.2 81.0 7.6 72.2 17.4 41.6 30.0 58.0 41.1
Reweight-YˆE (WiSE) 93.4 53.4 75.5 8.5 55.9 15.1 29 22.7 42.1 37.5
CFA 94.3 54.3 81.6 7.3 74.0 18.3 43.6 31.0 65.3 41.6

CLIP

CFA (WiSE) 93.1 56.9 76.5 9.2 74.6 19.7 45.6 32.5 53.5 36.6
Fine-Tuning 91.8 38.6 82.4 5.3 76.4 14.4 47.6 18.3 66.1 38.4
Linear Probing 93.3 40.0 75.4 4.8 77.0 19.6 50.7 27.9 45.5 25.5
LP-FT 93.1 38.2 82.5 5.1 77.6 23.1 52.8 30.8 67.1 37.4
LP-FT (WiSE) 94.0 39.7 81.6 6.2 77.9 22.3 53.2 31.0 61.0 33.7
Reweight-E 91.2 38.9 81.8 5.2 76.9 13.1 48 17.9 62.3 38.4
Reweight-YˆE 91.3 39.0 81.5 5.3 72.2 17.4 41.6 30.0 57.5 37.6
CFA 92.8 39.2 82.6 5.6 78.1 22.8 52.5 30.8 67.2 38.5

DINOv2

CFA (WiSE) 93.1 40.4 79.6 6.4 78.2 23.8 52.6 33.4 59.8 34.3

Our proposed approach bears similarities with LP-FT (Kumar et al., 2022), as both methods start with a
linear probing stage and then proceed with finetuning. However, two critical differences are: i) our approach
employs two heads with a multi-label cross-entropy loss and imposes an orthogonality constraint during the
linear probing stage, and ii) we keep the heads frozen during the second finetuning stage. Reweighting (Buda
et al., 2018) balances the number of samples from each group in each batch during training. It is robust
to group shifts in OOD generalization tasks. For the CG benchmarks, we implemented two versions of
reweighting strategies: Reweight-E, which does re-sampling according to the domain labels, and Reweight-
YˆE, which balances according to the domain-class combinations.

Postprocessing with WiSE-FT (Wortsman et al., 2022) . After finetuning using the three baseline
methods and our proposed CFA, we also apply WiSE-FT (Wortsman et al., 2022) with α “ 0.5 to postprocess
the model, which just takes an average of initial and finetuned model parameters in the parameter space. It
has been shown that Wise-FT can improve the model performance (especially OOD performance) in some
cases (Wortsman et al., 2022). Note: For the CLIP experiments, we interpolate the finetuned model with
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(a) Pretrained Features (b) CFA-Finetuned Features

Figure 5: Visualization of the features for CLIP ViT-B/16 before and after the finetunning of CFA. Left:
Feature extracted using pre-trained CLIP ViT-B/16 image encoder. Right: Feature extracted using CFA-
finetuned CLIP ViT-B/16 image encoder.
the zero-shot CLIP encoder and classification head. For the DINOv2 experiments, since there is no zero-
shot classification head available, we interpolate the finetuned models with the linear probing/stage-1 CFA
results. Consequently, we do not perform WiSE-FT on full finetuning and reweighting baselines since they
do have linear-probed heads.

Implementation of CFA Empirically, we make small modifications to Stage 1 to divide it into two steps:
i) Train W2 on the domain labels with reweighting until it converges with W1 fixed to its zero-shot weight;
ii) then train W1 on the class label with reweighting, and encourage the orthogonality between W1 and
the fixed W2 with a ℓ2 regularization term, }W T

1 W2}2
F . We also use reweighting for the class labels when

performing the linear probing for LP-FT for a fair comparison. Following Sec. 2.1, we normalize the row
vectors of W1 and W2 to the unit norm and normalize the outputs of Φ also to the unit norm. In addition,
in the linear probing stage of CFA and LP-FT, we constrain W1 and W2 to a subspace determined by the
zero-shot linear classifier of CLIP, as we find it can improve the final OOD performance. Besides, we find
that in Stage 2, it is empirically sufficient to train the encoder with a very small λ value, which is a loss
coefficient in (3), and we deploy λ “ 0 in Stage 2 to reduce compute cost. In both Stage 1 and Stage 2,
we use the AdamW (Loshchilov & Hutter, 2017) optimizer with a cosine annealing scheduler (Loshchilov &
Hutter, 2016). More details and hyperparameters can be found in Appendix C.

Empirical Conclusions The results of our empirical experiments are presented in Table 1. Observing
the results, we conclude that: a) Compared with full finetuning, LP-FT and reweighting, our CFA can
improve the performance of pretrained models on OOD data for compositional generalization; b) WiSE-FT
can further improve the OOD performance of all methods in most cases (when WiSE-FT fails, it will fail on
both ID and OOD); c) While CFA enjoys a superior OOD performance, its in-distribution (ID) performance
is maintained around the same level of full finetuning, which is a desired property. Also, we notice that,
although our CFA increases the performance of models on OOD data in CG tasks, there is still a gap between
its ID and OOD performance, indicating that CG is quite a challenging task and needs future algorithm
advancement to be further addressed.

3.3 Feature Visualization on Real-World Data

To empirically show that our two-stage algorithm promotes the encoder’s ability to learn the compositional
feature, we conduct a feature visualization study for the CLIP ViT-B/16 image encoder on the DomainNet
(Peng et al., 2019) dataset. Specifically, we take the encoder both before and after finetuning with CFA,
visualizing features for 2 domains and 3 classes. This resulted in 6 unique domain-class combinations (5
out of which are present in the training set). The visualization in Figure 5b clearly shows that the features
finetuned with CFA conform to a compositional feature structure. In contrast, the features of the original
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Table 2: CFA with partial availability of domain labels. Experiments are conducted on Offce-Home.
Method Domain label ratio ID ID (WiSE) OOD OOD (WiSE)

CFA

100% (Original) 94 93.1 54.3 56.9
50% 94 93.3 53.8 56.9
20% 93.9 93.1 53.8 56.7
10% 94.0 93.2 53.4 55.9
0% (CLIP Predict) 94.1 93.0 52.0 53.6

Finetune 0% 94.3 93.7 51 52.5
LP-FT 0% 93.5 93.0 43.9 42.8

Table 3: Domain label prediction with partial training label availability. Experiments are conducted on
Office-Home.

Domain Label Ratio 0% (Zero-Shot) 10% 20% 50% 100%
Avg. #Data per Domain 0 308 616 1541 3082
Accuracy 61.5 82.0 84.6 85.5 86.3

CLIP model (Figure 5a) do not exhibit this structure. This visualization not only demonstrates the feature
alignment ability of CFA but also provides further evidence of its effectiveness for large neural networks
trained on real-world data.

3.4 Partial Availability of Domain Labels

In real-world applications, training samples may not be provided with domain labels, which may affect the
applicability of CFA. We divide this problem into two scenarios: i) Domain labels are partially available; ii)
Domain labels are completely unavailable.

Corresponding experiments on the Office-Home dataset are designed and conducted to demonstrate that
the CFA remains effective even in the absence of domain labels. Under the first condition, we conduct
experiments by only using 10%, 20%, and 50% of the domain labels for Stage-1 to learn the linear head for
finetuning in Stage-2. We repeat each experiment 3 times using different subsets of the data and present the
average result to mitigate the randomness caused by subsampling. For the second scenario, we propose that
we can leverage the zeroshot ability of CLIP to predict the domain labels. To be specific, we first manually
design a set of labels that can describe the domains of the data (for the experiment we just use the original
domain names). Then, we perform the zeroshot classification on the training data and the domain labels
using CLIP model. Finally, we take the predicted domain labels as ground-truth domain labels and use them
in Stage-1. We adopt the hyperparameters shown in the manuscript and present the mean accuracy of CFA
and WiSE-FT over 3 seeds on the Office-Home dataset. From results in Table 2, we can see our CFA works
well as domain labels are partially available.

The mild reliance of CFA’s performance on domain label availability is beneficial for the practical application
of this method but may raise questions about why the reliance is so mild. We believe there are two main
reasons: i) the number of domains is small (4-6 domains for each 4 dataset of CG-Bench), so the available
data per domain is relatively abundant, and ii) domain labels are easier to predict than class labels since
image style or background information is highly indicative of the domain label, and these visual features are
easy to capture by neural networks.

We clarify this by conducting a simple ablation study: in the Office-Home dataset with 4 domains, we fit
linear classifiers to CLIP features for different amounts of domain labels (1%, 2%,..., 100% of the training
data), and show the test prediction accuracy for domains below. Each experiment is repeated three times
with different sampling seeds, and mean accuracy is reported in Table 3.

From the results, we can observe that as the domain labeling ratio increases from 10% to 100%, the domain
prediction accuracy modestly improves from 82.0% to 86.3%, indicating a relatively small enhancement. This
suggests that the domain label is indeed quite easy to predict, which could explain why our CFA can work
well with a partial availability of domain labels. Furthermore, the zero-shot prediction accuracy of the CLIP
ViT-B/16 model for domain labels is 61.5%, significantly higher than a random guess (25%). This outcome
supports the notion that CFA with CLIP-predicted domain labels can also improve over vanilla finetuning.

Class Label Availability As for class labels, we do require their full availability for the training set, since
our work focuses on supervised finetuning of pretrained encoders. Meanwhile, although CLIP is not explicitly
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supervised by domain and class labels, the texts in the image-text pairs (used for CLIP pretraining) provide
abundant class and environment information. Furthermore, CLIP’s unsatisfactory zero-shot performance on
our CG-bench indicates the need for supervised finetuning to improve its effectiveness. On the other hand,
DINOv2 is a self-supervised pretraining method, thus it needs to be supervised finetuned before applying to
downstream classification tasks. Overall, the above statement wants to justify that the class label availability
cannot be waived for the compositional generalization task considered in our paper.

Ablation Studies We conducted ablation studies on i) the choice of normalized head v.s. unconstrained
head, ii) the choice of frozen head v.s. trainable head, and iii) the loss coefficient λ in Stage 2 on CLIP
model. Due to the page limit, we defer results and details to Appendix C. Also, we discuss the training
stability, overhead and performance gain of CFA in Appendix C.

4 Related Works

OOD Generalization In OOD generalization, the model is trained on labeled data from a limited
number of known domains, and the goal is to improve the performance of the models so that they can better
generalize to previously unseen or new test domains (Blanchard et al., 2011). A common approach to tackle
OOD generalization is domain-invariant learning, which aims to learn a representation of data that has an
invariant distribution over different training domains. Previous works taking this approach match domains
in feature space either by aligning moments (Sun & Saenko, 2016) or using an adversarial loss (Ganin et al.,
2016). However, these methods are later pointed out to be generally inadequate (Zhao, 2019). Another
popular approach is to learn the optimal invariant predictors. Taking this approach, an invariant risk
minimizer (IRM) optimizes a highly non-convex bi-level objective and simplifies the optimization using a
penalty regularized objective. However, Rosenfeld et al. (2021); Kamath et al. (2021); Ahuja et al. (2021)
theoretically show that these algorithms fail even in simple data models. Similarly, Wang et al. (2022)
proposed Invariant-feature Subspace Recovery (ISR), which recovers the subspace spanned by the invariant
features, and then fits predictors in this subspace. Distributionally robust optimization (Sagawa et al.,
2020) is also a choice to tackle OOD generalization, which optimizes models over a worst-case distribution
that is perturbed around the original distribution. In addition to the methods designed for training a model
from scratch, recent works (Kumar et al., 2022; Wortsman et al., 2022; Goyal et al., 2022) also discuss
increasing the OOD accuracy over the pretrained model. While these methods provide impressive empirical
improvements on pretrained models, theoretical explanations are yet to be provided.

Composition Generalization In the computer vision literature, previous research has investigated
attribute-object compositions (also referred to as compositional zero-shot learning) (Misra et al., 2017;
Nagarajan & Grauman, 2018; Purushwalkam et al., 2019; Naeem et al., 2021; Nayak et al., 2023; Hao et al.,
2023), with the goal of predicting attributes of an object in addition to its class. For instance, in a binary
image classification task involving cat versus tiger, a classifier might be required to predict whether the
animal is old or young alongside the conventional class prediction. In contrast, compositional generalization
(CG) has a different focus. It concentrates purely on predicting the object class (e.g., cat versus tiger).
Specifically, CG tasks aim to accurately identify young cat images as cat, even when the training data
consisting only of young tiger and old cat instances and lacking young cat images. This scenario intro-
duces an out-of-distribution (OOD) shift, and the challenge lies in developing models robust to such shifts.
While compositional zero-shot learning (CZSL) can decouple attributes from objects, it is not universally
adaptable for OOD generalization tasks. This approach relies on powerful vision-language models (VLMs)
such as CLIP, while CG does limit the type of image classifiers. However, in certain real-world domains,
such as remote sensing or medical imaging, there is a lack of paired image-text data to train strong VLMs.
Therefore, adopting self-supervised models such as MAE (He et al., 2022) and DINO (Caron et al., 2021)
presents a more practical strategy for these domains (Cong et al., 2022; Wanyan et al., 2023). As shown
in Table 1, our CFA can work with both VLMs and self-supervised models. In contrast, CZSL can not be
directly applied to self-supervised models. Besides, Sivaprasad et al. (2022) explores CG under a slightly
simplified premise, where only one random domain is masked for each class. In addition, their method is
built upon ResNet (He et al., 2016b) and does not scale well with modern transformer architectures.
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5 Conclusion

This paper delves into the challenge of Compositional Generalization (CG) in machine learning, focusing on
generalization to unseen domain-class combinations. By developing CG-Bench, a suite of benchmarks from
real-world image datasets, we highlighted the shortcomings of prevalent pretraining-finetuning frameworks
in tackling this challenge. Our proposed solution, the Compositional Feature Alignment (CFA), offers a
promising approach to improve the CG performance of pretrained models, as evidenced in our experiments.
Despite these advances, our study is not without limitations. Our experiments are currently limited to the
base-sized ViT models, and our empirical studies draw from a restricted number of datasets of limited size.
As we strive to overcome these limitations in future work, we look to include larger models and diversify our
benchmark suite, exploring alternative data sources beyond images. We invite the broader machine learning
community to join us in the ongoing exploration of the important challenge of CG.
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A Benchmark Curation

We introduce the curation process of DomainNet (Peng et al., 2019) in Section 3.1. In this section, we
provide more details of the proposed benchmark on the remaining datasets.

OfficeHome (Venkateswara et al., 2017) consists of 65 classes of objects depicted in four domains: {Art,
Clipart, Product Image, Real World Image}. The ID and OOD splits are created in the same process as
the DomainNet. The average top-1 accuracy is measured to evaluate the model performance on both sets.

iWildCam (Beery et al., 2020) is a dataset designed for classifying 182 classes of wild animals in camera
traps. In the original iWildCam, each camera trap is defined to be a domain, resulting in 324 domains
that are labeled as camera IDs. Such a definition of domains ignores the semantic similarities among
them. For example, two camera traps may both be set in forests, however, the original iWildCam assigns
them to different domains. Consequently, images taken in the forests are distributed in both ID and OOD
sets regardless of the fact that they are from very similar environments. Observing such deficiencies in the
original iWildCam, we are motivated to reassign the domain labels to the data. We propose 6 domains for the
dataset: {colored forest, gray-scale forest, colored trail, gray-scale trail, colored savanna,
gray-scale savanna}. To assign the new domains to the images, we take advantage of the zero-shot
classification ability of the CLIP models. Specifically, we design 10 prompts for each domain and perform
the zero-shot prediction of the domains for each image using the assembled prompts. New domain labels
are generated for both training and test sets, resulting in a dataset that is consistent with our CG setting:
the E ˆ K matrix is sparse, and the test set contains domain-class pairs that have few or no samples in the
training set. We take the domain-class pairs with less or equal to 20 samples in the training set as the OOD
samples in the test set. In addition to measuring the average top-1 accuracy, we also measure the F1-macro
score for both the ID and OOD sets.

FMoW (Christie et al., 2018) is a dataset that aims to classify utility types from satellite images. This
dataset has two sets of domains: years and regions. The ID and OOD of the dataset are split according to
the years, i.e., all the satellite images in the test set taken before 2016 are ID samples, and images after 2016
are OOD samples. In our CG-Bench, we only perform evaluations on region domains. To be specific, the
dataset has K “ 62 classes and E “ 5 domains: {Asia, Europe, America, Africa, Oceania}. The E ˆ K
matrix is naturally sparse because certain utilities were only introduced post-2016 in some underdeveloped
regions, leading to the creation of OOD entries. Therefore, FMOW is readily suited for our CG setting
without the need for additional curation. We measure the average top-1 accuracy for the ID set and the
worst region accuracy for the OOD set as suggested by previous works.

B Proof of Theorem 1

We first restate the setting, and introduce some notations and definitions. Then we present two lemmas
useful for the proof of our main theorem. Finally, we restate our main theorem (Theorem 1) and provide a
proof.

Notation and Setting We denote Z “ rϕpx1q, . . . , ϕpxnqs P RdˆN , Y “ ry1, . . . , yN s, and E “ re1, . . . , eN s

as the stack of features, class labels, and environment labels, respectively. In the context of the unconstrained
feature model, the optimization objective of Stage 2 is transformed to:

min
Z

1
KN

ℓCEpβ1 ¨ W1Z, Yq ` λ
1

EN
ℓCEpβ2 ¨ W2Z, Eq s.t. Z P UpdqN (6)

Furthermore, we use W pjq to refer to the j-th row vector of matrix W , and zi represents the i-th column
vector of Z, which is also the learned feature of the i-th training sample.

Below, we define simplex-encoding label (SEL) matrices, which are introduced in Thrampoulidis et al. (2022),
and also consider SVD of the two heads, W1 and W2.
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Definition 2 (Simplex-Encoding Label Matrices). S1 P RKˆN and S2 P REˆN are simplex-encoding label
(SEL) matrices for classes and domains, respectively, such that

@c P rKs, i P rN s : S1rc, is “

#

1 ´ 1{K , c “ yi

´1{K , c ‰ yi

(7)

@c P rEs, i P rN s : S2rc, is “

#

1 ´ 1{E , c “ ei

´1{E , c ‰ ei

(8)

In other words, the i-th column of S1 is a K-dimensional vector, peyi ´ 1
K 1q, where ej represents the i-th

standard basis vector. Similarly, the i-th column of S2 is a E-dimensional vector, peei ´ 1
E 1q.

Definition 3 (SVD of Heads). For W1 and W2, we consider their compact SVD as

W1 “ U1Λ1V T
1 and W2 “ U2Λ2V T

2 (9)

Specifically, Λ1, Λ2 are positive diagonal matrices and U1, V1, U2, V2 have orthonormal columns.

Now, we focus on the first term of (6), and study its optimum with theoretical tools from Thrampoulidis
et al. (2022).
Lemma 1 (Optimum of Class Loss). Assuming the feature dimension d is at least K, and training data
exists for each class, and W1 is normalized such that W1 P UpdqK . Additionally, we assume β1 is sufficiently
large. Then, for any constant norm magnitude a ą 0, the global minimum of the following objective,

min
Z

1
KN

ℓCEpβ1 ¨ W1Z, Yq s.t. }zi}2 “ a , (10)

satisfies

Z˚ “ γ1V1Λ´1
1 UT

1 S1 , (11)

where γ1 “ a
1´1{K .

Proof. From Theorem 1 of Thrampoulidis et al. (2022), we know that the optimum of (10) shall satisfy

W1Z˚ “ γS1 (12)

where γ ą 0 is a scaling factor and S1 is defined in Definition 2.

With (12) and the norm constraint }zi}2 “ a, it is obvious that Z˚ should span the same feature subspace
as W1, since the cross-entropy loss is monotone such that a larger magnitude of W1Z˚ leads to smaller loss.
Therefore, we can express Z˚ as

Z˚ “ γ1V1Λ´1
1 UT

1 S1 , (13)

and the scaling factor can be easily determined by considering }W
piq

1 }2 “ 1 and }zi}2 “ a.

We can study the optimum of the second term of (6) in the same fashion, and obtain similar results.
Lemma 2 (Optimum of Domain Loss). Assuming the feature dimension d is at least E, and training
data exists for each domain, and W2 is normalized such that W2 P UpdqE. Additionally, we assume β2
is sufficiently large. Then, for any constant norm magnitude b ą 0, the global minimum of the following
objective,

min
Z

1
EN

ℓCEpβ2 ¨ W2Z, Eq s.t. }zi}2 “ b , (14)

satisfies

Z˚ “ γ2V2Λ´1
2 UT

2 S2 , (15)

where γ2 “ b
1´1{E .
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Proof. The proof is the same as that of Lemma 1.

With Lemma 1 and Lemma 2, we can prove that the learned feature vector of each training sample can
be decomposed as a linear combination of two vectors depending on the class label and domain label,
respectively, while the two vectors live in orthogonal feature subspaces. This indicates that the learned
features conform to a compositional feature structure satisfying Definition 1.

Notice that Theorem 2 (the restatement of Theorem 1) is slightly different from Theorem 1. This is because
we found a small issue in the original proof for Theorem 1. We fixed the issue before the supplementary
material submission deadline, which led to a slightly different expression of z˚

i . However, the same main
conclusion still applies to the updated theorem (Theorem 2): the learned features comply with the compo-
sitional feature structure in Definition 1, which justifies the algorithm design of our algorithm design. We
will revise Theorem 1 in our main text correspondingly in the revision.
Theorem 2 (Feature Alignment (Theorem 1 Restated)). Assuming the feature dimension d is no smaller
than K `E, and training data exists for each class and domain (though not necessarily for each domain-class
combination), and W1 and W2 are normalized and span orthogonal subspaces such that W1 P UpdqK , W2 P

UpdqE and W1W T
2 “ 0. Additionally, we assume β1, β2 are sufficiently large. The global minimum of (6)

results in the following: for any i P rN s, denote zi as the i-th column vector of Z, we have

z˚
i “ W T

1 ayi
` W T

2 bei
(16)

where ayi
P RK is a vector depending on the class label yi, and bei

P RE is a vector depending on the domain
label ei.

Proof. Lemma 1 and Lemma 2 derive the optimum of the two loss terms of (6), respectively. For the linear
combination of the two loss terms with coefficient λ, it is straightforward to see that the optimum Z˚ should
also be a linear combination of (11) and (15), since these two optima stay in orthogonal subspaces spanned
by W1 and W2, respectively (Stage 1 ensures that W1 and W2 live in orthogonal subspaces). In other
words, the first loss term 1

KN ℓCEpβ1 ¨ W1Z, Yq does not affect the converged direction of ProjW2Z˚, i.e., Z˚

projected into the subspace spanned by W2, and vice versa. However, the first term affects the magnitude
of ProjW2Z˚ since we have the norm constraint Z P UpdqN in (6). Specifically, the larger λ in (6) leads to
larger magnitude of }ProjW2Z˚}2. Hence, we can express Z˚ as

Z˚ “ aγ1V1Λ´1
1 UT

1 S1 ` bγ2V2Λ´1
2 UT

2 S2 (17)

where a, b ą 0 are scaling factors (depending on λ) that ensure Z˚ P UpdqN .

By plugging in Definition 2, we can express the i-th column vector of Z˚, the learned feature of the i-th
sample, as

z˚
i “ aγ1V1Λ´1

1 UT
1 peyi

´
1
K

1q ` bγ2V2Λ´1
2 UT

2 peei ´
1
E

1q (18)

Clearly, the first term of (18) depends on the class label yi only and the second term relies only on the
domain label ei. Besides, the two terms live in the feature space spanned by V1 and V2, respectively, which
are determined by W1 and W2. Hence, we can be re-expressed (18) as

z˚
i “ W T

1 ayi
` W T

2 bei
(19)

where ayi
“ aγ1U1Λ2

1UT
1 peyi

´ 1
K 1q and bei

“ bγ2U2Λ2
2UT

2 peei
´ 1

E 1q.

C Details of Experiment

Here, we supplement Section 3 with more details about our experimental studies.
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Computational Expenses The experiments described in this paper are executed on NVIDIA RTX
A6000 GPUs with 48GB memory, utilizing a total of 12 GPUs. The individual training runs for Office-
Home, DomainNet, iWildCam, and FMoW require 0.2, 0.8, 0.5, and 0.2 GPU hours respectively. Each
experiment is repeated ten times with varying random seeds, which alter the order of batch shuffling in the
training loader.

Hyperparameter Choices We present the hyperparameter settings for our CFA models in Table 4. The
parameters for each stage are chosen based on model performances on the OOD validation set. Note that
λ is the domain loss coefficient in (3), and λortho is the coefficient for the orthogonality regularization loss
}W T

1 W2}2
F that we use to ensure orthogonality of heads in Stage 1. The hyper-parameters in Stage 2 are

also used for the two baseline algorithms, Full finetuning (FT) and LP-FT.

Ablation Studies We conduct ablation studies on i) the choice of normalized head v.s. unconstrained
head, ii) the choice of frozen head v.s. trainable head, and iii) the loss coefficient λ in (3). The results are
discussed as follows:

• Head Normalization. In our implementation, we normalize the weight of our classification heads that
has no bias terms, following recent works (Goyal et al., 2022; Wang et al., 2023) which show that head
normalization is useful for CLIP finetuning. In this ablation study, we repeat the vanilla full finetuning
experiment using unconstrained classification heads (i.e., with bias and without normalization). The
test accuracies(%) are present in Table 5. From the results, we can see that the models finetuned with
constrained heads have slightly better OOD performances compared to the unconstrained ones, justifying
the use of the head normalization technique.

• Trainable Heads v.s. Frozen Heads. In Stage 2, we finetune the models with frozen heads, W1 and
W2, which are linearly probed in Stage 1. In this ablation study, we perform the full finetuning during
Stage 2, i.e., training all the layers including the classification heads. The test accuracies(%) are shown in
Table 6. The results indicate that using trainable heads or using frozen heads does not vary the finetuned
model performance much. Therefore, this ablation study justifies that our algorithmic design of frozen
classification heads is reasonable.

• Domain Loss Coefficient. In our empirical implementation, we consider λ “ 0 in (3) and only finetune
with respect to W1 in Stage 2, to reduce the training cost. The motivation for doing so is the observation
that the coefficient λ in Stage 2 does not affect the final performance. To justify this, we conduct the
following ablation study: we run Stage 2 with the original two-term loss, (3), while adjusting the coefficient
λ for the domain prediction loss. The test accuracies(%) are shown in Figure 6. From the figure, one can
observe that the value of λ can be set to zero in Stage 2 without negatively affecting the final performance.
Therefore, it is sufficient to consider λ “ 0 in Stage 2 and only fine-tune the model with the first loss
term in (3).

C.1 Discussion on Training Stability and Overhead

Here we conduct an additional study to examine the training stability of our two-stage method, CFA. All of
the following experiments are conducted for CLIP ViT-B/16 on the Office-Home dataset and are an average
over 3 seeds.

Table 4: Hyperparameters for our algorithm.

Model CLIP DINOv2

Dataset Stage 1 (Linear Probing) Stage 2 (Fine-Tuning) Stage 1 (Linear Probing) Stage 2 (Fine-Tuning)
λ λortho Epochs Epochs Learning Rate λ λortho Epochs Epochs Learning Rate

OfficeHome 1 100 200 3 10´5 1 100 200 3 5 ˆ 10´5

DomainNet 1 10000 200 3 10´5 1000 10 200 10 5 ˆ 10´5

iWildCam 10 10 200 5 10´5 1 100 200 5 10´5

FMoW 10 100 200 3 10´5 100 1000 200 4 5 ˆ 10´5
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Table 5: The ablation study on the constraints on classification heads. Blue cells represent the normalized
classification head with no bias; Orange cells indicate the heads are unconstrained.

OfficeHome DomainNet iWildCam FMoWMethods
ID OOD ID OOD ID OOD ID OOD

FT 94.3 51.0 82.0 7.5 74.5 16.5 65.8 38.7
FT-Wise 93.7 52.5 76.4 8.7 67.0 13.7 49.5 40.6
FT 94.3 50.8 82.0 7.5 74.9 16.2 65.8 38.5
FT-Wise 93.7 52.3 76.5 8.7 66.8 13.5 49.5 40.1

Table 6: The ablation study on the frozen classification heads v.s. trainable heads in Stage 2. Blue cells
represent the fronzen heads; Orange cells indicate the heads are trainable.

OfficeHome DomainNet iWildCam FMoWMethods
ID OOD ID OOD ID OOD ID OOD

Zeroshot 89.2 50.3 61.7 6.6 13.7 6.9 20.4 18.8
FT 94.3 51.0 82.0 7.5 74.5 16.5 65.8 38.7
FT (Wise) 93.7 52.5 76.4 8.7 67.0 13.7 49.5 40.6
FT 94.3 51.4 82.1 7.3 75.3 16.4 65.8 38.5
FT (WiSE) 93.7 52.9 76.6 8.4 67.7 13.6 49.7 39.7
LP-FT 93.5 43.9 81.5 5.3 74.0 17.0 65.9 40.2
LP-FT (WiSE) 93.0 42.8 79.4 5.3 74.4 18.2 56.6 36.3
LP-FT 93.5 43.9 81.6 5.3 74.0 17.2 65.5 39.9
LP-FT (WiSE) 93.1 42.9 79.4 5.3 74.4 18.3 58.8 36.4
CFA (LP-FT) 93.7 53.2 81.6 7.3 74.0 18.3 65.3 41.6
CFA (WiSE) 93.1 56.4 76.5 9.2 74.6 19.7 53.5 36.6
CFA (LP-FT) 93.7 52.8 81.7 7.0 73.9 18.4 65.5 41.0
CFA (WiSE) 93.0 56.2 76.6 8.9 74.5 19.6 53.7 36.0
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Figure 6: The ablation study on domain loss coefficients. The experiments are conducted on the FMoW
dataset as an example. The red dashed lines are the performance of the model without supervision on the
domain labels.

We first show that our method is stable to the number of iterations in Stage-1. From Table 7, we can see
that as the linear heads are trained longer in Stage-1, the ID (WiSE) performance slightly increases and the
OOD accuracy reaches the peak at 4000 to 6000 iterations. Except for the trade-off between ID and OOD
performance, our method is stable with no drastic drop in accuracy. The 6000 iterations of Stage-1 was the
hyperparameter used for experiments in Table 1.

We then demonstrate how training epochs in Stage-2 will affect the final performance of our model. Table 8
shows that for longer training epochs, the ID accuracy increases and the OOD accuracy decreases. Hence,
in our paper, we used 3 epochs for the best OOD performance.
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Table 7: Study on the training stability of CFA’s Stage-1.
LP Iterations ID ID (WiSE) OOD OOD (WiSE)
2000 94.0 92.8 54.3 56.9
4000 94.0 93.1 54.3 57.3
6000 (Chosen) 94.0 93.1 54.3 56.9
8000 94.0 93.6 53.3 56.5
10000 94.0 93.7 52.1 55.0

Table 8: Study on the training stability of CFA’s Stage-2.
Epochs ID Acc ID Acc (WiSE) OOD Acc OOD Acc (WiSE)
3 (Chosen) 94.0 93.1 54.3 56.9
5 94.1 93.5 52.3 56.3
10 94.1 93.7 52.2 55.7

Parameter Overhead Compared with the vanilla full fine-tuning, our CFA introduces an additional
linear classifier for domain labels in Stage-1. In terms of model parameters, we provide the parameter count
of CLIP and DINOv2 on DomainNet, in Table 9. One can see that the additional parameters (e-classifier)
introduced by CFA is negligible compared with the total number of parameters.

Table 9: Parameter count for CLIP and DINOv2 on DomainNet. y-classifier is the linear classifier for class
labels, and e-classifier is the linear classifier for domain labels. Vision encoders, language encoders and
y-classifier are modules shared between the vanilla fine-tuning and CFA, and the last column is additional
parameters introduced by CFA.

Parameters Vision Encoder Language Encoder y-classifier e-classifier (CFA only)
CLIP ViT-B 86 ˆ 106 91 ˆ 106 177 ˆ 103 3.1 ˆ 103

DINOv2 ViT-B 86 ˆ 106 - 265 ˆ 103 4.6 ˆ 103

Compute Overhead The training cost of Stage-1 (linear probing) is much smaller compared to Stage-2
(backbone finetuning). Stage-1 requires only a single forward pass over training samples for feature gathering
(features are stored in CPU memory), and then the linear probing can be achieved fastly on CPU. The
training cost for Stage-2 of CFA is slightly less than standard full finetuning, as the last layer remains frozen
during Stage-2 of CFA. Overall, we conclude that the additional training costs of CFA are mild (mostly
coming from the forward pass over training samples), which is less than that of one fine-tuning epoch. In
other words, compared with vanilla fine-tuning for N epochs, our CFA’s training compute cost is less than
fine-tuning for N ` 1 epochs. The modest compute overhead of CFA making it a practical method for
addressing compositional generalization problems in real-world applications.

Memory and Speed Overhead For CFA, the memory requirement of Stage-1 is less than Stage-2 since
Stage-1 only involves forward passes of the image encoder (no backward pass). For Stage-2 of CFA, the
memory usage and training speed are the same as that of the vanilla finetuning, since Stage-2 of CFA does
not introduce additional parameters or loss for training.

C.2 Discussion of the Performance Gain

From Table 1, one may think the performance gain of CFA over reweighting, a strong baseline method, is
not significant. However, our main contribution lies in designing a principled algorithm for compositional
generalization, a novel challenge in OOD generalization. As our theoretical analysis and feature visualization
in Fig. 5 demonstrate (on Color MNIST and DomainNet, respectively), our method aligns features with a
compositional structure suitable for compositional generalization. In OOD generalization research, it’s typ-
ical for specialized algorithms to only modestly outperform baselines like ERM, as evidenced by extensive
benchmarking in studies like DomainBed (Gulrajani & Lopez-Paz, 2021) and WILDS (Koh et al., 2021).
Thus, we consider CFA’s performance gain to be meaningful and convincing. Additionally, the mild imple-
mentation complexity and training costs (discussed in Sec. C.1) make CFA a viable method for enhancing
compositional generalization.

Moreover, we want to emphasize that real-world datasets used in our paper have lots of labeling issues (for
both class and domain labels), which may prevent CFA from obtaining greater performance gain. Notably,
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CFA employs both class and domain labels for training, leading to an increased susceptibility to label noise,
particularly from domain labels. Below, we illustrate two types of labeling noise encountered:

• Mislabeling: We observe that the DomainNet dataset contains many mislabeled images. Many
images in the “Clipart” domain are actually real photos of a single object on a white background,
which should be categorized into the “Product” domain. On the other hand, numerous class labels
are also mislabeled: images in the “bush (plant)” class contain pictures of President George Bush
of the USA; the “cooler” class includes electric fan images, which are incorrectly categorized; the
“square (shape)” class contains table, which should be placed into the “table” class instead. Note:
We only manually examined a very tiny subset of the DomainNet dataset (Gulrajani & Lopez-
Paz, 2021), which comprises 0.6 million images, and have already found many mislabeled images.
Therefore, overall, we believe the mislabeling ratio is not negligible.

• Ambiguous Labels: We observe that certain domains contain a large number of images that are
visually similar to those in another domain. For example, in both Office-Home and DomainNet, the
images in the “Product” domain are real photos of objects, making them almost indistinguishable
from their counterparts in the “Real” domain. The distinguishing feature of the “Product” domain is
that its images all have a white background; however, some images in the “Real” domain also share
this characteristic. Additionally, in DomainNet, the “Infograph” domain contains many images
stylistically similar to those in “Clipart” or “Real”; some images in the “Painting” domain are
sketches, despite the presence of a separate “Sketch” domain. This ambiguity issue extends to
class labels as well. In DomainNet, the classes “cup,” “coffee cup,” and “mug” lack clear stylistic
distinctions.

In addition to these issues, other aspects of these datasets may affect learning. For instance, the iWildCam
dataset includes a class labeled “empty”, signifying the absence of animals, which comprises a significant
portion of the dataset.

C.3 Effect of the Orthogonality Regularization

To better understand the impact of the orthogonality regularization on the optimization process, we con-
ducted an ablation study on Stage-1 of our CFA method using the DomainNet dataset. In this study, we
optimized the objective in Equation 1 with different orthogonal regularization coefficients (λortho) for 20
epochs. The results of this ablation study are visualized in Fig. 7.

As shown in Fig. 7, the orthogonality loss (measured by }W T
1 W2}F ) decreases as the linear probing epochs

progress, indicating that the orthogonality regularization effectively enforces the orthogonality constraint
between the two classifier heads W1 and W2. The rate of decrease in orthogonality loss is proportional to
the value of the regularization coefficient λortho, with larger values resulting in faster convergence towards
orthogonal classifier heads.

This ablation study demonstrates that the orthogonality regularization term in our CFA method is crucial
for obtaining orthogonal classifier heads W1 and W2, which are subsequently used in Stage-2 of our approach.
By effectively enforcing the orthogonality constraint, our method ensures that the learned features are well-
suited for compositional generalization tasks.
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Figure 7: Effectiveness of the orthogonality regularization during Stage-1 linear probing on DomainNet. The
orthogonality loss, |W T

1 W2|F , is plotted against the number of epochs for different values of λortho. Larger
λortho leads to faster convergence towards orthogonal W1 and W2.
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