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Abstract

Large language models (LLMs) have been001
shown to perform better when asked to reason002
step-by-step before answering a question. How-003
ever, it is unclear to what degree the model’s004
final answer is faithful to the stated reasoning005
steps. In this paper, we perform a causal me-006
diation analysis on twelve LLMs to examine007
how intermediate reasoning steps generated by008
the LLM influence the final outcome and find009
that LLMs do not reliably use their intermedi-010
ate reasoning steps when generating an answer.011
To address this issue, we introduce FRODO, a012
framework to tailor small-sized LMs to gen-013
erate correct reasoning steps and robustly rea-014
son over these steps. FRODO consists of an015
inference module that learns to generate correct016
reasoning steps using an implicit causal reward017
function and a reasoning module that learns to018
faithfully reason over these intermediate infer-019
ences using a counterfactual and causal pref-020
erence objective. Our experiments show that021
FRODO significantly outperforms four compet-022
itive baselines. Furthermore, FRODO improves023
the robustness and generalization ability of the024
reasoning LM, yielding higher performance on025
out-of-distribution test sets. Finally, we find026
that FRODO’s rationales are more faithful to its027
final answer predictions than standard super-028
vised fine-tuning.029

1 Introduction030

Chain-of-thought (CoT) reasoning techniques have031

been shown to improve the performance of large032

language models (LLMs) by generating step-by-033

step reasoning traces before generating a final an-034

swer (Wei et al., 2022). Many works suggest that035

the reasoning process described in CoT explana-036

tions may be a possible description of how models037

make predictions (Kojima et al., 2022; Yao et al.,038

2023; Sun et al., 2023). However, despite the re-039

markable success of CoT in many reasoning tasks,040

recent works show that LLMs-generated reasoning041

Figure 1: An example of our proposed causal analysis
to measure the faithfulness of the final output to the CoT
generated by the model. We perturbed CoT rationales
and studied the causal impact on the model’s behaviour.

traces can be incorrect (Zhang et al., 2023) and 042

unfaithful (Turpin et al., 2023). 043

Reasoning implicitly involves two steps: identi- 044

fying the rules and facts (inference chains) neces- 045

sary to reach a conclusion and then robustly using 046

them to reach said conclusion (Levesque, 1986). 047

Our paper studies whether LLMs reliably use infer- 048

ence chains to arrive at a conclusion.1 In standard 049

CoT, LLMs can generate plausible explanations 050

with the final answer not necessarily guaranteed to 051

follow the reasoning chain or imply a causal rela- 052

tion between the reasoning chain and the model’s 053

outcome (Lyu et al., 2023). Most recent efforts 054

have either focused on the performance of LLMs 055

on various reasoning tasks or their faithfulness in 056

CoT generation, ignoring the sequential relation- 057

ship between CoT and the final answer (Huang and 058

Chang, 2023; Lanham et al., 2023). 059

1In our paper, reasoning faithfulness refers to how reliably
the model uses its reasoning steps to arrive at a correct answer.
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In this work, we address this gap by introducing060

a methodology for interpreting the relationship be-061

tween the CoT trace and the final answer based on062

causal mediation analysis (Pearl, 2001). Causal me-063

diation analysis is a method of causal inference that064

studies the change in a response variable follow-065

ing an intervention or treatment. More concretely,066

we use this method to measure and interpret the067

contribution of a reasoning chain (mediator) to the068

final answer (observed output), as shown in Fig.8.069

We propose multiple interventions on the model070

inputs and mediators (reasoning chain) to unveil071

the causal effect of specific reasoning steps in a072

model’s output.073

We apply this framework and study the causal074

impact of CoT rationales on the behaviour of075

twelve different state-of-the-art LLMs on three076

different complex reasoning tasks (mathematical,077

commonsense, and causal understanding). We078

observe a large variation across tasks and mod-079

els in how strongly reasoning traces causally af-080

fect the model’s prediction. In particular, we find081

that instruction-tuned models (GPT-3.5-Instruct,082

Brown et al., 2020b; Mistral-Instruct-7B, Jiang083

et al., 2023) have a stronger causal effect on the084

final answer when conditioned on the reasoning085

trace than models trained with RLHF (e.g., Chat-086

GPT; Llama-2-7B-Chat, Touvron et al., 2023). Sim-087

ilar to Turpin et al. (2023), when we intervene in088

the reasoning problem, we observe that ChatGPT089

and GPT-3.5-Instruct are inconsistent at generating090

plausible reasoning chains. Finally, we find GPT-091

4 (Achiam et al., 2023) only changes its answer092

30% of the time when conditioned on perturbed093

counterfactual reasoning chains. In Figure 8, we094

see one example where GPT-4 does not faithfully095

change its final answer when provided with inter-096

vened counterfactual CoT. These results indicate097

two issues: (i) LLMs can generate unfaithful and098

implausible reasoning chains, and (ii) LLMs are099

inconsistent when reasoning over their own gener-100

ated reasoning traces.101

To address these issues, we introduce a novel102

method, FRODO, comprising two modules. The103

first module tailors small-sized LMs to generate104

correct reasoning chains (inference module), while105

the second module takes the reasoning chains as106

input and faithfully reasons over them to arrive at107

the correct answer (reasoning module). To learn108

to generate correct reasoning chains, we use the109

DPO algorithm (Rafailov et al., 2023), which en-110

ables the model to prefer correct reasoning chains111

over counterfactual ones with implicit feedback. 112

Instead of relying on human labeling, we obtain 113

preference data by prompting LLMs to generate 114

correct and counterfactual reasoning chains. Sec- 115

ond, we train another small-sized LM to improve 116

the causal effect between the reasoning chain and 117

the final answer using a counterfactual and causal 118

preference ranking objective. 119

We evaluate FRODO on four reasoning tasks 120

(Quarel, StrategyQA, OpenBookQA, QASC) us- 121

ing multiple model backbones of different scales, 122

and demonstrate that FRODO achieves an absolute 123

accuracy improvement of 2% ∼ 3% over standard 124

supervised fine-tuning or CoT distillation methods. 125

We assess robustness by examining how models 126

alter their answers when intervened with counter- 127

factual reasoning chains. FRODO exhibits signifi- 128

cant (+4.5%) improvement in robustness. Finally, 129

FRODO generalizes better to out-of-distribution test 130

sets, showing a +2.6% performance improvement 131

over supervised fine-tuning.2 132

2 Reasoning Chain as a Mediator 133

2.1 Problem Formulation 134

Reasoning is often a process that involves compos- 135

ing multiple inference steps to reach a conclusion 136

or make a decision. We informally conceptualize 137

each reasoning task as requiring a model f : X → Y 138

to map an input x ∈ X to an output y ∈Y by making 139

correct or plausible inference steps R. 140

Causal Interpretation. The causal graph is a 141

probabilistic graphical model used to describe how 142

variables interact, expressed by a directed acyclic 143

graph consisting of the sets of nodes (N) denoting 144

the variables and the edges (E) between the nodes 145

denoting the causality (Pearl, 1998). As shown in 146

Fig. 2(a), if Y is a descendent of X , then X is a 147

potential cause of Y , and Y is the effect. 148

Causal mediation analysis. It is a method of 149

causal inference which studies the change in a 150

dependent variable following an intervention or 151

treatment of an independent variable (Pearl, 2001). 152

Causal mediation analysis aims to decompose the 153

total effect of the independent variable (X) on the 154

dependent variable (Y ) into two components: the 155

direct effect and the indirect effect (Pearl, 2001). 156

In this work, we view the reasoning process as a 157

causal graph, framing the input (reasoning prob- 158

lem) X and the output Y as random variables and 159

the reasoning steps as mediator variable R. We use 160

2Code and data will be released upon publication.
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Figure 2: Causal graph for natural language reasoning,
where we model P(Y |do(x)). X0 = original reasoning
problem, X1 = intervened reasoning problem, R0 = rea-
soning steps for X0 reasoning problem, R1 = reasoning
steps for X1, Y = output, and M = model parameters

Variables Example

X0 Is Poseidon similar to the god Vulcan?
X1 Is Poseidon similar to the god Neptune?
R0 Poseidon is a god from Greek mythology, known

as the god of the sea, earthquakes, and horses.
Vulcan is a god from Roman mythology, known
as the god of fire, metalworking, and the forge.
Although both are gods, they represent different
elements and aspects, and come from
different mythologies.

R1 Poseidon is a god from Greek mythology, known
as the god of the sea, storms, and earthquakes.
Neptune is a god from Roman mythology, who is
also known as the god of the sea. Both Poseidon and
Neptune share similar roles and attributes in
their respective mythologies.

Table 1: An example from StrategyQA dataset, where
X1, R0 and R1 are generated by GPT-4.

mediation analysis to interpret the role of reason-161

ing steps as mediators between model inputs and162

model outputs. Please note that there are two medi-163

ator variables, model parameters M and reasoning164

steps R (see Fig. 2(b)). However, in this work, we165

are interested in understanding the indirect effect166

of R on the output Y ; hence, we assume model167

parameters M to be fixed. Let X0 denote the ini-168

tial reasoning problem, R0 as the reasoning chain169

given X0 and Y00 denote the potential outcome if170

the treatment variable and mediator variable are X0171

and R0, respectively. Whereas Y01 denotes the pos-172

sible outcome when treatment is set to X0 and R1173

is the reasoning chain for an intervened reasoning174

problem (see Fig.2(d)).175

Direct Effect (DE) measures how much an inter-176

vention X changes an outcome variable Y directly,177

without passing through a hypothesized mediator178

R. Based on Fig 2(c), we define the direct effect179

of X=X0 on Y as DE = P(Y |X0,R0)−P(Y |X1,R0)180

which can be seen as the comparisons between 181

two potential outcomes of X given two different 182

treatments, i.e., X = X0 and X1. It is computed by 183

applying the intervention X but holding R fixed to 184

its original value (R0). 185

Indirect Effect measures how much the inter- 186

vention X changes Y indirectly through R. We 187

define the indirect effect as IE = P(Y |X0,R0)− 188

P(Y |X0,R1). It is computed by setting R to its value 189

under the intervention X while keeping everything 190

else to its original value. 191

More concretely, according to Pearl (2001), in 192

our scenario, a high direct effect means that X has 193

higher causality on Y , i.e., the model puts more em- 194

phasis on the reasoning problem than the reasoning 195

steps. In contrast, a high indirect effect means the 196

model puts more emphasis on the reasoning steps 197

than the problem input. 198

Reasoning Intervention. Following Pearl 199

(2001), we conduct counterfactual reasoning to 200

measure the causal effect of a treatment variable 201

on a response variable. We first perform targeted 202

interventions on the input text X and measure 203

their effect on the reasoning outcome Y (direct 204

effect). Further, we also perform interventions 205

on the mediator R and measure their effect on Y 206

(indirect effect). We perform the following steps to 207

automatically generate an intervention on X and R. 208

Step 1: Intervention Data Generation. We use 209

a large language model (GPT-4) to automatically 210

generate an alternative treatment variable X1
3. 211

The input to M includes instruction and few-shot 212

examples, taking the format shown in Table 14. 213

LLMs can be sensitive to instructions and few-shot 214

examples; hence, we randomize the prompt by 215

manually creating a set of semantically similar 216

instructions. Then, we randomly sample from the 217

instruction set each time. 218

Step 2: Manual Data Curation. To retain 219

high-quality data for our analysis, we manually 220

filter out generated samples from Step 1 that are 221

invalid or low-quality. Table 1 shows an example 222

where given the original input reasoning question 223

X0, the model generated X1, where it replaces 224

“Vulcan” with “Neptune”. To study the direct effect 225

by taking the difference of the model output when 226

we provide them X0, R0 and X1, R0 as inputs. 227

Step 3: Generate Reasoning Chain. Finally, to 228

get the indirect effect, we generate the reasoning 229

chain (R0, R1) for each reasoning problem X0 230

3See App. A.6 for details on task-specific interventions.
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Models StrategyQA GSM8k Causal Understanding
CoT (%) NIE NDE CoT (%) NIE NDE CoT (%) NIE NDE

ChatGPT 69.2 15.3 9.1 70.1 56.3 1.01 58.8 21.1 27.4
GPT-4 93.5 40.0 22.2 81.1 21.01 30.01 72.5 29.1 48

Table 2: Causal Effects of generated CoT and reasoning problems on the outputs, with both Natural Indirect Effect
(NIE) and Natural Direct Effect (NDE). COT (%) represents the accuracy of the models.

or X1 by providing LLMs with some high-level231

descriptions about each reasoning task and232

reasoning prompt – “Let’s think step by step”(see233

App. A.5).234

2.2 Causal Mediation Analysis Results235

In Table. 2, 3, we report the results of the causal236

mediation analysis for twelve models. In section237

§4, we provide the details about the implementa-238

tion, evaluation metrics and datasets.239

Natural direct and indirect effects. We first240

evaluate the indirect and direct effects of the reason-241

ing chain and reasoning problems on the final out-242

puts. For models (>100B) with the emergent ability243

to generate plausible reasoning chains, we report244

natural indirect effects and direct effects (see §2).245

Table 2 shows the zero-shot performance of the246

ChatGPT and GPT-4 models. We observe that for247

StrategyQA and Causal Understanding tasks, GPT-248

4 has a higher natural indirect effect than ChatGPT,249

suggesting that it is able to better reason over the250

reasoning steps for these tasks. However, for mathe-251

matical reasoning (GSM8K), ChatGPT has a better252

indirect effect. Qualitatively, we find that for math-253

ematical reasoning, when we provide intervened254

reasoning steps, GPT-4 considers them incorrect255

and continues to generate correct reasoning steps.256

This results in a lower indirect effect score. More-257

over, GPT-4 exhibits a more pronounced direct258

effect than ChatGPT, suggesting that its outputs259

are more causally sensitive to reasoning problems.260

In general, our experiments show a large variation261

in the causal effects of COT in the final answer262

depending on the tasks.263

Controlled direct and indirect effects. Table 3264

shows the results of causal mediation analysis for265

12 different LMs. In these experiments, we exam-266

ined the causal behaviour using reasoning chains267

generated by GPT-4 (controlled setting). Our study268

suggests that vanilla LMs (<20B) (in a zero-shot269

setting) are systematically unfaithful and consis-270

tently fail to reason over the mediator. We find271

that in-context learning and instruction-tuning im-272

prove the indirect effect over models trained only273

with language modelling objectives (e.g., LLaMA274

and Mistral), indicating that these methods help the 275

model align better with the reasoning chains. We 276

observe that models trained with RLHF objective 277

(ChatGPT, Llama-2-7B-Chat) have a more direct 278

effect than an indirect effect, suggesting that train- 279

ing on human feedback might have disincentive 280

faithful reasoning (Sharma, 2023). Models that are 281

instruction-tuned or trained on the chain of thought 282

(e.g., Flan-T5) during the pre-training phase have 283

a better indirect effect across different reasoning 284

tasks, suggesting that fine-tuning on CoT can make 285

the model more faithful. Similar to Turpin et al. 286

(2023), we observe inverse scaling for certain tasks. 287

In our case, the indirect effect worsens with increas- 288

ingly capable models, indicating that sheer scale 289

might not guarantee faithful reasoning. Interest- 290

ingly, we also observe that none of the models has 291

high indirect or direct effects on the causal under- 292

standing task. One intuitive reason is that the causal 293

understanding task is challenging, and the model’s 294

(<10B) performance is nearly random; hence, the 295

effects are not strong. Overall, we observe that 296

LLMs are inconsistent in faithfully performing rea- 297

soning over the CoT. 298

3 FRODO 299

In this section, we introduce FRODO, a framework 300

that tailors small-sized LMs (<10B parameters) to 301

be strong rationalizers and perform reasoning faith- 302

fully over the rationales. FRODO aims to improve 303

the synergy between the reasoning chain and the 304

final answer. We first describe how we obtain silver 305

reasoning chains from LLMs (§3.1). Then, we in- 306

troduce our inference module that trains a model to 307

generate rationales (§3.1) followed by the reasoner 308

module and its training objectives (§3.2). 309

3.1 Inference Module 310

In this work, we assume no gold rationales to train 311

our model. Hence, similar to recent works (Liu 312

et al., 2022, 2023; Wang et al., 2023; Ramnath 313

et al., 2024), we automatically obtain the silver ra- 314

tionale from LLM (GPT-3) using in-context learn- 315

ing. A common approach is fine-tuning a smaller 316

text-to-text model on the silver rationales generated 317
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Models StrategyQA GSM8k Causal
CIE CDE p-value CIE CDE p-value CIE CDE p-value

AR LLaMA-2-7B 24.5 25 <0.001 27.5 8.5 <0.001 2.3 1.1 <0.005
Mistral-7B 21.2 17.9 <0.001 25.1 3.8 <0.001 2.3 0.6 <0.009

In-context LLaMA-2-7B 24.9 10 <0.005 45.6 0.9 <0.005 5.6 5.6 <0.009

MoE Mixtral-8-7B 21 11 <0.001 47.4 2.9 <0.003 5.1 4.6 <0.001

RLHF LLaMA-2-7B-Chat 8.4 30.5 <0.010 1.4 36.7 <0.010 -2.3 8.6 <0.016
Stable Vicuna-13B 3.5 2.5 <0.001 45.1 2.4 <0.010 0.6 0.1 <0.010
ChatGPT 2.6 13.6 <0.016 57.8 16.6 <0.010 4.6 10.8 <0.001

Instruct Tuned Mistral-Instruct-7B 31.6 31.9 <0.001 35.5 4.7 <0.001 7.4 8 <0.005

RLHF + Instruct Tuned GPT-3.5-Instruct 26.1 27.3 <0.005 62.6 14.7 <0.005 8.5 10.7 <0.005

Instruct-Tuned + Flan-T5-11B 36.9 35.7 <0.001 31.23 12.2 <0.001 7.4 13.1 <0.001
CoT Tuned Flan-Alpaca-11B 31.2 47.9 <0.001 25 7.9 <0.001 3.4 9.2 <0.001

Table 3: Causal Effects of CoT. The reported results are zero-shot performance. CIE: Controlled Indirect Effect,
CDE: Controlled Direct Effect. The p-value represents the significance of the results

by LLMs with a standard language modeling loss.318

Recent studies have shown that fine-tuning models319

(<5B) on reasoning chains may struggle to align the320

reasoning chains with the provided reasoning ques-321

tion during inference (Yang et al., 2023; Fu et al.,322

2023). Additionally, learning to generate a reason-323

ing chain means learning to decompose complex324

reasoning into smaller reasoning steps implicitly.325

However, Shridhar et al. (2023) showed that fine-326

tuning could lead to learning shortcuts and degrade327

performance. Recent studies have demonstrated328

that feedback-based methods can help the model329

align better with the human goal. Hence, we use330

Direct Preference Optimization (DPO) (Rafailov331

et al., 2023) for aligning LMs to learn to generate332

correct reasoning chains.333

Preference Data. We prompt the LLM to gen-334

erate correct reasoning chains (Rw) and incorrect335

reasoning chains (Rl) for each reasoning problem.336

In our experiments, we consider two kinds of rea-337

soning chains as incorrect: counterfactual chains338

(alternative chains that can lead to different out-339

comes) and irrelevant chains. We assume that mod-340

els that can understand and learn to prefer correct341

reasoning chains over counterfactual chains will342

become more robust and enhance generalization.343

Hence, we manually construct correct and incor-344

rect intermediate reasoning steps and demonstrate345

the model with these annotated examples before a346

new instance is provided. In this way, we obtain a347

preference data D ∈ {X ,Rw,Rl} that contains rea-348

soning problems (X) and pairs of reasoning steps349

that lead to correct (Yw) or incorrect outcomes (Yl).350

Training. Given a reasoning problem {x ∈ X}351

and instruction prompt p ∈ {correct or counterfac-352

tual}, our goal is to train models that could gener-353

ate reasoning steps (rw or rl). We propose to adopt354

Direct Preference Optimization (DPO) (Rafailov355

et al., 2023), an effective algorithm for aligning lan- 356

guage models with implicit rewards. DPO assumes 357

that we only have access to some pairwise prefer- 358

ence data x → {rw > rl} for each problem x ∈ X . 359

Hence, while training a model (πθ) to generate 360

correct reasoning steps, we consider counterfac- 361

tual and irrelevant reasoning steps as less preferred. 362

Training a DPO model includes two phases: (i) su- 363

pervised fine-tuning (SFT) and (ii) RL fine-tuning 364

phase. 365

SFT. We begin by fine-tuning a pre-trained LM 366

with a maximum log-likelihood objective to obtain 367

πs f t . 368

RL Phase. Contrary to traditional RL ap- 369

proaches, which initially train a reward model and 370

subsequently derive a policy from it, DPO enables 371

extracting policy through implicit reward learning. 372

The preference data of human or artificial anno- 373

tators is modelled by a learnable implicit reward 374

model fθ under Bradley-Terry theories (Bradley 375

and Terry, 1952): 376

πθ(rw > rl|x) = σ( fθ(rw,x)− fθ(rl,x)) (1) 377

where σ is the sigmoid function. To learn fθ, DPO 378

adopts a binary classification loss: 379

LDPO =−E{x,rw>rl}logσ( fθ(rw,x)− fθ(rl,x)) (2) 380

The latent function fθ is parameterized by the 381

log-likelihood ratio between πθ and πsft: 382

fθ(x,r) = βlog
πθ(r|x)
πsft(r|x)

(3) 383

where β a linear coefficient for scaling fθ. This 384

parameterization is appealing as it aligns the train- 385

ing of an implicit reward model fθ closely with 386

training an LM policy πθ. 387
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Poseidon is a god from Greek 
mythology, known as the god of the 
sea, earthquakes and horses. Vulcan 
is a god from Roman mythology, known 
as the god of fire, metalworking, 
and the forge. 

Poseidon is a god from Greek 
mythology, known as the god of the 
sea, earthquakes and horses. Vulcan 
is a god from Roman mythology, 
known as the god of sea.
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Figure 3: An overview of FRODO.

During inference, the reasoning module uses the388

generated reasoning steps by πθ model for a given389

reasoning problem.390

3.2 Reasoning Module391

Given a reasoning question x ∈ X and reasoning392

steps rw (correct) and rl (counterfactual)4, our goal393

is to train a model (πγ) that can generate a correct394

answer yw. To encourage our reasoner module to395

reason faithfully over the reasoning steps, we train396

the model with a linear combination of two losses:397

an indirect effect loss and a supervised margin rank398

loss, L= λLM ∗LLM +λcounter ∗Lcounter +λPREF ∗399

LPREF , which we describe below.400

Language Model Loss. We use the standard401

training objective to maximize the likelihood of the402

correct answer using cross-entropy loss, computed403

as:404

LLM =−logP(yw|x,rw) (4)405

Counterfactual Loss. To encourage the model406

to reason robustly and faithfully towards the reason-407

ing steps, we propose training the model to learn408

how different reasoning chains (correct or counter-409

factual) can lead to different outcomes. Hence, in-410

spired by the causal mediation theory (Pearl, 2001),411

we use the following loss:412

Lcounter =−logP(yl|x,rl) (5)413

Similar to (Wang et al., 2023; Roese, 1997), we414

posit that adding a counterfactual objective can415

help the model to avoid learning reasoning shortcut416

between a question and the gold answer since now417

the model is tasked to answer differently for the418

same question.419

4Please note that in the reasoner module, we only consider
counterfactual reasoning steps as negative samples.

Margin-Ranking Loss. It has been shown 420

(Khosla et al., 2020) that contrastive loss and rank- 421

ing loss help to improve model robustness and gen- 422

eralization against input variation. Hence, we pro- 423

pose to use the margin ranking loss that aims to 424

maximize the margin between positive examples 425

(i.e., statements containing questions, correct rea- 426

soning steps and correct answers) and negative ex- 427

amples (i.e., statements containing questions, coun- 428

terfactual reasoning steps and correct answers). 429

LPREF = max(0, t ∗ IE+m) (6) 430

where t is the label (indicating which sample in 431

the pair is better)=1, m is the margin=1.0, and the 432

indirect effect IE = h(x,rw,yw)−h(x,rl,yw) where 433

h is the logits. 434

4 Experiments 435

Datasets. We conduct the causal mediation analy- 436

sis on three datasets: STRATEGYQA (Geva et al., 437

2021), GSM8K (Cobbe et al., 2021), and Causal 438

Understanding (Suzgun et al., 2023). STRATE- 439

GYQA and Causal Understanding are binary clas- 440

sification tasks. GSM8K dataset contains 8.5K 441

high-quality linguistically diverse grade school 442

math word problems. We evaluate FRODO on four 443

datasets: STRATEGYQA, QUAREL(Tafjord et al., 444

2018), OPENBOOKQA (Mihaylov et al., 2018), 445

and QASC (Khot et al., 2020). We report more 446

details about each dataset in App. A.2. For all the 447

datasets, we do not use human-written rationales. 448

We used rationales generated by prior work (Ram- 449

nath et al., 2024) using GPT-3 (TEXT-DAVINCI- 450

003) for silver rationales for supervision. For 451

counterfactual rationales, we use chain-of-thought 452

prompts on these datasets (refer App. A.5) and 453

sample 2 rationale generations for each training set 454

instance with a temperature of 0.5. 455

Evaluation Metrics. To evaluate the causal 456

effects, we report the average indirect and di- 457

rect effects of the LLMs. We use the fol- 458

lowing formula to calculate the scores: IE 459

= Avg. Acc(Y |X0,R0)−Avg. Acc(Y |X0,R1), and 460

DE = Avg. Acc(Y |X0,R0) − Avg. Acc(Y |X1,R0) 461

where X0 and R0 original reasoning problem and 462

reasoning chains. We measure two different kinds 463

of causal effects: natural and controlled for dif- 464

ferent types of LLMs. Natural Indirect Effect: for 465

models that have emergent capabilities (>100B pa- 466

rameters) of generating plausible reasoning chains, 467

we measure the causal effect of X on Y that uses 468
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R generated by the same model. Controlled Indi-469

rect Effect: for models with <20B parameters, we470

evaluate the causal effect by providing reasoning471

chains generated by GPT-4. Further, to measure the472

robustness of models, we use controlled indirect473

effect. To evaluate the faithfulness of the ratio-474

nales generated by the small-sized models, we use475

LAS (Hase et al., 2020) to measure how well the476

rationales help a simulator to predict a student’s477

predictions a’, namely Acc(qr –> a’) - Acc(q –>478

a’). Similar to Wang et al. (2023), we implement479

each simulator with a fine-tuned T5-large model480

respectively.481

Implementation Details. We use GPT-4 to gen-482

erate intervened reasoning problems X1 and reason-483

ing chains (R0 or R1) to perform the causal media-484

tion analysis. We report the prompts used in App.485

A.5 and hyperparameters in App. A.2.486

Baselines. We perform the causal analysis on a487

series of language models that are diverse in terms488

of scale, training, and data: LLaMa-2 (Touvron489

et al., 2023), Mistral (Jiang et al., 2023), Chat-490

GPT (Brown et al., 2020a), GPT-4 (OpenAI, 2023),491

Flan-T5 (Chung et al., 2022), Flan-Alpaca (Chung492

et al., 2022), Stable-Vicuna (Chiang et al., 2023).493

We compare FRODO with four strong baselines:494

(1) SFT + CoT: Finetuning a T5-large or T5-3B or495

LLaMa-2-7B with LoRA or Mistral-7B with LoRA496

on silver rationales, then train another model with497

LM objective to perform the reasoning, Rainier498

(Liu et al., 2022), (3) Crystal (Liu et al., 2023), (4)499

Mario(Ramnath et al., 2024) and (5) SCOTT(Wang500

et al., 2023). More details about all the baselines501

are reported in App. A.3.502

5 FRODO Results503

Comparing FRODO with baselines. We now em-504

pirically compare FRODO with three strong base-505

line models (see Table 4). We consider T5-large506

(770M) as the inference and reasoning modules.507

We have the following three observations. First,508

we present the performance of GPT-3.5 on these509

tasks. We observe the performance on StrategyQA510

is much lower than on other tasks, indicating the511

rationales generated for this task can be unfaithful.512

Hence, similar to (Ramnath et al., 2024), for train-513

ing FRODO, we use only the instances where the514

answer predicted by GPT-3.5 is correct. Second,515

for all four datasets, we observe that FRODO out-516

performs the strong self-rationalization baselines.517

FRODO, on average, improves the performance by518

Models StrategyQA QuaRel OBQA QASC

GPT-3.5⋄ 69.7 83.4 84.5 80.3

SFT 57.6 74.6 65.0 58.6
SFT + CoT 63.6 77.7 65.5 59.4
Rainier – – 69.7 54.9
Crystal – – 64.2 56.8
MARIO 65.1 79.9 66.1 60.1
FRODO 68.4∗ 83.4∗ 70.2+ 64.2∗
-DPO 66.2 82.2 68.1 62.4
-CL 65.2 82.1 66.4 60.1
-MRL 65.5 81.3 66.2 62.1

SFT 63.1 81.29 72.0 67.8
SFT + CoT 65.1 84.2 73.3 72.0
SCOTT 61.5 – – 65.0
Crystal – – 78.3 74.3
FRODO 82.1∗ 93.5∗ 80.1∗ 75.9∗

LlaMa-2-7B 67.2 56.8 47.5 49.6
SFT + CoT 79.4 68.4 62.8 54.6
FRODO 81.5+ 73.5+ 71.4+ 63.4+

Mistral-7B 58.2 56.8 82.1 65.2
SFT + CoT 78.2 70.8 83.5 70.1
FRODO 81.9+ 78.2+ 84.9+ 72.3+

Table 4: Performance of small-sized LMs (770M-7B)
on four different reasoning tasks. The base models
are T5-large (770M), T5-3B (3B), LLaMa-2-7B

and Mistral-7B . We report accuracy (%).⋄: few-shot
performance, ∗: p-value<0.01, +: p-value<0.05

+4.1 and +3 accuracy points compared to the SFT 519

+ CoT and MARIO (the strongest baseline), respec- 520

tively, across all four tasks. Since SFT + CoT and 521

MARIO use the same knowledge from GPT-3.5, our 522

results suggest that both our inference and reason- 523

ing modules bring substantial performance gains to 524

the model. Third, it is worth noting that increasing 525

(770M to 3B) the model size does not hamper the 526

performance of FRODO. Fourth, we also report the 527

performance of the LLaMa-2-7B and Mistal-7B 528

models. We show that FRODO further improves 529

the performance of model size 7B. 530

Ablation. To obtain a better insight into the con- 531

tribution of each component of FRODO, we perform 532

an ablation study (see Table. 4). First, when we 533

do not use the DPO to train our inference module, 534

we see a consistent drop (-1.9%) in performance 535

across the four tasks, indicating the importance of 536

incorporating implicit feedback provided by the 537

DPO in the model’s training. Further, we observe a 538

considerable drop in performance when we do not 539

use counterfactual (-3.1%) and margin ranking loss 540

(-2.8%). This result highlights the model’s ability 541

to benefit from including counterfactual examples. 542

543

6 Quantative Analysis 544

Robustness. In Table 5, we report the controlled in- 545

direct effect that indicates how robustly models are 546

able to change their answers when provided with 547
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Figure 4: Faithfulness (LAS) of the compared methods
on StrategyQA. The base Model is T5-3B.

controlled (generated by GPT-4) counterfactual rea-548

soning chains. For STRATEGYQA, we observe that549

FRODO significantly improves the robustness per-550

formance for T5-3B (+7.7 pp.). Further, for the551

QuaRel task, we observe +2 pp. improvement over552

the SFT + CoT method. Qualitatively, we find that553

for the MCQA tasks, the gold rationales often con-554

tain the answer; hence, the SFT + CoT learns to555

copy those as answers. Further, we perform an ab-556

lation to understand which component contributes557

most to the model’s robustness. We find that coun-558

terfactual loss brings the most gain in robustness.559

Generalization. The idea is to test our model’s560

capability to determine if it can improve out-of-561

distribution (OOD) generalization. Table 6 shows562

the OOD performance, where we compare our563

method with SFT+CoT. We trained the models on564

the OBQA and QASC datasets and evaluated them565

on the StrategyQA task. We conclude that FRODO566

significantly helps improve the model’s generaliz-567

ability to a dataset unseen during fine-tuning.568

Models StrategyQA QuaRel

SFT 19.4 19.4
SFT + CoT 32.2 29.2
FRODO 39.9 31.2
-CL 34.6 28.7
-MRL 36.2 30.6

Table 5: Robustness Performance of LLMs on Rea-
soning over a Chain. We report CIE scores.

569

Faithfulness. Finally, we compare the faithful-570

ness of reasoning chains generated by FRODO with571

SCOTT, COT and SFT+COT (see Fig.5). We ob-572

served that FRODO achieves a much higher LAS573

score than the other three baselines, suggesting that574

DPO training with implicit casual feedback helped575

the model.576

7 Related Work577

Measuring Faithfulness CoT. Jacovi and Gold-578

berg (2020) argued that obtaining faithful expla-579

nations that accurately reflect a model’s reasoning580

Models OBQA → SQA QASC → SQA

T5-3B + CoT 67.6 53.2
FRODO 69.4 56.2

Table 6: Generalization Performance (accuracy) of
methods, trained on a source dataset and directly pre-
dicting on a target dataset (denoted as source → target).

process is important to understand the reasons be- 581

hind its answer.(Atanasova et al., 2023) proposed a 582

new benchmark to test the faithfulness of natural 583

language explanations. Turpin et al. (2023) pro- 584

posed identifying examples of unfaithful CoT in 585

adversarial settings, showing that CoT reasoning 586

is not always faithful. To determine faithfulness, 587

they provided bias features in the few-shot setting 588

or made edits to the input. (Lanham et al., 2023) ar- 589

gued that LLM ignores mistakes when introduced 590

into the CoT, which reveals that the LLM is un- 591

faithful. Finally, (Parcalabescu and Frank, 2023) 592

introduced CC-SHAP to measure input alignment 593

with predictions for both post-hoc and CoT ex- 594

planations. Unlike prior work, we employ causal 595

mediation analysis to measure the model’s faithful 596

reasoning over the CoT, and to interpret its relation- 597

ship with the answer. 598

Self-Rationalization & CoT Distillation. Ini- 599

tial work on self-rationalization approaches fo- 600

cused on collected gold human rationales and train- 601

ing a model to learn to generate such rationales 602

(Wiegreffe et al., 2021; Paul and Frank, 2021; Cam- 603

buru et al., 2018). With the advent of LLMs, re- 604

cently many works have distilled CoT from LLMs 605

and endowed small LMs with step-by-step reason- 606

ing capabilities (Fu et al., 2023; LI et al., 2022; 607

Shridhar et al., 2023; Li et al., 2023). We distill 608

CoT similar to prior work, but further improve the 609

correctness of the CoT using implicit feedback. 610

8 Conclusion 611

In this work, we perform a causal mediation anal- 612

ysis to study the indirect effect of CoT on the 613

final output of twelve LLMs. Our experiments 614

show large variations across tasks and models in 615

how strongly reasoning traces causally affect the 616

model’s prediction. LLMs generally do not reli- 617

ably use their intermediate reasoning steps when 618

generating an answer. We introduce FRODO that 619

tailors small-sized LMs to generate correct reason- 620

ing chains and faithfully reason over them to arrive 621

at the correct answer. Experiments show that our 622

method outperforms strong baselines on four rea- 623

soning tasks, including out-of-distribution settings. 624

8



9 Limitations625

Compared to training a standard CoT distillation626

process, our method requires (i) additional coun-627

terfactual data generated by LLMs, which can be628

expensive, and (ii) training time increases as train-629

ing Direct Preference Optimization is a two-step630

process. To manage the complexity of our already631

large-scale experiments involving (a) four differ-632

ent reasoning tasks, and (b) hyperparameter search633

grids, we ran experiments with 3 random seeds.634

Additionally, FRODO is dependent on rationales635

generated by LLMs. Extra care should be taken636

when applying our model in production environ-637

ments, especially when making critical decisions or638

exposing its generated contents directly to human639

end users.640
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A Appendix1128

A.1 More Related Work1129

Measuring Faithfulness CoT. Jacovi and Gold-1130

berg (2020) argued that obtaining faithful explana-1131

tions that accurately reflect a model’s reasoning pro-1132

cess is important to understand the reasons behind1133

its answer. Recently, Atanasova et al. (2023) pro-1134

posed a new benchmark to test the faithfulness of1135

natural language explanations. Turpin et al. (2023)1136

proposed identifying examples of unfaithful CoT1137

in adversarially constructed settings, showing that1138

CoT reasoning is not always faithful. To determine1139

faithfulness, they provided bias features in the few-1140

shot setting or made edits to the input. (Lanham1141

et al., 2023) argued that LLM ignores mistakes1142

when introduced into the CoT, which reveals that1143

the LLM is unfaithful. Finally.(Parcalabescu and1144

Frank, 2023) proposed CC-SHAP to measure how1145

well a model’s input contributions align when it1146

produces a prediction and explanation and use it1147

for post-hoc and CoT explanations. Unlike previ-1148

ous work in this paper, we propose measuring the1149

model’s faithful reasoning over the CoT. We pro-1150

pose to use causal mediation analysis to interpret1151

the relationship between the CoT traces and the1152

final answer.1153

Self-Rationalization & CoT Distillation. Initial1154

work on self-rationalization approaches focused1155

on collected gold human rationales and training a1156

model to learn to generate such rationales (Cam-1157

buru et al., 2018; Wiegreffe et al., 2021; Paul and1158

Frank, 2021). With the advent of LLMs, recently1159

many works have distilled chain-of-thought from1160

LLMs and endowed small LMs with step-by-step1161

reasoning capabilities (Fu et al., 2023; LI et al.,1162

2022; Shridhar et al., 2023; Li et al., 2023). Our1163

work involves distilling CoT from LMs to a smaller1164

one, similar to a certain line of work. We differ in1165

using implicit feedback to enhance the correctness1166

of the distilled CoT.1167

Feedback to Improve Reasoning. Recently, sev-1168

eral papers have proposed to improve or revise the1169

LMs’ generation using feedback (Fernandes et al.,1170

2023; Pan et al., 2023). Broadly, existing methods1171

can be categorized into two kinds: external and1172

intrinsic feedback. In the realm of external feed-1173

back, a standard procedure is to train critic models1174

and use them to facilitate and improve the origi-1175

nal generation model (Peng et al., 2023a; Akyurek1176

et al., 2023; Mehrabi et al., 2023; Paul et al., 2024).1177

Among them, Paul et al. (2024) is related to our 1178

paper as it evaluates each reasoning step as feed- 1179

back to produce more reasonable reasoning steps. 1180

In contrast to extrinsic feedback, which relies on 1181

external sources, there are works which show that 1182

internal knowledge of LLMs can be used to give 1183

feedback (Kim et al., 2023; Madaan et al., 2023; 1184

Shinn et al., 2023). However, Madaan et al. (2023) 1185

argued that self-feedback does not improve perfor- 1186

mance on reasoning tasks. Hence, in this work, 1187

we create preference data (counterfactual and fac- 1188

tual reasoning steps) to train a specialized model 1189

to learn to generate correct reasoning steps with 1190

implicit feedback. 1191

Casual Mediation Analysis in NLP. Causal me- 1192

diation analysis is an important tool that is used to 1193

effectively attribute the causal effect of mediators 1194

on an outcome variable (Pearl, 2001). Vig et al. 1195

(2020) proposed to use this method to implicate 1196

specific neurons and attention heads in mediating 1197

gender bias in various pre-trained LMs. Later, this 1198

method was used for analyzing different models’ 1199

behaviour for different downstream tasks such as 1200

Subjective-Verb agreement (Finlayson et al., 2021), 1201

Fake News Detection (Chen et al., 2023), arith- 1202

metic reasoning (Stolfo et al., 2023), political po- 1203

larization (Tierney and Volfovsky, 2021). To the 1204

best of our knowledge, our study is the first at- 1205

tempt to use casual mediation analysis to analyze 1206

the faithfulness of LLMs in their reasoning capa- 1207

bilities. In this work, we followed Pearl (2001) 1208

to perform the mediation analysis. The mediation 1209

analysis allows us to measure the following: Direct 1210

effect: Contribution of X (input) to Y (output). In- 1211

direct effect: Contribution of R (reasoning chain) 1212

to Y (output). Hence, a high direct effect means 1213

the model’s output (Y) is primarily influenced by 1214

the input (X), and a high indirect effect means the 1215

reasoning chain (R) has more effect on the output 1216

(Y). 1217

A.2 Dataset and Implementation Details 1218

All datasets have multi-choice questions “yes/no” 1219

for STRATEGYQA, “a/b” for QUAREL, “a/b/c/d” 1220

for OPENBOOKQA, “a/b/-/h” for QASC), and the 1221

task is to generate a rationale followed by the pre- 1222

dicted answer. We use the original data splits (see 1223

Table.10). 1224
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Data Size Test Data Size

GSM8K 300
Causal Understanding 175
StrategyQA 500

Table 7: Data Statistics: Causal Mediation Analysis

Hyperparameter Value

Optimizer Adam
Adam epsilon 1e−8
Adam initial learning-rate 3e−5
Learning-rate scheduler linear with warmup
Warmup steps 1000
Gradient clipping 0.5
Train batch-size 4/8
Training Time ∼ 4 hours on 1 GPU

Table 8: Training Details for small LMs

Hyperparameter Value

Optimizer RMSprop
Adam epsilon 1e−8
Train batch-size 4/8
beta 0.25
Training Time ∼ 8 hours on 1 GPU

LoRA parameters

task type CAUSALLM
r 16
lora alpha 32
lora dropout 0.05

Table 9: Training Details for Direct Preference Opti-
mization

A.3 Baselines1225

We evaluate a series of language models that are1226

diverse in terms of scale, training, and data:1227

• LLaMA (Touvron et al., 2023), an open-source1228

decoder-only model with various sizes (7B)1229

model is pretrained using only a language mod-1230

eling loss.1231

• GPT-3.5 (Brown et al., 2020a) and GPT-4 (Ope-1232

nAI, 2023): two closed-source decoder-only1233

models that were trained with instruction-tuning.1234

For GPT-3.5, we use the text-davinci-0031235

model with 175B parameters.1236

• Stable-Vicuna: open-source decoder-only1237

model based on LLaMA. Stable-Vicuna is fine-1238

tuned with RLHF.1239

• Flan-T5-XXL (Chung et al., 2022, 11B parame-1240

ters) and Flan-Alpaca (Chia et al., 2023; Peng1241

et al., 2023b; 3B), two open-source encoder-1242
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COT SCOTT SFT + COT FRODO

Figure 5: Faithfulness (LAS) of the compared methods
on StrategyQA. The base Model is T5-3B.

decoder models based on T5 (Raffel et al., 2020) 1243

and trained on instruction-following datasets. 1244

A.4 Details about Preference Data 1245

In our experiments, we consider two kinds of rea- 1246

soning chains incorrect: counterfactual chains (al- 1247

ternative chains that can lead to different outcomes) 1248

and irrelevant chains (irrelevant facts about the cor- 1249

rect answer). Additionally, we train DPO with a 1250

setting where for each instance, one correct and one 1251

incorrect chain are paired and given to the model. 1252

The model learns to prefer the correct chain. In 1253

Table 15, we report the size of the preference data 1254

used to train the DPO models. 1255

A.5 Prompts 1256

A.6 Causal Intervention 1257

15



Dataset/Tools Citation Link License

GSM8k Cobbe et al. (2021) https://github.com/openai/grade-school-math MIT License
HuggingFace Wolf et al. (2020) https://github.com/huggingface/transformers Apache License
OBQA (Mihaylov et al., 2018) https://huggingface.co/datasets/openbookqa Apache License
StrategyQA (Geva et al., 2021) [1] MIT License
Quarel (Tafjord et al., 2018) https://github.com/allenai/unifiedqa MIT License
QASC (Khot et al., 2020) https://github.com/allenai/unifiedqa MIT License

Table 10: More details about datasets and Tools [1] https://github.com/eladsegal/strategyqa/tree/main/
data/strategyqa

Figure 6: Example from StrategyQA dataset. We can see one such instance where GPT-4 predicted the original
answer given an incorrect reasoning chain.

Model GSM8K

LLama-2 7B + SFT + COT 17.8
LLama-2 7B + SFT + FRODO 21.1

Mistral + SFT + COT 40.4
Mistral + SFT + FRODO 44.6

Table 11: Performance of FRODO on GSM8K (accu-
racy)

Model Strategyqa → Causal Understanding

LLama-2 7B - SFT + COT 51.0
LLama-2 7B - SFT + FRODO 53.2

Table 12: Performance of FRODO on GSM8K (accu-
racy)
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Dataset Question Option Correct Answer GPT-3 Generated CoT

StrategyQA Can I build a house on an asteroid? Yes or No No Building a house on an asteroid is
impossible as of now due
to the lack of technologies
and resources needed.
It would be extremely difficult
to build a house that could
withstand the extreme
temperatures, radiation,
and extreme gravitational pull.

OBQA The circulatory system brings (a) The brain (b) The feet The chest The circulatory system brings oxygen
oxygen to the body from where? (c) The stomach area to the body from the lungs

(d) The chest which is located in the chest area.

Quarel The boys were racing their (A) weighed more weighed less When something is lighter,
cars in the soapbox derby and found that the cars (B) weighed less it is easier to move faster.
that −−−− moved faster. Thus, the cars that weighed less moved faster.

QASC What type of water formation is formed by clouds? (A) pearls (B) streams (C) shells Beads Rain is formed when water droplets
(D) diamonds (E) rain (F) beads in the clouds come together to form larger
(G) cooled (H) liquid droplets that are too heavy to remain

suspended in the cloud, and fall to
the ground as precipitation.

Table 13: Examples from each reasoning task.

PROMPT: Counterfactual Prompts

You are a helpful assistant for commonsense reasoning.
We will provide you with a commonsense question, along with a correct
answer and your task is to generate the counterfactual intermediate
steps. Here are two examples:

“Question : ” <Problem Statements> Let’s think step by step
<equation> Answer: <answer>

“Question: ” <Problem Statements> Let’s think step by step
<equation> Answer: <answer>

“Question: ” <Problem Statements> Let’s think step by step

Table 14: Prompts used for generating counterfactual
intermediate reasoning steps.
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Data type StrategyQA QuaRel OBQA QASC

Correct Reasoning Chain (Rw) 5492 8203 20138 19935

Counterfactual Reasoning Chain (Rl) 5492 8203 20138 19935
Irrelvant Reasoning Chain (Rl) 5492 8203 20138 19935

Table 15: Preference Data Statistics.

Tasks Interventions

StrategyQA Prompt GPT-4 to generate alternative questions such that
the answer changes from original to counterfactual.

GSM8K We automatically replace the operands with alternative operands.
Causal Understanding Prompt GPT-4 to generate alternative questions such that

the answer changes from original to counterfactual.

Table 16: Causal Interventions

Tasks Generations

Question Is the Illuminati card game still popular?
Gold Reasoning Chain The original version of the game was released in 1982.

A collectible card game version was released in 1995 but only had one set.
The most recent edition of the base game was published in 2007.

SFT + CoT The Illuminati card game was released in the 1980s.

DPO The Illuminati card game was released in the 1980s.
The Illuminati card game was discontinued in the 1990s.

correct answer False

Table 17: Qualitative Examples of Outputs

Figure 7: Example from GSM8K dataset. We can see one such instance where GPT-4 predicted the original answer
given an incorrect reasoning chain.
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Figure 8: Example from StrategyQA dataset. We can see one such instance where GPT-4 predicted the counter
answer given an incorrect reasoning chain.
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