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Abstract

Existing discourse corpora annotated under dif-001
ferent frameworks adopt distinct but somewhat002
related taxonomies of relations. The integra-003
tion of these corpora has been an open research004
question. Previous studies on the interoper-005
ability of different discourse formalisms are006
mainly theoretical, although such research is007
performed with the hope of benefiting computa-008
tional applications. In this paper, we show how009
the unifying dimensions (UDims) that originate010
from the Cognitive approach to Coherence Re-011
lations (CCR) (Sanders et al., 2018) can facil-012
itate cross-framework discourse relation (DR)013
classification. To address the challenges of us-014
ing predicted UDims for DR classification in015
model learning, we adopt the Bayesian learning016
framework based on Monte Carlo dropout (Gal017
and Ghahramani, 2016) to obtain more robust018
predictions. Data augmentation enabled by our019
proposed method yields strong performance.020
We compare different possible models and an-021
alyze the experimental results from different022
perspectives.023

1 Introduction024

Discourse coherence relates to the way that a mono-025

logue or dialogue is organized so that it is a coher-026

ent entity, instead of a random collection of clauses027

or sentences. As such, coherence represents an im-028

portant aspect of text quality. Various studies have029

shown the benefits of incorporating discourse-level030

information or coherence-related training objec-031

tives in NLP tasks, such as text generation (Bosse-032

lut et al., 2018), language modelling (Iter et al.,033

2020; Lee et al., 2020; Stevens-Guille et al., 2022),034

and summarization (Xu et al., 2020).035
Discourse-level analysis is typically concerned036

with discourse relations (Rutherford and Xue,037

2015). These relations describe the link with which038

two textual segments are associated with each other039

and they form an integral part in discourse mod-040

elling frameworks, such as the Rhetorical Struc-041

ture Theory (RST) (Mann and Thompson, 1988) 042

and the Penn Discourse Treebank (PDTB) (Prasad 043

et al., 2008, 2018). However, RST and PDTB fo- 044

cus on different aspects of discourse coherence 045

and adopt distinctive approaches of discourse mod- 046

elling (Fu, 2022). As discourse annotation is a 047

demanding task and different discourse modelling 048

frameworks provide distinctive but not incompat- 049

ible perspectives of discourse phenomena, the in- 050

teroperability and integration of different discourse 051

modelling frameworks has been a topic of interest 052

for a long time (Bunt and Prasad, 2016; Benamara 053

and Taboada, 2015; Sanders et al., 2018; Chiarcos, 054

2014). 055

Most of the studies are theoretical, although it is 056

believed that a good way to test the usefulness of 057

the proposed methods is to merge different corpora 058

based on the methods and apply the data in compu- 059

tational experiments to see whether the increased 060

size of the training data improves the results (Be- 061

namara and Taboada, 2015). Demberg et al. (2019) 062

try to validate several existing proposals for inte- 063

grating discourse corpora against annotated data. 064

One of their research purposes is to enable joint us- 065

age of discourse corpora annotated under different 066

frameworks for computational purpose. Neverthe- 067

less, results of this strand of research find little 068

computational application. 069

The UniDim proposal (Sanders et al., 2018), 070

which originate from the Cognitive approach to 071

Coherence Relations (CCR) (Sanders et al., 1992, 072

1993), is shown to be relatively successful in map- 073

ping between PDTB and RST relations (Demberg 074

et al., 2019). Moreover, previous studies (Roze 075

et al., 2019; Fu, 2023) demonstrate the possibility 076

of automatically predicting and incorporating such 077

dimensions in discourse relation (abbreviated as 078

“DR” in the following) classification tasks. There- 079

fore, in this paper, we try to apply the unifying 080

dimensions (abbreviated as “UDims” in the follow- 081

ing) in the UniDim proposal for RST and PDTB 082
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DR classification tasks.083
As not a small number of UDims are involved084

and the classification errors of each UDim may085

propagate to DR classification, the combination086

of predicted UDims poses additional challenges087

for model learning. We show that the Bayesian088

learning approach based on Monte Carlo (MC)089

dropout (Gal and Ghahramani, 2016) is a viable090

option for solving this problem. Meanwhile, our091

approach of utilizing UDims allows data augmenta-092

tion with cross-framework discourse corpora. Thus,093

we present results on data augmentation with differ-094

ent types of data. We then analyze different model095

designs based on the correlation between training096

losses of the DR classification task and the UDim097

prediction tasks. Lastly, we show the correlation098

between specific DR classes and the UDims to pro-099

vide another perspective of analysis.100

2 Related Work101

2.1 DR Classification102

Early studies on RST and PDTB DR classification103

focus on feature extraction (Feng and Hirst, 2012;104

Joty et al., 2012; Lin et al., 2009; Pitler et al., 2009)105

or representation learning (Ji and Eisenstein, 2014,106

2015). With the advancement of contextualized107

embeddings, an increasing number of studies try108

to model the relationship between argument repre-109

sentations with attention mechanisms (Guo et al.,110

2018; Li et al., 2016).111
Discourse marker prediction is considered a po-112

tentially effective auxiliary task for both RST DR113

classification (Yu et al., 2022) and PDTB DR classi-114

fication (Shi and Demberg, 2019; Jiang et al., 2021;115

Liu and Strube, 2023). However, as RST does not116

make a clear distinction between implicit DRs and117

explicit DRs in the annotation, this approach is pri-118

marily applied to PDTB implicit DR classification.119
To combat the problem of limited amounts of120

training data for RST parsing, Braud et al. (2016)121

utilize multi-task learning to benefit from supervi-122

sion of related tasks such as PDTB DR classifica-123

tion. As RST elementary discourse units (EDUs)124

and PDTB arguments are determined based on dif-125

ferent criteria, they have to make adjustments to126

PDTB data and use sentences rather than manually127

annotated arguments in their experiments and ig-128

nore intra-sentential PDTB relations. Multi-task129

learning is also adopted in Liu et al. (2016) for130

PDTB implicit DR classification, where RST DR131

classification is treated as an auxiliary task. It132

shows that RST DR classification improves perfor-133

mance on the classification of some PDTB Level-1 134

implicit DRs. 135

2.2 The UniDim Proposal and UDims 136

Sanders et al. (2018) propose a set of unifying 137

dimensions as an interface for different annota- 138

tion frameworks to be related with each other. 139

These UDims originate from four cognitive primi- 140

tives—basic operations, source of coherence, order 141

of segments (called implication order in Sanders 142

et al. (2018)) and polarity, which are used to define 143

coherence relations in Sanders et al. (1992). To 144

make the taxonomy more expressive, additional 145

dimensions are added, including temporality, and 146

specificity, lists and alternatives for additive rela- 147

tions, and conditionals and goal-orientedness for 148

causal relations. Each of these dimensions has a 149

number of possible values, for instance, the polarity 150

dimension has distinctions between positive, neg- 151

ative or under-specified. We refer those interested 152

to Sanders et al. (2018) for a better understanding 153

of the meaning of the UDims. With those UDims, 154

DRs from different annotation frameworks can be 155

decomposed and compared. 156

Demberg et al. (2019) propose a method for map- 157

ping RST and PDTB, and the results of their data- 158

driven investigation exhibit higher consistency with 159

the results obtained with the UniDim proposal, in 160

comparison with the OLiA reference model (Chiar- 161

cos, 2014) and the ISO standard proposal (Bunt 162

and Prasad, 2016). 163

To our best knowledge, the method proposed 164

in Roze et al. (2019) represents the first study on 165

using UDims for DR classification. Fu (2023) re- 166

ports results of using UDims for cross-framework 167

DR classification. However, their experiments are 168

aimed at testing the effectiveness of the UniDim 169

proposal with computational experiments. The 170

pipeline approach adopted by Roze et al. (2019) 171

achieves no improvement over the baseline for 172

PDTB implicit DR classification, and the high per- 173

formance shown by Fu (2023) relies on gold UDim 174

values, which are not accessible during inference 175

time in realistic settings. 176

3 Our Method 177

Our experimental settings are similar to the those 178

described in Fu (2023), with the exception of using 179

predicted UDims during inference time. Therefore, 180

two tasks are involved: a) UDim prediction and 181

b) DR classification. We follow the rule-based 182

method in Fu (2023) to obtain gold UDim values 183
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for each of the training examples.184
For an input sequence Xi in a dataset with size185

N , i.e., {Xi}Ni=1, Xi is formed by a pair of argu-186

ments of lengths m and n, respectively, i.e., Xi =187

A
(1)
1 ... A

(1)
m , A(2)

1 ... A
(2)
n . We use a pre-trained188

language model as the input encoder fEnc. Special189

tokens are to be inserted based on the requirements190

of the chosen encoder, and Xi is typically padded191

to a fixed length. In our experiments, the two ar-192

guments are padded separately at the ends. After193

such preprocessing, the representation of the input194

sequence, which is denoted as X̃i, can be obtained195

from the encoder:196

h = fEnc(X̃i) (1)197

3.1 UDim Prediction198

A three-layer feed-forward network g, comprising199

a fully connected layer, a LeakyReLU activation200

function, followed by a dropout layer, is applied to201

transform h to a lower dimensional space:202

hUDim = g(h) (2)203

UDims are not independent. For example, the im-204

plication order dimension is associated with the ba-205

sic operation dimension, because the former only206

describes properties of causal relations, which form207

a sub-category under basic operation. Inspired208

by Gerych et al. (2021) and Roze et al. (2019), we209

exploit knowledge about the relationships between210

UDims to improve the performance on this task.211

For instance, in the example, the embedding vector212

of the predicted basic operation E(ŷbop) will be213

passed as features to the classifier fimpl for impli-214

cation order:215

ỹimpl = softmax (fimpl(hUDim ⊕ E(ŷbop))) (3)216

An argmax function is typically required to ob-217

tain a discrete value from the predicted probability218

distribution, so that E(ŷUDim) can be obtained and219

passed as features to the classification of another220

related UDim or DR. However, this operation is221

non-differentiable and the training signal of one222

UDim cannot backpropagate to the training of the223

related UDims or from DRs to UDims when pre-224

dicted UDims are used as features for DR classifi-225

cation. Therefore, we adopt the Gumbel-Softmax226

function (Jang et al., 2016), which is a differen-227

tiable approximation to the argmax function:228

yi =
exp((log(pi) + gi)/τ)∑k
j=1 exp((log(pj) + gj)/τ)

(4)229

where pi represents a class probability for a cate- 230

gorical variable with k possible outcomes. gi...gk 231

are i.i.d samples drawn from a Gumbel(0, 1) dis- 232

tribution, which can be sampled by drawing µ ∼ 233

Uniform(0, 1) and g = −log(−log(µ)). 234

3.2 DR Classification 235

Similar to UDim prediction, a three-layer feed- 236

forward network ϕ is applied to h first: 237

hDR = ϕ(h) (5) 238

We experiment with four ways of leveraging 239

UDims in the DR classification task: 240

1. TrainonGoldTestonPred: During training, 241

gold UDims are used and their embeddings 242

are concatenated with hDR for DR classifi- 243

cation, so that the model learns the relation- 244

ship between the input and the UDims and 245

the target labels. During inference time, the 246

embeddings of the predicted UDims are used. 247

2. InputDimCat: During both training and test- 248

ing, the embeddings of predicted UDims are 249

used by simple concatenation with hDR. 250

3. InputDimAtt: During both training and testing, 251

the embeddings of predicted UDims are com- 252

bined with hDR by an attention mechanism 253

based on scaled dot product (Vaswani et al., 254

2017). 255

4. InputForRelCls: The hypothesis is that as the 256

UDims are closely related to the target DRs, if 257

the model takes UDim predictions as explicit 258

training objectives, the performance on DR 259

classification may be improved, even without 260

using the embeddings of predicted UDims as 261

features. Hence, only hDR is used for DR 262

classification, and UDim prediction and DR 263

classification form a scenario of multi-task 264

learning. 265

Preliminary experiments show that directly using 266

predicted UDims causes a large performance drop 267

for the DR classification task. The performance 268

deterioration could be attributed to the utilization of 269

predicted UDims, where the classification errors of 270

these UDims might introduce noise, and combined 271

usage of these predicted UDims may exacerbate 272

data sparsity, hence amplifying uncertainty in the 273

DR classification task. To address this challenge, 274

we employ the MC dropout method. 275
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3.3 MC Dropout276

Dropout was originally proposed to reduce over-277

fitting in model training while achieving the ef-278

fect of training an ensemble model (Srivastava279

et al., 2014). During training, random neural units280

along with its incoming and outgoing connections281

are temporarily removed from the neural network.282

Thus, a model with n units can be seen as a collec-283

tion of 2n possible smaller neural networks, which284

are sampled and trained. During inference time,285

dropout is deactivated.286
Specifically, for a model with l layers, the model287

weights ω can be expressed as a set of weight ma-288

trices for each layer: ω = {Wi}li=1. If the model289

is trained with a dropout probability of p, the final290

weights will be ω′ = ω×p, yielding a single neural291

net. For a new input x at test time, the predicted ŷ292

is obtained with:293

ŷ = argmax
y′

p(y′|x, ω′) (6)294

For uncertainty estimation, Bayesian networks295

represent a natural choice. For a model trained with296

Bayesian approach on input set X and correspond-297

ing target set Y, the predictive distribution for a298

new input x is obtained with:299

p(y′|x,X,Y) =

∫
p(y′|x, ω)p(ω|X,Y)dω (7)300

where p(ω|X,Y) is generally approximated with301

a computationally simpler distribution q(ω). The302

distribution over ω naturally encodes model un-303

certainty. However, these methods typically come304

with large computational costs, and for transformer-305

based models, the computation costs can be pro-306

hibitive.307
Gal and Ghahramani (2016) introduces the MC308

dropout method to tackle the challenge of uncer-309

tainty estimation in deep neural networks. Differ-310

ent from the standard dropout method, dropout is311

activated during inference time. The MC dropout312

method represents a lightweight Bayesian approxi-313

mation. For an input representation from the pre-314

vious layer hi−1, the output hi of the ith layer is315

determined with:316

hi = σ(hi−1,Wi,Mi) (8)317

where Mi is a masking matrix, with its entries be-318

ing sampled from a Bernoulli distribution, and the319

probability of being zero is the dropout probability320

p. σ denotes the activation function of this layer.321

During inference, one can sample T sets of 322

{Mi}li=1 for T stochastic forward passes and the 323

mean predicted distribution is obtained by averag- 324

ing over the T passes: 325

p(y′|x,X,Y) =
1

N

T∑
t=1

p(y′|x, [Wt
i,M

t
i],

..., [Wt
l ,M

t
l ])

(9) 326

The variance can be used as an indicator of 327

model uncertainty. This method is similar to an 328

ensemble of approximated functions with shared 329

parameters (Choubineh et al., 2023) but without 330

increasing computational complexity or sacrificing 331

model performance. 332

As indicated in Shelmanov et al. (2021), apply- 333

ing the MC dropout to all the dropout layers of 334

a transformer model yields better performance on 335

uncertainty estimation. Even though our focus is 336

not uncertainty estimation but to obtain more ro- 337

bust predictions, this approach of applying the MC 338

dropout method may better approximate an ensem- 339

ble model and we use mean predictive distribution 340

over multiple runs for UDim and DR classification. 341

3.4 Data Augmentation 342

Although RST and PDTB follow different criteria 343

for discourse unit segmentation, data from both 344

frameworks can be used together for the UDim 345

prediction task. Figure 1 shows the pipeline for the 346

data augmentation method. 347

Figure 1: Pipeline for data augmentation with
PDTB data and the final task is RST DR classifica-
tion. pol...goal represent the UDims polarity...goal-
orientedness. As we explore different ways of lever-
aging predicted UDims, the embeddings of the UDims
are not necessarily fed as features to the DR classifi-
cation task, hence represented with dashed arrow lines.
The losses shown in orange boxes are to be minimized
through model training.

4



In the example shown in Figure 1, for RST DR348

classification, PDTB data (explicit, implicit, or349

both) can be used for training the model on UDim350

prediction. Increased data amount and more diver-351

sified training data may increase model robustness352

in UDim prediction, which could improve model353

performance on DR classification.354

3.5 Training355

Cross-entropy loss is used for model training. To356

jointly train the model for UDim prediction and357

DR classification, we adopt a multi-task loss:358

Ltotal = LUDims + 2.0 ∗ LDR (10)359

Note that there are multiple UDims involved in360

the experiments, even though the loss term shows361

them collectively as LUDims. In order to guide362

the model training towards DR classification, we363

increase the weight for DR classification loss.364

4 Experiments365

4.1 Data Preprocessing366

The experiments on RST are carried out on the367

RST Discourse Treebank (RST-DT) (Carlson et al.,368

2001), which is the standard benchmark for RST369

parsing, consisting of 385 documents. We follow370

the gold division of the corpus for training and371

test sets and take 20% from the training set for372

validation. We utilize the preprocesing method373

in Ji and Eisenstein (2014) and binarize the RST374

trees in order to obtain pairs of discourse segments375

linked by DRs. The 78 relations are mapped to 18376

broad classes based on the template in Braud et al.377

(2016), but as Same-Unit and Attribution are not378

covered in Sanders et al. (2018), the two relations379

are excluded in our experiments, leaving a set of380

16 RST relations.381
The experiments on PDTB are performed on382

PDTB 3.0 (Prasad et al., 2018), which is the lat-383

est version characterized by a new sense hierarchy384

and newly annotated intra-sentential implicit re-385

lations. We follow the data split used in Ji and386

Eisenstein (2015), i.e., sections 2-20 for training,387

sections 0-1 for validation, and sections 21-22 for388

testing, and discard DRs with fewer than 100 in-389

stances to alleviate data imbalance, as proposed390

in Kim et al. (2020), which leaves 14 senses from391

Level-2 (L2) of the sense hierarchy. Since PDTB392

explicit DR classification can be achieved with high393

performance, we only focus on implicit DR clas-394

sification. Moreover, PDTB L2 senses are more395

fine-grained than Level-1 (L1), which makes them396

potentially more useful. Therefore, we focus on 397

14-way classification of PDTB L2 implicit DRs. 398
As PDTB annotation involves a much larger 399

number of files from the Penn Treebank (Marcus 400

et al., 1993)1, to mitigate the confounding effect of 401

data amount in our experiments on data augmenta- 402

tion with different types of data, we try to increase 403

the data amount for RST by back-translating data 404

from the training set (English->French->English, 405

translated by Google Translate), thus doubling the 406

training data amount for RST. 407
Following Fu (2023), we exclude the UDim list, 408

and merge sub-categories under specificity, making 409

specificity a binary property, similar to alternative, 410

conditional and goal-orientedness, which is also 411

the approach adopted in Roze et al. (2019). 412

UDims Sub-Categories Parents
polarity(pol) NS, positive, negative -
basic operation(bop) NS, additive, causal -
source of coher-
ence(soc)

NS, objective, subjective -

implication order(imp) NS, NA, basic, non-basic bop

temporality(temp) NS, anti-chronological,
chronological, synchronous -

specificity(spec) specificity, non-specificity bop
alternative(alt) alternative, non-alternative bop
conditional(con) conditional, non-conditional bop
goal-
orientedness(goal)

goal-oriented, non-goal-oriented bop

Table 1: UDims used in the experiments. Their abbre-
viations used in the paper are shown in the brackets in
italics. “-” in the last column suggests that no parent
passing is performed for this UDim.

Table 1 shows the UDims, their abbreviations 413

in the paper and the sets of sub-categories to pre- 414

dict from. The parent UDims described in sec- 415

tion 3.1, which are passed as features for predicting 416

the UDims, are shown in the last column. 417

4.2 Implementation Details 418

We use the pre-trained BERTBASE model (Devlin 419

et al., 2019) and RoBERTaBASE model (Liu et al., 420

2019) from the Transformers library (Wolf et al., 421

2020) as the input encoder. 422
The embeddings of the UDims are derived from 423

separate embedding layers, which are configured 424

with learnable parameters, and the embedding vec- 425

tors are initialized from uniform distributions. 426
Baseline The baseline is thus DR classification 427

based on the input, without involving training and 428

prediction of UDims. To ensure fair compari- 429

son, we also apply MC dropout to the baseline 430

models, i.e., the pre-trained BERTBASE model and 431

RoBERTaBASE model, and run the same number of 432

passes to obtain the mean predictive distribution. 433

12159 files in total
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Model F1BERT AccBERT F1RoBERTa AccRoBERTa

Baseline 50.24 62.30 53.72 65.56
TrainonGoldTestonPred 50.30 64.15 55.21 66.27
InputDimCat 51.02 64.36 54.49 66.16
InputDimAtt 49.78 61.64 54.65 66.27
InputForRelCls 51.56 62.73 54.89 66.32

Table 2: Results for RST DR classification.

Hyper-parameters The arguments of the input434

sequences are padded to a fixed length of 250 to-435

kens, and all the model parameters are initialized436

with the Xavier uniform initialization (Glorot and437

Bengio, 2010). The output size of the feed-forward438

networks g and ϕ described in section 3.1 and sec-439

tion 3.2 is set to 128 through manual tuning. The440

dropout probability is kept at 0.2 for all the experi-441

ments, which means that greater regularization is442

adopted than the pre-trained BERT and RoBERTa443

models. We keep all the dropout layers active dur-444

ing inference time, and run the model for UDim445

prediction three times and obtain the average pre-446

dictive distributions. The UDim embeddings are set447

with a dimension size of 100 in all the experiments,448

except for InputDimCat in section 3.2, where the449

dimension sizes of the UDim embeddings are set450

to be 2 * number of subcategories, which we find451

sufficient through experimentation. Similarly, we452

also run the DR classifier three times and obtain453

the average predictive distribution. The batch size454

is set to the largest value that the GPU machine can455

accommodate.456

The model learning rate is set to 1e − 5 and it457

is trained for a maximum of 30 epochs, with an458

early-stopping scheme monitoring performance im-459

provement for DR classification on the validation460

set with a threshold of 7 epochs. The AdamW opti-461

mizer is used and a warmup ratio of 0.06 is set for462

the scheduler. A weight decay of 0.1 is applied, and463

gradients are clipped to a maximum of 1.0. The464

implementation is based on the PyTorch machine465

learning framework (Paszke et al., 2019). A single466

A5000 GPU with a capacity of 24GB is used for467

all the experiments.468

5 Results469

We select models based on their performance mea-470

sured by F1 in DR classification, and thus, they471

do not necessarily perform the best in terms of472

accuracy.473

5.1 DR Classification474

Table 2 shows the results for RST DR classification.475

Model F1BERT AccBERT F1RoBERTa AccRoBERTa

Baseline 45.53 56.42 52.36 60.47
TrainonGoldTestonPred 46.40 55.87 51.80 59.09
InputDimCat 44.71 54.77 52.82 61.43
InputDimAtt 44.74 54.56 52.93 60.67
InputForRelCls 45.02 54.02 53.44 60.26

Table 3: Results for PDTB implicit DR classification.

As indicated in Table 2, much higher perfor- 476

mance is achieved using RoBERTa than BERT. The 477

best performance is achieved with TrainonGoldTe- 478

stonPred, followed by InputForRelCls. In both 479

cases, the predicted UDims are not used as features 480

for DR classification during training. Compared 481

with the baseline method, the models are trained 482

for UDim prediction. The results support our hy- 483

pothesis that the association between UDims and 484

DRs can aid in the DR classification task. 485

Table 3 shows the results for PDTB implicit DR 486

classification. Similar to the results on RST, re- 487

sults obtained with RoBERTa are much higher than 488

BERT. However, a performance drop compared 489

with the baseline is visible with the approach Train- 490

onGoldTestonPred. As shown in Sanders et al. 491

(2018, p.52, section 5.3), implicit relations pose 492

a challenge for the UniDim proposal, and it is 493

likely that model performance on UDim prediction 494

trained on PDTB implicit DR data alone is not high, 495

causing a large discrepancy between training and 496

inference time, which may result in a performance 497

drop with TrainonGoldTestonPred here. 498

5.2 Data Augmentation 499

Based on the results for DR classification, we 500

choose the RoBERTa encoder and focus on the 501

InputForRelCls approach in this set of experiments. 502

The hypothesis is that because of the association 503

between UDims and DRs, if the model is trained 504

on UDim prediction tasks, its performance on DR 505

classification can be improved, and the data aug- 506

mentation method is primarily used for improving 507

model performance on UDim prediction. The re- 508

sults with InputDimAtt are shown for comparison. 509

Table 4 shows the RST DR classification results 510

under augmentation with different types of PDTB 511

data. 512

As can be seen from Table 4, data augmentation 513

improves F1 score, but an increase in F1 does not 514

necessarily lead to higher accuracy, which is not 515

rare for imbalanced classification, suggesting that 516

the model is trained to distinguish smaller classes. 517

For InputForRelCls, data augmentation with total 518
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Model F1RoBERTa AccRoBERTa
InputForRelCls 54.89 66.32
InputForRelCls+PDTBExpl 55.28 65.72
InputForRelCls+PDTBTotal 55.75 65.61
InputForRelCls+PDTBImpl 54.57 65.02

InputDimAtt 54.65 66.27
InputDimAtt+PDTBExpl 54.84 66.16
InputDimAtt+PDTBTotal 53.81 65.78
InputDimAtt+PDTBImpl 54.65 65.56
BaselineRoBERTa 53.72 65.56

Table 4: Results for RST DR classification with data
augmentation. Baseline refers to the approach without
using UDims in training and testing in Table 2. PDTB-
Expl, PDTBImpl and PDTBTotal denote PDTB explicit
data, implicit data and the combination of both parts,
respectively.

Model F1RoBERTa AccRoBERTa
InputForRelCls 53.44 60.26
InputForRelCls+RST 52.12 61.02
InputForRelCls+PDTBExpl 55.01 61.22
InputForRelCls+PDTBExpl&RST 53.05 61.70

InputDimAtt 52.93 60.67
InputDimAtt+RST 51.18 59.30
InputDimAtt+PDTBExpl 54.21 61.43
InputDimAtt+PDTBExpl&RST 51.22 60.54
BaselineRoBERTa 52.36 60.47

Table 5: Results for PDTB implicit DR classification
with data augmentation. Baseline refers to the approach
without using UDims in training and testing in Table 3.

PDTB data yields the highest performance, which519

is expected. However, it is noticeable that adding520

PDTB implicit DR data causes a performance drop.521

This might be attributed to the high ambiguity in522

mapping UDims with implicit relations discussed523

in Sanders et al. (2018). For InputDimAtt, it is524

clear that adding PDTB explicit DR data is help-525

ful, but adding total PDTB data causes a perfor-526

mance drop. Using predicted UDims as features527

may introduce noise and aggravate data sparsity for528

model learning for DR classification. If total PDTB529

data is used, significantly more data will be used530

for UDim prediction2, and RST data and the corre-531

sponding UDims will be sampled less in each batch532

compared with data augmentation with only PDTB533

explicit or implicit DR data, where the amount of534

data augmentation is similar to RST data.535

Table 5 shows the results for PDTB implicit DR536

classification under augmentation with different537

types of data.538

As is shown in Table 5, adding PDTB explicit539

DR data is the most helpful form of data augmenta-540

tion for both InputForRelCls and InputDimAtt, but541

adding RST data causes performance drops, possi-542

2In our experiments, RST has 24,062 training instances,
while PDTB total data has 35,080 instances.

Figure 2: Correlation between DR classification loss
and UDim classification losses for RST and PDTB. The
abbreviations of the UDims have been explained in Ta-
ble 1, and the scales represent the Pearson correlation
coefficient scores. Note that the areas of different mod-
els cannot be compared between RST and PDTB, since
the scales on the two plots are arranged in different ways
to suit the range of the real data.

bly due to the high dissimilarity between RST data 543

and PDTB implicit DR data. 544

6 Analysis 545

The test performance of the selected models on 546

the UDim prediction task is shown in Table 8 and 547

Table 9 in Appendix A for reference. 548

6.1 Model Performance 549

We examine the correlation between the DR clas- 550

sification task and each of the UDim classification 551

tasks. The losses at each training step are collected 552

and the Pearson correlation coefficient is computed 553

between the DR classification loss and the UDim 554

classification losses. The results for the different 555

models used in section 5.1 are shown in Figure 2. 556

Note that the data is collected for models using 557

RoBERTa as the input encoder. 558

As is clear from Figure 2, for RST DR classifica- 559

tion, the models show high correlation between DR 560

classification and the classification of five major 561

UDims, including polarity, basic operation, impli- 562

cation order, source of coherence and temporal- 563

ity, while correlation with the other UDims is not 564

prominent. The pattern with InputDimAtt is differ- 565

ent, where correlation with the UDims is basically 566

evenly distributed, except for specificity, which 567

might be attributed to importance weighting with 568

the attention mechanism. 569

For PDTB implicit DR classification, differ- 570

ent models show divergence in their correlation 571
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strengths with different UDims. In the case of the572

best performing model InputForRelCls, the corre-573

lation with polarity is low but the correlation with574

specificity is high. We find that the model perfor-575

mance on polarity is relatively low, and this could576

be a reason why the model learns to rely less on577

this UDim.578

Similar to the patterns for RST, apart from579

the five major UDims, the other UDims do not580

show high correlation with DR classification, but581

in TrainonGoldTestonPred and InputDimAtt, rel-582

atively high correlation with conditional and al-583

ternative in particular, is observable. The perfor-584

mance with TrainonGoldTestonPred is lower than585

the baseline and we can see that the total area of586

correlation for this model is the smallest, which is587

expected. With InputDimAtt, the association area588

is also small, which may suggest that the atten-589

tion mechanism gives more weight to hDR than the590

embeddings of the predicted UDims.591

6.2 Correlation Between DRs and UDims592

In this section, we investigate the correlation be-593

tween the prediction of specific DRs and that of594

UDims. Following Ulmer et al. (2022), we use595

the softmax gap as a metric for uncertainty esti-596

mation (UE), and compute Kendall’s τ between597

uncertainty values of DR prediction and the pre-598

diction of their respective UDims. As a higher599

softmax gap indicates lower uncertainty, we ap-600

ply a negative sign to the computed softmax gap601

and add one to the result, thus maintaining the nu-602

meric range but reversing the sign, as in Ulmer603

et al. (2022). We choose the best-performing mod-604

els, i.e., InputForRelCls+PDTBTotal for RST and605

InputForRelCls+PDTBExpl for PDTB implicit DR606

classification. The uncertainty values are computed607

on the test sets.608

The relations with >100 data points in the test609

sets are chosen and the UDims whose Kendall’s610

τ association has p−value below 0.05 are shown611

here. Table 6 shows the results for RST. It can be612

seen that most of the RST DRs are correlated with613

these five major UDims discussed in section 6.1.614

The results for PDTB are shown in Table 7.615

Among these DRs, Instantiation has higher cor-616

relation with alt and spec. The high association617

with spec is expected, but alt is to be associated618

with Disjunction. We suspect that the correlations619

shown here are influenced by model classification620

of the other relations, not just based on the direct621

association between UDims and DRs. The higher622

DRs (Counts) UDims
Contrast (146) pol(0.56), temp(0.48), soc(0.41), spec(0.24),

goal(0.21), con(0.19)
Joint(212) soc(0.46), temp(0.41), pol(0.40), spec(0.40),

imp(0.36), bop(0.29), con(0.12), goal(0.12)
Elaboration
(796)

bop(0.57), imp(0.56), pol(0.51), alt(0.50),
temp(0.42), goal(0.38), con(0.36), soc(0.25),
spec(0.17)

Explanation
(110)

imp(0.47), temp(0.45), bop(0.37), pol(0.31),
con(0.29), goal(0.22), soc(0.21), alt(0.15),
spec(0.14)

Background
(111)

pol(0.38), bop(0.35), soc(0.35), imp(0.32),
temp(0.26), goal(0.23)

Table 6: Correlation between DR classification uncer-
tainty and UDim prediction uncertainty for RST.

DRs (Counts) UDims
Conjunction
(236)

soc(0.62), temp(0.57), pol(0.51), imp(0.39),
bop(0.35), goal(0.34), alt(0.30), spec(0.25),
con(0.25)

Cause(406) soc(0.52), bop(0.48), imp(0.45), pol(0.42),
temp(0.41), spec(0.36), alt(0.22), goal(0.16)

Instantiation
(124)

alt(0.32), spec(0.31), bop(0.29), soc(0.29),
pol(0.27), imp(0.26), temp(0.17), goal(0.18)

Level-of-detail
(208)

soc(0.51), bop(0.50), imp(0.47), spec(0.43),
pol(0.42), temp(0.39), alt(0.34), goal(0.30)

Asynchronous
(105)

temp(0.45), soc(0.39), pol(0.31), imp(0.26),
bop(0.24)

Table 7: Correlation between DR classification uncer-
tainty and UDim prediction uncertainty for PDTB im-
plicit DR data.

correlation between Asynchronous and temp is ex- 623

pected. 624

7 Conclusion 625

We propose a method for incorporating the UDims 626

in the UniDim proposal into DR classification for 627

RST and PDTB, which allows convenient cross- 628

framework data augmentation. With data augmen- 629

tation, we obtain strong performance in F1 for DR 630

classification (55.75 for RST and 55.01 for PDTB 631

implicit DR classification). Our experiments sug- 632

gest that because of the strong association between 633

UDims and DRs, training the model with objec- 634

tives of UDim prediction helps the model in DR 635

classification, and adding PDTB explicit DR data is 636

helpful for both RST and PDTB implicit DR clas- 637

sification. We are aware that there are additional 638

techniques we can explore, such as adding con- 639

trastive loss, or leveraging uncertainty estimation 640

during model training to improve the performance 641

on DR classification. We try to reduce the use of 642

tricks to show the influence of UDims, and leave 643

this part to future work. 644

8 Limitations 645

With our approach, multiple runs have to be per- 646

formed, which requires longer training time, even 647

though the model parameters are not increased. 648
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A Results for UDim Prediction on RST and PDTB953

Table 8 shows the test performance of the selected model on UDim prediction for RST.

Model pol
F1

bop
F1

impl
F1

soc
F1

temp
F1

spec
F1

alt
F1

con
F1

goal
F1

pol
acc

bop
acc

impl
acc

soc
acc

temp
acc

spec
acc

alt
acc

con
acc

goal
acc

TrainonGold
TestonPred 73.65 57.78 57.06 60.69 47.18 82.50 64.22 87.82 85.16 87.43 78.45 77.53 73.78 88.79 85.91 99.73 98.91 98.37

InputDimCat 75.33 57.72 56.88 62.57 48.43 82.64 79.95 89.30 83.52 88.41 78.13 77.64 74.48 87.49 86.02 99.78 98.97 98.20
InputDimAtt 74.09 59.02 56.32 60.85 45.42 82.72 74.95 88.42 86.15 87.60 77.86 76.71 75.46 87.21 86.40 99.78 98.86 98.48
InputFor
RelCls 73.19 60.34 58.33 61.39 46.41 82.53 83.29 88.36 85.16 87.54 78.84 78.13 75.14 87.00 86.45 99.84 98.91 98.37

Table 8: Results for UDim prediction on RST.

954
Table 9 shows the test performance of the selected model on UDim prediction for PDTB implicit DR955

data.956

Model pol
F1

bop
F1

impl
F1

soc
F1

temp
F1

spec
F1

alt
F1

con
F1

goal
F1

pol
acc

bop
acc

impl
acc

soc
acc

temp
acc

spec
acc

alt
acc

con
acc

goal
acc

TrainonGold
TestonPred 66.84 66.41 63.50 69.61 58.10 81.42 100.00 84.66 77.10 86.55 75.77 72.82 74.95 76.53 87.17 100.00 99.52 87.17

InputDimCat 68.59 69.71 66.43 72.12 60.72 82.46 100.00 81.68 79.84 87.71 77.97 74.74 76.53 79.75 87.37 100.00 99.45 88.81
InputDimAtt 69.03 68.40 65.66 74.24 59.93 80.16 100.00 77.10 81.08 88.95 77.49 74.19 77.08 77.21 85.86 100.00 99.31 89.09
InputFor
RelCls 66.27 65.25 62.48 70.66 58.76 82.10 100.00 84.66 78.92 86.41 75.77 73.03 75.22 77.97 87.71 100.00 99.52 88.81

Table 9: Results for UDim prediction on PDTB implicit DR data.
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