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Abstract

Existing discourse corpora annotated under dif-
ferent frameworks adopt distinct but somewhat
related taxonomies of relations. The integra-
tion of these corpora has been an open research
question. Previous studies on the interoper-
ability of different discourse formalisms are
mainly theoretical, although such research is
performed with the hope of benefiting computa-
tional applications. In this paper, we show how
the unifying dimensions (UDims) that originate
from the Cognitive approach to Coherence Re-
lations (CCR) (Sanders et al., 2018) can facil-
itate cross-framework discourse relation (DR)
classification. To address the challenges of us-
ing predicted UDims for DR classification in
model learning, we adopt the Bayesian learning
framework based on Monte Carlo dropout (Gal
and Ghahramani, 2016) to obtain more robust
predictions. Data augmentation enabled by our
proposed method yields strong performance.
We compare different possible models and an-
alyze the experimental results from different
perspectives.

1 Introduction

Discourse coherence relates to the way that a mono-
logue or dialogue is organized so that it is a coher-
ent entity, instead of a random collection of clauses
or sentences. As such, coherence represents an im-
portant aspect of text quality. Various studies have
shown the benefits of incorporating discourse-level
information or coherence-related training objec-
tives in NLP tasks, such as text generation (Bosse-
lut et al., 2018), language modelling (Iter et al.,
2020; Lee et al., 2020; Stevens-Guille et al., 2022),
and summarization (Xu et al., 2020).
Discourse-level analysis is typically concerned
with discourse relations (Rutherford and Xue,
2015). These relations describe the link with which
two textual segments are associated with each other
and they form an integral part in discourse mod-
elling frameworks, such as the Rhetorical Struc-

ture Theory (RST) (Mann and Thompson, 1988)
and the Penn Discourse Treebank (PDTB) (Prasad
et al., 2008, 2018). However, RST and PDTB fo-
cus on different aspects of discourse coherence
and adopt distinctive approaches of discourse mod-
elling (Fu, 2022). As discourse annotation is a
demanding task and different discourse modelling
frameworks provide distinctive but not incompat-
ible perspectives of discourse phenomena, the in-
teroperability and integration of different discourse
modelling frameworks has been a topic of interest
for a long time (Bunt and Prasad, 2016; Benamara
and Taboada, 2015; Sanders et al., 2018; Chiarcos,
2014).

Most of the studies are theoretical, although it is
believed that a good way to test the usefulness of
the proposed methods is to merge different corpora
based on the methods and apply the data in compu-
tational experiments to see whether the increased
size of the training data improves the results (Be-
namara and Taboada, 2015). Demberg et al. (2019)
try to validate several existing proposals for inte-
grating discourse corpora against annotated data.
One of their research purposes is to enable joint us-
age of discourse corpora annotated under different
frameworks for computational purpose. Neverthe-
less, results of this strand of research find little
computational application.

The UniDim proposal (Sanders et al., 2018),
which originate from the Cognitive approach to
Coherence Relations (CCR) (Sanders et al., 1992,
1993), is shown to be relatively successful in map-
ping between PDTB and RST relations (Demberg
et al., 2019). Moreover, previous studies (Roze
et al., 2019; Fu, 2023) demonstrate the possibility
of automatically predicting and incorporating such
dimensions in discourse relation (abbreviated as
“DR” in the following) classification tasks. There-
fore, in this paper, we try to apply the unifying
dimensions (abbreviated as “UDims” in the follow-
ing) in the UniDim proposal for RST and PDTB



DR classification tasks.

As not a small number of UDims are involved
and the classification errors of each UDim may
propagate to DR classification, the combination
of predicted UDims poses additional challenges
for model learning. We show that the Bayesian
learning approach based on Monte Carlo (MC)
dropout (Gal and Ghahramani, 2016) is a viable
option for solving this problem. Meanwhile, our
approach of utilizing UDims allows data augmenta-
tion with cross-framework discourse corpora. Thus,
we present results on data augmentation with differ-
ent types of data. We then analyze different model
designs based on the correlation between training
losses of the DR classification task and the UDim
prediction tasks. Lastly, we show the correlation
between specific DR classes and the UDims to pro-
vide another perspective of analysis.

2 Related Work

2.1 DR Classification

Early studies on RST and PDTB DR classification
focus on feature extraction (Feng and Hirst, 2012;
Joty et al., 2012; Lin et al., 2009; Pitler et al., 2009)
or representation learning (Ji and Eisenstein, 2014,
2015). With the advancement of contextualized
embeddings, an increasing number of studies try
to model the relationship between argument repre-
sentations with attention mechanisms (Guo et al.,
2018; Li et al., 2016).

Discourse marker prediction is considered a po-
tentially effective auxiliary task for both RST DR
classification (Yu et al., 2022) and PDTB DR classi-
fication (Shi and Demberg, 2019; Jiang et al., 2021;
Liu and Strube, 2023). However, as RST does not
make a clear distinction between implicit DRs and
explicit DRs in the annotation, this approach is pri-
marily applied to PDTB implicit DR classification.

To combat the problem of limited amounts of
training data for RST parsing, Braud et al. (2016)
utilize multi-task learning to benefit from supervi-
sion of related tasks such as PDTB DR classifica-
tion. As RST elementary discourse units (EDUs)
and PDTB arguments are determined based on dif-
ferent criteria, they have to make adjustments to
PDTB data and use sentences rather than manually
annotated arguments in their experiments and ig-
nore intra-sentential PDTB relations. Multi-task
learning is also adopted in Liu et al. (2016) for
PDTB implicit DR classification, where RST DR
classification is treated as an auxiliary task. It
shows that RST DR classification improves perfor-

mance on the classification of some PDTB Level-1
implicit DRs.

2.2 The UniDim Proposal and UDims

Sanders et al. (2018) propose a set of unifying
dimensions as an interface for different annota-
tion frameworks to be related with each other.
These UDims originate from four cognitive primi-
tives—basic operations, source of coherence, order
of segments (called implication order in Sanders
et al. (2018)) and polarity, which are used to define
coherence relations in Sanders et al. (1992). To
make the taxonomy more expressive, additional
dimensions are added, including temporality, and
specificity, lists and alternatives for additive rela-
tions, and conditionals and goal-orientedness for
causal relations. Each of these dimensions has a
number of possible values, for instance, the polarity
dimension has distinctions between positive, neg-
ative or under-specified. We refer those interested
to Sanders et al. (2018) for a better understanding
of the meaning of the UDims. With those UDims,
DRs from different annotation frameworks can be
decomposed and compared.

Demberg et al. (2019) propose a method for map-
ping RST and PDTB, and the results of their data-
driven investigation exhibit higher consistency with
the results obtained with the UniDim proposal, in
comparison with the OLiA reference model (Chiar-
cos, 2014) and the ISO standard proposal (Bunt
and Prasad, 2016).

To our best knowledge, the method proposed
in Roze et al. (2019) represents the first study on
using UDims for DR classification. Fu (2023) re-
ports results of using UDims for cross-framework
DR classification. However, their experiments are
aimed at testing the effectiveness of the UniDim
proposal with computational experiments. The
pipeline approach adopted by Roze et al. (2019)
achieves no improvement over the baseline for
PDTB implicit DR classification, and the high per-
formance shown by Fu (2023) relies on gold UDim
values, which are not accessible during inference
time in realistic settings.

3 Our Method

Our experimental settings are similar to the those
described in Fu (2023), with the exception of using
predicted UDims during inference time. Therefore,
two tasks are involved: a) UDim prediction and
b) DR classification. We follow the rule-based
method in Fu (2023) to obtain gold UDim values



for each of the training examples.

For an input sequence X; in a dataset with size
N, ie., {X;}Y,, X; is formed by a pair of argu-
ments of lengths m and n, respectively, i.e., X; =
Agl) LAY, A§2) . AP We use a pre-trained
language model as the input encoder fr,.. Special
tokens are to be inserted based on the requirements
of the chosen encoder, and X; is typically padded
to a fixed length. In our experiments, the two ar-
guments are padded separately at the ends. After
such preprocessing, the representation of the input
sequence, which is denoted as X;, can be obtained
from the encoder:

3.1 UDim Prediction

A three-layer feed-forward network g, comprising
a fully connected layer, a LeakyReLLU activation
function, followed by a dropout layer, is applied to
transform A to a lower dimensional space:

hypim = g(h) 2

UDims are not independent. For example, the im-
plication order dimension is associated with the ba-
sic operation dimension, because the former only
describes properties of causal relations, which form
a sub-category under basic operation. Inspired
by Gerych et al. (2021) and Roze et al. (2019), we
exploit knowledge about the relationships between
UDims to improve the performance on this task.
For instance, in the example, the embedding vector
of the predicted basic operation E({pop) Will be
passed as features to the classifier f;,,; for impli-
cation order:

Yimpl = S0ftmaz ( fimpt (R Dim ® E(Jbop))) (3)

An argmax function is typically required to ob-
tain a discrete value from the predicted probability
distribution, so that E (i pim ) can be obtained and
passed as features to the classification of another
related UDim or DR. However, this operation is
non-differentiable and the training signal of one
UDim cannot backpropagate to the training of the
related UDims or from DRs to UDims when pre-
dicted UDims are used as features for DR classifi-
cation. Therefore, we adopt the Gumbel-Softmax
function (Jang et al., 2016), which is a differen-
tiable approximation to the argmax function:

yi = kexp((log(pz') +9i)/7) @
> j—1exp((log(p;) + g;)/7)

where p; represents a class probability for a cate-
gorical variable with k possible outcomes. g;...gx
are i.i.d samples drawn from a Gumbel(0, 1) dis-
tribution, which can be sampled by drawing p ~
Uniform(0, 1) and g = —log(—log(u)).

3.2 DR Classification

Similar to UDim prediction, a three-layer feed-
forward network ¢ is applied to A first:

hpr = ¢(h) &)

We experiment with four ways of leveraging
UDims in the DR classification task:

1. TrainonGoldTestonPred: During training,
gold UDims are used and their embeddings
are concatenated with hpg for DR classifi-
cation, so that the model learns the relation-
ship between the input and the UDims and
the target labels. During inference time, the
embeddings of the predicted UDims are used.

2. InputDimCat: During both training and test-
ing, the embeddings of predicted UDims are
used by simple concatenation with hpp.

3. InputDimAtt: During both training and testing,
the embeddings of predicted UDims are com-
bined with hpgr by an attention mechanism
based on scaled dot product (Vaswani et al.,
2017).

4. InputForRelCls: The hypothesis is that as the
UDims are closely related to the target DR, if
the model takes UDim predictions as explicit
training objectives, the performance on DR
classification may be improved, even without
using the embeddings of predicted UDims as
features. Hence, only hppg is used for DR
classification, and UDim prediction and DR
classification form a scenario of multi-task
learning.

Preliminary experiments show that directly using
predicted UDims causes a large performance drop
for the DR classification task. The performance
deterioration could be attributed to the utilization of
predicted UDims, where the classification errors of
these UDims might introduce noise, and combined
usage of these predicted UDims may exacerbate
data sparsity, hence amplifying uncertainty in the
DR classification task. To address this challenge,
we employ the MC dropout method.



3.3 MC Dropout

Dropout was originally proposed to reduce over-
fitting in model training while achieving the ef-
fect of training an ensemble model (Srivastava
et al., 2014). During training, random neural units
along with its incoming and outgoing connections
are temporarily removed from the neural network.
Thus, a model with n units can be seen as a collec-
tion of 2" possible smaller neural networks, which
are sampled and trained. During inference time,
dropout is deactivated.

Specifically, for a model with [ layers, the model
weights w can be expressed as a set of weight ma-
trices for each layer: w = {W;}._,. If the model
is trained with a dropout probability of p, the final
weights will be w’ = w x p, yielding a single neural
net. For a new input x at test time, the predicted g
is obtained with:

= arg;laxp(y’\x,d) (6)

For uncertainty estimation, Bayesian networks

represent a natural choice. For a model trained with

Bayesian approach on input set X and correspond-

ing target set Y, the predictive distribution for a
new input x is obtained with:

(%, X, Y) = / Py % )X, Y)dy (7)

where p(w|X,Y) is generally approximated with
a computationally simpler distribution ¢(w). The
distribution over w naturally encodes model un-
certainty. However, these methods typically come
with large computational costs, and for transformer-
based models, the computation costs can be pro-
hibitive.

Gal and Ghahramani (2016) introduces the MC
dropout method to tackle the challenge of uncer-
tainty estimation in deep neural networks. Differ-
ent from the standard dropout method, dropout is
activated during inference time. The MC dropout
method represents a lightweight Bayesian approxi-
mation. For an input representation from the pre-
vious layer h;_1, the output h; of the iy, layer is
determined with:

hi = o(hi—1, W;, M;) 8)

where M; is a masking matrix, with its entries be-
ing sampled from a Bernoulli distribution, and the
probability of being zero is the dropout probability
p. o denotes the activation function of this layer.

During inference, one can sample 7' sets of
{M;}L_, for T stochastic forward passes and the
mean predicted distribution is obtained by averag-
ing over the T passes:

T
1
Py [, X Y) = 5> ply'x, (Wi, M), o)
t=1

. [WEH ML)

The variance can be used as an indicator of
model uncertainty. This method is similar to an
ensemble of approximated functions with shared
parameters (Choubineh et al., 2023) but without
increasing computational complexity or sacrificing
model performance.

As indicated in Shelmanov et al. (2021), apply-
ing the MC dropout to all the dropout layers of
a transformer model yields better performance on
uncertainty estimation. Even though our focus is
not uncertainty estimation but to obtain more ro-
bust predictions, this approach of applying the MC
dropout method may better approximate an ensem-
ble model and we use mean predictive distribution
over multiple runs for UDim and DR classification.

3.4 Data Augmentation

Although RST and PDTB follow different criteria
for discourse unit segmentation, data from both
frameworks can be used together for the UDim
prediction task. Figure 1 shows the pipeline for the
data augmentation method.

PDTB
Input i

Figure 1: Pipeline for data augmentation with
PDTB data and the final task is RST DR classifica-
tion. pol...goal represent the UDims polarity...goal-
orientedness. As we explore different ways of lever-
aging predicted UDims, the embeddings of the UDims
are not necessarily fed as features to the DR classifi-
cation task, hence represented with dashed arrow lines.
The losses shown in orange boxes are to be minimized
through model training.



In the example shown in Figure 1, for RST DR
classification, PDTB data (explicit, implicit, or
both) can be used for training the model on UDim
prediction. Increased data amount and more diver-
sified training data may increase model robustness
in UDim prediction, which could improve model
performance on DR classification.

3.5 Training

Cross-entropy loss is used for model training. To
jointly train the model for UDim prediction and
DR classification, we adopt a multi-task loss:

Liotal = LUDims +2.0% Lpr (10)

Note that there are multiple UDims involved in
the experiments, even though the loss term shows
them collectively as Ly pims. In order to guide
the model training towards DR classification, we
increase the weight for DR classification loss.

4 Experiments

4.1 Data Preprocessing

The experiments on RST are carried out on the
RST Discourse Treebank (RST-DT) (Carlson et al.,
2001), which is the standard benchmark for RST
parsing, consisting of 385 documents. We follow
the gold division of the corpus for training and
test sets and take 20% from the training set for
validation. We utilize the preprocesing method
in Ji and Eisenstein (2014) and binarize the RST
trees in order to obtain pairs of discourse segments
linked by DRs. The 78 relations are mapped to 18
broad classes based on the template in Braud et al.
(2016), but as Same-Unit and Attribution are not
covered in Sanders et al. (2018), the two relations
are excluded in our experiments, leaving a set of
16 RST relations.

The experiments on PDTB are performed on
PDTB 3.0 (Prasad et al., 2018), which is the lat-
est version characterized by a new sense hierarchy
and newly annotated intra-sentential implicit re-
lations. We follow the data split used in Ji and
Eisenstein (2015), i.e., sections 2-20 for training,
sections 0-1 for validation, and sections 21-22 for
testing, and discard DRs with fewer than 100 in-
stances to alleviate data imbalance, as proposed
in Kim et al. (2020), which leaves 14 senses from
Level-2 (L2) of the sense hierarchy. Since PDTB
explicit DR classification can be achieved with high
performance, we only focus on implicit DR clas-
sification. Moreover, PDTB L2 senses are more
fine-grained than Level-1 (L1), which makes them

potentially more useful. Therefore, we focus on
14-way classification of PDTB L2 implicit DRs.
As PDTB annotation involves a much larger
number of files from the Penn Treebank (Marcus
et al., 1993)!, to mitigate the confounding effect of
data amount in our experiments on data augmenta-
tion with different types of data, we try to increase
the data amount for RST by back-translating data
from the training set (English->French->English,
translated by Google Translate), thus doubling the

training data amount for RST.
Following Fu (2023), we exclude the UDim /ist,

and merge sub-categories under specificity, making
specificity a binary property, similar to alternative,
conditional and goal-orientedness, which is also
the approach adopted in Roze et al. (2019).

UDims

polarity(pol)

basic operation(bop)
source of  coher-
ence(soc)

implication order(imp)

Sub-Categories Parents
NS, positive, negative
NS, additive, causal

NS, objective, subjective

NS, NA, basic, non-basic bop
NS, anti-chronological,
chronological, synchronous

temporality(temp)

specificity(spec) specificity, non-specificity bop
alternative(alt) alternative, non-alternative bop
conditional(con) conditional, non-conditional bop
goal- goal-oriented, non-goal-oriented bop

orientedness(goal)

Table 1: UDims used in the experiments. Their abbre-
viations used in the paper are shown in the brackets in
italics. “-” in the last column suggests that no parent
passing is performed for this UDim.

Table 1 shows the UDims, their abbreviations
in the paper and the sets of sub-categories to pre-
dict from. The parent UDims described in sec-
tion 3.1, which are passed as features for predicting
the UDims, are shown in the last column.

4.2 Implementation Details

We use the pre-trained BERTgasg model (Devlin
et al., 2019) and RoBERTagasg model (Liu et al.,
2019) from the Transformers library (Wolf et al.,

2020) as the input encoder.
The embeddings of the UDims are derived from

separate embedding layers, which are configured
with learnable parameters, and the embedding vec-

tors are initialized from uniform distributions.
Baseline The baseline is thus DR classification

based on the input, without involving training and
prediction of UDims. To ensure fair compari-
son, we also apply MC dropout to the baseline
models, i.e., the pre-trained BERTgssg model and
RoBERTagasg model, and run the same number of
passes to obtain the mean predictive distribution.

12159 files in total


https://translate.google.com/
https://www.cis.upenn.edu/~elenimi/pdtb-manual.pdf

Model FIggrr | AccBprT| FIRoBERTa| ACCROBERT:
Baseline 50.24 | 62.30 | 53.72 | 65.56
TrainonGoldTestonPred | 50.30 | 64.15| 55.21 66.27
InputDimCat 51.02| 64.36| 54.49 66.16
InputDimAtt 49.78 | 61.64 | 54.65 66.27
InputForRelCls 51.56 | 62.73 | 54.89 66.32

Table 2: Results for RST DR classification.

Hyper-parameters The arguments of the input
sequences are padded to a fixed length of 250 to-
kens, and all the model parameters are initialized
with the Xavier uniform initialization (Glorot and
Bengio, 2010). The output size of the feed-forward
networks g and ¢ described in section 3.1 and sec-
tion 3.2 is set to 128 through manual tuning. The
dropout probability is kept at 0.2 for all the experi-
ments, which means that greater regularization is
adopted than the pre-trained BERT and RoBERTa
models. We keep all the dropout layers active dur-
ing inference time, and run the model for UDim
prediction three times and obtain the average pre-
dictive distributions. The UDim embeddings are set
with a dimension size of 100 in all the experiments,
except for InputDimCat in section 3.2, where the
dimension sizes of the UDim embeddings are set
to be 2 * number of subcategories, which we find
sufficient through experimentation. Similarly, we
also run the DR classifier three times and obtain
the average predictive distribution. The batch size
is set to the largest value that the GPU machine can
accommodate.

The model learning rate is set to le — 5 and it
is trained for a maximum of 30 epochs, with an
early-stopping scheme monitoring performance im-
provement for DR classification on the validation
set with a threshold of 7 epochs. The AdamW opti-
mizer is used and a warmup ratio of 0.06 is set for
the scheduler. A weight decay of 0.1 is applied, and
gradients are clipped to a maximum of 1.0. The
implementation is based on the PyTorch machine
learning framework (Paszke et al., 2019). A single
AS5000 GPU with a capacity of 24GB is used for
all the experiments.

5 Results

We select models based on their performance mea-
sured by F1 in DR classification, and thus, they
do not necessarily perform the best in terms of
accuracy.

5.1 DR Classification
Table 2 shows the results for RST DR classification.

Model FIggrt | AccBerT| FIRoBERTa | ACCROBERTa
Baseline 4553 | 56.42| 52.36 | 60.47
TrainonGoldTestonPred | 46.40 | 55.87| 51.80 59.09
InputDimCat 4471 | 54.77| 52.82 61.43
InputDimAtt 4474 | 54.56| 52.93 60.67
InputForRelCls 45.02 | 54.02 | 53.44 60.26

Table 3: Results for PDTB implicit DR classification.

As indicated in Table 2, much higher perfor-
mance is achieved using ROBERTa than BERT. The
best performance is achieved with TrainonGoldTe-
stonPred, followed by InputForRelCls. In both
cases, the predicted UDims are not used as features
for DR classification during training. Compared
with the baseline method, the models are trained
for UDim prediction. The results support our hy-
pothesis that the association between UDims and
DRs can aid in the DR classification task.

Table 3 shows the results for PDTB implicit DR
classification. Similar to the results on RST, re-
sults obtained with RoOBERTa are much higher than
BERT. However, a performance drop compared
with the baseline is visible with the approach Train-
onGoldTestonPred. As shown in Sanders et al.
(2018, p.52, section 5.3), implicit relations pose
a challenge for the UniDim proposal, and it is
likely that model performance on UDim prediction
trained on PDTB implicit DR data alone is not high,
causing a large discrepancy between training and
inference time, which may result in a performance
drop with TrainonGoldTestonPred here.

5.2 Data Augmentation

Based on the results for DR classification, we
choose the ROBERTa encoder and focus on the
InputForRelCls approach in this set of experiments.
The hypothesis is that because of the association
between UDims and DRs, if the model is trained
on UDim prediction tasks, its performance on DR
classification can be improved, and the data aug-
mentation method is primarily used for improving
model performance on UDim prediction. The re-
sults with InputDimAtt are shown for comparison.

Table 4 shows the RST DR classification results
under augmentation with different types of PDTB
data.

As can be seen from Table 4, data augmentation
improves F1 score, but an increase in F1 does not
necessarily lead to higher accuracy, which is not
rare for imbalanced classification, suggesting that
the model is trained to distinguish smaller classes.
For InputForRelCls, data augmentation with total



Model FlRoBERTa ACCRoBERTa
InputForRelCls 54.89 66.32
InputForRelCls+PDTBExpl 55.28 65.72
InputForRelCls+PDTBTotal | 55.75 65.61
InputForRelCls+PDTBImpl 54.57 65.02
InputDimAtt 54.65 66.27
InputDimAtt+ PDTBExpl 54.84 66.16
InputDimAtt+PDTBTotal 53.81 65.78
InputDimAtt+PDTBImpl 54.65 65.56
Baselinek,,BERp, 53.72 65.56

Table 4: Results for RST DR classification with dat
augmentation. Baseline refers to the approach withot
using UDims in training and testing in Table 2. PDT}
Expl, PDTBImpl and PDTBTotal denote PDTB explic
data, implicit data and the combination of both part
respectively.

Model F1roBERT: ACCRoBERT:
InputForRelCls 53.44 60.26
InputForRelCls+RST 52.12 61.02
InputForRelCls+PDTBExpl 55.01 61.22
InputForRelCls+PDTBExpl&RST 53.05 61.70
InputDimAtt 52.93 60.67
InputDimAtt+RST 51.18 59.30
InputDimAtt+ PDTBExpl 54.21 61.43
InputDimAtt+ PDTBExpl&RST 51.22 60.54
BaselineRUEERTu 52.36 60.47

Table 5: Results for PDTB implicit DR classification
with data augmentation. Baseline refers to the approach
without using UDims in training and testing in Table 3.

PDTB data yields the highest performance, which
is expected. However, it is noticeable that adding
PDTB implicit DR data causes a performance drop.
This might be attributed to the high ambiguity in
mapping UDims with implicit relations discussed
in Sanders et al. (2018). For InputDimAtt, it is
clear that adding PDTB explicit DR data is help-
ful, but adding total PDTB data causes a perfor-
mance drop. Using predicted UDims as features
may introduce noise and aggravate data sparsity for
model learning for DR classification. If total PDTB
data is used, significantly more data will be used
for UDim prediction?, and RST data and the corre-
sponding UDims will be sampled less in each batch
compared with data augmentation with only PDTB
explicit or implicit DR data, where the amount of
data augmentation is similar to RST data.

Table 5 shows the results for PDTB implicit DR
classification under augmentation with different
types of data.

As is shown in Table 5, adding PDTB explicit
DR data is the most helpful form of data augmenta-
tion for both InputForRelCls and InputDimAtt, but
adding RST data causes performance drops, possi-

’In our experiments, RST has 24,062 training instances,
while PDTB total data has 35,080 instances.

—— TrainonGoldTestonPred
— InputForRelCls

— InputDimAtt

— InputDimCat

RST Relation Classification PDTB Implicit Relation Classification
pol

temp spec temp spec

Figure 2: Correlation between DR classification loss
and UDim classification losses for RST and PDTB. The
abbreviations of the UDims have been explained in Ta-
ble 1, and the scales represent the Pearson correlation
coefficient scores. Note that the areas of different mod-
els cannot be compared between RST and PDTB, since
the scales on the two plots are arranged in different ways
to suit the range of the real data.

bly due to the high dissimilarity between RST data
and PDTB implicit DR data.

6 Analysis

The test performance of the selected models on
the UDim prediction task is shown in Table 8 and
Table 9 in Appendix A for reference.

6.1 Model Performance

We examine the correlation between the DR clas-
sification task and each of the UDim classification
tasks. The losses at each training step are collected
and the Pearson correlation coefficient is computed
between the DR classification loss and the UDim
classification losses. The results for the different
models used in section 5.1 are shown in Figure 2.
Note that the data is collected for models using
RoBERTa as the input encoder.

As is clear from Figure 2, for RST DR classifica-
tion, the models show high correlation between DR
classification and the classification of five major
UDims, including polarity, basic operation, impli-
cation order, source of coherence and temporal-
ity, while correlation with the other UDims is not
prominent. The pattern with InputDimAtt is differ-
ent, where correlation with the UDims is basically
evenly distributed, except for specificity, which
might be attributed to importance weighting with
the attention mechanism.

For PDTB implicit DR classification, differ-
ent models show divergence in their correlation



strengths with different UDims. In the case of the
best performing model InputForRelCls, the corre-
lation with polarity is low but the correlation with
specificity is high. We find that the model perfor-
mance on polarity is relatively low, and this could
be a reason why the model learns to rely less on
this UDim.

Similar to the patterns for RST, apart from
the five major UDims, the other UDims do not
show high correlation with DR classification, but
in TrainonGoldTestonPred and InputDimAtt, rel-
atively high correlation with conditional and al-
ternative in particular, is observable. The perfor-
mance with TrainonGoldTestonPred is lower than
the baseline and we can see that the total area of
correlation for this model is the smallest, which is
expected. With InputDimAtt, the association area
is also small, which may suggest that the atten-
tion mechanism gives more weight to hp g than the
embeddings of the predicted UDims.

6.2 Correlation Between DRs and UDims

In this section, we investigate the correlation be-
tween the prediction of specific DRs and that of
UDims. Following Ulmer et al. (2022), we use
the softmax gap as a metric for uncertainty esti-
mation (UE), and compute Kendall’s 7 between
uncertainty values of DR prediction and the pre-
diction of their respective UDims. As a higher
softmax gap indicates lower uncertainty, we ap-
ply a negative sign to the computed softmax gap
and add one to the result, thus maintaining the nu-
meric range but reversing the sign, as in Ulmer
et al. (2022). We choose the best-performing mod-
els, i.e., InputForRelCls+PDTBTotal for RST and
InputForRelCls+PDTBExpl for PDTB implicit DR
classification. The uncertainty values are computed
on the test sets.

The relations with >100 data points in the test
sets are chosen and the UDims whose Kendall’s
T association has p—value below 0.05 are shown
here. Table 6 shows the results for RST. It can be
seen that most of the RST DRs are correlated with
these five major UDims discussed in section 6.1.

The results for PDTB are shown in Table 7.
Among these DRs, Instantiation has higher cor-
relation with alt and spec. The high association
with spec is expected, but alt is to be associated
with Disjunction. We suspect that the correlations
shown here are influenced by model classification
of the other relations, not just based on the direct
association between UDims and DRs. The higher

DRs (Counts) UDims

Contrast (146) pol(0.56), temp(0.48), soc(0.41), spec(0.24),
goal(0.21), con(0.19)

Joint(212) soc(0.46), temp(0.41), pol(0.40), spec(0.40),
imp(0.36), bop(0.29), con(0.12), goal(0.12)

Elaboration bop(0.57), imp(0.56), pol(0.51), alt(0.50),

(796) temp(0.42), goal(0.38), con(0.36), soc(0.25),
spec(0.17)

Explanation imp(0.47), temp(0.45), bop(0.37), pol(0.31),

(110) con(0.29), goal(0.22), soc(0.21), alt(0.15),
spec(0.14)

Background pol(0.38), bop(0.35), soc(0.35), imp(0.32),

(111) temp(0.26), goal(0.23)

Table 6: Correlation between DR classification uncer-
tainty and UDim prediction uncertainty for RST.

DRs (Counts) UDims
Conjunction 50¢(0.62), temp(0.57), pol(0.51), imp(0.39),
(236) bop(0.35), goal(0.34), alt(0.30), spec(0.25),
con(0.25)
Cause(406) 50c(0.52), bop(0.48), imp(0.45), pol(0.42),
temp(0.41), spec(0.36), alt(0.22), goal(0.16)
Instantiation alt(0.32), spec(0.31), bop(0.29), soc(0.29),
(124) pol(0.27), imp(0.26), temp(0.17), goal(0.18)
Level-of-detail soc(0.51), bop(0.50), imp(0.47), spec(0.43),
(208) pol(0.42), temp(0.39), alt(0.34), goal(0.30)
Asynchronous temp(0.45), so0c(0.39), pol(0.31), imp(0.26),
(105) bop(0.24)

Table 7: Correlation between DR classification uncer-
tainty and UDim prediction uncertainty for PDTB im-
plicit DR data.

correlation between Asynchronous and temp is ex-
pected.

7 Conclusion

We propose a method for incorporating the UDims
in the UniDim proposal into DR classification for
RST and PDTB, which allows convenient cross-
framework data augmentation. With data augmen-
tation, we obtain strong performance in F1 for DR
classification (55.75 for RST and 55.01 for PDTB
implicit DR classification). Our experiments sug-
gest that because of the strong association between
UDims and DRs, training the model with objec-
tives of UDim prediction helps the model in DR
classification, and adding PDTB explicit DR data is
helpful for both RST and PDTB implicit DR clas-
sification. We are aware that there are additional
techniques we can explore, such as adding con-
trastive loss, or leveraging uncertainty estimation
during model training to improve the performance
on DR classification. We try to reduce the use of
tricks to show the influence of UDims, and leave
this part to future work.

8 Limitations

With our approach, multiple runs have to be per-
formed, which requires longer training time, even
though the model parameters are not increased.
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A Results for UDim Prediction on RST and PDTB

Table 8 shows the test performance of the selected model on UDim prediction for RST.

Model pol bop impl | soc temp | spec alt con goal pol bop impl | soc temp | spec alt con goal
Fl1 Fl1 F1 F1 F1 Fl1 Fl1 Fl1 Fl1 acc acc acc acc acc acc acc acc acc

TrainonGold
TestonPred
InputDimCat 75.33| 57.72| 56.88| 62.57| 48.43| 82.64| 79.95| 89.30| 83.52| 88.41| 78.13| 77.64| 74.48| 87.49| 86.02| 99.78| 98.97| 98.20
InputDimAtt 74.09] 59.02| 56.32| 60.85| 45.42| 82.72| 74.95| 88.42| 86.15| 87.60| 77.86| 76.71| 75.46| 87.21| 86.40| 99.78| 98.86| 98.48

”1';2‘[‘5’;’ 73.19| 60.34| 5833| 61.39| 46.41| 8253| 8329| 88.36| 85.16| 87.54| 78.84| 78.13| 75.14| 87.00| 86.45| 99.84| 98.91| 9837

73.65| 57.78| 57.06 60.69| 47.18| 82.50( 64.22| 87.82| 85.16| 87.43| 78.45( 77.53| 73.78| 88.79| 85.91| 99.73| 98.91| 98.37

Table 8: Results for UDim prediction on RST.

Table 9 shows the test performance of the selected model on UDim prediction for PDTB implicit DR
data.

Model pol bop impl | soc temp | spec | alt con goal pol bop impl | soc temp | spec | alt con goal
F1 F1 F1 F1 Fl1 Fl1 Fl1 F1 F1 acc acc acc acc acc acc acc acc acc
TrainonGold |~ ooy 66.41| 63.50| 69.61| ss.10| 8142| 10000 sa66| 77.10| 8655 7577 7282| 7495| 7653 8717| 10000 99.52| 87.07
TestonPred

InputDimCat | 68.59| 69.71 66.43| 72.12| 60.72| 82.46| 100.00] 81.68| 79.84| 87.71| 77.97| 74.74| 76.53| 79.75| 87.37| 100.00| 99.45| 88.81
InputDimAtt 69.03] 68.40| 65.66( 74.24| 59.93| 80.16( 100.00| 77.10| 81.08| 88.95| 77.49| 74.19| 77.08| 77.21| 85.86| 100.00| 99.31| 89.09

h;é:;gzr 66.27| 6525 62.48| 70.66| 58.76| 82.10 100.00| 84.66| 78.92| 86.41| 75.77| 73.03| 7522| 77.97| 87.71| 100.00| 99.52| 88.81

Table 9: Results for UDim prediction on PDTB implicit DR data.
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