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Abstract

People successfully communicate in everyday001
situations using vague language. In particular,002
colour terms have no clear boundaries as to the003
ranges of colours they describe. We model peo-004
ple’s reasoning process in a dyadic reference005
game using the Rational Speech Acts (RSA)006
framework and probabilistic semantics, and we007
find that the implementation of probabilistic008
semantics requires a modification from pure009
theory to perform well on real-world data. In010
addition, we explore approaches to handling tar-011
get disagreements in reference games, an issue012
that is rarely discussed in the RSA literature.013

1 Introduction014

Colour terms are vague. There are no clear bound-015

aries for what red, green, blue, or other colour016

words denote, causing uncertainty in their interpre-017

tations, and yet we are able to effectively commu-018

nicate using colours in everyday situations.019

To explain how we work with uncertainty, pro-020

ponents of probabilistic semantics (Cooper et al.,021

2014; Sutton, 2015) consider vagueness to be in-022

trinsic to language, where competent agents make023

graded judgements as to whether a predicate ap-024

plies to a situation. This view of semantics allows025

us to model predicates with conditional probabili-026

ties: for example, given a colour patch (e.g. ),027

to what degree would an agent believe that the term028

“green” is appropriate? Aside from probabilistic se-029

mantics, other approaches have also been proposed,030

which we group into two categories: distribution031

over thresholds and fuzzy truth-values. We discuss032

their differences in §2.1.033

In this paper, we explore the real-world feasi-034

bility of modelling vagueness with probabilistic035

semantics using a colour game dataset in English036

by Monroe et al. (2017). The game displays three037

colours and requires the speaker to describe a target038

colour, which the listener attempts to guess. Mon-039

roe et al. apply the Rational Speech Acts (RSA)040

framework (Frank and Goodman, 2012) with neu- 041

ral listener and speaker models to find that prag- 042

matic inference helps in disambiguating similar 043

colours. We extend their work by replacing their 044

literal listener model, which we argue gives results 045

approximating to fuzzy truth-values, with ones that 046

use probabilistic semantics, and present three main 047

contributions. 048

First, modelling real-world data with probabilis- 049

tic semantics requires an additional Gricean as- 050

sumption that not all world states be false in a 051

given context. Second, the RSA framework is sen- 052

sitive to the performance of the neural listener and 053

speaker models, with previously observed prag- 054

matic effects diminished after better tuning. Third, 055

we propose various ways to handle target disagree- 056

ments in dyadic reference games, and find that the 057

removal of disagreements significantly improves 058

model performance on Monroe et al.’s dataset. 059

2 Background & Related Work 060

Prior work has employed the RSA framework to 061

combine semantics and pragmatics in an effort to 062

quantify vagueness (Lassiter and Goodman, 2015; 063

Monroe et al., 2017; McDowell and Goodman, 064

2019). RSA formalises the theory of conversational 065

implicatures (Grice, 1975) by modelling people it- 066

eratively reasoning about each other’s actions to 067

infer their intentions, and quantifies the interac- 068

tion by defining explicit objectives for listener and 069

speaker agents. For a survey, see: Degen (2023). 070

For a given context, we model a literal listener l0 071

choosing a state c based on an utterance u’s literal 072

interpretation, L(u, c), and weighted by its prior 073

P (c) (Equation 1). A pragmatic speaker s1 then 074

chooses an utterance that is most informative by 075

considering the literal listener’s choices, subject to 076

a rationality parameter α and utterance cost κ(u) 077

(Equation 2). Finally, a pragmatic listener l2 infers 078

the intended state based on the speaker’s choice of 079

utterance (Equation 3). 080
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l0(c | u;L) ∝ L(u, c)P (c) (1)081

s1(u | c,L) ∝ eα log(l0(c|u;L))−κ(u) (2)082

l2(c | u,L) ∝ s1(u | c,L)P (c) (3)083

In Monroe et al.’s game, the states are equally084

likely so the prior can be discounted. For simplicity,085

we assume κ = 0 and α = 1.086

2.1 Linguistic Approaches to Vagueness087

Many approaches to modelling vagueness have088

been proposed (for a recent survey, see: Burnett089

and Sutton, 2020). Of particular interest are fuzzy090

and probabilistic approaches, because of their com-091

patibility with neural network models.092

In fuzzy logic, truth is not binary, but instead093

any real value from 0 to 1, which allows a direct094

account of vagueness (Zadeh, 1965). Logical op-095

erations such as AND and OR have fuzzy versions096

which are truth-functional, meaning that they are097

defined as functions taking fuzzy truth-values as in-098

put. The simplicity of a truth-functional approach099

means that fuzzy logic is unable to express corre-100

lations between truth-values (Fine, 1975). For ex-101

ample, considering a borderline red/orange shade,102

where “red” and “orange” are both 0.5 true, fuzzy103

logic treats “red or orange” the same as “red or not104

red”. This does not match empirical facts about the105

use of vague terms (Sauerland, 2011).106

In probabilistic logic, truth is binary but un-107

certain, and this can also be used to account for108

vagueness (Edgington, 1992, 1997). In contrast109

to fuzzy logic, there can be correlations between110

truth-values, which avoids the problems with the111

fuzzy account. However, this requires us to define112

a joint distribution over all truth-values.113

To build up to a joint distribution, we first con-114

sider marginal probabilities. For a predicate u, we115

can define a probabilistic truth-conditional function116

that gives the probability of the truth-value Tc be-117

ing true, for state c, as in Equation 4. This function118

gives the marginal probability for one truth-value,119

ignoring all other truth-values (for other states c′).120

tu(c) = P(Tc = ⊤;u) (4)121

A simple approach to define a joint distribution122

is to define a global threshold for truth, uniformly123

sampled from [0, 1], against which marginal proba-124

bilities of truth are compared. Combining this with125

the RSA framework can capture various aspects of126

how vague terms are used (Lassiter, 2011; Lassiter127

and Goodman, 2015).128

However, using a global threshold is restrictive. 129

Emerson (2023) shows how we can see such a 130

model as one instance in a broader class of prob- 131

abilistic models. The most general model class 132

would consider all possible joint distributions, but 133

this is intractable. Tractability can be maintained by 134

restricting to models that only require: the marginal 135

probability for each truth-value, and the correlation 136

between each pair of truth-values. A global thresh- 137

old corresponds to maximising all correlations. 138

3 Methodology 139

We adopt the model architectures in Monroe et al., 140

with a few refinements, to train an RSA system 141

on the colour game dataset. As in Andreas and 142

Klein (2016), neural models enable listener and 143

speaker agents to be trained on real-world language 144

use. The literal listener uses an LSTM to process 145

utterances and based on its final state it outputs 146

parameters for a score function. The literal speaker 147

generates utterances by encoding the colour context 148

as input to a second LSTM. 149

We refine Monroe et al.’s model by switching 150

the speaker’s decoding process from sampling to 151

beam search, as well as making the colour encoder 152

permutation invariant to the order of inputs (Zaheer 153

et al., 2017), so as to improve performance. 154

The literal listener’s score function is given in 155

Equation 5, where f is the Fourier-transformed vec- 156

tor representation of a colour (a deterministic trans- 157

formation, following Monroe et al., 2016), and µ 158

and Σ are output by the LSTM. 159

score(f) = −(f − µ)TΣ(f − µ) (5) 160

If Σ is positive definite, which Monroe et al. note 161

is the case for over 95% of their inputs, the score is 162

the logarithm of a probability density function (a 163

multivariate Gaussian). 164

3.1 Base Literal Listener Model 165

Our baseline model follows Monroe et al. (2017), 166

normalising the scores with an exponential soft- 167

max to give the listener’s beliefs about the in- 168

tended colour. Viewing this under the approaches 169

in §2.1, it can be seen as implementing fuzzy logic, 170

since the exponential of the score is a fuzzy truth- 171

value and normalising fuzzy truth-values is a truth- 172

functional operation (for details, see Appendix A). 173

As this interpretation only holds if Σ is positive 174

definite, we include a model in our experiments 175

where scores are clamped to be non-positive so that 176

it can be clearly contrasted with other approaches. 177
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3.2 Probabilistic Literal Listener Model Lprob
0178

Instead of normalising the scores directly, our Lprob
0179

probabilistic literal listener model interprets them180

as log-probabilities of truth. We clamp the scores181

to be non-positive and take their exponentials to182

get marginal probabilities tu(c) for each colour c.183

These marginals are then used to calculate the184

joint distribution. Given three colours in the con-185

text, there are 23 = 8 possible joint outcomes for186

truth-values. The joint distribution is not fully de-187

termined by the marginals, but also depends on188

correlations between the truth-values. We assume189

correlations are fixed (see Emerson, 2023 for more190

options), and explore two possibilities: 1. truth-191

values are independent (Prob Indep), and 2. truth-192

values are maximally correlated (Prob Max).193

Finally, the joint distribution over truth-values194

determines the distribution over listener actions. If195

ties are randomly broken (u is true for more than196

one colour, or false for all colours), then the chance197

of picking the target colour is given in Equation 6,198

where p··· is the joint probability of truth (⊤) or199

falsehood (⊥) for each colour.200
201

L
prob
0 (c0 | u,C; θ) = p⊤⊥⊥ +

1

2
p⊤⊤⊥202

+
1

2
p⊤⊥⊤ +

1

3
p⊤⊤⊤ +

1

3
p⊥⊥⊥ (6)203

However, we notice a problem with training a204

model to maximise the “pure” probabilistic objec-205

tive in Equation 6. Suppose an utterance is defi-206

nitely false for some colour. In the case where all207

truth-values are false, the “definitely false” colour208

is chosen with a one-third chance. The only way209

for the model to avoid this outcome is to set the210

marginal probability of another colour to 1, but by211

doing so it cannot convey uncertainty.212

To avoid this problem, we introduce an “applied”213

version of the model, where the all-false outcome214

is excluded. In other words, if the speaker makes215

an utterance, it must be true of something, which216

is grounded on Grice’s maxim of quality.217

3.3 Target Disagreements218

In supervised learning, it is assumed there is an219

objectively correct output for each input. This as-220

sumption does not hold for our language reference221

game. While there is a correct answer in the context222

of the game (i.e. the target colour), the listener and223

the speaker’s choices cannot be wrong given our224

objective of modelling linguistic behaviour. From225

the speaker’s perspective, the utterance they uttered226

Model L0 Accuracy L2 Accuracy

Monroe et al. (2017) 85.08 86.981

Base 87.65 ± 0.05 88.03 ± 0.04
Base Clamped 87.51 ± 0.05 87.94 ± 0.04
Pure Prob Indep 76.06 ± 0.07 76.98 ± 0.12
Pure Prob Max 75.84 ± 0.08 76.85 ± 0.11
Applied Prob Indep 87.65 ± 0.03 87.96 ± 0.05
Applied Prob Max 87.58 ± 0.04 88.05 ± 0.06

Table 1: Mean accuracies for the main models evaluated
on the test set, shown with standard errors of the means.
Highest accuracy for each category in bold.

applies to the target colour; from the listener’s per- 227

spective, the colour they chose best matches the 228

utterance they received. As such, we propose and 229

investigate three alternative strategies for modelling 230

data with target disagreements: 231

Listener-Speaker (L-S): Train on the listener’s 232

choice but evaluate on the speaker’s target. The 233

aim is for the literal listener to emulate a human 234

listener’s literal interpretation function, and for the 235

pragmatic listener to apply pragmatic reasoning to 236

select the intended target. 237

Listener-Listener (L-L): Both train and evaluate 238

on the listener’s choice. This changes the objective 239

to emulating listener behaviour rather than select- 240

ing the “correct” target. 241

No Disagreements (ND): Remove training data 242

with disagreements between speaker and listener, 243

but evaluate on the unaltered test set. The aim is to 244

understand if disagreements add noise to training. 245

3.4 Experiment Setup 246

Hyperparameters were determined with grid search 247

on the validation set, using the original data split. 248

Details of grid search and chosen hyperparameters 249

are given in Appendix B. Every model type was 250

trained 10 times to reduce the effect of random 251

initialisation (Reimers and Gurevych, 2017). Since 252

an RSA model contains two neural nets (listener 253

and speaker), they were arbitrarily paired up and 254

the same dyads used for all evaluations. 255

4 Results & Discussion 256

The accuracies of the main model types are sum- 257

marised in Table 1. Two-tailed p-values were above 258

0.1 between all pairs of the Base and Applied Prob 259

1This is for Monroe et al.’s best performing blended model,
Le, as they did not report L2 accuracy on the test set.
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Model Far Split Close

Pure Prob Indep 93.00 75.04 62.76
Applied Prob Indep 96.25 87.76 79.78

∆ (Applied - Pure) 3.25 12.72 17.02

Table 2: Comparison of the mean accuracies between
the pure and applied probabilistic (Independent) mod-
els across different context types. Similar results were
obtained using the Max Correlation models.

Model tu(c) < 0.01 tu(c) > 0.99

Base Clamped 94.05% 3.98%
Pure Prob Indep 5.61% 89.22%
Applied Prob Indep 56.93% 7.91%

Table 3: Percentage of target colour samples that were
assigned extreme marginal probabilities tu(c).

models,2 so there is no evidence to suggest a perfor-260

mance difference between these four model types.261

Although the Base listener uses Monroe et al.’s262

architecture, its accuracy is much higher, highlight-263

ing the impact of model tuning and hyperparameter264

selection. The best optimisation algorithm found in265

grid search, AdamW, was not available at the time266

their work was published. Also, they did not state267

if their models were regularised, but we found a268

dropout rate of 0.5 provided the best performance.269

The narrower gap between our L0 and L2 accura-270

cies suggests that some of the improvements from271

pragmatic reasoning that Monroe et al. observed272

could be attributed to an under-tuned model.273

In addition, we find that the Base model pro-274

duces positive scores for over 36% of the test set,275

compared to less than 5% noted by Monroe et al..276

For the Base Clamped model, this drops to 3.1%277

for the raw scores before clamping, demonstrating278

that training dynamics affect the interpretation of279

the model as producing fuzzy truth-values.280

4.1 Pure vs Applied Probabilistic Models281

The performance differences between correspond-282

ing Pure and Applied models are significant at283

p<0.00001. The limitation of the Pure models is284

apparent when comparing different difficulty con-285

texts in Table 2. For the Pure models, the especially286

poor results in contexts with two or more similar287

colours (split and close) can be attributed to the288

2Bootstrap tests using 100,000 rounds of resampling were
performed over the six pairs of these four model types.

Train-Test Target L0 Accuracy L2 Accuracy

S-S 87.65 ± 0.03 87.96 ± 0.05
L-S 86.32 ± 0.04 86.70 ± 0.05
L-L 85.02 ± 0.04 85.14 ± 0.04
S-S ND 87.85 ± 0.04 88.18 ± 0.06

Table 4: Mean accuracies for the probabilistic (indepen-
dent) models, using the specified target disagreement
strategy, shown with standard errors of the means. High-
est accuracy for each category in bold.

high marginal probabilities generated, as shown in 289

Table 3 (for full distributions, see Appendix C). If 290

two or more colours in a given context have high 291

marginal probability, the literal listener’s output 292

distribution will be skewed towards having equal 293

probabilities for those colours, drowning out any 294

signal from the utterance. In contrast, the Applied 295

models produce less extreme marginal probabilities 296

and achieve better performance in all context types. 297

4.2 Target Disagreements 298

The results of our proposed strategies to deal 299

with target disagreements are shown in Table 4. 300

The models trained on listener choices performed 301

poorer not only in predicting speaker targets, but 302

also in predicting listener choices. However, the 303

removal of target disagreements from training re- 304

sulted in significantly better performance than the 305

S-S models trained on the full dataset.3 This sug- 306

gests that the data samples with target disagree- 307

ments added noise during the training process, lead- 308

ing to poorer performance. 309

5 Conclusion 310

We demonstrated that a probabilistic semantic 311

model benefits from an assumption to exclude an 312

all-false outcome. While our results do not con- 313

clusively decide between probabilistic or fuzzy ap- 314

proaches to vagueness, this paper adds to a growing 315

body of work that people exhibit pragmatic be- 316

haviours as posited by the RSA framework. How- 317

ever, careful tuning of the literal listener model 318

reduces the effect size of pragmatic reasoning com- 319

pared to previous work. Finally, we explored the 320

previously undiscussed issue of target disagree- 321

ments. For the ‘Colors in Context’ dataset, we 322

found that disagreements may be best seen as noise. 323

3Two-tailed p-value of 0.0296 for the Prob Indep models in
Table 4. Results for other model types are similar; for details
see Appendix D.
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Limitations324

As our work focuses on one dataset, we are not325

able to generalise about the effectiveness of our326

proposed strategies to handle target disagreements327

on other dyadic reference games. We have given328

a theoretical justification and empirical analysis329

of our results, and so we would expect our con-330

clusions to generalise, but further work would be331

needed to confirm this on other datasets. In addi-332

tion, we applied fixed global correlations between333

truth-values when exploring the probabilistic ap-334

proach, and leave for future work to investigate the335

impact of varying correlations locally.336
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A Proof of Fuzzy Logic in the Base443

Literal Listener Model444

The score function in Equation 5 is repeated below445

as Equation 7. For a given utterance u, the base446

literal listener determines µ and Σ, then applies this447

score function to each colour representation f . The448

scores are passed through an exponential softmax449

to give a probability distribution over the colours.450

score(f) = −(f − µ)TΣ(f − µ) (7)451

Given representations fi for a set of colours452

C = {c0, . . . , cn}, the probability of choosing453

each colour is therefore given by:454

Lbase
0 (ci|u,C; (L)) =

exp(score(fi))∑
j exp(score(fj))

(8)455

To define a Gaussian distribution, as suggested456

by Monroe et al., the exp-scores must be rescaled457

so that they integrate to 1. However, multiplying458

all exp-scores by a constant leaves the distribution459

in Equation 8 unchanged, and so does not change460

any predictions of the model.461

If Σ is positive definite, the score function462

achieves its maximum value of 0 when f = µ.463

The exp-scores are therefore guaranteed to lie in464

the range [0, 1], and so can be interpreted as fuzzy465

truth-values for the utterance u. The distribution466

in Equation 8 is therefore a normalisation of these467

fuzzy truth-values. The normalisation only depends468

on the truth-values (with no further dependence on469

u or fi), and so it is a truth-functional operation.470

B Grid Search and Hyperparameters471

We performed grid search to identify the most per-472

formant optimisation algorithms, learning rates,473

and dropout values for training the neural listener474
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Figure 1: Mean deltas between L2 accuracy and L0

accuracy on the validation set, with varying numbers of
alternative utterances per colour. Shaded regions mark
the standard errors of the means. Number of utterances
were incremented by 1 between 1 and 20 utterances, and
incremented by 5 between 20 and 50 utterances.

and speaker models. Five optimisation algorithms 475

were explored in the grid search process: Adam 476

(Kingma and Ba, 2015), AdamW (Loshchilov and 477

Hutter, 2019), NAdam (Dozat, 2016), Adadelta 478

(Zeiler, 2012), and Adagrad (Duchi et al., 2011). 479

The Adam and Adadelta algorithms were chosen 480

because they were used in Monroe et al. (2017), 481

while the other three were selected as alternative 482

adaptive optimisation algorithms. For the learning 483

rates, values ranging from 1 to 10−4 were selected 484

at regular logarithmic intervals, and dropout rates 485

ranging from 0 to 0.5 were selected at intervals of 486

0.1. 487

Based on the results from grid search, we trained 488

the listener models with AdamW using a learning 489

rate of 0.001 and 0.0004 for the base and proba- 490

bilistic models respectively, and the speaker model 491

with Adam using a learning rate of 0.001. Dropout 492

of 0.5 was applied to listener models, but not to 493

the speaker models as their performance degraded 494

significantly with any dropout. The neural models 495

used the same embedding and hidden dimension 496

sizes as in Monroe et al. (2017), which was 100. 497

We varied the beam size in the literal speaker’s 498

decoding process to analyse the impact on the 499

pragmatic listener’s performance. Since the lit- 500

eral speaker produces alternative utterances as a 501

proxy for the set of all possible utterances that 502

theoretical pragmatic agents would consider, we 503

conjectured that generating a larger number of ut- 504

terances should improve pragmatic performance. 505

As seen in Figure 1, the pragmatic effect increases 506

until around 15 to 20 utterances per colour before 507
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Model L0 Accuracy L2 Accuracy

Base: Speaker-Speaker 87.65 ± 0.05 88.03 ± 0.04
Base: Listener-Speaker 86.29 ± 0.04 86.74 ± 0.05
Base: Listener-Listener 84.97 ± 0.04 85.16 ± 0.04
Base: Speaker-Speaker, No Disagreements 87.98 ± 0.04 88.27 ± 0.04

Applied Prob Independent: Speaker-Speaker 87.65 ± 0.03 87.96 ± 0.05
Applied Prob Independent: Listener-Speaker 86.32 ± 0.04 86.70 ± 0.05
Applied Prob Independent: Listener-Listener 85.02 ± 0.04 85.14 ± 0.04
Applied Prob Independent: Speaker-Speaker, No Disagreements 87.85 ± 0.04 88.18 ± 0.06

Applied Prob Max Correlation: Speaker-Speaker 87.58 ± 0.04 88.05 ± 0.06
Applied Prob Max Correlation: Listener-Speaker 86.15 ± 0.06 86.66 ± 0.07
Applied Prob Max Correlation: Listener-Listener 84.90 ± 0.05 85.11 ± 0.05
Applied Prob Max Correlation: Speaker-Speaker, No Disagreements 87.88 ± 0.04 88.20 ± 0.05

Table 5: Mean accuracies for the base and applied probabilistic models, using the specified target disagreement
strategy, shown with standard errors of the means. Highest accuracy for each category in bold.

plateauing, so we chose a beam size of 15 to main-508

tain the trade-off between computation time and509

performance.510

For the grid search process, analysis of alterna-511

tive utterances, and model checkpointing, accuracy512

was evaluated using the validation set based on513

the train/validation/test data split that Monroe et al.514

created.515

C Full Distribution of Marginal516

Probabilities517

Illustrations of the full distributions of marginal518

probabilities produced by the literal listener models519

are shown in Figure 2, as opposed to the summary520

statistics given in Table 3.521

D Target Disagreements – Full Results522

Table 5 lists the full results of various target dis-523

agreement strategies for each model type. Com-524

pared against Table 4, we see the same trends where525

the No Disagreements strategy performed the best,526

followed by Speaker-Speaker, Listener-Speaker,527

and lastly the Listener-Listener strategy.528
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Figure 2: Distribution of marginal probabilities pro-
duced by literal listener models for the target and dis-
tractor colours in the test set.
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