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Abstract

Causal discovery is the task of automatically infer-
ring causal structures, typically from observational
data. Recently, there has been much interest in
utilizing domain knowledge from large language
models (LLM) in causal discovery. However, ex-
isting LLM-based approaches only output a sin-
gle directed acyclic graph (DAG) without uncer-
tainty, which can be unreliable. In this work, we
investigate using LLMs alongside Bayesian struc-
ture learning (BSL) methods for causal discov-
ery, which output a distribution of possible graphs.
In particular, we propose to harness the domain
knowledge from the LLMs in the prior distribu-
tion over graphs, in place of uninformed priors or
human expertise. Our experiments show that LLM-
informed priors can improve the performance of
Bayesian structure learning methods.

1 INTRODUCTION

Causal Discovery (CD) is the task of automatically discov-
ering causal structure, typically represented as a directed
acyclic graph (DAG), from data generated from the causal
system. It has proven useful in various fields, including eco-
nomics [Imbens, 2004], biology [Wen et al., 2023], chem-
istry [Bi et al., 2023], and several others. Hence, there are a
wide range of algorithms to solve this problem. For instance,
constraint-based methods use conditional independencies
found in the data [Colombo and Maathuis, 2014, Zhang,
2008]. On the other hand, score-based methods define a
score function over DAGs, and search this space for the
best-scoring DAG [Zheng et al., 2018, Alonso-Barba et al.,
2013].

Most causal discovery algorithms output a point estimate
of the true causal graph. However, in real-life applications
of CD, it is often important to assess the uncertainty about

the selected model. This allows the analyst, for example, to
estimate probabilities of certain properties (e.g., that some
variables is a cause of some other), or consider different
plausible causal mechanisms consistent with the observa-
tions. Following this philosophy, some works propose CD
in a Bayesian manner [Friedman and Koller, 2000, Cundy
et al., 2021, Lorch et al., 2021]. Bayesian Structure Learning
algorithms define a posterior distribution of possible causal
DAGs given a prior distribution and likelihood function, that
is:

p(G,Θ|D) =
1

p(D)
p(G)p(Θ|G)p(D|G,Θ), (1)

where p(G) is the prior distribution over the possible graph
structures, p(Θ|G) is the prior over the BN parameters,
and p(D|G,Θ) is a likelihood function for the dataset D
given graph and parameters. Sampling from or tractably
representing this distribution is challenging as the marginal
data distribution, p(D), is computationally hard to estimate
(e.g., the number of DAG structures to average over is super-
exponential). As such, most algorithms rely on approximate
inference.

There has also been much recent interest in exploiting the
domain knowledge contained within large language models
(LLMs) to aid CD. Some works focus on using the LLM
alone to infer the causal graph [Long et al., 2022, Jiraler-
spong et al., 2024], while others incorporate LLM as an
oracle within existing causal discovery approaches [Ban
et al., 2025, 2023, Liu et al., 2024, Li et al., 2025].

The goal of this work is to use LLMs as a knowledge base of
expert domain knowledge to improve existing Bayesian CD
algorithms. For this purpose, we prompt GPT-4o [OpenAI
et al., 2024] and DeepSeek-V3 [DeepSeek-AI et al., 2025]
about each pair of edges and use the outputs as a prior
distribution for DiBS [Lorch et al., 2021], a differentiable
Bayesian structure learning algorithm based on variational
inference.
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2 RELATED WORK

Bayesian Causal Discovery Due to the intractability
of the posterior over causal graphs in high dimensions,
Bayesian approaches typically approximate Equation (1)
typically resort to Markov Chain Monte Carlo Madigan and
York [1995], Heckerman et al. [2006] or variational infer-
ence [Cundy et al., 2021, Lorch et al., 2021]. The output
of these algorithms consists of a sample of graphs or vari-
ational representation of the posterior, which can be used
for Bayesian model averaging for inference of downstream
causal effects [Toth et al., 2022]. In this paper, we focus on
the DiBS Bayesian structure learner [Lorch et al., 2021],
which is a differentiable framework for that operates in the
continuous space of a latent probabilistic graph representa-
tion. DiBS produces a set of (approximate) samples from
either the marginal posterior over DAG structures or the
joint posterior over DAG structures and parameters (Equa-
tion (1)).

LLMs for Causal Discovery Some works in this area
focus on extracting the whole graph directly from the LLM.
Jiralerspong et al. [2024], for example, focuses on prompt-
ing the LLM edge by edge using breadth-first search (BFS),
which uses a linear number of queries. Vashishtha et al.
[2023], on the other hand, proposes some prompting strate-
gies asking the LLMs about three variables at a time. There
are also recent works focusing on using LLMs to select inter-
vention targets for CD [Li et al., 2025]. Kiciman et al. [2024]
empirically study the use of LLMs in causal discovery tasks
and find that LLM-based methods, on average, outperform
state-of-the-art data-driven CD algorithms in well-known
datasets or common sense knowledge; though they can also
exhibit unexpected failure modes. The prompts we use in
the present work are inspired by examples from this paper.

3 METHODOLOGY

In Bayesian structure learning, a key step is the specification
of the prior over causal graphs. Typically, this involves ei-
ther using either simple, uninformed priors [Eggeling et al.,
2019], or edge probabilities obtained from human experts;
the former does not incorporate any domain knowledge,
while the latter is not always available. In this work, we
propose to instead elicit this prior information from large
language models. In particular, we propose to extract prior
probailities for each individual edge from the LLM.

There is an ongoing discussion in the literature about how
to calculate the uncertainty over an LLM’s response to a
question [Tanneru et al., 2024]. Directly prompting the LLM
to respond with its uncertainty was shown not to be very
accurate [Xiong et al., 2024]. Some other works use the
model’s logits to estimate its uncertainty over its answer
[Ma et al., 2025]. However, logits are not available for the

best performing closed-source LLMs such as GPT-4o.

Thus, we choose to work with a Monte Carlo estimate, in
which we use 10 sampled LLM generations for each edge.
To avoid degenerate probabilities, we replace 1 with 0.99
and 0 with 1e-10. As a result, we obtain a probabilistic
adjacency matrix P ∈ (0, 1)d×d where d is the number
of variables. The original prior distribution used in DiBS
assumes that each edge exists independently with a given
probability. We substitute this prior with the edge probabili-
ties given by the LLM’s output:

p(G) ∝
∏

(i,j)∈E

Pij

∏
(i,j)̸∈E

(1− Pij). (2)

4 EXPERIMENTS AND RESULTS

We use the Sachs protein dataset [Sachs et al., 2005], which
was used in the DiBS paper, the MAGIC-NIAB [Scutari
et al., 2014] dataset, and a custom dataset based on common
sense knowledge that we call Summer. Full details about
all of the datasets and causal graphs can also be found in
Appendix A.

Figure 1: Sachs prompt example. The first box contains the
instruction given to the model, and the second the content.

For the LLM prior extraction, we prompt 2 different LLMs:
GPT-4o [OpenAI et al., 2024] and DeepSeek-V3 [DeepSeek-
AI et al., 2025]. We show a prompt example for the Sachs
dataset in Figure 1. According to the LLM’s outputs, we
build probabilistic adjacency matrices that are used as priors
in DiBS. Figures 2, 3 and 4 show the matrices, where each
entry represents the probability of the respective edge. Green
represents 100% and dark blue 0%.

For all experiments, we run DiBS with 30 starting latent
particles and 3000 iterations. We repeat the experiment 10



Figure 2: Sachs’ true adjacency matrix, followed by
DeepSeek’s prior on the left and GPT’s prior on the right.

Figure 3: MAGIC-NIAB’s true adjacency matrix, followed
by DeepSeek’s prior on the left and GPT’s prior on the right.

times and calculate the expected structural Hamming dis-
tance (E-SHD) for each of them, defined by:

E-SHD(p,G∗) :=
∑
G

p(G|D) SHD(G,G∗), (3)

where G∗ is the ground truth graph, and p(G|D) is the
approximate posterior over graphs given by DiBS (in this
case, an empirical sample of 30 graphs). We also compute
the AUROC, which is a standard metric that treats Bayesian
structure learning as a probabilistic binary classification
problem for each edge.

As a baseline to assess the LLM’s elicited prior, we compute
the E-SHD over both GPT’s and DeepSeek’s estimated
distributions (that are used to define the BSL prior). In

Figure 4: Summer’s true adjacency matrix, followed by
DeepSeek’s prior on the left and GPT’s prior on the right.

particular, we sample 30 random graphs according to the
estimated edge probabilities, rejecting those that are not
acyclic. Then, we compute the (average) SHD between the
remaining DAG samples and the ground truth graph. Table
1 shows the results.

Analyzing the results for the Sachs dataset, we observe that,
in both cases (GPT and DeepSeek), the prior distribution
is as close (if not closer) to the ground truth graph as the
approximate posterior (inferred by DiBS) in expectation,
as measured by E-SHD. However, the highest AUROC is
achieved by DiBS using DeepSeek’s prior, while GPT’s
prior alone results in the lowest AUROC, even though it has
the best SHD. This can be explained by the results seen in
Figure 2, where GPT predicts very few edges (leading to a
low E-SHD since the true graph is fairly sparse), but does
not accurately capture uncertainty over the remaining edges.

For the MAGIC-NIAB dataset, we construct a case where
causal sufficiency is violated and so data-driven approaches
assuming suffiency are expected to perform poorly. In par-
ticular, we select a subset of the 44 variables and consider
the subgraph induced by those variables (see Appendix A.2
for details). In this case, there are many unobserved con-
founders, and so, as expected, DiBS discovers significantly
more edges than are actually present in the causal graph.
On the other hand, the LLM priors achieve better perfor-
mance at distinguishing the true causal edges due to their
domain knowledge. Interestingly, we also observe that DiBS
with either of the LLM priors performs similarly to DiBS
using the original edge prior. This suggests that, at least
for DiBS, prior information is insufficient to correct for the
data-generating assumptions being violated.

Given that Sachs and MAGIC-NIAB are existing datasets/-
causal graphs that may have appeared in the pretraining



Table 1: Experimental result for causal discovery on Sachs,
MAGIC-NIAB and Summer datasets; we show the mean
and standard deviation over 10 runs.

Sachs
MODEL E-SHD AUROC
DiBS 23.4 ± 0.5 0.58 ± 0.04
DiBS + GPT 21.7 ± 0.5 0.64 ± 0.03
DiBS + DeepSeek 26.7 ± 0.6 0.67 ± 0.06
GPT (prior) 18.07 ± 0.25 0.57 ± 0.005
DeepSeek (prior) 24.97 ± 0.55 0.63 ± 0.009

Magic-Niab
MODEL E-SHD AUROC
DiBS 13.76 ± 1.1 0.43 ± 0.05
DiBS + GPT 16.07 ± 2.68 0.45 ± 0.04
DiBS + DeepSeek 16.24 ± 2.75 0.46 ± 0.04
GPT (prior) 7.03 ± 0.18 0.5 ± 0
DeepSeek (prior) 5.07 ± 0.25 0.70 ± 0.01

Summer
MODEL E-SHD AUROC
DiBS 12.17 ± 0.98 0.80 ± 0.05
DiBS + GPT 12.42 ± 0.38 0.80 ± 0.03
DiBS + DeepSeek 9.68 ± 1.25 0.89 ± 0.04
GPT (prior) 8.97 ± 0.18 0.71 ± 0.01
DeepSeek (prior) 3.07 ± 0.25 0.91 ± 0.02

data of LLMs, we chose to construct a novel common-
sense causal graph, Summer. For this graph, incorporating
DeepSeek’s prior substantially improves the original model,
both in terms of SHD and AUROC. In contrast, GPT’s prior
yields results comparable to those of the original DiBS prior.
Nevertheless, in the case of GPT, the posterior distribution
is closer to the ground truth than the prior when considering
AUROC alone.

Overall, for the three datasets, the best SHD results were
from the prior distributions alone; for both the MAGIC-
NIAB and Summer datasets, using DeepSeek alone yields
the best overall performance in terms of both E-SHD and
AUROC. This indicates that modern LLMs are highly effec-
tive at solving simpler CD tasks, particularly discovering
small graphs in well-known domains.

One limitation of using (E-)SHD as a metric is that a DAG
with some correctly placed edges and some incorrect ones
may have the same SHD as a graph in which all edges are
incorrectly placed. Additionally, it does not reward accurate
estimation of uncertainty. Considering AUROC alone, we
observe that for the Summer and Sachs datasets, incorpo-
rating GPT prior through BSL significantly improved the
results. For the Sachs dataset, the best AUROC among all
tested methods is given by using DiBS with DeepSeek’s
prior distribution.

5 CONCLUSION AND FUTURE WORK

In this work, we use two state-of-the-art LLMs to build
distributions of graphs to be used as priors for a Bayesian
Structure Learning framework that infers posterior distri-
butions of graphs given some dataset. We show that, if the
constructed LLM prior is close enough to the ground truth
graph, it is possible to combine the knowledge from an LLM
with a Bayesian Structure Learning framework to yield bet-
ter results than using the framework alone.

For the Sachs [Sachs et al., 2005] dataset, GPT-4o’s prior
was closer to the ground truth than the posterior distribu-
tion. An important observation is that Sachs [Sachs et al.,
2005] is one of the most commonly used datasets to test
CD algorithms. Therefore, it may have had a strong pres-
ence on the LLM’s training set, which leads to the LLM
being more accurate in its responses. However, we also see
good results when using our custom dataset, which is build
over common-sense knowledge. Thus, future work could
examine experimenting with different BSL algorithms and
larger causal graphs. One could also further investigate the
distributional uncertainty provided by the LLM posterior
beyond SHD and AUROC.
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A DATASETS

A.1 SACHS

Sachs [Sachs et al., 2005] is a famous real-world dataset about protein signaling, and one of the most used to test CD
algorithms. It has 7467 samples of 11 gaussian variables.

The ground-truth graph, suggested by the original paper, can be seen in Figure 5. However, there is still a discussion among
experts regarding some edges [Bavaria et al., 2013].

Figure 5: Sachs ground-truth graph.

A.2 MAGIC-NIAB

MAGIC-NIAB [Scutari et al., 2014] is a much smaller real-world dataset, with only 601 samples and with 44 variables.
Among them, 7 are wheat genetic traits and the others are genes. For this work we considered only the 7 traits as nodes.
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The ground-truth graph, suggested by the original paper, can be seen in Figure 6.

Figure 6: MAGIC-NIAB ground-truth graph.

A.3 SUMMER

Summer is a custom dataset built specifically for this work. It has 2001 samples of 7 variables that represent a common-sense
knowledge about summertime. Firstly, we defined the 7 variables. Then, we drew the causal graph representing the causal
relationships. This graph is shown in Figure 7. The graph was validated by a group of 15 people.

With the ground-truth graph in hand, we generate the Gaussian data using the following R code:

l i b r a r y ( data . t a b l e )
l i b r a r y ( g g p l o t 2 )
l i b r a r y ( simDAG )

dag <− empty _ dag ( )

dag <− dag +
node ( " summer " , t y p e =" rnorm " , mean=0 , sd =1) +
node ( " sun " , t y p e =" g a u s s i a n " , p a r e n t s =c ( " summer " ) , b e t a s =c ( r u n i f ( n =1 , min

=50 , max=100) ) , i n t e r c e p t = r u n i f ( n =1 , min =1 , max=10) , e r r o r = r u n i f ( n =1 ,
min =0 , max=5) ) +

node ( " v a c a t i o n " , t y p e =" g a u s s i a n " , p a r e n t s =c ( " summer " , " sun " ) , b e t a s = r u n i f ( n
=2 , min =50 , max=100) , i n t e r c e p t = r u n i f ( n =1 , min =1 , max=10) , e r r o r = r u n i f (
n =1 , min =0 , max=5) ) +

node ( " beach " , t y p e =" g a u s s i a n " , p a r e n t s =c ( " sun " , " v a c a t i o n " ) , b e t a s = r u n i f ( n
=2 , min =50 , max=100) , i n t e r c e p t = r u n i f ( n =1 , min =1 , max=10) , e r r o r = r u n i f (
n =1 , min =0 , max=5) ) +

node ( " sunburn " , t y p e =" g a u s s i a n " , p a r e n t s =c ( " sun " ) , b e t a s =c ( r u n i f ( n =1 , min
=50 , max=100) ) , i n t e r c e p t = r u n i f ( n =1 , min =1 , max=10) , e r r o r = r u n i f ( n =1 ,
min =0 , max=5) ) +

node ( " drowning " , t y p e =" g a u s s i a n " , p a r e n t s =c ( " beach " ) , b e t a s =c ( r u n i f ( n =1 ,



min =50 , max=100) ) , i n t e r c e p t = r u n i f ( n =1 , min =1 , max=10) , e r r o r = r u n i f ( n
=1 , min =0 , max=5) ) +

node ( " h o s p i t a l " , t y p e =" g a u s s i a n " , p a r e n t s =c ( " sunburn " , " drowning " ) , b e t a s =
r u n i f ( n =2 , min =50 , max=100) , i n t e r c e p t = r u n i f ( n =1 , min =1 , max=10) , e r r o r
= r u n i f ( n =1 , min =0 , max=5) )

summary ( dag )

s e t . s e ed ( 4 2 )
sim _ d a t <− sim _ from _ dag ( dag=dag , n_ sim =2000)

The parameters were generated pseudo-randomly by R functions.

Figure 7: Summer ground-truth graph.

B ADJACENCY MATRICES HEATMAPS

Figures 8, 9 and 10 show Sachs, MAGIC-NIAB and Summer’s true adjacency matrix, followed by DiBS+DeepSeek’s
posterior on the left and DiBS+GPT’s posterior on the right.

Figures 11, 12 and 13 show Sachs, MAGIC-NIAB and Summer’s priors: DeepSeek’s on the left and GPT’s on the right;
followed by DiBS+DeepSeek’s posterior on the left and DiBS+GPT’s posterior on the right.



Figure 8: Sachs’ true adjacency matrix, followed by DiBS+DeepSeek’s posterior on the left and DiBS+GPT’s posterior on
the right.

Figure 9: MAGIC-NIAB’s true adjacency matrix, followed by DiBS+DeepSeek’s posterior on the left and DiBS+GPT’s
posterior on the right.



Figure 10: Summer’s true adjacency matrix, followed by DiBS+DeepSeek’s posterior on the left and DiBS+GPT’s posterior
on the right.

Figure 11: Sachs’ priors: DeepSeek’s on the left and GPT’s on the right; followed by DiBS+DeepSeek’s posterior on the left
and DiBS+GPT’s posterior on the right.



Figure 12: MAGIC-NIAB’s priors: DeepSeek’s on the left and GPT’s on the right; followed by DiBS+DeepSeek’s posterior
on the left and DiBS+GPT’s posterior on the right.

Figure 13: Summer’s priors: DeepSeek’s on the left and GPT’s on the right; followed by DiBS+DeepSeek’s posterior on the
left and DiBS+GPT’s posterior on the right.
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