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ABSTRACT

Memory-efficient optimization is critical for training increasingly large language
models (LLMs). A popular strategy involves gradient low-rank projection, storing
only the projected optimizer states, with GaLore being a representative example.
However, a significant drawback of many such methods is their lack of convergence
guarantees, as various low-rank projection approaches introduce inherent biases at
each step relative to the original optimization algorithms even after taking expecta-
tion over stochastic sampling, which contribute to performance gaps compared to
full-parameter training. Aiming to tackle this problem, this paper investigates the
layerwise sampling technique for debiasing low-rank projection mechanisms. In
particular, an instantiation of the paradigm gives rise to a novel and step-wise unbi-
ased low-rank optimization method built upon GaLore’s mechanism and the Muon
algorithm, named GaLore Unbiased with Muon (GUM). We theoretically prove
our method matches the convergence guarantees of the base Muon algorithm while
preserving the memory efficiency of low-rank techniques. Empirical experiments
on LLM fine-tuning and pretraining also demonstrate non-trivial improvements
over GaLore and even better performance than full-parameter training. Further
investigation shows that the improvement of this technique comes from a more uni-
form distribution of knowledge inside layers, leading to more efficient utilization
of the model parameter space and better memorization.

1 INTRODUCTION

Figure 1: A counterexample of GaLore in linear re-
gression with Muon optimizer (Jordan et al., 2024),
where its debiased version GUM converges while
GaLore fails to converge.

Large language models (LLMs) have demon-
strated impressive performance across a diverse
range of tasks, including conversation (Ouyang
et al., 2022; Grattafiori et al., 2024b), mathemat-
ical reasoning (Guo et al., 2025), and agentic
applications (Qin et al., 2025). The advance-
ment of these powerful LLMs demands sub-
stantial GPU memory due to the large size of
the underlying models. For example, training a
70B model with full parameters requires approx-
imately 1.2 terabytes of GPU memory, which
exceeds the capacity of even 8×H100 GPUs.

To address this issue, memory-efficient training
techniques such as GaLore (Zhao et al., 2024)
have been introduced. GaLore projects gradi-
ents into a low-rank space, reducing the mem-
ory footprint of optimizer states during training.
Specifically, it employs the top-r components
from Singular Value Decomposition (SVD) to define a compact low-rank space, into which the
gradients are projected as Rt ← P⊤

t Gt. The optimization step is then performed in this low-
rank space, enabling memory savings for the optimizer states. For example, the first and second
moments in Adam (Kingma & Ba, 2014) are updated using M̃t ← β1M̃t−1 + (1 − β1)Rt and
Ṽt ← β2Ṽt−1 + (1− β2)Rt, where the low-rank projected gradient Rt replaces the original gradient
Gt. After the optimization step, the parameter update is projected back to the original space.
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Algorithm 1 Low-rank projection based gradient descent algorithms
1: Input: Initial weight W0 ∈ Rm×n (suppose m ≤ n), number of iterations K, learning rate η,

projection rank r.
2: for t = 0 to K − 1 do
3: Gt = G(Wt) ▷ Obtain the gradient at Wt

4: Pt ← get_projector() ▷ Obtain the projector Pt ∈ Rm×r

5: G̃t = P⊤
t Gt ▷ Obtain projection of the gradient in the low-rank space

6: St ← optimizer.update_state(G̃t) ▷ Run the base algorithm with G̃t

7: Wt+1 = Wt − ηPtSt ▷ Project the update back and update the weights
8: end for

Nevertheless, most low-rank optimization methods introduce biased gradient estimations at each step
during training (Muhamed et al., 2024; Zhang et al., 2024a; He et al., 2024; Huang et al., 2025), which
can lead to suboptimal convergence behavior and measurable performance gaps compared to standard
full-parameter training. These biases arise because low-rank projections, while computationally and
memory efficient, do not fully preserve the direction and magnitude of the true gradient, especially
in high-dimensional parameter spaces. As a result, the optimization trajectory diverges from that
of full-precision training, potentially causing slower convergence, reduced final model quality, or
instability in certain regimes (Zhao et al., 2024; Ding et al., 2022; Zhang et al., 2024a; Huang et al.,
2025). This limitation is particularly critical when pre-training large language models (LLMs), where
even small discrepancies in gradient estimation can propagate and amplify across many layers and
iterations.

To address this fundamental issue, we investigate the general debiasing technique using layerwise
sampling (Pan et al., 2024), which preserves the memory efficiency of training methods via randomly
freezing most of the layers. Specifically, the unique strength of layerwise sampling over the typi-
cal low-rank projected algorithms of GaLore is analyzed both theoretically and empirically. The
introduction of the debiasing technique into GaLore gives rise to a new algorithm called Galore
Unbiased with Muon (GUM), which demonstrates much better convergence guarantees and practical
performance in LLM training tasks. We summarize our major contributions as follows:

• We investigate the layerwise-sampling debiasing technique and propose a novel algorithm
called GaLore Unbiased with Muon (GUM), which unifies the strengths of GaLore and
Muon. GUM achieves the same theoretical convergence guarantees as Muon while retaining
the memory efficiency of GaLore, enabling scalable and effective training of large models.

• Empirical experiments in LLM training demonstrate that GUM consistently outperforms
GaLore in instruction-following, mathematical reasoning, and commonsense reasoning tasks
under the same memory budget. Surprisingly, in LLM pre-training experiments, GUM even
outperforms full-parameter trained AdamW by a non-trivial overall accuracy margin of
0.3%-1.1%, while obtaining on-par or better performance than AdamW in 6 out of 7 tasks.

• We analyze the underlying reasoning of GUM’s empirical improvements, discovering that
its high-rank update nature leads to a larger overall stable rank and more evenly distributed
singular values in model weights, which further induce a more long-tailed activation pattern
in trained models. This implies the performance gain is brought by more efficient utilization
of the model parameter space, in other words, better memorization.

2 RELATED WORK

Parameter-Efficient Algorithms in Practice. Parameter-Efficient Fine-Tuning (PEFT) methods
are widely adopted for training large-scale LLMs in practice. A typical approach is LoRA (Hu
et al., 2022), which freezes the original model and attaches a small trainable low-rank adapter,
thereby reducing memory consumption and improving training efficiency. However, LoRA has
been reported to exhibit a non-trivial performance gap compared to full-parameter training (Ding
et al., 2022; Lialin et al., 2023), due to its altered parameter space. These changes in parameter
space also introduce theoretical challenges in analyzing LoRA’s convergence properties with respect
to the original parameter space. To address the aforementioned deficiencies and extend LoRA to
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larger-scale training settings, GaLore (Zhao et al., 2024) proposes a different approach, which projects
the gradients—rather than the parameters—into low-rank spaces. In doing so, the error between the
full gradients and the approximated gradients becomes numerically quantifiable, as they now operate
within the same parameter space.

Following GaLore, a number of low-rank projection-based algorithms have emerged, where the
key component follows a similar paradigm to Algorithm 1, but with different projection matrices
P . GaLore utilizes the top-r entries U [:, : r] from SVD, which is computationally expensive. To
address this issue, GRASS (Muhamed et al., 2024) derives a sparse projection matrix P based solely
on the row norms of the gradients. Specifically, each projection entry is sampled from a multimodal
distribution proportional to the row norms. GRASS has been reported to achieve performance
comparable to GaLore with lower computational cost, though no theoretical guarantees have been
provided regarding its convergence. LoGE (Zhang et al., 2024a) obtains the low-rank projection P
by decomposing the original weight matrix W = BC, thereby implicitly allowing the backward
gradient to be low-rank. However, it is difficult to guarantee theoretical convergence due to the
empirical nature of the low-rank decomposition. GradNormLoRP (Huang et al., 2025) combines
ideas from LoRA and GaLore, resulting in a two-level projection P that further enhances memory
efficiency and reduces training cost. A variety of salience-aware sparse projections are also employed
in (Guo et al., 2020; Sung et al., 2021; Ansell et al., 2021; Das et al., 2023; Liu et al., 2024a), each
using different saliency metrics.

Despite the strong empirical performance across various practical settings, most of the aforementioned
methods lack guarantees regarding their theoretical convergence rates, which can be attributed to the
biasedness of the projected gradients. To bridge this gap, we investigate the debiasing technique of
layerwise-sampling that compensates for the errors introduced by low-rank projected updates, aiming
to improve their theoretical convergence guarantees while maintaining practical memory efficiency.

Unbiased Optimization Methods. The research on unbiased methods is an important part of
the optimization field, especially for distributed and memory-efficient optimization. This includes
methods of unbiased quantization (Alistarh et al., 2017; Suresh et al., 2017; Wang et al., 2022) and
unbiased sparsification (Wangni et al., 2018; Stich et al., 2018; Wang et al., 2018). The unbiased
property of these methods enables low communication/memory burden while maintaining guaranteed
convergence. For the recently popular low-rank projection-based methods, Fira (Chen et al., 2024)
provides an attempt to involve full-rank information by adding a scaled gradient projection to the
update, but without a rigorous theoretical justification of the approach. GoLore (He et al., 2024)
is probably the closest to building an unbiased algorithm. However, they employ a totally random
projection matrix for the algorithm to enable the convergence guarantee, which may fail to capture
the loss landscape properties and lead to slow convergence.

Muon Optimizer. Muon (Jordan et al., 2024) is a novel optimizer proposed recently, which
is gaining rapidly increasing attention because of its great potential in training large foundation
models (Liu et al., 2025a; Kimi, 2025), empirically outperforming AdamW on specific large-scale
tasks. On the theoretical side, An et al. (2025); Li & Hong (2025) proves its non-convex deterministic
and stochastic convergence, respectively, showing a strong theoretical guarantee for the optimizer.

3 ALGORITHM

3.1 GALORE UNBIASED WITH MUON

As previously shown in Algorithm 1, the core of low-rank gradient methods is to only store the
low-rank projected optimizer states, i.e., related to G̃t ∈ Rm×r, which is then projected back to the
weight space by multiplying Pt to update the weight Wt. The update conceptually shares similarities
with running the base optimizer using low-rank projected gradients PtP

⊤
t Gt instead of Gt.

This inspires the key idea of debiasing, that is, to compensate for biased errors introduced by the
low-rank projection PtP

⊤
t Gt. To implement this while retaining memory efficiency, we refer to the

main idea of LISA (Pan et al., 2024), which allows some of the blocks to be sampled uniformly with
probability q in each period. This compensated full-rank updates use Gt − PtP

⊤
t Gt, while other

blocks still do the original low-rank update. By carefully balancing the scaling constants for the
two different updates, the biased low-rank term can be canceled out in expectation, resulting in an
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Algorithm 2 GaLore Unbiased with Muon (GUM)
1: Input: {W0,ℓ ∈ Rmℓ×nℓ} with each ℓ corresponding to the ℓ-th block of parameters, number of

blocks NL, sampling period K, rank r for each layer, full-rank update layer number γ
2: for t = 0 to T/K − 1 do
3: for ℓ = 1 to NL do
4: Initialize Rt,0,ℓ = 0 ▷ Restart the momentum to clear memory
5: Gt,0,ℓ = G(Wt,ℓ) ▷ Obtain the gradient of the ℓ-th layer at Wt

6: Ut,ℓ, St,ℓ, Vt,ℓ = SVD(Gt,0,ℓ) ▷ Compute SVD of gradient obtained at WtK

7: Pt,ℓ = Ut,ℓ[:, : r] ▷ Obtain GaLore projector Pt,ℓ ∈ Rm×r (suppose mℓ ≤ nℓ)
8: end for
9: Each block ℓ is sampled to do full-rank updates with probability qt,ℓ ≡ q = γ

NL

10: for k = 0 to K − 1 do
11: Run (1) for all blocks sampled to compute low-rank update
12: Run (2) for all blocks sampled to compute full-rank update
13: end for
14: end for

unbiased estimation of gradients across iterations. Due to page limit, we present this general unbiased
algorithm paradigm in Algorithm 3 in Appendix A.

For a practical instance of this paradigm, we consider applying GaLore as the low-rank projection
method and Muon as the base algorithm, which gives birth to our proposed optimization algorithm,
called GaLore Unbiased with Muon (GUM), as presented in Algorithm 2.

In one training process, the algorithm contains separated periods just like the vanilla GaLore and
LISA. During each period t, each block of parameters is sampled to do full-rank updates with
probability qt,ℓ. In each iteration k in the period, we first compute the projection matrix Pt,k,ℓ and
sample the layers to do full-rank updates in this period.

If block ℓ is sampled to do the low-rank update, we apply the following update adapted from Muon
with Gt,k,ℓ = G(WtK+k,ℓ) as the gradient of block ℓ at iteration k in period t:

Rt,k,ℓ =βRt,k−1,ℓ +
1

1− qt,ℓ
P⊤
t,ℓGt,k,ℓ

WKt+k+1,ℓ =WKt+k,ℓ + ηt,kPt,ℓNewtonSchulz(Rt,k,ℓ)

(1)

Note that if we set qt,ℓ = 0, (1) is exactly GaLore with Muon as the base optimizer, which we will
refer to as GaLore-Muon. In terms of memory consumption, we can see that the optimizer states
requiring storage are the projection matrix Pt,ℓ ∈ Rmℓ×r and Rt,k,ℓ ∈ Rr×nℓ . Otherwise, the block
is sampled to compute high-rank updates, and the compensated projection update is applied.

Rt,k,ℓ =βRt,k−1,ℓ +
1

qt,ℓ

(
Gt,k,ℓ − Pt,ℓP

⊤
t,ℓGt,k,ℓ

)
WtK+k+1,ℓ =WtK+k,ℓ + ηt,kNewtonSchulz(Rt,k,ℓ)

(2)

In this case, Pt,ℓ ∈ Rmℓ×r and Rt,k,ℓ ∈ Rmℓ×nℓ are required to be stored.

Summarizing both cases, the overall memory consumption comparison with the vanilla GaLore-Muon
algorithm is obtained, as shown in Table 3. The memory consumption of GUM is higher than that
of GaLore when using the same projection rank r, due to the use of probabilistic full-rank updates.
However, as demonstrated in Section 5, by employing a smaller projection rank r′ as a trade-off, the
benefits of this additional memory consumption are sufficient to recover the performance loss and
even achieve a smaller overall memory footprint.

We can show that this update is unbiased compared to the original Muon update.
Lemma 1 (GUM is unbiased). A single iteration of Algorithm 2 for W ∈ Rm×n is equivalent to

M̃+ =βM̃ + G̃

W+ =W − ηNewtonSchulz(M̃+)

with E[G̃] = G ∈ Rm×n, where G denotes the gradient obtained at W , and the expectation is taken
over stochastic sampling and layerwise sampling random variable ζ, where
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• ζ = 0 when layer ℓ does a low-rank update, with probability 1− q,

• ζ = 1 when layer ℓ does a full-rank update, with probability q.

This unbiased technique is crucial for the convergence of the algorithm. As we will see in the
next subsection, GUM can recover similar convergence properties as the original Muon algorithm,
regardless of the employed projection matrix. This demonstrates substantial theoretical advantages
over the original biased GaLore-Muon algorithm.

4 CONVERGENCE ANALYSIS OF GUM

In this section, we present the convergence analysis of GUM. We consider the following assumptions
for the minimization problem minW∈Rm×n f(W ) with m ≤ n.

Assumption 1 (Lower bounded). There exists f∗ > −∞ such that f(W ) ≥ f∗ for all W ∈ Rm×n.

Assumption 2 (Smoothness). f is Lop-smooth with respect to the spectral norm ∥·∥op, i.e.,

∥∇f(W1)−∇f(W2)∥∗ ≤ Lop ∥W1 −W2∥op ,

for all W1,W2 ∈ Rm×n. ∥·∥op and ∥·∥∗ denotes the spectral norm and trace norm respectively.

Assumption 3 (Gradient noise). We assume the stochastic gradient G(W ) obtained at W is unbiased
and there exists a matrix V ∈ Rm×n such that

E[N(W )] = 0 and E
[
N(W )N(W )⊤

]
⪯ V V ⊤,

where N(W ) ≜ G(W )−∇f(W ) and A ⪯ B denotes that B −A is positive semidefinite.

Assumption 1 is standard in non-convex analysis. Based on the equivalence between norms, Assump-
tion 2 implies nothing more than the standard smoothness assumption on Frobenius norm, but is
more suitable in analyzing GUM or Muon (Jordan et al., 2024). Assumption 3 can also imply the
standard bounded variance assumption by E[∥N(W )∥2F] ≤ ∥V ∥

2
F. The style of these assumptions

can be found in previous work on analyzing adaptive methods and Sign-based methods (Bernstein
et al., 2018; Crawshaw et al., 2022; Liu et al., 2024b; An et al., 2025), where the assumptions are
employed for more fine-grained analysis and analyzing the potential benefits of these optimizers.

Assumption 4 (Exact Newton Schulz). We consider the case where the Newton-Schulz iteration
computes the exact solution, i.e., NewtonSchulz(X) = UV ⊤ with X = UΣV ⊤ as the SVD of X .

Assumption 4 is needed for analyzing Muon. As noted in Jordan et al. (2024); Liu et al. (2025a),
though the Newton-Schulz iteration adopted in Muon does not compute the exact UV ⊤ matrix, it
turns out that this error has little influence on the training curve. Then, based on the assumptions, we
can obtain the convergence guarantee for GUM.

Theorem 1 (Non-convex Convergence). Under Assumption 1-4, after running a total of T iterations
for Algorithm 2 with parameters set as (12), it holds that

min
0≤s≤T−1

E [∥∇f(Ws)∥] ≤ O

 1

α

√
Lop∆

T
+

(
Lop∆ ∥V ∥2∗

α5T

) 1
4

+
∥V ∥∗√
α3T

 ,

where ∆ ≜ f(W0)− f∗ and α ≜ min{q, 1− q}.

The proof can be found in Appendix B. The convergence theorem for GUM leads to several important
observations. Firstly, when we set q to be an absolute constant, the convergence of GUM matches
exactly the convergence rate of Muon. In the deterministic case, it matches the convergence result
of Muon proven in An et al. (2025). When the noise V is the dominant term, it also matches
the O(T−1/4) rate proven in Li & Hong (2025). Moreover, since we use more fine-grained and
appropriate assumptions to analyze GUM, Theorem 1 shows an even better dimensional dependence
than Li & Hong (2025). This consistency shows the power of the unbiased design, maintaining the
memory reduction of gradient low-rank methods without sacrificing the convergence guarantee.
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Remark 1. In Theorem 1, the optimal choice is q = 0.5 for fast convergence. Although any positive
constant q ∈ (0, 1) ensures the proved theoretical convergence, in practical settings, a large constant
q may lead to huge memory consumption. This indicates a fundamental tradeoff between time and
space, which is controlled by the choice of q. If the memory requirement is constant, it is preferable
to choose the largest affordable q ≤ 0.5. If the memory support is dynamic, e.g., the number of nodes
decreases at a later stage of training, it is better to schedule a diminishing q to adapt to this dynamic
memory.

As noted by He et al. (2024), GaLore using SGD with momentum (SGDM) as the base algorithm
converges in the deterministic non-convex setting, but can possibly diverge when the gradient noise
is large. We also empirically examine an extreme counterexample where GaLore-Muon doesn’t
converge at all in Section 5. Clearly, GUM fixes this problem. GoLore (He et al., 2024) is also
designed to correct the convergence of GaLore. However, though GoLore shows a good convergence
guarantee when the base algorithm is SGDM, it employs a thoroughly random projection matrix
to do low-rank updates, failing to capture the potential gradient low-rank properties as the GaLore
projection matrix does. This can lead to a much slower convergence speed when applied to real
training tasks.

5 EXPERIMENTAL RESULTS

5.1 SYNTHETIC SETTINGS

To better illustrate how GaLore may fail due to the low-rank projection, we consider the following
synthetic noisy problem.

Setup. The settings of the experiment are generally the same as the synthetic experiment in He et al.
(2024). We consider the following noisy linear regression problem.

min
X∈Rn×n

f(x) ≜
1

2
∥AX∥2F + ⟨B,X⟩ , ∇f(X; ξ) = ∇f(X) + ξσC,

where A = [In−r 0] ∈ R(n−r)×n, B =

[
D 0
0 0

]
∈ Rn×n with D ∈ R(n−r)×(n−r) a Gaussian

random matrix, C =

[
0 0
0 Ir

]
∈ Rn×n, ξ is a random variable with probability 0.5 to be 1 and

probability 0.5 to be 0, and σ is a constant controlling the noise level. It is straightforward to verify
that this is a smooth and convex optimization problem, with bounded gradient variance.

In our experiment, we specifically set n = 20, r = 12, σ = 100 to construct a small-scale but noisy
problem. For the vanilla (biased) GaLore Muon algorithm, we set the projection rank to be 12 as
well. For GUM, we set r = 2 and qt,ℓ = 0.5. We can see that in this case, the memory footprints of
the two algorithms are the same.

Table 1: Space complexity comparison between
GaLore and GUM for a block W ∈ Rm×m with
r′ < r ≤ m respectively. GUM uses a full-
rank update with probability q ∈ [0, 1], where the
memory GUM has the same memory consumption
when q = 2(r − r′)/(m− r′).

Method Space Complexity

GaLore O(2mr)

GUM O((2− q)mr′ + qm2)

SFT O(m2)

Results. The convergence result is shown in Fig-
ure 1. We adjust the minimum loss to 0 to better
visualize the difference. As we can see, GaLore
fails to converge at all, while GUM converges to
a comparable accuracy with the full-parameter
Muon baseline. The experiment shows a clear
benefit of the unbiased method, at least in noisy
settings.

Here is a more detailed analysis of why these
conditions lead to GaLore’s failure. In this syn-
thetic problem, the noise level is set to be large
and has rank r = 12, which is equal to the pro-
jection rank of GaLore. Since the noise is in a
dominant position, every time the r largest sin-
gular values of the stochastic gradient ∇f(X; ξ) come from the noise, so do the corresponding
singular vectors and the GaLore projection matrix. This meaningless projection makes the training
process not even take a single effective step towards solving the problem. Therefore, this synthetic

6
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experiment shows an extreme case in which GaLore can fail when the gradient noise is large. Also,
the experiment shows that GUM fixes the non-convergence problem with the same memory cost as
GaLore-Muon.

5.2 LLM FINE-TUNING SETTINGS

To verify the empirical effectiveness of the proposed algorithm in practice, we compare GUM with
GaLore in LLM fine-tuning settings.

Setup. The performance of the fine-tuned models is evaluated on two types of tasks: 1) IFEval
(Zhou et al., 2023), an instruction-following benchmark that assesses models’ adherence to explicit,
verifiable instructions, and 2) GSM8K (Cobbe et al., 2021a), a mathematical reasoning benchmark
that evaluates models’ problem-solving skills in grad-school level math questions.

For model choices, LLaMA3-8B (Grattafiori et al., 2024a), Qwen2.5-7B (Qwen et al., 2025), and
Gemma2-9B (Team et al., 2024) are adopted, which are commonly used in practical applications.

For training datasets, GPT-4-LLM is adopted on the instruction-following tasks of IFEval, which
consists of 54.6K high-quality GPT-4-generated instruction-response pairs across various instruction
categories. As for the mathematical reasoning task of GSM8K, a 2K-sized high-quality mixture 1 from
DART-Math (Tong et al., 2024), Ultra-Interact (Yuan et al., 2024), MathInstruct (Yue et al., 2023),
and Orca-Math (Mitra et al., 2024) is employed, which allows strong models such as Qwen-2.5-7B to
still obtain reasonable improvements after fine-tuning.

For hyperparameters, we adopt a rank of 512 for GaLore and 2 + 128 for GUM. The baselines include
Full-parameter Training with Muon (Jordan et al., 2024) (FT-Muon), Full-parameter Training with
AdamW (Loshchilov & Hutter, 2019) (FT-AdamW), Gradient Low-Rank Projection (GaLore) (Zhao
et al., 2024), Fira (Chen et al., 2024), Golore (He et al., 2024), LDAdam (Robert et al., 2025), and
Apollo (Zhu et al., 2025), where further details are available in Appendix C.

Table 3: Peak GPU memory usage across differ-
ent model architectures and configurations, empha-
sizing the variations among them. As specified in
the table, the GUM configuration 2 + 128 involves
updating two layers with full-rank gradients, while
all other layers are updated with low-rank gradi-
ents of rank r = 128.

Model GaLore GUM Layers + Rank

512 4 + 128 2 + 128

LLaMA-3-8B 42G 41G 40G
Qwen-2.5-7B 41G 40G 39G
Gemma-2-9B 47G 46G 44G

Memory Efficiency. We conducted peak GPU
memory experiments to evaluate GUM’s mem-
ory efficiency, demonstrating its comparable or
reduced memory footprint relative to GaLore.
Specifically, we focus on two key hyperparam-
eters: the rank and the number of selected lay-
ers for full-rank updates in GUM. To ensure a
fair comparison, all methods used a consistent
mini-batch size of 1, without employing addi-
tional GPU memory-saving techniques such as
offloading (Ren et al., 2021) or flash attention
(Dao et al., 2022; Dao, 2024).

As shown in Table 3, the GUM configuration
reaches comparable or better memory consump-
tion than GaLore. This improvement is not lim-
ited to a single case; consistent memory savings
are observed across multiple model architectures.

Results. As shown in Table 2, GUM consistently outperforms GaLore in both tasks, highlighting its
robustness and general effectiveness.

A closer look at GSM8K results reveals that GUM achieves notable improvements and even outper-
forms full-parameter training methods, suggesting its strength in enhancing reasoning capabilities.
In Section 5.4, it will be revealed that this improvement is very likely to have originated from its
improvements in memorization, especially when the learned activations are required to be long-tailed.

1The dataset is from https://huggingface.co/datasets/HanningZhang/scalebio_
distill_qwen_math, generated using the same setting as Appendix A.2 of (Pan et al., 2025).
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Table 2: LLM Fine-tuning Results. Trained models are evaluated on IFEval (instruction-following)
and GSM8K (mathematical reasoning). All experiments are conducted on a single H100 GPU.

Model Memory
Efficient Method

IFEval GSM8K

Prompt-level
Strict-Accuracy

Prompt-level
Loose-Accuracy Accuracy

LLAMA-3-8B

✗
FT-AdamW 23.66 25.14 57.39
FT-Muon 23.11 26.06 57.65

✓

Apollo (Zhu et al., 2025) 19.04 21.63 56.03
GaLore (Zhao et al., 2024) 21.07 22.74 57.38
Fira (Chen et al., 2024) 21.81 23.73 56.41
LDAdam (Robert et al., 2025) 22.74 24.40 57.92
GoLore (He et al., 2024) 23.01 24.95 57.54
GUM 22.37 24.03 58.45

QWEN-2.5-7B

✗
FT-AdamW 35.12 39.74 85.75
FT-Muon 34.38 39.19 85.90

✓

Apollo 31.61 36.41 85.67
GaLore 33.09 37.71 86.28
Fira 32.35 36.04 86.81
LDAdam 28.10 30.31 83.78
GoLore 30.87 35.67 86.66
GUM 33.46 38.82 86.81

GEMMA-2-9B

✗
FT-AdamW OOM OOM OOM
FT-Muon 28.47 32.16 76.92

✓

Apollo 25.14 28.10 75.28
GaLore 30.31 33.64 77.18
Fira 29.21 33.64 75.44
LDAdam 28.84 32.53 75.13
GoLore 31.05 34.38 74.98
GUM 33.27 36.60 77.48

5.3 LLM PRE-TRAINING SETTINGS

To provide stronger evidence for validating the effectiveness of GUM, a standard pre-training setting
is introduced to compare different training methods’ performance.

Setup. To evaluate the improvements in commonsense reasoning, the following downstream tasks
are employed: ARC (Clark et al., 2018), OpenBookQA (Mihaylov et al., 2018b), HellaSwag Zellers
et al. (2019a), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), and WinoGrande (Sakaguchi et al.,
2021a), which are common choices for LLM pre-training (Hoffmann et al., 2022a; Groeneveld et al.,
2024; Zhang et al., 2024b). For model choice, following the standard setting in Zhao et al. (2024), the
experiments covered three model sizes—60M, 130M, and 350M parameters of LLaMA. For training
datasets, we employ the widely-used C4 corpus (Raffel et al., 2023) under configurations guided by
the Chinchilla scaling law (Hoffmann et al., 2022b): 1.5B tokens for 60M, 2B tokens for 130M, and
7B tokens for 350M. For baselines, in addition to Galore and full-parameter training methods, we
include Fira (Chen et al., 2024) and Subtrack++ (He et al., 2024). Further details are available in
Appendix C.3.

Results. The performance comparison presented in Table 4 clearly indicates that GUM achieves
consistently better results than GaLore and, more surprisingly, even full-parameter training methods
like AdamW and Muon. This improvement can largely be attributed to the unbiased low-rank update
mechanism employed in GUM. The mechanism captures long-tailed gradient updates distributed
across layers and thereby enhances model memorization.

5.4 UNDERSTANDING THE EFFECT OF LAYERWISE SAMPLING

In this section, we investigate the underlying reason why the proposed algorithm of GUM can
yield empirical improvements over GaLore. In short, GUM’s high-rank gradient update leads to a
more uniform singular value distribution in model parameters, which further results in more evenly
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Table 4: LLM Pre-training Results. Trained models are evaluated on seven widely adopted
commonsense reasoning tasks. All experiments are conducted on H100 GPUs.

Model Method ARC-E ARC-C OBQA HellaSwag PIQA SIQA Winogrande Avg.

LLaMA-60M

FT-AdamW 32.87 17.92 12.68 26.70 58.87 35.88 50.12 33.58
FT-Muon 36.45 17.92 12.88 26.89 59.79 35.82 51.22 34.42
GaLore 35.35 17.92 12.47 26.74 59.63 35.62 49.88 33.94
Fira 35.02 18.94 12.27 26.75 58.71 36.24 50.28 34.03
Subtrack++ 37.96 16.92 13.08 27.07 60.45 37.05 51.67 34.89
GUM 36.28 17.41 13.68 26.70 60.12 36.54 51.85 34.65

LLaMA-130M

FT-AdamW 37.08 18.86 13.48 27.04 59.14 36.18 51.07 34.69
FT-Muon 38.34 18.00 13.08 27.67 62.68 37.00 49.33 35.16
GaLore 36.49 18.00 13.28 27.08 60.34 35.36 50.20 34.39
Fira 26.01 19.54 12.27 26.13 53.65 34.19 49.80 31.66
Subtrack++ 36.49 17.58 14.08 26.92 61.70 36.08 52.09 34.99
GUM 38.01 18.34 14.69 27.32 61.26 36.44 52.49 35.51

LLaMA-350M

FT-AdamW 44.02 18.77 14.08 30.04 64.42 37.97 50.51 37.12
FT-Muon 44.91 18.69 17.10 31.05 65.72 37.87 51.93 38.18
GaLore 43.10 18.52 14.89 29.09 62.19 37.10 52.01 36.58
Fira 42.38 18.77 15.49 29.27 63.00 37.97 51.85 36.96
Subtrack++ 40.45 18.43 14.49 28.50 63.06 37.72 50.25 36.13
GUM 44.44 19.80 15.69 29.28 64.53 38.13 51.38 37.42

distributed activations for input samples. This implies the long-tailed knowledge is better preserved
in GUM-trained models, yielding better memorization.

Setup. We adopt the model of LLaMA-130M and benchmark of ARC-E (Clark et al., 2018), while
keeping other settings the same as in Section 5.3.

Results. As shown in Figure 2, the overall stable ranks E
[
∥M∥2F /∥M∥22

]
of GaLore and GUM are

positively correlated with their performance in ARC-E, which provides direct evidence that higher
stable ranks are generally beneficial for improving commonsense reasoning.

On top of that, it is observed in Figure 3 that GUM not only improves the overall stable rank
of the trained model, but also shapes a set of more evenly distributed singular values in trained
models, which further leads to more long-tail distributed activation across all modules. This provides
indirect evidence and an intuitive explanation for the performance improvements in ARC-E: instead of
overusing a low-dimensional space or a limited number of modules, GUM-trained models demonstrate
a tendency to evenly distribute knowledge across all dimensions and modules, implying better
memorization. Additional evidence is available in Appendix D.2.

6 CONCLUSIONS

In this paper, we investigate the debiasing technique of layerwise sampling for memory-efficient
LLM training, whose combination with GaLore restores the theoretical convergence properties of
full-parameter training. Our proposed algorithm, GUM, demonstrates that it is possible to achieve
provable convergence in low-rank optimization without impairing its empirical performance and
memory efficiency. Further analysis shows that the empirical gains are brought by the inherent high-
rank updates, which lead to a higher overall stable rank and more uniformly distributed singular values
in model parameters, yielding more long-tailed activation patterns and implying better memorization.

ETHICS STATEMENT

After carefully reviewing the ethical regulations of the conference, to the best of our knowledge, this
work does not present any foreseeable ethical concerns. No negative societal or ethical impacts are
anticipated for the contribution of this work. The proposed algorithms are for general large language
model training, and do not involve anything about human subjects, potentially harmful insights,
potential conflicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy and
security issues, legal compliance, or research integrity issues.
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Figure 2: Higher Stable Rank→ Better Performance. A positive correlation is observed between
the overall stable rank E

[
∥M∥2F /∥M∥22

]
and ARC Easy score. Each dot represents a checkpoint

during pre-training after 1,000 steps, saved every 20 steps.

Figure 3: Left: Updates → Weights: Singular value distribution across layers of GaLore and
GUM, where GUM demonstrates a more even and long-tailed distribution of singular values. Right:
Weights→ Activations: Tail distribution of modules that contain salient activations, where salient
activations are defined as activations with top-k (k = 10, 000) attention scores over all modules.
Randomly sampled 1K inputs from the C4 corpus are utilized as prompts. Blue parts correspond to
GaLore’s tail distribution, while green parts stand for GUM’s further increase on top of GaLore.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure that our work is reproducible, with details provided in Section 5 and
Appendix C.
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Algorithm 3 An unbiased version of Algorithm 1
1: Input: {W0,ℓ ∈ Rmℓ×nℓ} with each ℓ corresponding to the ℓ-th block of parameters, number of

blocks NL, sampling period K, projection rank r
2: for t = 0 to T/K − 1 do
3: delete_optimizer_states() ▷ Delete the optimizer states to clear memory
4: Each block ℓ is sampled to do full-rank updates with probability qt,ℓ
5: for k = 0 to K − 1 do
6: for ℓ = 1 to Nℓ do
7: Gt,k,ℓ = G(WtK+k−1,ℓ) ▷ Obtain the gradient of the ℓ-th layer at Wt

8: Pt,k,ℓ ← get_projector() ▷ Obtain the projector Pt,k,ℓ ∈ Rmℓ×r

9: G̃t,k,ℓ =

{
1

qt,ℓ
(Imℓ

− Pt,k,ℓP
⊤
t,k,ℓ)Gt,k,ℓ, if block ℓ is sampled to be full-rank

1
1−qt,ℓ

P⊤
t,k,ℓGt,k,ℓ, else

10: St,k,ℓ ← optimizer.update_state(G̃t,k,ℓ) ▷ Run the base algorithm with
G̃t,k,ℓ

11: WtK+k+1,ℓ =

{
WtK+k,ℓ − ηSt,k,ℓ, if block ℓ is sampled to be full-rank
WtK+k,ℓ − ηPt,k,ℓSt,k,ℓ, else

12: end for
13: end for
14: end for

A A GENERAL UNBIASED LOW-RANK GRADIENT METHOD PARADIGM

Here, we present our unbiased algorithm paradigm in Algorithm 3. The key idea of the algorithm is
to compensate for biased errors introduced by the low-rank projection PtP

⊤
t Gt. To implement this

while retaining memory efficiency, we refer to the main idea of LISA (Pan et al., 2024), which allows
some of the blocks to be sampled uniformly with probability q in each period. This compensated
full-rank updates use Gt − PtP

⊤
t Gt, while other blocks still do the original low-rank update. By

carefully balancing the scaling constants for the two different updates, the biased low-rank term can
be canceled out in expectation, resulting in an unbiased estimation of gradients across iterations. This
unbiased version of the algorithm is presented in Algorithm 3.

In one training process, the algorithm contains separated periods just like the vanilla GaLore al-
gorithm (Zhao et al., 2024) and LISA (Pan et al., 2024). During each period t, each block of
parameters is sampled to do full-rank updates with probability qt,ℓ. In each iteration k in the period,
we first compute the projection matrix Pt,k,ℓ. Note that a lot of strategies for selecting projection
matrices and sampling importance can be applied here (Guo et al., 2020; Sung et al., 2021; Ansell
et al., 2021; Das et al., 2023; Muhamed et al., 2024; Ramesh et al., 2024; Liu et al., 2024a). Then,
the blocks not sampled to do full-rank updates run basically the same low-rank update with Algo-
rithm 1, while the full-rank blocks directly run the base optimizer with the compensated gradient
G̃t,k,ℓ = (Im − Pt,k,ℓP

⊤
t,k,ℓ)Gt,k,ℓ.

We note that the proposed debiasing technique Algorithm 3 works generally when the following
properties are satisfied:

• Property I. The columns of the low-rank projection matrix Pt ∈ Rm×r with r ≤ m are
orthonormal, i.e., P⊤

t Pt = Ir×r.

• Property II. The projection and optimization updates are commutable, which means that
St = Ptoptimizer.update_state(G̃t) = optimizer.update_state(PtG̃t).
Optimizers satisfying this property typically treat the update parameters as matrices instead
of vectors, and only conduct matrix operations in the update. Two standard examples include
SGD and Muon (Jordan et al., 2024).

If the two properties are satisfied, we can show that Algorithm 3 is unbiased compared to the base
optimizer, since it is equivalent to running the base optimizer with an unbiased estimation of the
gradient at each iteration.
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Lemma 2 (Unbiased update of Algorithm 3). When Property I and II are satisfied, a single iteration
of Algorithm 3 for W ∈ Rm×n is equivalent to

S ←optimizer.update_state(Ĝ)

W+ =W − ηS

with E[Ĝ] = G ∈ Rm×n, where G denotes the gradient obtained at W .

B PROOFS OF SECTION 3 AND 4

B.1 PROOF OF LEMMA 2 AND 1

Proof of Lemma 2. A single step of Algorithm 3 writes:

G̃ =

{ 1
q (I − PP⊤)G, with probability q
1

1−qP
⊤G, with probability 1− q

S =optimizer.update_state(G̃)

W+ =

{
W − ηS, with probability q
W − ηPS, with probability 1− q

where G is the gradient at W and P is the projection matrix obtained at W . Based on the commutative
property, we know that

W+ = W − ηPS = W − η optimizer.update_state(PG̃),

which means that the update step is equivalent to

Ĝ =

{ 1
q (I − PP⊤)G, with probability q
1

1−qPP⊤G, with probability 1− q

S =optimizer.update_state(Ĝ)

W+ =W − ηS

Since we have Ĝ is an unbiased estimation of G:

E[Ĝ] = q · 1
q
(I − PP⊤)G+ (1− q) · 1

1− q
PP⊤G = G,

we finish the proof that Algorithm 3 is unbiased compared to the base optimizer.

Proof of Lemma 1. Based on Lemma 2, we only need to prove that GUM satisfies the two properties
to finish the proof of Lemma 1.

Property I. Denote the projection matrix at one specific iteration P . Since P is obtained from the
SVD, we have P ∈ Rm×r and P⊤P = Ir.

Property II. The base algorithm of GUM is Muon (Jordan et al., 2024). To prove the commutative
property, we only need to prove that the Newton-Schulz iteration is commutable with P . In each
iteration of the Newton Schulz iteration NewtonSchulz(X), we compute

X+ = aX + bXX⊤X + cXX⊤XX⊤X,

where a, b, c ∈ R are absolute constants. Then consider NewtonSchulz(PX), we get

X+ =aPX + bPX(PX)⊤(PX) + cPX(PX)⊤(PX)(PX)⊤(PX)

=P (aX + bXX⊤X + cXX⊤XX⊤X),

where the second equality is because of Property I. Therefore, we obtain that

NewtonSchulz(PX) = P · NewtonSchulz(X),

which finishes the proof of Property II and thus the unbiased property of GUM.
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B.2 PROOF OF THEOREM 1

We first state the notations in the following proof writing. For simplicity, we assume that the total
iteration number T = Kτ . For k = 0, . . . ,K − 1 in a specific period t = 0, . . . , τ − 1, Algorithm 2
is mathematically equivalent to the following formulation:

G̃t,k =

{ 1
1−qt

PtP
⊤
t Gt,k, if ξt = 0

1
qt
(I − PtP

⊤
t )Gt,k, else

M̃t,k =βM̃t,k−1 + (1− β)G̃t,k

WtK+k+1 =WtK+k − ηNewtonSchulz(M̃t,k)

where Gt,k is the stochastic gradient obtained at WtK+k and ξt ∼ Bernoulli(qt) is the indicator
random variable such that ξt = 1 means using full-rank update in period t. We assume that the
full-rank probability qt ≡ q and step size ηt ≡ η are constants. The equivalence of Algorithm 2
and this formulation is shown by Lemma 1. At the beginning of each period, we initialize Pt from
Gt,0 and set M̃t,−1 = 0. Also, we denote ∇ft,k ≜ ∇f(WtK+k) and msign (X) ≜ UV ⊤ for
X = UΣV ⊤ as the SVD of X . Under Assumption 4, we have NewtonSchulz(X) = msign (X).
Note that here in the theoretical proof, we consider the damping, i.e., the 1− β term in the update of
M̃t,k. Since we initialize M̃t,k = 0 in each period, this damping will not affect the algorithm because
the Newton-Schulz iteration is irrelevant to the input scale.

To help simplify the convergence proof, we also denote the residual of the projector as Rt ∈
Rm×(m−r), i.e., we take Ut = [Pt Rt] ∈ Rm×m, which satisfies that P⊤

t Rt = 0, R⊤
t Pt = 0. Note

that since we consider only the case m ≤ n here, we have UtU
⊤
t = PtP

⊤
t +RtR

⊤
t = I . We further

define

Qt ≜

{
Pt, if ξt = 0
Rt, else (3)

and the following auxiliary sequence

Mt,k = βMt,k−1 + (1− β)Gt,k (4)

with Mt,−1 = 0, which is the exponential moving average of the real gradient. With these definitions,
we have

msign
(
M̃t,k

)
= msign

(
QtQ

⊤
t Mt,k

)
= Qtmsign

(
Q⊤

t Mt,k

)
, (5)

where the equation is based on the fact that Q⊤
t Qt = I .

We first make use of the smoothness assumption to obtain a one-step analysis.
Lemma 3 (One-step descent). Under Assumption 2 and 4 and setting ηt ≡ η, for t = 0, . . . , τ − 1
and k = 0, . . . ,K − 1, it holds that

f(WtK+k+1) ≤ f(WtK+k)− η
∥∥Q⊤

t ∇ft,k
∥∥
∗ +

1

2
η2Lop + 2η ∥Mt,k −∇ft,k∥∗ , (6)

where Qt is defined as (3).

Proof. Based on Assumption 2, we have the descent property

f(WtK+k+1) ≤f(WtK+k) + ⟨∇ft,K ,WtK+k+1 −WtK+k⟩+
Lop

2
∥WtK+k+1 −WtK+k∥2op

=f(WtK+k)− η
〈
∇ft,K ,msign

(
M̃t,k

)〉
+

Lopη
2

2

∥∥∥msign
(
M̃t,k

)∥∥∥2
op

=f(WtK+k)− η
〈
Mt,K ,msign

(
M̃t,k

)〉
+

Lopη
2

2

+η
〈
Mt,K −∇ft,k,msign

(
M̃t,k

)〉
≤f(WtK+k)− η

〈
Mt,K ,msign

(
M̃t,k

)〉
+

Lopη
2

2
+ η ∥Mt,K −∇ft,k∥∗ ,
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where the last inequality is based on the fact that ∥·∥∗ and ∥·∥op are dual norms and∥∥∥msign
(
M̃t,k

)∥∥∥
op

= 1. Then we further deal with the second term on the right hand side:

−
〈
Mt,K ,msign

(
M̃t,k

)〉
(5)
= −

〈
Mt,K , Qtmsign

(
Q⊤

t Mt,k

)〉
=−

〈
Q⊤

t Mt,K ,msign
(
Q⊤

t Mt,k

)〉
= −

∥∥Q⊤
t Mt,k

∥∥
∗

≤−
∥∥Q⊤

t ∇ft,k
∥∥
∗ +

∥∥Q⊤
t (Mt,k −∇ft,k)

∥∥
∗

≤−
∥∥Q⊤

t ∇ft,k
∥∥
∗ + ∥Mt,k −∇ft,k∥∗ ,

where the last inequality is based on that QtQ
⊤
t ⪯ I . Then combining the inequalities, we can finish

the proof.

Based on Lemma 3, we could find that a key to proving the convergence is the ∥Mt,k −∇ft,k∥∗
term. Let us define the following auxiliary sequences:

ϵt,k ≜ Mt,k −∇ft,k, St,k ≜ ∇ft,k−1 −∇ft,k, Nt,k ≜ Gt,k −∇ft,k (7)

and additionally set ∇ft,−1 ≜ ∇ft,0 for all t = 0, . . . , τ − 1. Then we consider decomposing the
desired ϵt based on the properties of moving average sequences.

Lemma 4 (Decompose ϵt,k). For t = 0, . . . , τ − 1 and k = 0, . . . ,K − 1, it holds that

ϵt,k =

k∑
i=1

βk−i+1St,i + (1− β)

k∑
i=0

βk−iNt,i − βk∇ft,0. (8)

Proof. From the definition of Mt,k in (4), we know that

Mt,k = βMt,k−1 + (1− β)Gt,k,

which implies that

ϵt =β(Mt,k−1 −∇ft,k−1) + β(∇ft,k−1 −∇ft,k) + (1− β)(Gt,k −∇ft,k)
=βϵt,k−1 + βSt,k + (1− β)Nt,k.

Then by applying the equality recursively and noting that ϵt,0 = (1 − β)Gt,0 − ∇ft,0 = (1 −
β)Nt,0 − β∇ft,0, we conclude the proof.

Then we produce the next lemma to state the variance contraction properties of momentum for Muon,
which has been explored for Normalized SGD (Cutkosky & Mehta, 2020) and SignSGD (Sun et al.,
2023), and also for Muon (Li & Hong, 2025), but with different assumptions.

Lemma 5 (Variance Contraction). Under Assumption 3, for t = 0, . . . , τ − 1 and k = 0, . . . ,K − 1,
it holds that

E

[∥∥∥∥∥(1− β)

k∑
i=0

βk−iNt,i

∥∥∥∥∥
∗

]
≤ ∥V ∥∗

√
(1− β2k)(1− β). (9)

Proof. Based on Lemma 8 in An et al. (2025), for an arbitrary symmetric positive definite matrix
H ∈ Rm×m, it holds that

E

[∥∥∥∥∥
k∑

i=0

βk−iNt,i

∥∥∥∥∥
∗

]
≤E


√√√√√∥H∥∗ tr

( k∑
i=0

βk−iNt,i

)⊤

H−1

(
k∑

i=0

βk−iNt,i

)


=E


√√√√√∥H∥∗ tr

( k∑
i=0

βk−iNt,i

)(
k∑

i=0

βk−iNt,i

)⊤

H−1



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≤

√√√√√∥H∥∗ E
tr

( k∑
i=0

βk−iNt,i

)(
k∑

i=0

βk−iNt,i

)⊤

H−1


=

√√√√∥H∥∗ E
[
tr

((
k∑

i=0

β2(k−i)Nt,iN⊤
t,i

)
H−1

)]
,

where the last inequality is based on the fact that E[
√
X] ≤

√
E[X] and the last equality is based on

the assumption that Nt,i and Nt,j are independent for i ̸= j, which implies E[tr
(
Nt,iN

⊤
t,jH

)
] = 0.

Then taking H = (V V ⊤)1/2 leads to√√√√∥H∥∗ E
[
tr

((
k∑

i=0

β2(k−i)Nt,iN⊤
t,i

)
H

)]
=

√√√√∥V ∥∗ E
[
tr

(
k∑

i=0

β2(k−i)Nt,iN⊤
t,i(V V ⊤)−

1
2

)]

≤

√√√√∥V ∥∗ k∑
i=0

β2(k−i)tr
(
V V ⊤(V V ⊤)−

1
2

)

≤∥V ∥∗

√
1− β2k

1− β2
,

where the first inequality is based on Assumption 3 and the second inequality is by algebra. Then,
combining the inequalities and multiplying 1− β gives the result.

Lemma 6 (Bound E ∥ϵt,k∥∗). Under Assumption 3, for t = 0, . . . , τ − 1 and k = 0, . . . ,K − 1, it
holds that

E[∥ϵt,k∥∗] ≤
1− βk

1− β
Lopη +

√
(1− β2k)(1− β) ∥V ∥∗ + βkE

[
∥∇ft,0∥∗

]
. (10)

Proof. Based on Lemma 4, it holds that

E
[
∥ϵt,k∥∗

]
=E

[∥∥∥∥∥
k∑

i=1

βk−i+1St,i + (1− β)

k∑
i=0

βk−iNt,i − βk∇ft,0

∥∥∥∥∥
∗

]

≤
k∑

i=1

βk−i+1 ∥St,i∥∗ +

∥∥∥∥∥(1− β)

k∑
i=0

βk−iNt,i

∥∥∥∥∥
∗

+
∥∥βk∇ft,0

∥∥
∗ ,

where the inequality is based on the triangular inequality. For the first term in the RHS, it holds that

∥St,i∥∗ = ∥∇ft,i−1 −∇ft,i∥∗ ≤ Lop ∥WtK+i−1 −WtK+i∥ = Lopη.

Thus we have

E
[
∥ϵt,k∥∗

]
≤

k∑
i=1

βk−i+1Lopη + E

[∥∥∥∥∥(1− β)

k∑
i=0

βk−iNt,i

∥∥∥∥∥
∗

]
+ E

[∥∥βk∇ft,0
∥∥
∗

]
(9)
≤

k∑
i=1

βk−i+1Lopη +
√

(1− β2k)(1− β) ∥V ∥∗ + βkE
[
∥∇ft,0∥∗

]
≤1− βk

1− β
Lopη +

√
(1− β2k)(1− β) ∥V ∥∗ + βkE

[
∥∇ft,0∥∗

]
,

which concludes the proof.

We need to further determine the expected projected gradient for ∇ft,0.
Lemma 7 (Expected projected gradient). For t = 0, . . . , τ − 1, it holds that

E
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
≥ min {q, 1− q}E

[
∥∇ft,0∥∗

]
. (11)
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Proof. Based on the algorithm, we know that ξt and WtK are independent, which means that

E
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
= (1− q)E

[∥∥P⊤
t ∇ft,0

∥∥
∗

]
+ qE

[∥∥R⊤
t ∇ft,0

∥∥
∗

]
.

Because we have Ut = [Pt Rt] that satisfies U⊤
t Ut = UtU

⊤
t = I , it holds for any X ∈ Rm×n that∥∥P⊤

t X
∥∥
∗ +

∥∥R⊤
t X

∥∥
∗ =tr

((
X⊤PtP

⊤
t X

) 1
2

)
+ tr

((
X⊤RtR

⊤
t X

) 1
2

)
≥tr

((
X⊤(PtP

⊤
t +RtR

⊤
t )X

) 1
2

)
=tr

((
X⊤X

) 1
2

)
= ∥X∥∗ .

Therefore, we have

E
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
=(1− q)E

[∥∥P⊤
t ∇ft,0

∥∥
∗

]
+ qE

[∥∥R⊤
t ∇ft,0

∥∥
∗

]
≥min {q, 1− q}

(
E
[∥∥P⊤

t ∇ft,0
∥∥
∗

]
+ E

[∥∥R⊤
t ∇ft,0

∥∥
∗

])
≥min {q, 1− q}E

[
∥∇ft,0∥∗

]
,

which completes the proof.

With the lemmas in hand, we are able to prove Theorem 1.

Proof of Theorem 1. Based on Lemma 3, for t = 0, . . . , τ − 1 and k = 0, . . . ,K − 1, it holds that

f(WtK+k+1)
(6)
≤f(WtK+k)− η

∥∥Q⊤
t ∇ft,k

∥∥
∗ +

1

2
η2Lop + 2η ∥Mt,k −∇ft,k∥∗

=f(WtK+k)− η
∥∥Q⊤

t ∇ft,k
∥∥
∗ +

1

2
η2Lop + 2η ∥ϵt,k∥∗ ,

where Qt is defined in (3) and ϵt,k is defined in (7). Then, after rearrangement and summation over k
and taking expectation, we have

K−1∑
k=0

ηE
[∥∥Q⊤

t ∇ft,k
∥∥
∗

]
≤E

[
f(WtK)− f(W(t+1)K)

]
+

1

2
η2KLop + 2η

K−1∑
k=0

E
[
∥ϵt,k∥∗

]
(10)
≤E

[
f(WtK)− f(W(t+1)K)

]
+

1

2
η2KLop

+ 2η

K−1∑
k=0

(
1− βk

1− β
Lopη +

(√
(1− β2k)(1− β) + βk

)
∥V ∥∗

)
≤E

[
f(WtK)− f(W(t+1)K)

]
+ η2KLop

(
1

2
+

2(1− βK)

1− β

)
+ 2η

(√
(1− β2k)(1− β) ∥V ∥∗ + βkE

[
∥∇ft,0∥∗

])
.

Since WtK+k is dependent on Qt, it would be difficult to bound E[∥Qt∇ft,k∥∗] for k ≥ 1. We
therefore consider
K−1∑
k=0

ηE
[∥∥Q⊤

t ∇ft,k
∥∥
∗

]
≥

K−1∑
k=0

ηE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
−

K−1∑
k=0

ηE
[∥∥Q⊤

t (∇ft,k −∇ft,0)
∥∥
∗

]
≥

K−1∑
k=0

ηE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
−

K−1∑
k=1

ηE
[
∥∇ft,k −∇ft,0∥∗

]
≥

K−1∑
k=0

ηE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
−

K−1∑
k=1

η

k∑
l=1

E
[
∥∇ft,l −∇ft,l−1∥∗

]
≥

K−1∑
k=0

ηE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
−

K−1∑
k=1

ηLop

k∑
l=1

E
[
∥WtK+l −WtK+l−1∥op

]
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≥KηE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
− K2

2
η2Lop,

where the first and third inequalities are based on the triangular inequality and the second inequality
is based on that QtQ

⊤
t ⪯ I . The second last inequality uses Assumption 2. Then we combine the

above inequalities and further sum up over t and use Assumption 1 to obtain that

τ−1∑
t=0

KE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
≤f(W0)− f∗

η
+ ηKτLop

(
K + 1

2
+

2(1− βK)

1− β

)

+ 2τK
√
(1− β2K)(1− β) ∥V ∥∗ +

τ−1∑
t=0

2(1− βK)

1− β
E
[
∥∇ft,0∥∗

]
.

Combining Lemma 7, we have

KE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
− 2(1− βK)

1− β
E
[
∥∇ft,0∥∗

]
≥ Kα

2
E
[
∥∇ft,0∥∗

]
where α ≜ min{q, 1− q} and we take α > 2

K and 1− β ≥ 2
Kα . Thus, we can obtain that

α

2τ

τ−1∑
t=0

E
[
∥∇ft,0∥∗

]
≤f(W0)− f∗

ηT
+ ηLop

(
K + 1

2
+

2

1− β

)
+ 2
√
1− β ∥V ∥∗

≤f(W0)− f∗

ηT
+ ηLop

(
K + 1

2
+Kα

)
+ 2
√

1− β ∥V ∥∗

By choosing the hyperparameter as

η =

√
TLop

(
K+1
2 +Kα

)
f(W0)− f∗ , β = 1− 2

Kα
, K = max

{
1,min

{
σ
√
T√

αL(f(W0)− f∗)
, T

}}
,

(12)

we can obtain that

min
t=0,..., T

K −1
E [∥∇f(WtK)∥] ≤ O

 1

α

√
Lop∆

T
+

(
Lop∆ ∥V ∥2∗

α5T

) 1
4

+
∥V ∥∗√
α3T

 ,

with ∆ ≜ f(W0)− f∗, which finishes the proof.

C TRAINING SETUP AND HYPERPARAMETERS

C.1 FINE-TUNING SETUP

In our experiments, we slightly modify the full-rank update rule (2) for GUM by multiplying (1−qt,ℓ)
on−Pt,ℓP

⊤
t,ℓGt,k,ℓ. This modification still preserves the unbiased property while being able to recover

the original full-parameter Muon algorithm by setting qt,ℓ = 1.

We utilize LMFlow (Diao et al., 2023)2 to perform full-parameter fine-tuning, GaLore tuning, and
GUM tuning. We set the number of training epochs for all fine-tuning scenarios to 1. All experiments
were conducted on a single NVIDIA H100 GPU with 80 GB of memory.

We explored a range of learning rates from 8×10−6 to 1×10−4, applying this range to Full Parameter
Training, GaLore, and GUM. For GaLore, we fixed the rank r = 512 and applied it uniformly across
all layers. In the case of GUM, the number of layers (γ) selected for full-rank updates was set to 2
for all models. The sampling interval K, which defines the number of update steps between each
layer selection, was varied between 10 and 300, depending on factors such as dataset size, batch size,
and total training steps. The models covered in this paper can be found in Table 5.

2https://github.com/OptimalScale/LMFlow
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Table 5: Baseline Model Configurations

Model Name # Params # Layers Model Dim

LLAMA-3-8B 8 B 32 4096
QWEN-2.5-7B 7 B 28 3584
GEMMA-2-9B 9 B 42 3584

C.2 FINE-TUNING HYPERPARAMETERS

We began our study by conducting a grid search over two key hyperparameters: (i) the learning rate and
(ii) the number of sampling layers used for full-rank updates. Given the strong empirical performance
of the GaLore method, we fixed the rank to r = 512. The learning rate was explored within the
range {8× 10−6, 2× 10−5, 4× 10−5, 6× 10−5, 8× 10−5, 1× 10−4}, applied consistently across
full parameter training, GaLore, and GUM. For GaLore, we followed the official Transformers
implementation 3, using the default settings and aligning the learning rate with the full parameter
training. With respect to the number of sampling layers, and in accordance with Table 3, we selected
values that did not exceed the GPU memory cost of GaLore. As a result, γ = 2 was used in most
GUM configurations. The sampling period K was uniformly set to 200 for all models. A detailed
summary of the optimal hyperparameter values identified for each setting is provided in Table 6.

Table 6: Optimal settings for each method were determined through hyperparameter search: FT
(Full-parameter Training)-AdamW, FT-Muon, GaLore, and GUM.

Model FT-AdamW FT-Muon GaLore GUM

lr lr lr Rank lr γ K

LLaMA-3-8B 3× 10−5 7× 10−5 9× 10−5 512 1× 10−4 2 200
Qwen-2.5-7B 1× 10−5 5× 10−5 7× 10−5 512 7× 10−5 2 200
Gemma-2-9B − 4× 10−5 4× 10−5 512 6× 10−5 2 200

C.3 PRE-TRAINING HYPERPARAMETERS

In our experiments, we utilize C-optim 4 for the pre-training. Following standard protocol, we fixed
the LLaMA context length to 1024 tokens. Similar to the fine-tuning setup, we made a grid search on
learning rate and the number of sampling layers. The sampling period K was set to 100 for 130M
and 350M models, 50 for the 60M model. A detailed summary of the optimal hyperparameter values
identified for each setting is provided in Table 7.

Table 7: Optimal settings for each method were determined through hyperparameter search: AdamW,
Muon, Fira, GaLore, and GUM.

Model AdamW Muon Fira GaLore GUM

lr lr lr Rank lr Rank lr γ K

LLaMA-60M 3× 10−3 1× 10−2 9× 10−3 256 9× 10−3 256 9× 10−3 4 50
LLaMA-130M 2× 10−3 5× 10−3 5× 10−3 256 5× 10−3 256 5× 10−3 4 100
LLaMA-350M 1× 10−3 3× 10−3 3× 10−3 256 3× 10−3 256 3× 10−3 6 100

3https://github.com/jiaweizzhao/GaLore
4https://github.com/kyleliang919/C-Optim
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Figure 4: Residual (χt = ∥Gu
t −Gp

t ∥F/∥Gu
t ∥F) between GaLore’s projected and original gradients

across different blocks during Gemma-2-9B fine-tuning. High residuals persist throughout training
(except for the iterations with projector updates), revealing systematic bias in GaLore updates.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 BIAS IN GALORE

To further illustrate how significant the bias in low-rank projection methods is, we analyze the
residuals between low-rank projected gradients and the original full-rank gradients across multiple
layers during the fine-tuning of the Gemma-2-9B model on the GPT-4-LLM dataset. The residual is
computed as follows:

χt =
∥Gu

t −Gp
t ∥F

∥Gu
t ∥F

, (13)

where Gu
t represents the original gradient at iteration t without projection, and Gp

t denotes the
low-rank projected gradients in GaLore-Muon. We can see that χt presents the relative error between
the original gradients and the projected gradients at iteration t, showing how much the projection
operation makes the gradient estimation biased from the original one. We measure this relative error
for each block of parameters along the trajectory of the GaLore-Muon algorithm every 20 iterations.
The projector update frequency is set to 200, and the projection rank is 512. We use a batch size of 16
and a learning rate of 7× 10−5. For demonstration purposes, we specifically select the self-attention
and MLP weights at layer 10.

As depicted in Figure 4, the relative error shows a periodic curve. It is relatively small (around
0− 20%) in the iteration t such that t is a multiple of the update frequency 200, where the projector
is updated based on the gradient. Since the GaLore projector is chosen as the singular vectors of the
largest singular values of the current gradient, it is a good low-rank projector for the current gradient,
which results in this small error. 5 However, we can see that the relative error rapidly increases after
this and achieves even higher than 60− 80% in less than 20 iterations. This implies that although the
low-rank projection of GaLore doesn’t hurt much in the first iteration, it makes little sense for the
following gradients, since the projection produces a really high relative error. Such a high relative
error demonstrates a remarkably significant bias between the low-rank projected gradients and the
original gradients, and between GaLore and the original gradient algorithm, highlighting the need to
derive an unbiased low-rank projection algorithm.

5Note that while the projector is good for the stochastic gradient used in the algorithm, it can still be a large
obstacle to the convergence, as shown in Figure 1.
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Figure 5: Detailed Singular Value Distribution. Left: GaLore. Right: GUM. It can be observed
that GaLore has a sudden magnitude drop in the tail distribution of singular values in gate proj
and up proj modules. GUM generally demonstrates smoother and more long-tailed singular value
distributions. Furthermore, GUM has a differentiated spectrum across different layers, while this
phenomenon is much weaker in GaLore.

Figure 6: Computational Cost Comparison. The quality-vs.-time curve of GaLore with K =
20/200 projector refreshing period and GUM.

D.2 SINGULAR VALUE DISTRIBUTION OF MODEL WEIGHTS

As shown in Figure 5, GUM demonstrates a smoother and more long-tailed singular value distribution
than GaLore, especially in modules of gate proj and up proj. The spectrums are also more
differentiated and have a non-trivial diversity across layers in GUM.

D.3 COMPUTATIONAL COST COMPARISON

To compare the computational cost between GaLore and GUM, additional experiments on LLaMA-
130M are conducted, following the same setting in Section 5.3. Results of different projector
refreshing periods K = 20/200 for GaLore are also included to understand the effect of projector
staleness. As shown in Figure 6, GUM is more computationally efficient than GaLore, and the
projector refreshing period has little effect on GaLore’s computational efficiency.
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Table 8: Ablation studies for different choice of #sampled full-rank layers, sampling period K, and
rank r. The default setup is #sampled full-rank layers = 4, K=200, and r=128.

#Sampled
full-rank
layers

Prompt-level
Strict
Accuracy

Prompt-level
Loose
Accuracy

K
Prompt-level
Strict
Accuracy

Prompt-level
Loose
Accuracy

r
Prompt-level
Strict
Accuracy

Prompt-level
Loose
Accuracy

1 30.87 34.20 20 29.21 33.83 32 30.98 36.89
2 31.61 35.12 100 30.68 35.21 64 31.24 36.60
4 33.27 36.60 200 33.27 36.60 128 33.27 36.60
6 33.39 36.75 500 29.39 33.27
10 32.36 36.16
20 28.36 30.76

Table 9: LLM Fine-tuning with More Baselines. Trained models are evaluated on IFEval
(instruction-following) and GSM8K (mathematical reasoning) with Qwen-2.5-7B model. All experi-
ments are conducted on a single H100 GPU.

Method
IFEval GSM8K

Prompt-level
Strict-Accuracy

Prompt-level
Loose-Accuracy Accuracy

LDAdamW (Robert et al., 2025) 28.10 30.31 83.78
Apollo (Zhu et al., 2025) 31.61 36.41 85.67
Subtrack++ (Rajabi et al., 2025) 29.76 34.01 86.66

GUM 33.46 38.82 86.81

D.4 ABLATION STUDIES

To better understand the tradeoff between sampling probability, sampling period, and ranks, additional
ablation studies are conducted following the setting of Section 5.2. All experiments are conducted on
IFEval benchmark with Gemma-2-9B.

As shown in the table above, the best choice of sampled layers is 6, where the performance starts to
degrade when more full-rank layers are introduced. This is consistent with the observation in Pan
et al. (2024), where this sampling-style training is conjectured to introduce an implicit regularization
effect for supervised fine-tuning tasks.

For the best sampling period K, our choice of K = 200 is already optimal, where a smaller K
may compromise the momentum and decelerate the training process, while a larger K results in
insufficient sampling of all layers.

For the best rank r, increasing the rank from 32 to 128 leads to overall performance improvements,
especially in prompt-level strict accuracy. This means the higher-rank update captures more details
for following the given instruction.

D.5 COMPARISON WITH MORE BASELINES

To further highlight GUM’s performance, we have included comparisons with LDAdamW (Robert
et al., 2025), Apollo (Zhu et al., 2025), and SubTrack++ (Rajabi et al., 2025) on IFEval and GSM8K
using the Qwen-2.5-7B model.

D.6 LARGER-SCALE PRE-TRAINING

To verify GUM’s effectiveness in pre-training on larger-sized model tasks, we conducted an additional
pre-training experiment on a 7B-sized LLaMA model. Due to computational resource constraints, we
follow the setup in SubTrack++ (Rajabi et al., 2025), and report results using the same number of
tokens for pre-training.

As shown in the table, GUM outperforms GaLore, AdamW, and Fira in 7B-sized models as well,
with better or no-worse performance on 4 out of 7 tasks, and a higher overall accuracy.
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Table 10: LLM Pre-training with 7B-sized LLaMA. Trained models are evaluated on seven widely
adopted commonsense reasoning tasks. All experiments are conducted on H100 GPUs.

Method ARC-E ARC-C OBQA HellaSwag PIQA SIQA Winogrande Avg.

GaLore 26.39 19.80 12.27 25.85 52.77 34.60 49.88 31.65
AdamW 26.68 18.94 13.48 26.11 51.69 34.54 50.70 31.73
Fira 26.46 20.90 13.01 25.65 52.34 34.75 50.54 31.95

GUM 26.64 20.90 12.27 25.83 53.75 35.26 50.91 32.22

D.7 LONGER TRAINING

To verify GUM’s effectiveness in longer training scenarios, we extended the number of epochs and
conducted additional experiments on the IFEval benchmark with Gemma-2-9B.

Table 11: LLM Fine-tuning with Longer Training. Trained models are evaluated on IFEval
(instruction-following) with Gemma-2-9B model. All experiments are conducted on a single H100
GPU.

#Epoch
IFEval

Prompt-level
Strict-Accuracy

Prompt-level
Loose-Accuracy

1 33.27 36.60
3 29.57 31.42
5 26.25 28.28

As shown in Table 11, the performance degrades with an increasing number of epochs, indicating
overfitting. So the number of epochs is sufficient for this supervised fine-tuning setting.

To further investigate GUM’s performance in effectively longer training settings, we conducted
additional experiments on LLaMA-60M in Table 4, increasing the data amount to 5B tokens (originally
1.5B).

As shown in Table 12, GUM still outperforms Fira and GaLore by a non-trivial margin, demonstrating
the effectiveness of GUM under longer training settings.

E FURTHER DISCUSSION

E.1 RELATIONSHIP WITH MUON OPTIMIZER

It is worth noticing that main focus of GUM is not the Muon optimizer (Jordan et al., 2024), but a
technique for debiasing existing low-rank training methods like GaLore (Zhao et al., 2024), which is
empirically orthogonal to the underlying optimizers such as AdamW and Muon.

Regarding Muon’s properties, there are several points worth mentioning:

• There is a fundamental tradeoff between Muon and AdamW across different model sizes.

– Generally, Muon favors deep and thin networks, while AdamW has memory advantages
in large-scale wide networks. On one hand, Muon may incur higher memory cost for
extremely large hidden layers, since Muon requires matrix–matrix multiplication in the
Newton–Schulz5 update, whereas AdamW only requires matrix–vector multiplication
operations. On the other hand, Muon has only one momentum term, while AdamW
has an additional second moment, which incurs extra memory consumption.

– For commonly used ∼7B-sized models like Gemma-2-9B, AdamW empirically re-
quires more GPU memory, as shown in Table 2, where AdamW triggers an out-of-
memory error while Muon does not.
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Table 12: LLM Pre-training with LLaMA-60M with long training (1.5B→ 5B tokens). Trained
models are evaluated on seven widely adopted commonsense reasoning tasks. All experiments are
conducted on H100 GPUs.

Method ARC-E ARC-C OBQA HellaSwag PIQA SIQA Winogrande Avg.

GaLore 37.50 18.60 11.07 27.07 60.66 37.56 49.57 34.58
Fira 37.16 17.66 14.29 27.38 60.72 37.62 50.83 35.09

GUM 37.79 17.75 14.29 27.30 61.26 37.81 51.67 35.41

• Muon has been successfully applied to Mixture-of-Experts training (Kimi, 2025) and
outperforms AdamW, as shown in (Liu et al., 2025a).

• Why do we choose Muon as the base optimizer in GUM? Muon performs well in large
LLMs, as demonstrated by Kimi K2 (Kimi, 2025), which has 1T total parameters and 32B
activated parameters. On the empirical side, Muon is demonstrated to perform better than
AdamW in pre-training tasks (Liu et al., 2025a; Kimi, 2025). In addition, Muon incurs less
memory consumption for common ∼7B-sized models since it has no second moments. On
the theoretical side, Muon satisfies properties I and II in Lemma 2, allowing the unbiasedness
to be proven.

F BROADER IMPACTS

Memory-efficient training techniques are critical for scalable LLM development and for democratizing
customized LLMs for broader societal use. Improving theoretical guarantees provides insights for the
invention of new methods with enhanced performance, leading to reduced computational resource
consumption and lower carbon dioxide emissions.

G LIMITATIONS

The technique of sampled high-rank updates inherently introduces high variance into the per-iteration
updates when the sampling probability is low, which leads to instability in the training procedure
and requires more careful tuning of the hyperparameters. To alleviate this issue, standard theoretical
tools for variance reduction can be employed (Johnson & Zhang, 2013; Needell et al., 2014; Ge
et al., 2019b), which we leave for future work here. The analysis can also be combined with other
acceleration (Zhang & Xiao, 2017; Ge et al., 2019a; Pan et al., 2021; 2023; Defazio et al., 2024; Liu
et al., 2025b) and generalization techniques (Arjovsky et al., 2019; Foret et al., 2020; Hao et al., 2025),
whose properties are worth investigating as open problems. The algorithm’s empirical performance
and computational cost in other types of models (Devlin et al., 2019; Rombach et al., 2022; Pan
et al., 2022; Liu et al., 2023; Gu & Dao, 2023; Hu et al., 2024; Wang et al., 2025; Mu & Lin, 2025)
and applications (Xia et al., 2023; Peebles & Xie, 2023; Pan et al., 2025) also remain as interesting
questions.

H THE USE OF LARGE LANGUAGE MODELS

ChatGPT and GPT-5 were adopted to polish the writing of the paper, where all revised sentences
were double-checked by the authors. OpenAI Deep Research was utilized for finding dataset licenses.

I LICENSES

For mathematical reasoning tasks in LLM fine-tuning, the training dataset comes from 4 different
sources: DART-Math (Tong et al., 2024), UltraInteract (Yuan et al., 2024), MathInstruct (Yue et al.,
2023), and Orca-Math (Mitra et al., 2024), with their licenses listed in Table 13. Other datasets and
benchmarks are also available in the same table.
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Training Datasets #Samples Kind License

teknium/GPT4-LLM-Cleaned6 55K Instruction CC BY-NC 4.0
DART-Math7 (Tong et al., 2024) 591K Math MIT
openbmb/UltraInteract_sft8 (Yuan et al., 2024) 289K Reasoning MIT
TIGER-Lab/MathInstruct9 (Yue et al., 2023) 262K Reasoning MIT
microsoft/orca-math-word-problems-200k10 (Mitra et al., 2024) 200K Math MIT
C4 corpus11 (Raffel et al., 2023) >1B Commonsense ODC-BY

IFEval (Zhou et al., 2023) 0.5K Instruction Apache-2.0
GSM8K (Cobbe et al., 2021b) 7.5K Math MIT
ARC-E (Clark et al., 2018) 5.2K Instruction CC-BY-SA-4.0
ARC-C (Clark et al., 2018) 2.6K Instruction CC-BY-SA-4.0
HellaSwag (Zellers et al., 2019b) 10K Commonsense reasoning MIT

PIQA12 (Bisk et al., 2020) 3K Commonsense reasoning Academic Free
License v. 3.0

SIQA (Sap et al., 2019) 2.2K Commonsense reasoning CC-BY-4.0 (Li et al., 2024)
Winogrande13 (Sakaguchi et al., 2021b) 1.8K Commonsense reasoning CC-BY
OBQA (Mihaylov et al., 2018a) 5.9K Commonsense reasoning (permissive open license)14

Table 13: Licenses of training datasets and benchmarks. Here, the number of samples for benchmarks
only counts the test set.

For code repositories, LMFlow (Diao et al., 2023) is released under Apache-2.0 license.

6https://huggingface.co/datasets/teknium/GPT4-LLM-Cleaned
7https://huggingface.co/datasets/hkust-nlp/dart-math-uniform
8https://huggingface.co/datasets/openbmb/UltraInteract_sft
9https://huggingface.co/datasets/TIGER-Lab/MathInstruct

10https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k
11https://huggingface.co/datasets/allenai/c4
12https://github.com/ybisk/ybisk.github.io/tree/master/piqa
13https://github.com/allenai/winogrande
14The OpenBookQA dataset is released under a permissive open license, making it freely avail-

able for academic research. In practice, sources indicate that the dataset is in the public do-
main or under a very permissive license. For example, a Kaggle distribution of OpenBookQA
explicitly labels it CC0 1.0 Universal (Public Domain) (https://www.kaggle.com/datasets/
thedevastator/openbookqa-a-new-dataset-for-advanced-question-a). Similarly, a
curated dataset list reports OpenBookQA’s license as Apache 2.0 (https://github.com/lmmlzn/
Awesome-LLMs-Datasets). Both of these licenses allow unrestricted use, redistribution, and modification
of the data, including for academic purposes.
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