
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNBIASED GRADIENT LOW-RANK PROJECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Memory-efficient optimization is critical for training increasingly large language
models (LLMs). A popular strategy involves gradient low-rank projection, storing
only the projected optimizer states, with GaLore being a representative example.
However, a significant drawback of many such methods is their lack of convergence
guarantees, as various low-rank projection approaches introduce inherent biases at
each step relative to the original optimization algorithms even after taking expecta-
tion over stochastic sampling, which contribute to performance gaps compared to
full-parameter training. Aiming to tackle this problem, this paper investigates the
layerwise sampling technique for debiasing low-rank projection mechanisms. In
particular, an instantiation of the paradigm gives rise to a novel and step-wise unbi-
ased low-rank optimization method built upon GaLore’s mechanism and the Muon
algorithm, named GaLore Unbiased with Muon (GUM). We theoretically prove
our method matches the convergence guarantees of the base Muon algorithm while
preserving the memory efficiency of low-rank techniques. Empirical experiments
on LLM fine-tuning and pretraining also demonstrate non-trivial improvements
over GaLore and even better performance than full-parameter training. Further
investigation shows that the improvement of this technique comes from a more uni-
form distribution of knowledge inside layers, leading to more efficient utilization
of the model parameter space and better memorization.

1 INTRODUCTION

Figure 1: A counterexample of GaLore in linear re-
gression with Muon optimizer (Jordan et al., 2024),
where its debiased version GUM converges while
GaLore fails to converge.

Large language models (LLMs) have demon-
strated impressive performance across a diverse
range of tasks, including conversation (Ouyang
et al., 2022; Grattafiori et al., 2024b), mathemat-
ical reasoning (Guo et al., 2025), and agentic
applications (Qin et al., 2025). The advance-
ment of these powerful LLMs demands sub-
stantial GPU memory due to the large size of
the underlying models. For example, training a
70B model with full parameters requires approx-
imately 1.2 terabytes of GPU memory, which
exceeds the capacity of even 8×H100 GPUs.

To address this issue, memory-efficient training
techniques such as GaLore (Zhao et al., 2024)
have been introduced. GaLore projects gradi-
ents into a low-rank space, reducing the mem-
ory footprint of optimizer states during training.
Specifically, it employs the top-r components
from Singular Value Decomposition (SVD) to define a compact low-rank space, into which the
gradients are projected as Rt ← P⊤

t Gt. The optimization step is then performed in this low-
rank space, enabling memory savings for the optimizer states. For example, the first and second
moments in Adam (Kingma & Ba, 2014) are updated using M̃t ← β1M̃t−1 + (1 − β1)Rt and
Ṽt ← β2Ṽt−1 + (1− β2)Rt, where the low-rank projected gradient Rt replaces the original gradient
Gt. After the optimization step, the parameter update is projected back to the original space.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Algorithm 1 Low-rank projection based gradient descent algorithms
1: Input: Initial weight W0 ∈ Rm×n (suppose m ≤ n), number of iterations K, learning rate η,

projection rank r.
2: for t = 0 to K − 1 do
3: Gt = G(Wt) ▷ Obtain the gradient at Wt

4: Pt ← get_projector() ▷ Obtain the projector Pt ∈ Rm×r

5: G̃t = P⊤
t Gt ▷ Obtain projection of the gradient in the low-rank space

6: St ← optimizer.update_state(G̃t) ▷ Run the base algorithm with G̃t

7: Wt+1 = Wt − ηPtSt ▷ Project the update back and update the weights
8: end for

Nevertheless, most low-rank optimization methods introduce biased gradient estimations at each step
during training (Muhamed et al., 2024; Zhang et al., 2024a; He et al., 2024; Huang et al., 2025), which
can lead to suboptimal convergence behavior and measurable performance gaps compared to standard
full-parameter training. These biases arise because low-rank projections, while computationally and
memory efficient, do not fully preserve the direction and magnitude of the true gradient, especially
in high-dimensional parameter spaces. As a result, the optimization trajectory diverges from that
of full-precision training, potentially causing slower convergence, reduced final model quality, or
instability in certain regimes (Zhao et al., 2024; Ding et al., 2022; Zhang et al., 2024a; Huang et al.,
2025). This limitation is particularly critical when pre-training large language models (LLMs), where
even small discrepancies in gradient estimation can propagate and amplify across many layers and
iterations.

To address this fundamental issue, we investigate the general debiasing technique using layerwise
sampling (Pan et al., 2024), which preserves the memory efficiency of training methods via randomly
freezing most of the layers. Specifically, the unique strength of layerwise sampling over the typi-
cal low-rank projected algorithms of GaLore is analyzed both theoretically and empirically. The
introduction of the debiasing technique into GaLore gives rise to a new algorithm called Galore
Unbiased with Muon (GUM), which demonstrates much better convergence guarantees and practical
performance in LLM training tasks. We summarize our major contributions as follows:

• We investigate the layerwise-sampling debiasing technique and propose a novel algorithm
called GaLore Unbiased with Muon (GUM), which unifies the strengths of GaLore and
Muon. GUM achieves the same theoretical convergence guarantees as Muon while retaining
the memory efficiency of GaLore, enabling scalable and effective training of large models.

• Empirical experiments in LLM training demonstrate that GUM consistently outperforms
GaLore in instruction-following, mathematical reasoning, and commonsense reasoning tasks
under the same memory budget. Surprisingly, in LLM pre-training experiments, GUM even
outperforms full-parameter trained AdamW by a non-trivial overall accuracy margin of
0.3%-1.1%, while obtaining on-par or better performance than AdamW in 6 out of 7 tasks.

• We analyze the underlying reasoning of GUM’s empirical improvements, discovering that
its high-rank update nature leads to a larger overall stable rank and more evenly distributed
singular values in model weights, which further induce a more long-tailed activation pattern
in trained models. This implies the performance gain is brought by more efficient utilization
of the model parameter space, in other words, better memorization.

2 RELATED WORK

Parameter-Efficient Algorithms in Practice. Parameter-Efficient Fine-Tuning (PEFT) methods
are widely adopted for training large-scale LLMs in practice. A typical approach is LoRA (Hu
et al., 2022), which freezes the original model and attaches a small trainable low-rank adapter,
thereby reducing memory consumption and improving training efficiency. However, LoRA has
been reported to exhibit a non-trivial performance gap compared to full-parameter training (Ding
et al., 2022; Lialin et al., 2023), due to its altered parameter space. These changes in parameter
space also introduce theoretical challenges in analyzing LoRA’s convergence properties with respect
to the original parameter space. To address the aforementioned deficiencies and extend LoRA to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

larger-scale training settings, GaLore (Zhao et al., 2024) proposes a different approach, which projects
the gradients—rather than the parameters—into low-rank spaces. In doing so, the error between the
full gradients and the approximated gradients becomes numerically quantifiable, as they now operate
within the same parameter space.

Following GaLore, a number of low-rank projection-based algorithms have emerged, where the
key component follows a similar paradigm to Algorithm 1, but with different projection matrices
P . GaLore utilizes the top-r entries U [:, : r] from SVD, which is computationally expensive. To
address this issue, GRASS (Muhamed et al., 2024) derives a sparse projection matrix P based solely
on the row norms of the gradients. Specifically, each projection entry is sampled from a multimodal
distribution proportional to the row norms. GRASS has been reported to achieve performance
comparable to GaLore with lower computational cost, though no theoretical guarantees have been
provided regarding its convergence. LoGE (Zhang et al., 2024a) obtains the low-rank projection P
by decomposing the original weight matrix W = BC, thereby implicitly allowing the backward
gradient to be low-rank. However, it is difficult to guarantee theoretical convergence due to the
empirical nature of the low-rank decomposition. GradNormLoRP (Huang et al., 2025) combines
ideas from LoRA and GaLore, resulting in a two-level projection P that further enhances memory
efficiency and reduces training cost. A variety of salience-aware sparse projections are also employed
in (Guo et al., 2020; Sung et al., 2021; Ansell et al., 2021; Das et al., 2023; Liu et al., 2024a), each
using different saliency metrics.

Despite the strong empirical performance across various practical settings, most of the aforementioned
methods lack guarantees regarding their theoretical convergence rates, which can be attributed to the
biasedness of the projected gradients. To bridge this gap, we investigate the debiasing technique of
layerwise-sampling that compensates for the errors introduced by low-rank projected updates, aiming
to improve their theoretical convergence guarantees while maintaining practical memory efficiency.

Unbiased Optimization Methods. The research on unbiased methods is an important part of
the optimization field, especially for distributed and memory-efficient optimization. This includes
methods of unbiased quantization (Alistarh et al., 2017; Suresh et al., 2017; Wang et al., 2022) and
unbiased sparsification (Wangni et al., 2018; Stich et al., 2018; Wang et al., 2018). The unbiased
property of these methods enables low communication/memory burden while maintaining guaranteed
convergence. For the recently popular low-rank projection-based methods, Fira (Chen et al., 2024)
provides an attempt to involve full-rank information by adding a scaled gradient projection to the
update, but without a rigorous theoretical justification of the approach. GoLore (He et al., 2024)
is probably the closest to building an unbiased algorithm. However, they employ a totally random
projection matrix for the algorithm to enable the convergence guarantee, which may fail to capture
the loss landscape properties and lead to slow convergence.

Muon Optimizer. Muon (Jordan et al., 2024) is a novel optimizer proposed recently, which
is gaining rapidly increasing attention because of its great potential in training large foundation
models (Liu et al., 2025a; Kimi, 2025), empirically outperforming AdamW on specific large-scale
tasks. On the theoretical side, An et al. (2025); Li & Hong (2025) proves its non-convex deterministic
and stochastic convergence, respectively, showing a strong theoretical guarantee for the optimizer.

3 ALGORITHM

3.1 GALORE UNBIASED WITH MUON

As previously shown in Algorithm 1, the core of low-rank gradient methods is to only store the
low-rank projected optimizer states, i.e., related to G̃t ∈ Rm×r, which is then projected back to the
weight space by multiplying Pt to update the weight Wt. The update conceptually shares similarities
with running the base optimizer using low-rank projected gradients PtP

⊤
t Gt instead of Gt.

This inspires the key idea of debiasing, that is, to compensate for biased errors introduced by the
low-rank projection PtP

⊤
t Gt. To implement this while retaining memory efficiency, we refer to the

main idea of LISA (Pan et al., 2024), which allows some of the blocks to be sampled uniformly with
probability q in each period. This compensated full-rank updates use Gt − PtP

⊤
t Gt, while other

blocks still do the original low-rank update. By carefully balancing the scaling constants for the
two different updates, the biased low-rank term can be canceled out in expectation, resulting in an

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 2 GaLore Unbiased with Muon (GUM)
1: Input: {W0,ℓ ∈ Rmℓ×nℓ} with each ℓ corresponding to the ℓ-th block of parameters, number of

blocks NL, sampling period K, rank r for each layer, full-rank update layer number γ
2: for t = 0 to T/K − 1 do
3: for ℓ = 1 to NL do
4: Initialize Rt,0,ℓ = 0 ▷ Restart the momentum to clear memory
5: Gt,0,ℓ = G(Wt,ℓ) ▷ Obtain the gradient of the ℓ-th layer at Wt

6: Ut,ℓ, St,ℓ, Vt,ℓ = SVD(Gt,0,ℓ) ▷ Compute SVD of gradient obtained at WtK

7: Pt,ℓ = Ut,ℓ[:, : r] ▷ Obtain GaLore projector Pt,ℓ ∈ Rm×r (suppose mℓ ≤ nℓ)
8: end for
9: Each block ℓ is sampled to do full-rank updates with probability qt,ℓ ≡ q = γ

NL

10: for k = 0 to K − 1 do
11: Run (1) for all blocks sampled to compute low-rank update
12: Run (2) for all blocks sampled to compute full-rank update
13: end for
14: end for

unbiased estimation of gradients across iterations. Due to page limit, we present this general unbiased
algorithm paradigm in Algorithm 3 in Appendix A.

For a practical instance of this paradigm, we consider applying GaLore as the low-rank projection
method and Muon as the base algorithm, which gives birth to our proposed optimization algorithm,
called GaLore Unbiased with Muon (GUM), as presented in Algorithm 2.

In one training process, the algorithm contains separated periods just like the vanilla GaLore and
LISA. During each period t, each block of parameters is sampled to do full-rank updates with
probability qt,ℓ. In each iteration k in the period, we first compute the projection matrix Pt,k,ℓ and
sample the layers to do full-rank updates in this period.

If block ℓ is sampled to do the low-rank update, we apply the following update adapted from Muon
with Gt,k,ℓ = G(WtK+k,ℓ) as the gradient of block ℓ at iteration k in period t:

Rt,k,ℓ =βRt,k−1,ℓ +
1

1− qt,ℓ
P⊤
t,ℓGt,k,ℓ

WKt+k+1,ℓ =WKt+k,ℓ + ηt,kPt,ℓNewtonSchulz(Rt,k,ℓ)

(1)

Note that if we set qt,ℓ = 0, (1) is exactly GaLore with Muon as the base optimizer, which we will
refer to as GaLore-Muon. In terms of memory consumption, we can see that the optimizer states
requiring storage are the projection matrix Pt,ℓ ∈ Rmℓ×r and Rt,k,ℓ ∈ Rr×nℓ . Otherwise, the block
is sampled to compute high-rank updates, and the compensated projection update is applied.

Rt,k,ℓ =βRt,k−1,ℓ +
1

qt,ℓ

(
Gt,k,ℓ − Pt,ℓP

⊤
t,ℓGt,k,ℓ

)
WtK+k+1,ℓ =WtK+k,ℓ + ηt,kNewtonSchulz(Rt,k,ℓ)

(2)

In this case, Pt,ℓ ∈ Rmℓ×r and Rt,k,ℓ ∈ Rmℓ×nℓ are required to be stored.

Summarizing both cases, the overall memory consumption comparison with the vanilla GaLore-Muon
algorithm is obtained, as shown in Table 3. The memory consumption of GUM is higher than that
of GaLore when using the same projection rank r, due to the use of probabilistic full-rank updates.
However, as demonstrated in Section 5, by employing a smaller projection rank r′ as a trade-off, the
benefits of this additional memory consumption are sufficient to recover the performance loss and
even achieve a smaller overall memory footprint.

We can show that this update is unbiased compared to the original Muon update.
Lemma 1 (GUM is unbiased). A single iteration of Algorithm 2 for W ∈ Rm×n is equivalent to

M̃+ =βM̃ + G̃

W+ =W − ηNewtonSchulz(M̃+)

with E[G̃] = G ∈ Rm×n, where G denotes the gradient obtained at W , and the expectation is taken
over stochastic sampling and layerwise sampling random variable ζ, where

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• ζ = 0 when layer ℓ does a low-rank update, with probability 1− q,

• ζ = 1 when layer ℓ does a full-rank update, with probability q.

This unbiased technique is crucial for the convergence of the algorithm. As we will see in the
next subsection, GUM can recover similar convergence properties as the original Muon algorithm,
regardless of the employed projection matrix. This demonstrates substantial theoretical advantages
over the original biased GaLore-Muon algorithm.

4 CONVERGENCE ANALYSIS OF GUM

In this section, we present the convergence analysis of GUM. We consider the following assumptions
for the minimization problem minW∈Rm×n f(W) with m ≤ n.

Assumption 1 (Lower bounded). There exists f∗ > −∞ such that f(W) ≥ f∗ for all W ∈ Rm×n.

Assumption 2 (Smoothness). f is Lop-smooth with respect to the spectral norm ∥·∥op, i.e.,

∥∇f(W1)−∇f(W2)∥∗ ≤ Lop ∥W1 −W2∥op ,

for all W1,W2 ∈ Rm×n. ∥·∥op and ∥·∥∗ denotes the spectral norm and trace norm respectively.

Assumption 3 (Gradient noise). We assume the stochastic gradient G(W) obtained at W is unbiased
and there exists a matrix V ∈ Rm×n such that

E[N(W)] = 0 and E
[
N(W)N(W)⊤

]
⪯ V V ⊤,

where N(W) ≜ G(W)−∇f(W) and A ⪯ B denotes that B −A is positive semidefinite.

Assumption 1 is standard in non-convex analysis. Based on the equivalence between norms, Assump-
tion 2 implies nothing more than the standard smoothness assumption on Frobenius norm, but is
more suitable in analyzing GUM or Muon (Jordan et al., 2024). Assumption 3 can also imply the
standard bounded variance assumption by E[∥N(W)∥2F] ≤ ∥V ∥

2
F. The style of these assumptions

can be found in previous work on analyzing adaptive methods and Sign-based methods (Bernstein
et al., 2018; Crawshaw et al., 2022; Liu et al., 2024b; An et al., 2025), where the assumptions are
employed for more fine-grained analysis and analyzing the potential benefits of these optimizers.

Assumption 4 (Exact Newton Schulz). We consider the case where the Newton-Schulz iteration
computes the exact solution, i.e., NewtonSchulz(X) = UV ⊤ with X = UΣV ⊤ as the SVD of X .

Assumption 4 is needed for analyzing Muon. As noted in Jordan et al. (2024); Liu et al. (2025a),
though the Newton-Schulz iteration adopted in Muon does not compute the exact UV ⊤ matrix, it
turns out that this error has little influence on the training curve. Then, based on the assumptions, we
can obtain the convergence guarantee for GUM.

Theorem 1 (Non-convex Convergence). Under Assumption 1-4, after running a total of T iterations
for Algorithm 2 with parameters set as (12), it holds that

min
0≤s≤T−1

E [∥∇f(Ws)∥] ≤ O

 1

α

√
Lop∆

T
+

(
Lop∆ ∥V ∥2∗

α5T

) 1
4

+
∥V ∥∗√
α3T

 ,

where ∆ ≜ f(W0)− f∗ and α ≜ min{q, 1− q}.

The proof can be found in Appendix B. The convergence theorem for GUM leads to several important
observations. Firstly, when we set q to be an absolute constant, the convergence of GUM matches
exactly the convergence rate of Muon. In the deterministic case, it matches the convergence result
of Muon proven in An et al. (2025). When the noise V is the dominant term, it also matches
the O(T−1/4) rate proven in Li & Hong (2025). Moreover, since we use more fine-grained and
appropriate assumptions to analyze GUM, Theorem 1 shows an even better dimensional dependence
than Li & Hong (2025). This consistency shows the power of the unbiased design, maintaining the
memory reduction of gradient low-rank methods without sacrificing the convergence guarantee.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Remark 1. In Theorem 1, the optimal choice is q = 0.5 for fast convergence. Although any positive
constant q ∈ (0, 1) ensures the proved theoretical convergence, in practical settings, a large constant
q may lead to huge memory consumption. This indicates a fundamental tradeoff between time and
space, which is controlled by the choice of q. If the memory requirement is constant, it is preferable
to choose the largest affordable q ≤ 0.5. If the memory support is dynamic, e.g., the number of nodes
decreases at a later stage of training, it is better to schedule a diminishing q to adapt to this dynamic
memory.

As noted by He et al. (2024), GaLore using SGD with momentum (SGDM) as the base algorithm
converges in the deterministic non-convex setting, but can possibly diverge when the gradient noise
is large. We also empirically examine an extreme counterexample where GaLore-Muon doesn’t
converge at all in Section 5. Clearly, GUM fixes this problem. GoLore (He et al., 2024) is also
designed to correct the convergence of GaLore. However, though GoLore shows a good convergence
guarantee when the base algorithm is SGDM, it employs a thoroughly random projection matrix
to do low-rank updates, failing to capture the potential gradient low-rank properties as the GaLore
projection matrix does. This can lead to a much slower convergence speed when applied to real
training tasks.

5 EXPERIMENTAL RESULTS

5.1 SYNTHETIC SETTINGS

To better illustrate how GaLore may fail due to the low-rank projection, we consider the following
synthetic noisy problem.

Setup. The settings of the experiment are generally the same as the synthetic experiment in He et al.
(2024). We consider the following noisy linear regression problem.

min
X∈Rn×n

f(x) ≜
1

2
∥AX∥2F + ⟨B,X⟩ , ∇f(X; ξ) = ∇f(X) + ξσC,

where A = [In−r 0] ∈ R(n−r)×n, B =

[
D 0
0 0

]
∈ Rn×n with D ∈ R(n−r)×(n−r) a Gaussian

random matrix, C =

[
0 0
0 Ir

]
∈ Rn×n, ξ is a random variable with probability 0.5 to be 1 and

probability 0.5 to be 0, and σ is a constant controlling the noise level. It is straightforward to verify
that this is a smooth and convex optimization problem, with bounded gradient variance.

In our experiment, we specifically set n = 20, r = 12, σ = 100 to construct a small-scale but noisy
problem. For the vanilla (biased) GaLore Muon algorithm, we set the projection rank to be 12 as
well. For GUM, we set r = 2 and qt,ℓ = 0.5. We can see that in this case, the memory footprints of
the two algorithms are the same.

Table 1: Space complexity comparison between
GaLore and GUM for a block W ∈ Rm×m with
r′ < r ≤ m respectively. GUM uses a full-
rank update with probability q ∈ [0, 1], where the
memory GUM has the same memory consumption
when q = 2(r − r′)/(m− r′).

Method Space Complexity

GaLore O(2mr)

GUM O((2− q)mr′ + qm2)

SFT O(m2)

Results. The convergence result is shown in Fig-
ure 1. We adjust the minimum loss to 0 to better
visualize the difference. As we can see, GaLore
fails to converge at all, while GUM converges to
a comparable accuracy with the full-parameter
Muon baseline. The experiment shows a clear
benefit of the unbiased method, at least in noisy
settings.

Here is a more detailed analysis of why these
conditions lead to GaLore’s failure. In this syn-
thetic problem, the noise level is set to be large
and has rank r = 12, which is equal to the pro-
jection rank of GaLore. Since the noise is in a
dominant position, every time the r largest sin-
gular values of the stochastic gradient ∇f(X; ξ) come from the noise, so do the corresponding
singular vectors and the GaLore projection matrix. This meaningless projection makes the training
process not even take a single effective step towards solving the problem. Therefore, this synthetic

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

experiment shows an extreme case in which GaLore can fail when the gradient noise is large. Also,
the experiment shows that GUM fixes the non-convergence problem with the same memory cost as
GaLore-Muon.

5.2 LLM FINE-TUNING SETTINGS

To verify the empirical effectiveness of the proposed algorithm in practice, we compare GUM with
GaLore in LLM fine-tuning settings.

Setup. The performance of the fine-tuned models is evaluated on two types of tasks: 1) IFEval
(Zhou et al., 2023), an instruction-following benchmark that assesses models’ adherence to explicit,
verifiable instructions, and 2) GSM8K (Cobbe et al., 2021a), a mathematical reasoning benchmark
that evaluates models’ problem-solving skills in grad-school level math questions.

For model choices, LLaMA3-8B (Grattafiori et al., 2024a), Qwen2.5-7B (Qwen et al., 2025), and
Gemma2-9B (Team et al., 2024) are adopted, which are commonly used in practical applications.

For training datasets, GPT-4-LLM is adopted on the instruction-following tasks of IFEval, which
consists of 54.6K high-quality GPT-4-generated instruction-response pairs across various instruction
categories. As for the mathematical reasoning task of GSM8K, a 2K-sized high-quality mixture 1 from
DART-Math (Tong et al., 2024), Ultra-Interact (Yuan et al., 2024), MathInstruct (Yue et al., 2023),
and Orca-Math (Mitra et al., 2024) is employed, which allows strong models such as Qwen-2.5-7B to
still obtain reasonable improvements after fine-tuning.

For hyperparameters, we adopt a rank of 512 for GaLore and 2 + 128 for GUM. The baselines include
Full-parameter Training with Muon (Jordan et al., 2024) (FT-Muon), Full-parameter Training with
AdamW (Loshchilov & Hutter, 2019) (FT-AdamW), Gradient Low-Rank Projection (GaLore) (Zhao
et al., 2024), Fira (Chen et al., 2024), Golore (He et al., 2024), LDAdam (Robert et al., 2025), and
Apollo (Zhu et al., 2025), where further details are available in Appendix C.

Table 3: Peak GPU memory usage across differ-
ent model architectures and configurations, empha-
sizing the variations among them. As specified in
the table, the GUM configuration 2 + 128 involves
updating two layers with full-rank gradients, while
all other layers are updated with low-rank gradi-
ents of rank r = 128.

Model GaLore GUM Layers + Rank

512 4 + 128 2 + 128

LLaMA-3-8B 42G 41G 40G
Qwen-2.5-7B 41G 40G 39G
Gemma-2-9B 47G 46G 44G

Memory Efficiency. We conducted peak GPU
memory experiments to evaluate GUM’s mem-
ory efficiency, demonstrating its comparable or
reduced memory footprint relative to GaLore.
Specifically, we focus on two key hyperparam-
eters: the rank and the number of selected lay-
ers for full-rank updates in GUM. To ensure a
fair comparison, all methods used a consistent
mini-batch size of 1, without employing addi-
tional GPU memory-saving techniques such as
offloading (Ren et al., 2021) or flash attention
(Dao et al., 2022; Dao, 2024).

As shown in Table 3, the GUM configuration
reaches comparable or better memory consump-
tion than GaLore. This improvement is not lim-
ited to a single case; consistent memory savings
are observed across multiple model architectures.

Results. As shown in Table 2, GUM consistently outperforms GaLore in both tasks, highlighting its
robustness and general effectiveness.

A closer look at GSM8K results reveals that GUM achieves notable improvements and even outper-
forms full-parameter training methods, suggesting its strength in enhancing reasoning capabilities.
In Section 5.4, it will be revealed that this improvement is very likely to have originated from its
improvements in memorization, especially when the learned activations are required to be long-tailed.

1The dataset is from https://huggingface.co/datasets/HanningZhang/scalebio_
distill_qwen_math, generated using the same setting as Appendix A.2 of (Pan et al., 2025).

7

https://huggingface.co/datasets/HanningZhang/scalebio_distill_qwen_math
https://huggingface.co/datasets/HanningZhang/scalebio_distill_qwen_math

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: LLM Fine-tuning Results. Trained models are evaluated on IFEval (instruction-following)
and GSM8K (mathematical reasoning). All experiments are conducted on a single H100 GPU.

Model Memory
Efficient Method

IFEval GSM8K

Prompt-level
Strict-Accuracy

Prompt-level
Loose-Accuracy Accuracy

LLAMA-3-8B

✗
FT-AdamW 23.66 25.14 57.39
FT-Muon 23.11 26.06 57.65

✓

Apollo (Zhu et al., 2025) 19.04 21.63 56.03
GaLore (Zhao et al., 2024) 21.07 22.74 57.38
Fira (Chen et al., 2024) 21.81 23.73 56.41
LDAdam (Robert et al., 2025) 22.74 24.40 57.92
GoLore (He et al., 2024) 23.01 24.95 57.54
GUM 22.37 24.03 58.45

QWEN-2.5-7B

✗
FT-AdamW 35.12 39.74 85.75
FT-Muon 34.38 39.19 85.90

✓

Apollo 31.61 36.41 85.67
GaLore 33.09 37.71 86.28
Fira 32.35 36.04 86.81
LDAdam 28.10 30.31 83.78
GoLore 30.87 35.67 86.66
GUM 33.46 38.82 86.81

GEMMA-2-9B

✗
FT-AdamW OOM OOM OOM
FT-Muon 28.47 32.16 76.92

✓

Apollo 25.14 28.10 75.28
GaLore 30.31 33.64 77.18
Fira 29.21 33.64 75.44
LDAdam 28.84 32.53 75.13
GoLore 31.05 34.38 74.98
GUM 33.27 36.60 77.48

5.3 LLM PRE-TRAINING SETTINGS

To provide stronger evidence for validating the effectiveness of GUM, a standard pre-training setting
is introduced to compare different training methods’ performance.

Setup. To evaluate the improvements in commonsense reasoning, the following downstream tasks
are employed: ARC (Clark et al., 2018), OpenBookQA (Mihaylov et al., 2018b), HellaSwag Zellers
et al. (2019a), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), and WinoGrande (Sakaguchi et al.,
2021a), which are common choices for LLM pre-training (Hoffmann et al., 2022a; Groeneveld et al.,
2024; Zhang et al., 2024b). For model choice, following the standard setting in Zhao et al. (2024), the
experiments covered three model sizes—60M, 130M, and 350M parameters of LLaMA. For training
datasets, we employ the widely-used C4 corpus (Raffel et al., 2023) under configurations guided by
the Chinchilla scaling law (Hoffmann et al., 2022b): 1.5B tokens for 60M, 2B tokens for 130M, and
7B tokens for 350M. For baselines, in addition to Galore and full-parameter training methods, we
include Fira (Chen et al., 2024) and Subtrack++ (He et al., 2024). Further details are available in
Appendix C.3.

Results. The performance comparison presented in Table 4 clearly indicates that GUM achieves
consistently better results than GaLore and, more surprisingly, even full-parameter training methods
like AdamW and Muon. This improvement can largely be attributed to the unbiased low-rank update
mechanism employed in GUM. The mechanism captures long-tailed gradient updates distributed
across layers and thereby enhances model memorization.

5.4 UNDERSTANDING THE EFFECT OF LAYERWISE SAMPLING

In this section, we investigate the underlying reason why the proposed algorithm of GUM can
yield empirical improvements over GaLore. In short, GUM’s high-rank gradient update leads to a
more uniform singular value distribution in model parameters, which further results in more evenly

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: LLM Pre-training Results. Trained models are evaluated on seven widely adopted
commonsense reasoning tasks. All experiments are conducted on H100 GPUs.

Model Method ARC-E ARC-C OBQA HellaSwag PIQA SIQA Winogrande Avg.

LLaMA-60M

FT-AdamW 32.87 17.92 12.68 26.70 58.87 35.88 50.12 33.58
FT-Muon 36.45 17.92 12.88 26.89 59.79 35.82 51.22 34.42
GaLore 35.35 17.92 12.47 26.74 59.63 35.62 49.88 33.94
Fira 35.02 18.94 12.27 26.75 58.71 36.24 50.28 34.03
Subtrack++ 37.96 16.92 13.08 27.07 60.45 37.05 51.67 34.89
GUM 36.28 17.41 13.68 26.70 60.12 36.54 51.85 34.65

LLaMA-130M

FT-AdamW 37.08 18.86 13.48 27.04 59.14 36.18 51.07 34.69
FT-Muon 38.34 18.00 13.08 27.67 62.68 37.00 49.33 35.16
GaLore 36.49 18.00 13.28 27.08 60.34 35.36 50.20 34.39
Fira 26.01 19.54 12.27 26.13 53.65 34.19 49.80 31.66
Subtrack++ 36.49 17.58 14.08 26.92 61.70 36.08 52.09 34.99
GUM 38.01 18.34 14.69 27.32 61.26 36.44 52.49 35.51

LLaMA-350M

FT-AdamW 44.02 18.77 14.08 30.04 64.42 37.97 50.51 37.12
FT-Muon 44.91 18.69 17.10 31.05 65.72 37.87 51.93 38.18
GaLore 43.10 18.52 14.89 29.09 62.19 37.10 52.01 36.58
Fira 42.38 18.77 15.49 29.27 63.00 37.97 51.85 36.96
Subtrack++ 40.45 18.43 14.49 28.50 63.06 37.72 50.25 36.13
GUM 44.44 19.80 15.69 29.28 64.53 38.13 51.38 37.42

distributed activations for input samples. This implies the long-tailed knowledge is better preserved
in GUM-trained models, yielding better memorization.

Setup. We adopt the model of LLaMA-130M and benchmark of ARC-E (Clark et al., 2018), while
keeping other settings the same as in Section 5.3.

Results. As shown in Figure 2, the overall stable ranks E
[
∥M∥2F /∥M∥22

]
of GaLore and GUM are

positively correlated with their performance in ARC-E, which provides direct evidence that higher
stable ranks are generally beneficial for improving commonsense reasoning.

On top of that, it is observed in Figure 3 that GUM not only improves the overall stable rank
of the trained model, but also shapes a set of more evenly distributed singular values in trained
models, which further leads to more long-tail distributed activation across all modules. This provides
indirect evidence and an intuitive explanation for the performance improvements in ARC-E: instead of
overusing a low-dimensional space or a limited number of modules, GUM-trained models demonstrate
a tendency to evenly distribute knowledge across all dimensions and modules, implying better
memorization. Additional evidence is available in Appendix D.2.

6 CONCLUSIONS

In this paper, we investigate the debiasing technique of layerwise sampling for memory-efficient
LLM training, whose combination with GaLore restores the theoretical convergence properties of
full-parameter training. Our proposed algorithm, GUM, demonstrates that it is possible to achieve
provable convergence in low-rank optimization without impairing its empirical performance and
memory efficiency. Further analysis shows that the empirical gains are brought by the inherent high-
rank updates, which lead to a higher overall stable rank and more uniformly distributed singular values
in model parameters, yielding more long-tailed activation patterns and implying better memorization.

ETHICS STATEMENT

After carefully reviewing the ethical regulations of the conference, to the best of our knowledge, this
work does not present any foreseeable ethical concerns. No negative societal or ethical impacts are
anticipated for the contribution of this work. The proposed algorithms are for general large language
model training, and do not involve anything about human subjects, potentially harmful insights,
potential conflicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy and
security issues, legal compliance, or research integrity issues.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 2: Higher Stable Rank→ Better Performance. A positive correlation is observed between
the overall stable rank E

[
∥M∥2F /∥M∥22

]
and ARC Easy score. Each dot represents a checkpoint

during pre-training after 1,000 steps, saved every 20 steps.

Figure 3: Left: Updates → Weights: Singular value distribution across layers of GaLore and
GUM, where GUM demonstrates a more even and long-tailed distribution of singular values. Right:
Weights→ Activations: Tail distribution of modules that contain salient activations, where salient
activations are defined as activations with top-k (k = 10, 000) attention scores over all modules.
Randomly sampled 1K inputs from the C4 corpus are utilized as prompts. Blue parts correspond to
GaLore’s tail distribution, while green parts stand for GUM’s further increase on top of GaLore.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure that our work is reproducible, with details provided in Section 5 and
Appendix C.

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. Advances in neural information processing
systems, 30, 2017.

Kang An, Yuxing Liu, Rui Pan, Shiqian Ma, Donald Goldfarb, and Tong Zhang. Asgo: Adaptive
structured gradient optimization. arXiv preprint arXiv:2503.20762, 2025.

Alan Ansell, Edoardo Maria Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse fine-tuning
for cross-lingual transfer. arXiv preprint arXiv:2110.07560, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pp. 560–569. PMLR, 2018.

Yonatan Bisk, Rowan Zellers, Omer Yakhini, and Yejin Choi. Piqa: Reasoning about physical
commonsense in natural language. arXiv preprint, 2020. URL https://arxiv.org/abs/
1911.11641.

Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xiangyu Yue, Ye Yuan, and Guoren Wang.
Fira: Can we achieve full-rank training of llms under low-rank constraint?, 2024. URL https:
//arxiv.org/abs/2410.01623.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning
challenge. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, New Orleans, Louisiana, May
2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1074. URL https:
//arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021b. URL https://arxiv.
org/abs/2110.14168.

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signsgd. Advances in neural information processing
systems, 35:9955–9968, 2022.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International conference
on machine learning, pp. 2260–2268. PMLR, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In
The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=mZn2Xyh9Ec.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Processing
Systems, 2022.

Sarkar Snigdha Sarathi Das, Ranran Haoran Zhang, Peng Shi, Wenpeng Yin, and Rui Zhang. Unified
low-resource sequence labeling by sample-aware dynamic sparse finetuning. arXiv preprint
arXiv:2311.03748, 2023.

Aaron Defazio, Xingyu Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, and Ashok
Cutkosky. The road less scheduled. Advances in Neural Information Processing Systems, 37:
9974–10007, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Shizhe Diao, Rui Pan, Hanze Dong, Ka Shun Shum, Jipeng Zhang, Wei Xiong, and Tong Zhang.
Lmflow: An extensible toolkit for finetuning and inference of large foundation models. arXiv
preprint arXiv:2306.12420, 2023.

11

https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2410.01623
https://arxiv.org/abs/2410.01623
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://aclanthology.org/N19-1423

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Delta tuning: A comprehensive study of parameter
efficient methods for pre-trained language models. arXiv preprint arXiv:2203.06904, 2022.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule: A
near optimal, geometrically decaying learning rate procedure for least squares. Advances in neural
information processing systems, 32, 2019a.

Rong Ge, Zhize Li, Weiyao Wang, and Xiang Wang. Stabilized svrg: Simple variance reduction for
nonconvex optimization. In Conference on learning theory, pp. 1394–1448. PMLR, 2019b.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, and et al. The llama 3 herd of models, 2024a. URL
https://arxiv.org/abs/2407.21783.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024b.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerat-
ing the science of language models. arXiv preprint arXiv:2402.00838, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
arXiv preprint arXiv:2012.07463, 2020.

Yifan Hao, Xingyuan Pan, Hanning Zhang, Chenlu Ye, Rui Pan, and Tong Zhang. Understand-
ing overadaptation in supervised fine-tuning: The role of ensemble methods. arXiv preprint
arXiv:2506.01901, 2025.

Yutong He, Pengrui Li, Yipeng Hu, Chuyan Chen, and Kun Yuan. Subspace optimization for large
language models with convergence guarantees. arXiv preprint arXiv:2410.11289, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022a.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022b. URL https://arxiv.org/abs/
2203.15556.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Zijian Hu, Jipeng Zhang, Rui Pan, Zhaozhuo Xu, Shanshan Han, Han Jin, Alay Dilipbhai Shah,
Dimitris Stripelis, Yuhang Yao, Salman Avestimehr, et al. Fox-1: Open small language model for
cloud and edge. arXiv preprint arXiv:2411.05281, 2024.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jia-Hong Huang, Yixian Shen, Hongyi Zhu, Stevan Rudinac, and Evangelos Kanoulas. Gradient
weight-normalized low-rank projection for efficient llm training. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 24123–24131, 2025.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Team Kimi. Kimi-vl technical report. arXiv preprint arXiv:2504.07491, 2025.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
Bansal, Etash Guha, Sedrick Scott Keh, Kushal Arora, et al. Datacomp-lm: In search of the
next generation of training sets for language models. Advances in Neural Information Processing
Systems, 37:14200–14282, 2024.

Jiaxiang Li and Mingyi Hong. A note on the convergence of muon and further. arXiv preprint
arXiv:2502.02900, 2025.

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
training through low-rank updates, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36:34892–34916, 2023.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint arXiv:2502.16982,
2025a.

Xinxin Liu, Aaron Thomas, Cheng Zhang, Jianyi Cheng, Yiren Zhao, and Xitong Gao. Refining
salience-aware sparse fine-tuning strategies for language models. arXiv preprint arXiv:2412.13488,
2024a.

Yuxing Liu, Rui Pan, and Tong Zhang. Adagrad under anisotropic smoothness. arXiv preprint
arXiv:2406.15244, 2024b.

Yuxing Liu, Yuze Ge, Rui Pan, An Kang, and Tong Zhang. Theoretical analysis on how learning rate
warmup accelerates convergence. arXiv preprint arXiv:2509.07972, 2025b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018a.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, Brussels, Belgium,
October-November 2018b. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260.
URL https://aclanthology.org/D18-1260/.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking the
potential of slms in grade school math, 2024.

Siyuan Mu and Sen Lin. A comprehensive survey of mixture-of-experts: Algorithms, theory, and
applications. arXiv preprint arXiv:2503.07137, 2025.

Aashiq Muhamed, Oscar Li, David Woodruff, Mona Diab, and Virginia Smith. Grass: Compute effi-
cient low-memory llm training with structured sparse gradients. arXiv preprint arXiv:2406.17660,
2024.

13

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://aclanthology.org/D18-1260/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Deanna Needell, Nathan Srebro, and Rachel Ward. Stochastic gradient descent, weighted sampling,
and the randomized kaczmarz algorithm. Advances in neural information processing systems, 27,
2014.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems, volume 35, pp. 27730–27744. Curran Associates, Inc., 2022.

Rui Pan, Haishan Ye, and Tong Zhang. Eigencurve: Optimal learning rate schedule for sgd on
quadratic objectives with skewed hessian spectrums. arXiv preprint arXiv:2110.14109, 2021.

Rui Pan, Shizhe Diao, Jianlin Chen, and Tong Zhang. Extremebert: A toolkit for accelerating
pretraining of customized bert. arXiv preprint arXiv:2211.17201, 2022.

Rui Pan, Yuxing Liu, Xiaoyu Wang, and Tong Zhang. Accelerated convergence of stochastic heavy
ball method under anisotropic gradient noise. arXiv preprint arXiv:2312.14567, 2023.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: layerwise
importance sampling for memory-efficient large language model fine-tuning. Advances in Neural
Information Processing Systems, 37:57018–57049, 2024.

Rui Pan, Dylan Zhang, Hanning Zhang, Xingyuan Pan, Minrui Xu, Jipeng Zhang, Renjie Pi, Xiaoyu
Wang, and Tong Zhang. ScaleBiO: Scalable bilevel optimization for LLM data reweighting. In
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics, pp.
31959–31982, 2025.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Sahar Rajabi, Nayeema Nonta, and Sirisha Rambhatla. Subtrack++ : Gradient subspace tracking for
scalable LLM training. In The Thirty-ninth Annual Conference on Neural Information Processing
Systems, 2025. URL https://openreview.net/forum?id=6geRIdlFWJ.

Amrutha Varshini Ramesh, Vignesh Ganapathiraman, Issam H Laradji, and Mark Schmidt. Blockllm:
Memory-efficient adaptation of llms by selecting and optimizing the right coordinate blocks. arXiv
preprint arXiv:2406.17296, 2024.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model training, 2021.
URL https://arxiv.org/abs/2101.06840.

Thomas Robert, Mher Safaryan, Ionut-Vlad Modoranu, and Dan Alistarh. LDAdam: Adaptive
optimization from low-dimensional gradient statistics. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
Zkp1GuHerF.

14

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/1910.10683
https://openreview.net/forum?id=6geRIdlFWJ
https://arxiv.org/abs/2101.06840
https://openreview.net/forum?id=Zkp1GuHerF
https://openreview.net/forum?id=Zkp1GuHerF

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
September 2021a. doi: 10.1145/3474381.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021b.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Com-
monsense reasoning about social interactions. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 4463–4473, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1454. URL
https://aclanthology.org/D19-1454/.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. Advances
in neural information processing systems, 31, 2018.

Tao Sun, Qingsong Wang, Dongsheng Li, and Bao Wang. Momentum ensures convergence of signsgd
under weaker assumptions. In International Conference on Machine Learning, pp. 33077–33099.
PMLR, 2023.

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar, and H Brendan McMahan. Distributed mean
estimation with limited communication. In International conference on machine learning, pp.
3329–3337. PMLR, 2017.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan
Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar,
Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,
Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia
Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris
Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,
Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric
Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary
Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra,
Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed,
Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan,
Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda,
Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep
Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh
Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien
M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan
Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi,
Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei,

15

https://aclanthology.org/D19-1454/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei,
Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins,
Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav
Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi,
and Alek Andreev. Gemma 2: Improving open language models at a practical size, 2024. URL
https://arxiv.org/abs/2408.00118.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving. 2024. URL https://arxiv.org/abs/
2407.13690.

Bokun Wang, Mher Safaryan, and Peter Richtárik. Theoretically better and numerically faster
distributed optimization with smoothness-aware quantization techniques. Advances in Neural
Information Processing Systems, 35:9841–9852, 2022.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
Wright. Atomo: Communication-efficient learning via atomic sparsification. Advances in neural
information processing systems, 31, 2018.

Zihan Wang, Rui Pan, Jiarui Yao, Robert Csordas, Linjie Li, Lu Yin, Jiajun Wu, Tong Zhang, Manling
Li, and Shiwei Liu. Chain-of-experts: Unlocking the communication power of mixture-of-experts
models. arXiv preprint arXiv:2506.18945, 2025.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-
efficient distributed optimization. Advances in Neural Information Processing Systems, 31, 2018.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun.
Advancing llm reasoning generalists with preference trees, 2024.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4791–4800, Florence, Italy, July 2019a. Association for Com-
putational Linguistics. doi: 10.18653/v1/P19-1472. URL https://aclanthology.org/
P19-1472/.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019b.

Luoming Zhang, Zhenyu Lou, Yangwei Ying, Cheng Yang, and Hong Zhou. Efficient fine-tuning of
large language models via a low-rank gradient estimator. Applied Sciences, 15(1):82, 2024a.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024b.

Yuchen Zhang and Lin Xiao. Stochastic primal-dual coordinate method for regularized empirical risk
minimization. Journal of Machine Learning Research, 18(84):1–42, 2017.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models, 2023. URL
https://arxiv.org/abs/2311.07911.

16

https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2407.13690
https://arxiv.org/abs/2407.13690
https://aclanthology.org/P19-1472/
https://aclanthology.org/P19-1472/
https://arxiv.org/abs/2311.07911

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Hanqing Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu, Sem Park, Vikas Chandra, Bo Long, David Z.
Pan, Zhangyang Wang, and Jinwon Lee. APOLLO: SGD-like memory, adamw-level performance.
In Eighth Conference on Machine Learning and Systems, 2025. URL https://openreview.
net/forum?id=mJrPkdcZDj.

17

https://openreview.net/forum?id=mJrPkdcZDj
https://openreview.net/forum?id=mJrPkdcZDj

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 3 An unbiased version of Algorithm 1
1: Input: {W0,ℓ ∈ Rmℓ×nℓ} with each ℓ corresponding to the ℓ-th block of parameters, number of

blocks NL, sampling period K, projection rank r
2: for t = 0 to T/K − 1 do
3: delete_optimizer_states() ▷ Delete the optimizer states to clear memory
4: Each block ℓ is sampled to do full-rank updates with probability qt,ℓ
5: for k = 0 to K − 1 do
6: for ℓ = 1 to Nℓ do
7: Gt,k,ℓ = G(WtK+k−1,ℓ) ▷ Obtain the gradient of the ℓ-th layer at Wt

8: Pt,k,ℓ ← get_projector() ▷ Obtain the projector Pt,k,ℓ ∈ Rmℓ×r

9: G̃t,k,ℓ =

{
1

qt,ℓ
(Imℓ

− Pt,k,ℓP
⊤
t,k,ℓ)Gt,k,ℓ, if block ℓ is sampled to be full-rank

1
1−qt,ℓ

P⊤
t,k,ℓGt,k,ℓ, else

10: St,k,ℓ ← optimizer.update_state(G̃t,k,ℓ) ▷ Run the base algorithm with
G̃t,k,ℓ

11: WtK+k+1,ℓ =

{
WtK+k,ℓ − ηSt,k,ℓ, if block ℓ is sampled to be full-rank
WtK+k,ℓ − ηPt,k,ℓSt,k,ℓ, else

12: end for
13: end for
14: end for

A A GENERAL UNBIASED LOW-RANK GRADIENT METHOD PARADIGM

Here, we present our unbiased algorithm paradigm in Algorithm 3. The key idea of the algorithm is
to compensate for biased errors introduced by the low-rank projection PtP

⊤
t Gt. To implement this

while retaining memory efficiency, we refer to the main idea of LISA (Pan et al., 2024), which allows
some of the blocks to be sampled uniformly with probability q in each period. This compensated
full-rank updates use Gt − PtP

⊤
t Gt, while other blocks still do the original low-rank update. By

carefully balancing the scaling constants for the two different updates, the biased low-rank term can
be canceled out in expectation, resulting in an unbiased estimation of gradients across iterations. This
unbiased version of the algorithm is presented in Algorithm 3.

In one training process, the algorithm contains separated periods just like the vanilla GaLore al-
gorithm (Zhao et al., 2024) and LISA (Pan et al., 2024). During each period t, each block of
parameters is sampled to do full-rank updates with probability qt,ℓ. In each iteration k in the period,
we first compute the projection matrix Pt,k,ℓ. Note that a lot of strategies for selecting projection
matrices and sampling importance can be applied here (Guo et al., 2020; Sung et al., 2021; Ansell
et al., 2021; Das et al., 2023; Muhamed et al., 2024; Ramesh et al., 2024; Liu et al., 2024a). Then,
the blocks not sampled to do full-rank updates run basically the same low-rank update with Algo-
rithm 1, while the full-rank blocks directly run the base optimizer with the compensated gradient
G̃t,k,ℓ = (Im − Pt,k,ℓP

⊤
t,k,ℓ)Gt,k,ℓ.

We note that the proposed debiasing technique Algorithm 3 works generally when the following
properties are satisfied:

• Property I. The columns of the low-rank projection matrix Pt ∈ Rm×r with r ≤ m are
orthonormal, i.e., P⊤

t Pt = Ir×r.

• Property II. The projection and optimization updates are commutable, which means that
St = Ptoptimizer.update_state(G̃t) = optimizer.update_state(PtG̃t).
Optimizers satisfying this property typically treat the update parameters as matrices instead
of vectors, and only conduct matrix operations in the update. Two standard examples include
SGD and Muon (Jordan et al., 2024).

If the two properties are satisfied, we can show that Algorithm 3 is unbiased compared to the base
optimizer, since it is equivalent to running the base optimizer with an unbiased estimation of the
gradient at each iteration.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Lemma 2 (Unbiased update of Algorithm 3). When Property I and II are satisfied, a single iteration
of Algorithm 3 for W ∈ Rm×n is equivalent to

S ←optimizer.update_state(Ĝ)

W+ =W − ηS

with E[Ĝ] = G ∈ Rm×n, where G denotes the gradient obtained at W .

B PROOFS OF SECTION 3 AND 4

B.1 PROOF OF LEMMA 2 AND 1

Proof of Lemma 2. A single step of Algorithm 3 writes:

G̃ =

{ 1
q (I − PP⊤)G, with probability q
1

1−qP
⊤G, with probability 1− q

S =optimizer.update_state(G̃)

W+ =

{
W − ηS, with probability q
W − ηPS, with probability 1− q

where G is the gradient at W and P is the projection matrix obtained at W . Based on the commutative
property, we know that

W+ = W − ηPS = W − η optimizer.update_state(PG̃),

which means that the update step is equivalent to

Ĝ =

{ 1
q (I − PP⊤)G, with probability q
1

1−qPP⊤G, with probability 1− q

S =optimizer.update_state(Ĝ)

W+ =W − ηS

Since we have Ĝ is an unbiased estimation of G:

E[Ĝ] = q · 1
q
(I − PP⊤)G+ (1− q) · 1

1− q
PP⊤G = G,

we finish the proof that Algorithm 3 is unbiased compared to the base optimizer.

Proof of Lemma 1. Based on Lemma 2, we only need to prove that GUM satisfies the two properties
to finish the proof of Lemma 1.

Property I. Denote the projection matrix at one specific iteration P . Since P is obtained from the
SVD, we have P ∈ Rm×r and P⊤P = Ir.

Property II. The base algorithm of GUM is Muon (Jordan et al., 2024). To prove the commutative
property, we only need to prove that the Newton-Schulz iteration is commutable with P . In each
iteration of the Newton Schulz iteration NewtonSchulz(X), we compute

X+ = aX + bXX⊤X + cXX⊤XX⊤X,

where a, b, c ∈ R are absolute constants. Then consider NewtonSchulz(PX), we get

X+ =aPX + bPX(PX)⊤(PX) + cPX(PX)⊤(PX)(PX)⊤(PX)

=P (aX + bXX⊤X + cXX⊤XX⊤X),

where the second equality is because of Property I. Therefore, we obtain that

NewtonSchulz(PX) = P · NewtonSchulz(X),

which finishes the proof of Property II and thus the unbiased property of GUM.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.2 PROOF OF THEOREM 1

We first state the notations in the following proof writing. For simplicity, we assume that the total
iteration number T = Kτ . For k = 0, . . . ,K − 1 in a specific period t = 0, . . . , τ − 1, Algorithm 2
is mathematically equivalent to the following formulation:

G̃t,k =

{ 1
1−qt

PtP
⊤
t Gt,k, if ξt = 0

1
qt
(I − PtP

⊤
t)Gt,k, else

M̃t,k =βM̃t,k−1 + (1− β)G̃t,k

WtK+k+1 =WtK+k − ηNewtonSchulz(M̃t,k)

where Gt,k is the stochastic gradient obtained at WtK+k and ξt ∼ Bernoulli(qt) is the indicator
random variable such that ξt = 1 means using full-rank update in period t. We assume that the
full-rank probability qt ≡ q and step size ηt ≡ η are constants. The equivalence of Algorithm 2
and this formulation is shown by Lemma 1. At the beginning of each period, we initialize Pt from
Gt,0 and set M̃t,−1 = 0. Also, we denote ∇ft,k ≜ ∇f(WtK+k) and msign (X) ≜ UV ⊤ for
X = UΣV ⊤ as the SVD of X . Under Assumption 4, we have NewtonSchulz(X) = msign (X).
Note that here in the theoretical proof, we consider the damping, i.e., the 1− β term in the update of
M̃t,k. Since we initialize M̃t,k = 0 in each period, this damping will not affect the algorithm because
the Newton-Schulz iteration is irrelevant to the input scale.

To help simplify the convergence proof, we also denote the residual of the projector as Rt ∈
Rm×(m−r), i.e., we take Ut = [Pt Rt] ∈ Rm×m, which satisfies that P⊤

t Rt = 0, R⊤
t Pt = 0. Note

that since we consider only the case m ≤ n here, we have UtU
⊤
t = PtP

⊤
t +RtR

⊤
t = I . We further

define

Qt ≜

{
Pt, if ξt = 0
Rt, else (3)

and the following auxiliary sequence

Mt,k = βMt,k−1 + (1− β)Gt,k (4)

with Mt,−1 = 0, which is the exponential moving average of the real gradient. With these definitions,
we have

msign
(
M̃t,k

)
= msign

(
QtQ

⊤
t Mt,k

)
= Qtmsign

(
Q⊤

t Mt,k

)
, (5)

where the equation is based on the fact that Q⊤
t Qt = I .

We first make use of the smoothness assumption to obtain a one-step analysis.
Lemma 3 (One-step descent). Under Assumption 2 and 4 and setting ηt ≡ η, for t = 0, . . . , τ − 1
and k = 0, . . . ,K − 1, it holds that

f(WtK+k+1) ≤ f(WtK+k)− η
∥∥Q⊤

t ∇ft,k
∥∥
∗ +

1

2
η2Lop + 2η ∥Mt,k −∇ft,k∥∗ , (6)

where Qt is defined as (3).

Proof. Based on Assumption 2, we have the descent property

f(WtK+k+1) ≤f(WtK+k) + ⟨∇ft,K ,WtK+k+1 −WtK+k⟩+
Lop

2
∥WtK+k+1 −WtK+k∥2op

=f(WtK+k)− η
〈
∇ft,K ,msign

(
M̃t,k

)〉
+

Lopη
2

2

∥∥∥msign
(
M̃t,k

)∥∥∥2
op

=f(WtK+k)− η
〈
Mt,K ,msign

(
M̃t,k

)〉
+

Lopη
2

2

+η
〈
Mt,K −∇ft,k,msign

(
M̃t,k

)〉
≤f(WtK+k)− η

〈
Mt,K ,msign

(
M̃t,k

)〉
+

Lopη
2

2
+ η ∥Mt,K −∇ft,k∥∗ ,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where the last inequality is based on the fact that ∥·∥∗ and ∥·∥op are dual norms and∥∥∥msign
(
M̃t,k

)∥∥∥
op

= 1. Then we further deal with the second term on the right hand side:

−
〈
Mt,K ,msign

(
M̃t,k

)〉
(5)
= −

〈
Mt,K , Qtmsign

(
Q⊤

t Mt,k

)〉
=−

〈
Q⊤

t Mt,K ,msign
(
Q⊤

t Mt,k

)〉
= −

∥∥Q⊤
t Mt,k

∥∥
∗

≤−
∥∥Q⊤

t ∇ft,k
∥∥
∗ +

∥∥Q⊤
t (Mt,k −∇ft,k)

∥∥
∗

≤−
∥∥Q⊤

t ∇ft,k
∥∥
∗ + ∥Mt,k −∇ft,k∥∗ ,

where the last inequality is based on that QtQ
⊤
t ⪯ I . Then combining the inequalities, we can finish

the proof.

Based on Lemma 3, we could find that a key to proving the convergence is the ∥Mt,k −∇ft,k∥∗
term. Let us define the following auxiliary sequences:

ϵt,k ≜ Mt,k −∇ft,k, St,k ≜ ∇ft,k−1 −∇ft,k, Nt,k ≜ Gt,k −∇ft,k (7)

and additionally set ∇ft,−1 ≜ ∇ft,0 for all t = 0, . . . , τ − 1. Then we consider decomposing the
desired ϵt based on the properties of moving average sequences.

Lemma 4 (Decompose ϵt,k). For t = 0, . . . , τ − 1 and k = 0, . . . ,K − 1, it holds that

ϵt,k =

k∑
i=1

βk−i+1St,i + (1− β)

k∑
i=0

βk−iNt,i − βk∇ft,0. (8)

Proof. From the definition of Mt,k in (4), we know that

Mt,k = βMt,k−1 + (1− β)Gt,k,

which implies that

ϵt =β(Mt,k−1 −∇ft,k−1) + β(∇ft,k−1 −∇ft,k) + (1− β)(Gt,k −∇ft,k)
=βϵt,k−1 + βSt,k + (1− β)Nt,k.

Then by applying the equality recursively and noting that ϵt,0 = (1 − β)Gt,0 − ∇ft,0 = (1 −
β)Nt,0 − β∇ft,0, we conclude the proof.

Then we produce the next lemma to state the variance contraction properties of momentum for Muon,
which has been explored for Normalized SGD (Cutkosky & Mehta, 2020) and SignSGD (Sun et al.,
2023), and also for Muon (Li & Hong, 2025), but with different assumptions.

Lemma 5 (Variance Contraction). Under Assumption 3, for t = 0, . . . , τ − 1 and k = 0, . . . ,K − 1,
it holds that

E

[∥∥∥∥∥(1− β)

k∑
i=0

βk−iNt,i

∥∥∥∥∥
∗

]
≤ ∥V ∥∗

√
(1− β2k)(1− β). (9)

Proof. Based on Lemma 8 in An et al. (2025), for an arbitrary symmetric positive definite matrix
H ∈ Rm×m, it holds that

E

[∥∥∥∥∥
k∑

i=0

βk−iNt,i

∥∥∥∥∥
∗

]
≤E


√√√√√∥H∥∗ tr

(k∑
i=0

βk−iNt,i

)⊤

H−1

(
k∑

i=0

βk−iNt,i

)


=E


√√√√√∥H∥∗ tr

(k∑
i=0

βk−iNt,i

)(
k∑

i=0

βk−iNt,i

)⊤

H−1




21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

≤

√√√√√∥H∥∗ E
tr

(k∑
i=0

βk−iNt,i

)(
k∑

i=0

βk−iNt,i

)⊤

H−1


=

√√√√∥H∥∗ E
[
tr

((
k∑

i=0

β2(k−i)Nt,iN⊤
t,i

)
H−1

)]
,

where the last inequality is based on the fact that E[
√
X] ≤

√
E[X] and the last equality is based on

the assumption that Nt,i and Nt,j are independent for i ̸= j, which implies E[tr
(
Nt,iN

⊤
t,jH

)
] = 0.

Then taking H = (V V ⊤)1/2 leads to√√√√∥H∥∗ E
[
tr

((
k∑

i=0

β2(k−i)Nt,iN⊤
t,i

)
H

)]
=

√√√√∥V ∥∗ E
[
tr

(
k∑

i=0

β2(k−i)Nt,iN⊤
t,i(V V ⊤)−

1
2

)]

≤

√√√√∥V ∥∗ k∑
i=0

β2(k−i)tr
(
V V ⊤(V V ⊤)−

1
2

)

≤∥V ∥∗

√
1− β2k

1− β2
,

where the first inequality is based on Assumption 3 and the second inequality is by algebra. Then,
combining the inequalities and multiplying 1− β gives the result.

Lemma 6 (Bound E ∥ϵt,k∥∗). Under Assumption 3, for t = 0, . . . , τ − 1 and k = 0, . . . ,K − 1, it
holds that

E[∥ϵt,k∥∗] ≤
1− βk

1− β
Lopη +

√
(1− β2k)(1− β) ∥V ∥∗ + βkE

[
∥∇ft,0∥∗

]
. (10)

Proof. Based on Lemma 4, it holds that

E
[
∥ϵt,k∥∗

]
=E

[∥∥∥∥∥
k∑

i=1

βk−i+1St,i + (1− β)

k∑
i=0

βk−iNt,i − βk∇ft,0

∥∥∥∥∥
∗

]

≤
k∑

i=1

βk−i+1 ∥St,i∥∗ +

∥∥∥∥∥(1− β)

k∑
i=0

βk−iNt,i

∥∥∥∥∥
∗

+
∥∥βk∇ft,0

∥∥
∗ ,

where the inequality is based on the triangular inequality. For the first term in the RHS, it holds that

∥St,i∥∗ = ∥∇ft,i−1 −∇ft,i∥∗ ≤ Lop ∥WtK+i−1 −WtK+i∥ = Lopη.

Thus we have

E
[
∥ϵt,k∥∗

]
≤

k∑
i=1

βk−i+1Lopη + E

[∥∥∥∥∥(1− β)

k∑
i=0

βk−iNt,i

∥∥∥∥∥
∗

]
+ E

[∥∥βk∇ft,0
∥∥
∗

]
(9)
≤

k∑
i=1

βk−i+1Lopη +
√

(1− β2k)(1− β) ∥V ∥∗ + βkE
[
∥∇ft,0∥∗

]
≤1− βk

1− β
Lopη +

√
(1− β2k)(1− β) ∥V ∥∗ + βkE

[
∥∇ft,0∥∗

]
,

which concludes the proof.

We need to further determine the expected projected gradient for ∇ft,0.
Lemma 7 (Expected projected gradient). For t = 0, . . . , τ − 1, it holds that

E
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
≥ min {q, 1− q}E

[
∥∇ft,0∥∗

]
. (11)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proof. Based on the algorithm, we know that ξt and WtK are independent, which means that

E
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
= (1− q)E

[∥∥P⊤
t ∇ft,0

∥∥
∗

]
+ qE

[∥∥R⊤
t ∇ft,0

∥∥
∗

]
.

Because we have Ut = [Pt Rt] that satisfies U⊤
t Ut = UtU

⊤
t = I , it holds for any X ∈ Rm×n that∥∥P⊤

t X
∥∥
∗ +

∥∥R⊤
t X

∥∥
∗ =tr

((
X⊤PtP

⊤
t X

) 1
2

)
+ tr

((
X⊤RtR

⊤
t X

) 1
2

)
≥tr

((
X⊤(PtP

⊤
t +RtR

⊤
t)X

) 1
2

)
=tr

((
X⊤X

) 1
2

)
= ∥X∥∗ .

Therefore, we have

E
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
=(1− q)E

[∥∥P⊤
t ∇ft,0

∥∥
∗

]
+ qE

[∥∥R⊤
t ∇ft,0

∥∥
∗

]
≥min {q, 1− q}

(
E
[∥∥P⊤

t ∇ft,0
∥∥
∗

]
+ E

[∥∥R⊤
t ∇ft,0

∥∥
∗

])
≥min {q, 1− q}E

[
∥∇ft,0∥∗

]
,

which completes the proof.

With the lemmas in hand, we are able to prove Theorem 1.

Proof of Theorem 1. Based on Lemma 3, for t = 0, . . . , τ − 1 and k = 0, . . . ,K − 1, it holds that

f(WtK+k+1)
(6)
≤f(WtK+k)− η

∥∥Q⊤
t ∇ft,k

∥∥
∗ +

1

2
η2Lop + 2η ∥Mt,k −∇ft,k∥∗

=f(WtK+k)− η
∥∥Q⊤

t ∇ft,k
∥∥
∗ +

1

2
η2Lop + 2η ∥ϵt,k∥∗ ,

where Qt is defined in (3) and ϵt,k is defined in (7). Then, after rearrangement and summation over k
and taking expectation, we have

K−1∑
k=0

ηE
[∥∥Q⊤

t ∇ft,k
∥∥
∗

]
≤E

[
f(WtK)− f(W(t+1)K)

]
+

1

2
η2KLop + 2η

K−1∑
k=0

E
[
∥ϵt,k∥∗

]
(10)
≤E

[
f(WtK)− f(W(t+1)K)

]
+

1

2
η2KLop

+ 2η

K−1∑
k=0

(
1− βk

1− β
Lopη +

(√
(1− β2k)(1− β) + βk

)
∥V ∥∗

)
≤E

[
f(WtK)− f(W(t+1)K)

]
+ η2KLop

(
1

2
+

2(1− βK)

1− β

)
+ 2η

(√
(1− β2k)(1− β) ∥V ∥∗ + βkE

[
∥∇ft,0∥∗

])
.

Since WtK+k is dependent on Qt, it would be difficult to bound E[∥Qt∇ft,k∥∗] for k ≥ 1. We
therefore consider
K−1∑
k=0

ηE
[∥∥Q⊤

t ∇ft,k
∥∥
∗

]
≥

K−1∑
k=0

ηE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
−

K−1∑
k=0

ηE
[∥∥Q⊤

t (∇ft,k −∇ft,0)
∥∥
∗

]
≥

K−1∑
k=0

ηE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
−

K−1∑
k=1

ηE
[
∥∇ft,k −∇ft,0∥∗

]
≥

K−1∑
k=0

ηE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
−

K−1∑
k=1

η

k∑
l=1

E
[
∥∇ft,l −∇ft,l−1∥∗

]
≥

K−1∑
k=0

ηE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
−

K−1∑
k=1

ηLop

k∑
l=1

E
[
∥WtK+l −WtK+l−1∥op

]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

≥KηE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
− K2

2
η2Lop,

where the first and third inequalities are based on the triangular inequality and the second inequality
is based on that QtQ

⊤
t ⪯ I . The second last inequality uses Assumption 2. Then we combine the

above inequalities and further sum up over t and use Assumption 1 to obtain that

τ−1∑
t=0

KE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
≤f(W0)− f∗

η
+ ηKτLop

(
K + 1

2
+

2(1− βK)

1− β

)

+ 2τK
√
(1− β2K)(1− β) ∥V ∥∗ +

τ−1∑
t=0

2(1− βK)

1− β
E
[
∥∇ft,0∥∗

]
.

Combining Lemma 7, we have

KE
[∥∥Q⊤

t ∇ft,0
∥∥
∗

]
− 2(1− βK)

1− β
E
[
∥∇ft,0∥∗

]
≥ Kα

2
E
[
∥∇ft,0∥∗

]
where α ≜ min{q, 1− q} and we take α > 2

K and 1− β ≥ 2
Kα . Thus, we can obtain that

α

2τ

τ−1∑
t=0

E
[
∥∇ft,0∥∗

]
≤f(W0)− f∗

ηT
+ ηLop

(
K + 1

2
+

2

1− β

)
+ 2
√
1− β ∥V ∥∗

≤f(W0)− f∗

ηT
+ ηLop

(
K + 1

2
+Kα

)
+ 2
√

1− β ∥V ∥∗

By choosing the hyperparameter as

η =

√
TLop

(
K+1
2 +Kα

)
f(W0)− f∗ , β = 1− 2

Kα
, K = max

{
1,min

{
σ
√
T√

αL(f(W0)− f∗)
, T

}}
,

(12)

we can obtain that

min
t=0,..., T

K −1
E [∥∇f(WtK)∥] ≤ O

 1

α

√
Lop∆

T
+

(
Lop∆ ∥V ∥2∗

α5T

) 1
4

+
∥V ∥∗√
α3T

 ,

with ∆ ≜ f(W0)− f∗, which finishes the proof.

C TRAINING SETUP AND HYPERPARAMETERS

C.1 FINE-TUNING SETUP

In our experiments, we slightly modify the full-rank update rule (2) for GUM by multiplying (1−qt,ℓ)
on−Pt,ℓP

⊤
t,ℓGt,k,ℓ. This modification still preserves the unbiased property while being able to recover

the original full-parameter Muon algorithm by setting qt,ℓ = 1.

We utilize LMFlow (Diao et al., 2023)2 to perform full-parameter fine-tuning, GaLore tuning, and
GUM tuning. We set the number of training epochs for all fine-tuning scenarios to 1. All experiments
were conducted on a single NVIDIA H100 GPU with 80 GB of memory.

We explored a range of learning rates from 8×10−6 to 1×10−4, applying this range to Full Parameter
Training, GaLore, and GUM. For GaLore, we fixed the rank r = 512 and applied it uniformly across
all layers. In the case of GUM, the number of layers (γ) selected for full-rank updates was set to 2
for all models. The sampling interval K, which defines the number of update steps between each
layer selection, was varied between 10 and 300, depending on factors such as dataset size, batch size,
and total training steps. The models covered in this paper can be found in Table 5.

2https://github.com/OptimalScale/LMFlow

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 5: Baseline Model Configurations

Model Name # Params # Layers Model Dim

LLAMA-3-8B 8 B 32 4096
QWEN-2.5-7B 7 B 28 3584
GEMMA-2-9B 9 B 42 3584

C.2 FINE-TUNING HYPERPARAMETERS

We began our study by conducting a grid search over two key hyperparameters: (i) the learning rate and
(ii) the number of sampling layers used for full-rank updates. Given the strong empirical performance
of the GaLore method, we fixed the rank to r = 512. The learning rate was explored within the
range {8× 10−6, 2× 10−5, 4× 10−5, 6× 10−5, 8× 10−5, 1× 10−4}, applied consistently across
full parameter training, GaLore, and GUM. For GaLore, we followed the official Transformers
implementation 3, using the default settings and aligning the learning rate with the full parameter
training. With respect to the number of sampling layers, and in accordance with Table 3, we selected
values that did not exceed the GPU memory cost of GaLore. As a result, γ = 2 was used in most
GUM configurations. The sampling period K was uniformly set to 200 for all models. A detailed
summary of the optimal hyperparameter values identified for each setting is provided in Table 6.

Table 6: Optimal settings for each method were determined through hyperparameter search: FT
(Full-parameter Training)-AdamW, FT-Muon, GaLore, and GUM.

Model FT-AdamW FT-Muon GaLore GUM

lr lr lr Rank lr γ K

LLaMA-3-8B 3× 10−5 7× 10−5 9× 10−5 512 1× 10−4 2 200
Qwen-2.5-7B 1× 10−5 5× 10−5 7× 10−5 512 7× 10−5 2 200
Gemma-2-9B − 4× 10−5 4× 10−5 512 6× 10−5 2 200

C.3 PRE-TRAINING HYPERPARAMETERS

In our experiments, we utilize C-optim 4 for the pre-training. Following standard protocol, we fixed
the LLaMA context length to 1024 tokens. Similar to the fine-tuning setup, we made a grid search on
learning rate and the number of sampling layers. The sampling period K was set to 100 for 130M
and 350M models, 50 for the 60M model. A detailed summary of the optimal hyperparameter values
identified for each setting is provided in Table 7.

Table 7: Optimal settings for each method were determined through hyperparameter search: AdamW,
Muon, Fira, GaLore, and GUM.

Model AdamW Muon Fira GaLore GUM

lr lr lr Rank lr Rank lr γ K

LLaMA-60M 3× 10−3 1× 10−2 9× 10−3 256 9× 10−3 256 9× 10−3 4 50
LLaMA-130M 2× 10−3 5× 10−3 5× 10−3 256 5× 10−3 256 5× 10−3 4 100
LLaMA-350M 1× 10−3 3× 10−3 3× 10−3 256 3× 10−3 256 3× 10−3 6 100

3https://github.com/jiaweizzhao/GaLore
4https://github.com/kyleliang919/C-Optim

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 4: Residual (χt = ∥Gu
t −Gp

t ∥F/∥Gu
t ∥F) between GaLore’s projected and original gradients

across different blocks during Gemma-2-9B fine-tuning. High residuals persist throughout training
(except for the iterations with projector updates), revealing systematic bias in GaLore updates.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 BIAS IN GALORE

To further illustrate how significant the bias in low-rank projection methods is, we analyze the
residuals between low-rank projected gradients and the original full-rank gradients across multiple
layers during the fine-tuning of the Gemma-2-9B model on the GPT-4-LLM dataset. The residual is
computed as follows:

χt =
∥Gu

t −Gp
t ∥F

∥Gu
t ∥F

, (13)

where Gu
t represents the original gradient at iteration t without projection, and Gp

t denotes the
low-rank projected gradients in GaLore-Muon. We can see that χt presents the relative error between
the original gradients and the projected gradients at iteration t, showing how much the projection
operation makes the gradient estimation biased from the original one. We measure this relative error
for each block of parameters along the trajectory of the GaLore-Muon algorithm every 20 iterations.
The projector update frequency is set to 200, and the projection rank is 512. We use a batch size of 16
and a learning rate of 7× 10−5. For demonstration purposes, we specifically select the self-attention
and MLP weights at layer 10.

As depicted in Figure 4, the relative error shows a periodic curve. It is relatively small (around
0− 20%) in the iteration t such that t is a multiple of the update frequency 200, where the projector
is updated based on the gradient. Since the GaLore projector is chosen as the singular vectors of the
largest singular values of the current gradient, it is a good low-rank projector for the current gradient,
which results in this small error. 5 However, we can see that the relative error rapidly increases after
this and achieves even higher than 60− 80% in less than 20 iterations. This implies that although the
low-rank projection of GaLore doesn’t hurt much in the first iteration, it makes little sense for the
following gradients, since the projection produces a really high relative error. Such a high relative
error demonstrates a remarkably significant bias between the low-rank projected gradients and the
original gradients, and between GaLore and the original gradient algorithm, highlighting the need to
derive an unbiased low-rank projection algorithm.

5Note that while the projector is good for the stochastic gradient used in the algorithm, it can still be a large
obstacle to the convergence, as shown in Figure 1.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 5: Detailed Singular Value Distribution. Left: GaLore. Right: GUM. It can be observed
that GaLore has a sudden magnitude drop in the tail distribution of singular values in gate proj
and up proj modules. GUM generally demonstrates smoother and more long-tailed singular value
distributions. Furthermore, GUM has a differentiated spectrum across different layers, while this
phenomenon is much weaker in GaLore.

Figure 6: Computational Cost Comparison. The quality-vs.-time curve of GaLore with K =
20/200 projector refreshing period and GUM.

D.2 SINGULAR VALUE DISTRIBUTION OF MODEL WEIGHTS

As shown in Figure 5, GUM demonstrates a smoother and more long-tailed singular value distribution
than GaLore, especially in modules of gate proj and up proj. The spectrums are also more
differentiated and have a non-trivial diversity across layers in GUM.

D.3 COMPUTATIONAL COST COMPARISON

To compare the computational cost between GaLore and GUM, additional experiments on LLaMA-
130M are conducted, following the same setting in Section 5.3. Results of different projector
refreshing periods K = 20/200 for GaLore are also included to understand the effect of projector
staleness. As shown in Figure 6, GUM is more computationally efficient than GaLore, and the
projector refreshing period has little effect on GaLore’s computational efficiency.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 8: Ablation studies for different choice of #sampled full-rank layers, sampling period K, and
rank r. The default setup is #sampled full-rank layers = 4, K=200, and r=128.

#Sampled
full-rank
layers

Prompt-level
Strict
Accuracy

Prompt-level
Loose
Accuracy

K
Prompt-level
Strict
Accuracy

Prompt-level
Loose
Accuracy

r
Prompt-level
Strict
Accuracy

Prompt-level
Loose
Accuracy

1 30.87 34.20 20 29.21 33.83 32 30.98 36.89
2 31.61 35.12 100 30.68 35.21 64 31.24 36.60
4 33.27 36.60 200 33.27 36.60 128 33.27 36.60
6 33.39 36.75 500 29.39 33.27
10 32.36 36.16
20 28.36 30.76

Table 9: LLM Fine-tuning with More Baselines. Trained models are evaluated on IFEval
(instruction-following) and GSM8K (mathematical reasoning) with Qwen-2.5-7B model. All experi-
ments are conducted on a single H100 GPU.

Method
IFEval GSM8K

Prompt-level
Strict-Accuracy

Prompt-level
Loose-Accuracy Accuracy

LDAdamW (Robert et al., 2025) 28.10 30.31 83.78
Apollo (Zhu et al., 2025) 31.61 36.41 85.67
Subtrack++ (Rajabi et al., 2025) 29.76 34.01 86.66

GUM 33.46 38.82 86.81

D.4 ABLATION STUDIES

To better understand the tradeoff between sampling probability, sampling period, and ranks, additional
ablation studies are conducted following the setting of Section 5.2. All experiments are conducted on
IFEval benchmark with Gemma-2-9B.

As shown in the table above, the best choice of sampled layers is 6, where the performance starts to
degrade when more full-rank layers are introduced. This is consistent with the observation in Pan
et al. (2024), where this sampling-style training is conjectured to introduce an implicit regularization
effect for supervised fine-tuning tasks.

For the best sampling period K, our choice of K = 200 is already optimal, where a smaller K
may compromise the momentum and decelerate the training process, while a larger K results in
insufficient sampling of all layers.

For the best rank r, increasing the rank from 32 to 128 leads to overall performance improvements,
especially in prompt-level strict accuracy. This means the higher-rank update captures more details
for following the given instruction.

D.5 COMPARISON WITH MORE BASELINES

To further highlight GUM’s performance, we have included comparisons with LDAdamW (Robert
et al., 2025), Apollo (Zhu et al., 2025), and SubTrack++ (Rajabi et al., 2025) on IFEval and GSM8K
using the Qwen-2.5-7B model.

D.6 LARGER-SCALE PRE-TRAINING

To verify GUM’s effectiveness in pre-training on larger-sized model tasks, we conducted an additional
pre-training experiment on a 7B-sized LLaMA model. Due to computational resource constraints, we
follow the setup in SubTrack++ (Rajabi et al., 2025), and report results using the same number of
tokens for pre-training.

As shown in the table, GUM outperforms GaLore, AdamW, and Fira in 7B-sized models as well,
with better or no-worse performance on 4 out of 7 tasks, and a higher overall accuracy.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 10: LLM Pre-training with 7B-sized LLaMA. Trained models are evaluated on seven widely
adopted commonsense reasoning tasks. All experiments are conducted on H100 GPUs.

Method ARC-E ARC-C OBQA HellaSwag PIQA SIQA Winogrande Avg.

GaLore 26.39 19.80 12.27 25.85 52.77 34.60 49.88 31.65
AdamW 26.68 18.94 13.48 26.11 51.69 34.54 50.70 31.73
Fira 26.46 20.90 13.01 25.65 52.34 34.75 50.54 31.95

GUM 26.64 20.90 12.27 25.83 53.75 35.26 50.91 32.22

D.7 LONGER TRAINING

To verify GUM’s effectiveness in longer training scenarios, we extended the number of epochs and
conducted additional experiments on the IFEval benchmark with Gemma-2-9B.

Table 11: LLM Fine-tuning with Longer Training. Trained models are evaluated on IFEval
(instruction-following) with Gemma-2-9B model. All experiments are conducted on a single H100
GPU.

#Epoch
IFEval

Prompt-level
Strict-Accuracy

Prompt-level
Loose-Accuracy

1 33.27 36.60
3 29.57 31.42
5 26.25 28.28

As shown in Table 11, the performance degrades with an increasing number of epochs, indicating
overfitting. So the number of epochs is sufficient for this supervised fine-tuning setting.

To further investigate GUM’s performance in effectively longer training settings, we conducted
additional experiments on LLaMA-60M in Table 4, increasing the data amount to 5B tokens (originally
1.5B).

As shown in Table 12, GUM still outperforms Fira and GaLore by a non-trivial margin, demonstrating
the effectiveness of GUM under longer training settings.

E FURTHER DISCUSSION

E.1 RELATIONSHIP WITH MUON OPTIMIZER

It is worth noticing that main focus of GUM is not the Muon optimizer (Jordan et al., 2024), but a
technique for debiasing existing low-rank training methods like GaLore (Zhao et al., 2024), which is
empirically orthogonal to the underlying optimizers such as AdamW and Muon.

Regarding Muon’s properties, there are several points worth mentioning:

• There is a fundamental tradeoff between Muon and AdamW across different model sizes.

– Generally, Muon favors deep and thin networks, while AdamW has memory advantages
in large-scale wide networks. On one hand, Muon may incur higher memory cost for
extremely large hidden layers, since Muon requires matrix–matrix multiplication in the
Newton–Schulz5 update, whereas AdamW only requires matrix–vector multiplication
operations. On the other hand, Muon has only one momentum term, while AdamW
has an additional second moment, which incurs extra memory consumption.

– For commonly used ∼7B-sized models like Gemma-2-9B, AdamW empirically re-
quires more GPU memory, as shown in Table 2, where AdamW triggers an out-of-
memory error while Muon does not.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 12: LLM Pre-training with LLaMA-60M with long training (1.5B→ 5B tokens). Trained
models are evaluated on seven widely adopted commonsense reasoning tasks. All experiments are
conducted on H100 GPUs.

Method ARC-E ARC-C OBQA HellaSwag PIQA SIQA Winogrande Avg.

GaLore 37.50 18.60 11.07 27.07 60.66 37.56 49.57 34.58
Fira 37.16 17.66 14.29 27.38 60.72 37.62 50.83 35.09

GUM 37.79 17.75 14.29 27.30 61.26 37.81 51.67 35.41

• Muon has been successfully applied to Mixture-of-Experts training (Kimi, 2025) and
outperforms AdamW, as shown in (Liu et al., 2025a).

• Why do we choose Muon as the base optimizer in GUM? Muon performs well in large
LLMs, as demonstrated by Kimi K2 (Kimi, 2025), which has 1T total parameters and 32B
activated parameters. On the empirical side, Muon is demonstrated to perform better than
AdamW in pre-training tasks (Liu et al., 2025a; Kimi, 2025). In addition, Muon incurs less
memory consumption for common ∼7B-sized models since it has no second moments. On
the theoretical side, Muon satisfies properties I and II in Lemma 2, allowing the unbiasedness
to be proven.

F BROADER IMPACTS

Memory-efficient training techniques are critical for scalable LLM development and for democratizing
customized LLMs for broader societal use. Improving theoretical guarantees provides insights for the
invention of new methods with enhanced performance, leading to reduced computational resource
consumption and lower carbon dioxide emissions.

G LIMITATIONS

The technique of sampled high-rank updates inherently introduces high variance into the per-iteration
updates when the sampling probability is low, which leads to instability in the training procedure
and requires more careful tuning of the hyperparameters. To alleviate this issue, standard theoretical
tools for variance reduction can be employed (Johnson & Zhang, 2013; Needell et al., 2014; Ge
et al., 2019b), which we leave for future work here. The analysis can also be combined with other
acceleration (Zhang & Xiao, 2017; Ge et al., 2019a; Pan et al., 2021; 2023; Defazio et al., 2024; Liu
et al., 2025b) and generalization techniques (Arjovsky et al., 2019; Foret et al., 2020; Hao et al., 2025),
whose properties are worth investigating as open problems. The algorithm’s empirical performance
and computational cost in other types of models (Devlin et al., 2019; Rombach et al., 2022; Pan
et al., 2022; Liu et al., 2023; Gu & Dao, 2023; Hu et al., 2024; Wang et al., 2025; Mu & Lin, 2025)
and applications (Xia et al., 2023; Peebles & Xie, 2023; Pan et al., 2025) also remain as interesting
questions.

H THE USE OF LARGE LANGUAGE MODELS

ChatGPT and GPT-5 were adopted to polish the writing of the paper, where all revised sentences
were double-checked by the authors. OpenAI Deep Research was utilized for finding dataset licenses.

I LICENSES

For mathematical reasoning tasks in LLM fine-tuning, the training dataset comes from 4 different
sources: DART-Math (Tong et al., 2024), UltraInteract (Yuan et al., 2024), MathInstruct (Yue et al.,
2023), and Orca-Math (Mitra et al., 2024), with their licenses listed in Table 13. Other datasets and
benchmarks are also available in the same table.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Training Datasets #Samples Kind License

teknium/GPT4-LLM-Cleaned6 55K Instruction CC BY-NC 4.0
DART-Math7 (Tong et al., 2024) 591K Math MIT
openbmb/UltraInteract_sft8 (Yuan et al., 2024) 289K Reasoning MIT
TIGER-Lab/MathInstruct9 (Yue et al., 2023) 262K Reasoning MIT
microsoft/orca-math-word-problems-200k10 (Mitra et al., 2024) 200K Math MIT
C4 corpus11 (Raffel et al., 2023) >1B Commonsense ODC-BY

IFEval (Zhou et al., 2023) 0.5K Instruction Apache-2.0
GSM8K (Cobbe et al., 2021b) 7.5K Math MIT
ARC-E (Clark et al., 2018) 5.2K Instruction CC-BY-SA-4.0
ARC-C (Clark et al., 2018) 2.6K Instruction CC-BY-SA-4.0
HellaSwag (Zellers et al., 2019b) 10K Commonsense reasoning MIT

PIQA12 (Bisk et al., 2020) 3K Commonsense reasoning Academic Free
License v. 3.0

SIQA (Sap et al., 2019) 2.2K Commonsense reasoning CC-BY-4.0 (Li et al., 2024)
Winogrande13 (Sakaguchi et al., 2021b) 1.8K Commonsense reasoning CC-BY
OBQA (Mihaylov et al., 2018a) 5.9K Commonsense reasoning (permissive open license)14

Table 13: Licenses of training datasets and benchmarks. Here, the number of samples for benchmarks
only counts the test set.

For code repositories, LMFlow (Diao et al., 2023) is released under Apache-2.0 license.

6https://huggingface.co/datasets/teknium/GPT4-LLM-Cleaned
7https://huggingface.co/datasets/hkust-nlp/dart-math-uniform
8https://huggingface.co/datasets/openbmb/UltraInteract_sft
9https://huggingface.co/datasets/TIGER-Lab/MathInstruct

10https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k
11https://huggingface.co/datasets/allenai/c4
12https://github.com/ybisk/ybisk.github.io/tree/master/piqa
13https://github.com/allenai/winogrande
14The OpenBookQA dataset is released under a permissive open license, making it freely avail-

able for academic research. In practice, sources indicate that the dataset is in the public do-
main or under a very permissive license. For example, a Kaggle distribution of OpenBookQA
explicitly labels it CC0 1.0 Universal (Public Domain) (https://www.kaggle.com/datasets/
thedevastator/openbookqa-a-new-dataset-for-advanced-question-a). Similarly, a
curated dataset list reports OpenBookQA’s license as Apache 2.0 (https://github.com/lmmlzn/
Awesome-LLMs-Datasets). Both of these licenses allow unrestricted use, redistribution, and modification
of the data, including for academic purposes.

31

https://huggingface.co/datasets/teknium/GPT4-LLM-Cleaned
https://huggingface.co/datasets/hkust-nlp/dart-math-uniform
https://huggingface.co/datasets/openbmb/UltraInteract_sft
https://huggingface.co/datasets/TIGER-Lab/MathInstruct
https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k
https://huggingface.co/datasets/allenai/c4
https://github.com/ybisk/ybisk.github.io/tree/master/piqa
https://github.com/allenai/winogrande
https://www.kaggle.com/datasets/thedevastator/openbookqa-a-new-dataset-for-advanced-question-a
https://www.kaggle.com/datasets/thedevastator/openbookqa-a-new-dataset-for-advanced-question-a
https://github.com/lmmlzn/Awesome-LLMs-Datasets
https://github.com/lmmlzn/Awesome-LLMs-Datasets

	Introduction
	Related Work
	Algorithm
	GaLore Unbiased with Muon

	Convergence Analysis of GUM
	Experimental Results
	Synthetic Settings
	LLM Fine-tuning Settings
	LLM Pre-training Settings
	Understanding the Effect of Layerwise Sampling

	Conclusions
	A General Unbiased Low-Rank Gradient Method Paradigm
	Proofs of Section 3 and 4
	Proof of Lemma 2 and 1
	Proof of Theorem 1

	Training Setup and Hyperparameters
	Fine-tuning Setup
	Fine-tuning Hyperparameters
	Pre-training Hyperparameters

	Additional Experimental Results
	Bias in GaLore
	Singular Value Distribution of Model Weights
	Computational Cost Comparison
	Ablation Studies
	Comparison with More Baselines
	Larger-Scale Pre-training
	Longer Training

	Further Discussion
	Relationship with Muon Optimizer

	Broader Impacts
	Limitations
	The Use of Large Language Models
	Licenses

