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ABSTRACT

CRISPR has revolutionized genetic engineering by providing straightforward
tools for many kinds of genetic alterations. CRISPR-Cas13 is a programmable
endonuclease that specifically targets and cleaves RNA. After activation by target
cis-RNA binding, Cas13 also exhibits non-specific collateral trans-activity against
nearby RNAs. In several conditions, this leads to apoptosis. Here, we propose to
harness the collateral activity of RfxCas13d for selective induction of apoptosis
in heterogeneous cell populations. We design and perform machine-guided engi-
neering of RfxCas13d to increase collateral activity, with applications in highly
specific cancer therapeutics.

1 INTRODUCTION

CRISPR and CRISPR-associated (Cas) proteins are components of a bacterial adaptive immune
system that have revolutionized biology and are increasingly used for translational or therapeutic
purposes like targeted genome modification and transcriptional regulation (Knott & Doudna, 2018;
Anzalone et al., 2020). While most CRISPR-family enzymes cleave DNA, the class 2 type VI
programmable endonuclease CRISPR-Cas13 specifically targets RNA, providing new opportunities
for cell manipulation (Abudayyeh et al., 2016). Cas13 enzymes feature two Higher Eukaryotes and
Prokaryotes Nucleotide-binding (HEPN) domains in a single effector molecule. After processing
a CRISPR RNA (crRNA), Cas13 binds to and degrades a crRNA-complementary target RNA in
a HEPN-catalyzed cleavage reaction. To date, Cas13 has been successfully used across numerous
cell types and in vivo for highly efficient RNA knockdown, targeted RNA modification, and nucleic
acid detection (Konermann et al., 2018; Kellner et al., 2019; Abudayyeh et al., 2019; Ackerman
et al., 2020). After activation by target RNA binding, Cas13 also exhibits non-specific off-target
collateral activity against nearby bystander RNAs. This collateral activity has been reported in
both prokaryotic and eukaryotic cells, leading to an upregulation of apoptotic factors and cell death
(Wang et al., 2019; Ai et al., 2022; Shi et al., 2023; Özcan et al., 2021). Thus, previous studies
of Cas13 have attempted to engineer Cas13 to mitigate collateral degradation and improve Cas13
fidelity (Tong et al., 2023).

However, by increasing rather than decreasing Cas13 collateral activity, Cas13 could also be ex-
ploited for selective induction of apoptosis based on the specific transcriptomes. Efficient and pre-
cise cell subpopulation selection remains challenging, and selective induction of apoptosis based on
the transcriptome holds great potential for therapeutic applications such as cancer cell elimination.
Indeed, transcript expression and splicing in cancerous cells are strongly dysregulated, differing
greatly from their healthy counterparts (Calabrese et al., 2020). Here, we propose to harness the
collateral activity of Cas13 to develop a novel and highly specific cancer therapeutic that targets
transcripts exclusively expressed in cancer cells and induces selective apoptosis. As such, we per-
form machine learning-guided engineering of Cas13 to increase collateral activity.
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Figure 1: Comparison of unsupervised methods and location on Cas13 structure. (a) Unsu-
pervised model correlations of Cas13 mutations. We learn from the whole protein universe with
ProGen, local alignment with EVCouplings, and an AlphaFold-predicted structure with Protein-
MPNN. Pairwise comparisons between variant effect predictions of single amino acid mutations
shows that there is a small amount of correlation between predicted scores. (b) Location of muta-
tions on Cas13 predicted structure. Positions selected from ProGen, EVCouplings, and Protein-
MPNN models are shown in orange on the AlphaFold2 RfxCas13d predicted structure. Mutations
are constrained to the HEPN and Helical2 domains.

2 POSITION PRIORITIZATION APPROACH

We first experimentally evaluated several Cas13 subtypes and crRNAs, including LwaCas13a,
Pin2Cas13b, and RfxCas13d. We found that RfxCas13d, a 967-amino acid protein, was able to
induce apoptosis in two cancer cell lines, HEK293T and U87-MG, as measured by Annexin V stain-
ing after 48 hours. Using prime editing in HEK293T cells, we altered two base pairs in the EGFP
coding sequence. We then co-expressed RfxCas13d with a crRNA targeting the unedited EGFP
transcript, thereby enhancing population-wide gene editing efficiency. This suggests that RfxCas13d
selectively induces apoptosis in target transcript-expressing cells while sparing non-expressing ones.
Moreover, it demonstrates the high sequence specificity of RfxCas13d, which could be exploited to
distinguish single-point mutations present in cancer cells. This aligns with findings reported by Tong
et al. (2023). To further increase the specific toxicity of RfxCas13d to therapeutically relevant levels,
we designed a site saturation variant library on 96 selected amino acid positions of RfxCas13d. This
search is guided by both the available literature and machine learning-based prioritization to select
sites for mutagenesis and evaluation.

2.1 BIOLOGICAL LITERATURE

We chose sites for exploration based on the literature, focusing on regions likely to influence cleav-
age activity. Specifically, we selected sites within the highly conserved 6 residue HEPN RXXXXH
motif (Zhang et al., 2018). This motif is essential for the nuclease activity in Cas13d, and it is
responsible for both the cis- and trans-RNA cleavage. Mutations in this region have been studied
in other enzymes; however, no one has investigated the comprehensive set of single mutations here
for RfxCas13d. In addition to these sites in the HEPN domain, we also chose to examine 40 sites
that have been previously studied in Cas13x and Cas13d. Tong et al. (2023) attempted to engineer
high-fidelity Cas13 variants to decrease the amount of selective toxicity. However, they also noticed
several positions where selective toxicity may have been increased, and we included those positions
in our assays to better understand the effects of mutations at those sites.

Conversely, we deliberately excluded regions unlikely to impact specific toxicity, such as the recog-
nition (REC) domain. The REC domain is thought to be primarily responsible for initial recognition
and binding of the target RNA. Also excluded are 16 residues from all other domains – HEPN1 and
HEPN2 and Helical-2 – that are thought to be involved in crRNA binding or target RNA binding
(Zhang et al., 2018).
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Figure 2: Results of zero-shot engineering on four different phenotypes. mCherry and GFP
improvements are minimal and represent phenotypes closest to the engineering goal. Annexin V
and cell values gains are larger but are phenotypes less relevant to the engineering goal.

2.2 MACHINE-GUIDED PRIORITIZATION

In addition to sites selected from the literature, we developed a machine learning-guided approach to
expand the mutational exploration into other parts of the protein. Generally, unsupervised machine
learning for proteins can learn from local sequence space (alignment-based methods), the universe
of all known protein sequences (large language models), and models trained on structure. Typically,
protein engineering or protein design workflows will choose one model and use that model to select
which variants to test. In our case, Cas13d does not have many related sequences in the UniRef100,
BFD, or MGnify databases (Suzek et al., 2007; Jumper et al., 2021; Richardson et al., 2023) and
there is no resolved structure of this specific variant. In these frequent low data settings, it remains
an open question of how to best leverage machine learning when no obvious choice presents itself.
Here, we stratified our ML-guided prioritization across three sources of information:

(a) Sequences: We built a multiple sequence alignment (MSA) of 824 related Cas13 sequences
from the MGnify database (Richardson et al., 2023) using 5 iterations of JackHMMER
(Eddy, 2011) and used this MSA to train an EVCouplings model (Marks et al., 2011).

(b) Structure: AlphaFold2 (Jumper et al., 2021) was used to generate a predicted structure
(1.591 Å RMSD from the closest known homolog, PDB: 6e9e (Zhang et al., 2018)) that
we used to run ProteinMPNN (Dauparas et al., 2022).

(c) The Protein Universe: Finally, ProGen (Madani et al., 2020), trained on the whole protein
universe, was used out-of-the-box with all default parameters.

From these three models, we performed variant effect prediction on all possible single mutations.
While the various model architectures and loss functions differ, we obtain the probability for any
arbitrary amino acid at each site and use this as a proxy for a DMS experiment.

The predictions of each model were distinct and do not correlate well with each other (Figure 1a),
suggesting that the models learn different features of the sequence landscape. Although we do
not explicitly model RNA cleavage or other specific toxicity related features of Cas13, we assume
that this natural property is inherently encoded within its sequence and structure. Consequently,
sequences deemed more probable are expected to yield proteins with greater overall fitness. It is
important to recognize, however, that computationally “improved” (i.e., more probable) sequences
may reflect enhancements in expression or stability rather than directly increasing specific toxic-
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Figure 3: Top 25 mutants per phenotype. For competitive growth assays where mCherry and GFP
are tested, T691Q is the top mutant and for Annexin V staining, T691P was best. Cell value changes
shows the highest improvement with mutant T770N.

ity. However, these enhancements might indirectly influence RfxCas13d’s specific toxicity and can
therefore still lead to valuable improvements.

These predictions from the models were used to prioritize the positions in two ways. First, we
selected the top five individual mutations from each model that were most probable. This approach
is greedier and more risky since any particular mutation effect from the model has a likelihood of
being incorrect. Consequently, we de-risked the positions chosen by averaging model predictions
across mutations at each site, then selecting the top 14 sites with greatest average likelihood. Several
of these sites overlapped between models, and the combined sites resulted in 52 ML-guided positions
distributed across the protein (Figure 1b).

3 RESULTS OF ZERO-SHOT VARIANTS

We synthesized a library containing all possible amino acid substitutions at the selected RfxCas13d
amino acid positions identified by both literature and machine-guided prioritization, and assayed the
ability of the selected variants to induce selective apoptosis in HEK293T and U87-MG cell lines.
To evaluate the cell toxicity of the synthesized Cas13d mutants, a combination of cell growth and
apoptosis staining was used. In this context, high AnnexinV staining indicates phosphatidylserine
externalization, a hallmark of apoptosis. Cell value is another indicator of cell death: low cell value
indicates that a large number of cells have been killed.

We also aimed to evaluate the selective potential of Cas13d mutants in a competetive growth assay
using cell lines stably expressing either GFP or mCherry. In this assay, low GFP values indicate a
strong ability of Cas13 to eliminate GFP-expressing target cells, while high mCherry levels suggest
minimal toxicity against mCherry-expressing non-target cells. The mCherry levels are a proxy for
measuring how many non-target cells (i.e., cells not expressing the target transcript) can be enriched.
This is the most relevant metric since it indicates that cells not expressing the target transcript are
unharmed while the GFP-expressing target cells have been eliminated by the Cas13d enzyme. For
ease of interpretation, the directionality of the metrics is held consistent such that higher is better
when interpreting fold change with respect to wild-type.

The mCherry and GFP metrics from the cell growth assay were marginally improved. From the
mCherry data, mutants T691Q, T691P, T770V, W838H, and N139D show modest en-
hancements over wild-type. From the GFP data that is a proxy for high toxicity in target cells,
mutants T691Q, N139D, and T770V show improvement over wild-type. Annexin staining
and cell growth values show significant improvement with a fold change improvement maximum of
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ProGen ProteinMPNN EVCouplings
mCherry -0.164 0.184 0.005
Annexin Staining -0.105 0.109 -0.086
Negative Cell Value -0.216 0.115 0.184
Negative GFP Percent -0.272 0.227 0.078

Table 1: Correlation of computational and experimental predictions. No single computational
method correlates perfectly with experimental results.

1.94× and 7.44× respectively. These experimental results are shown together in Figure 2. When
considering the top 25 mutants of each phenotype, shown in Figure 3, mutant T691Q exhibits the
most improvement for both mCherry and GFP whereas T691P is the best for Annexin staining
and T770N is best for cell values. Generally, we observed several examples of multiple different
substitutions at a single position leading to improvements, indicating loss-of-function gains. We
may have observed one gain-of-function mutation, W838H, as defined by testing multiple different
substitutions at a single position and only observing one leading to functional gains.

Notably, all of the top-performing mutants were based on ML-driven rather than literature-reported
mutations: ProGen nominated position 838, ProteinMPNN nominated 691, and EVCouplings nom-
inated 770, reflecting differences in how these models leverage evolutionary data, structural in-
formation, and statistical patterns. None of the top-performing mutations were based on previous
literature, highlighting that ML-driven approaches not only recapitulate known functional sites but
also uncover novel beneficial mutations that may have been overlooked in traditional studies.

Lastly, when correlating the experimentally measured values with model predictions, in Table 1 we
see that none of these zero-shot models correlate particularly well with any individual phenotype.
Although zero-shot models are, on their own, able to nominate several interesting mutants, they
cannot predict the functions of interest.

4 USING SPARSE EXPERIMENTAL DATA FOR ITERATIVE ENGINEERING

With these few examples of labeled data, we implement several different semi-supervised strategies:
Kermut (Groth et al., 2024), SaProt (Su et al., 2023), and ProteinNPT (Notin et al., 2023). These
three models represent state-of-the-art semi-supervised machine learning models for protein fitness
using sparse experimental data. They consistently outperformed other models on the ongoing Pro-
teinGym leaderboard. In a similar way as described for the zero-shot predictions, we create in silico
DMS scores for all single mutants on the wild-type background and plan to use these fitness scores
to nominate mutations to test. However, unlike the previous section, we only focus experimental
efforts towards the competetive growth assay mCherry and GFP phenotypes. While the Annexin V
and cell value phenotypes showed more improvement and are easier to measure, the results from
those assays are less useful since those phenotypes are not the engineering priority. Thus, we aver-
aged the fold-improvement-over-WT values for mCherry and GFP as the training data, and in total
we trained on 144 datapoints.

Moving forward, we will conduct 5-fold cross validation on random splits of the experimental data
for these three models. If there are notable differences in how well one specific model learns the
mutational landscape, we will test more single mutants from that model. Additionally, we plan on
stacking the best identified mutants from either round to examine additive and synergistic effects.

5 CONCLUSION

This work highlights the challenges and opportunities of protein engineering when unsupervised
data is limited. By leveraging both literature-guided and ML-guided approaches, we successfully
identified several promising RfxCas13d variants with enhanced specific activity. Despite the zero-
shot models offering insights into potential mutational hotspots, they did not consistently correlate
with experimental results, reflecting the complexity of predicting functional outcomes computation-
ally.
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Using our newly-collected sparse experimental data, we plan on employing semi-supervised models
such as Kermut, SaProt, and ProteinNPT to further refine RfxCas13d towards our engineering goal.
These methods, which integrate limited data to guide iterative design, offer a promising framework
for improving proteins with therapeutic potential. Future work will focus on stacking mutations from
the initial rounds to further optimize these variants for selective cell death, with broader applications
in targeted therapeutics.
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