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Abstract

User-interaction sequences in modern recommendation systems often showcase1

complex temporal patterns that pose fundamental challenges in time series model-2

ing. However, existing user modeling approaches consider benchmarks mostly fo-3

cused on short-term, single-domain next-item prediction, employing in-distribution4

evaluation practices that fail to assess true temporal / cross-user OOD generaliza-5

tion capabilities. Furthermore, most benchmarks use leave-one-out or ratio-based6

splits that risk temporal leakage and reward models which exploit short-range cor-7

relations rather than capturing evolving user preferences. We introduce HORIZON,8

a large-scale benchmark designed to establish robust evaluation practices for se-9

quential recommendation and user behavior modeling. Built as a cross-domain10

reformulation of Amazon Reviews Dataset, it covers 54M users, 35M items, and11

486M interactions, enabling both pre-training as well as rigorous out-of-distribution12

evaluations. HORIZON tests three core capabilities essential for real-world deploy-13

ment: (i) long-term temporal generalization, (ii) cross-domain transfer, and (iii)14

unseen-user generalization for cold-start settings. Our results demonstrate that15

while traditional baselines (e.g., BERT4Rec) perform well in-domain, they signifi-16

cantly degrade under temporal and unseen-user scenarios, and even state-of-the-art17

LLMs struggle in this task. Our findings underscore the gap between current models18

and the complex temporal, cross-domain nature of real-world user behavior.19

1 Introduction20

Personalization has become a cornerstone of digital platforms ranging from e-commerce and stream-21

ing services to news feeds and smart-home systems. At the core of personalization lies the task of22

user modeling constructing representations of individual behavior based on previous interactions.23

This task shares fundamental characteristics with time series modeling: understanding temporal24

dependencies, handling long-range patterns, and generalizing across different contexts.25

However, user modeling has historically been studied through single-domain benchmarks such as26

MovieLens [1] and Amazon Reviews [2], where the focus is on predicting the next item in a short27

session. While effective for early recommendation research, such setups fall far short of capturing28

the complexity of modern user behavior.29

In practice, user histories are long, sparse, and multi-faceted: individuals interact with diverse content30

types (e.g., books, electronics, clothing) and display evolving interests that unfold over months or31

years. Benchmarks confined to a single domain and short horizons therefore encourage models to32

lean heavily on item–item similarities or short-range correlations, rather than uncovering deeper33

semantic patterns necessary for understanding long-term preferences across domains. As a result,34

they fail to test whether models generalize (1) temporally, (2) across domains, or (3) to new users.35
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Recent progress in sequential recommendation has introduced increasingly powerful architectures in36

transformers [3, 4], pre-trained large language models (LLMs) [5, 6], and, more generally complex37

models capable of handling long histories. Yet, without sufficiently comprehensive benchmarks, the38

true capacity of these models to capture evolving, cross-domain behavior remains unclear. This gap39

mirrors the broader challenge faced across machine learning: determining whether large pre-trained40

models are genuinely learning transferable temporal representations, or simply overfitting to narrow41

supervised tasks.42

In this work we present HORIZON, a large-scale benchmark explicitly designed to address these43

limitations. Constructed from a cross-domain reformulation Appendix A of Amazon Reviews,44

HORIZON comprises 54M users, 35M items, and nearly 500M timestamped interactions, enabling45

both large-scale pretraining and rigorous downstream evaluation. Unlike prior benchmarks, HORIZON46

introduces evaluation protocols reflecting real-world deployment settings: (i) temporal generaliza-47

tion across long horizons, (ii) cross-domain transfer between heterogeneous content types, and (iii)48

unseen-user adaptation under cold-start or out-of-distribution conditions.49

By framing personalization as a temporally evolving, multi-domain sequence modeling task, HORIZON50

connects recommendation research to broader questions about generalization and transferability raised51

by foundation models. While our core focus is user modeling, the methodological overlap with time52

series learning is direct: understanding how models extend beyond local patterns to capture long-53

range dynamics. Our initial experiments reveal that even state-of-the-art sequential recommender54

models struggle under these new conditions, underscoring the need for development of superior55

training paradigms which improve generalization.56

2 Proposed Evaluation Framework and Task formulations57

2.1 Limitations of Traditional Evaluation58
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Figure 1: Proposed evaluation splits on the
HORIZON benchmark for Task 1.

Most existing recommendation benchmarks rely on59

in-distribution evaluation, where training, valida-60

tion, and test splits are sampled from the same user61

traces. The two standard protocols are: Leave-One-62

Out, which holds out the last interaction per user,63

and Ratio-Based Splits, which partition sequences by64

a fixed 8:1:1 ratio. Both approaches risk temporal65

leakage across splits and offer no mechanism to test66

generalization to new users or across longer horizons67

[7, 8]. As a result, models are rewarded for exploiting68

short-range correlations rather than capturing evolv-69

ing preferences.70

2.2 Proposed Evaluation Framework71

To address temporal generalization, we introduce a72

time-based cutoff protocol that separates training and evaluation by a global timestamp τ , ensuring73

strict temporal fidelity. HORIZON’s cross-domain construction from Amazon Reviews spans diverse74

product categories, inherently creates natural distribution shifts that test model transferability. Addi-75

tionally, we hold out a subset of users exclusively for evaluation, enabling explicit measurement of76

out-of-distribution (OOD) generalization under cold-start conditions.77

This yields four complementary evaluation scenarios (Fig. 1):78

• (1a) In-Domain, Aligned: Leave-One-Out for training users before τ , reflecting short-79

horizon, in-distribution prediction.80

• (1c) In-Domain, Extrapolation: Evaluation on all post-τ interactions of training users,81

probing long-range temporal generalization.82

• (1b) OOD-User, Aligned: Leave-One-Out on held-out users before τ , testing adaptation to83

unseen user identities.84

• (1d) OOD-User, Extrapolation: Predicting all post-τ interactions for unseen users, the85

most challenging setting combining user- and time-shift.86
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Table 1: In-Distribution - Temporally Aligned
Evaluation (N=NDCG, M=MRR, R=Recall)

Baseline N M R

10 50 100 10 50 100 10 50 100

CORE 8.5 8.7 8.7 7.25 7.30 7.30 12.1 13.0 13.4
SASRec 25.2 27.4 27.9 22.5 22.9 23.0 34.1 43.8 46.6
BERT4Rec 26.4 27.8 28.2 23.9 24.2 24.3 33.9 40.4 42.9
GRU4Rec 0.08 0.12 0.14 0.07 0.07 0.08 0.14 0.31 0.43

Table 2: OOD - Temporally Aligned Evaluation
(N=NDCG, M=MRR, R=Recall)
Baseline N M R

10 50 100 10 50 100 10 50 100

CORE 5.9 6.8 7.2 4.19 4.39 4.43 11.1 15.4 17.9
SASRec 17.8 19.2 19.6 15.2 15.5 15.5 26.2 32.2 34.6
BERT4Rec 11.8 14.4 15.2 9.96 10.50 10.58 17.8 29.5 34.7
GRU4Rec 0.01 0.01 0.02 0.004 0.004 0.005 0.01 0.03 0.08

Table 3: In-Distribution - Temporal Extrapola-
tion Evaluation (N=NDCG, M=MRR, R=Recall)
Baseline N M R

10 50 100 10 50 100 10 50 100

CORE 0.09 0.47 0.75 0.04 0.11 0.13 0.26 2.10 3.78
SASRec 2.9 3.6 3.9 1.88 2.03 2.05 6.2 9.4 11.0
BERT4Rec 1.1 3.2 4.0 0.56 0.99 1.10 2.8 12.8 17.8
GRU4Rec 0.01 0.01 0.02 0.004 0.005 0.01 0.01 0.03 0.08

Table 4: OOD - Temporal Extrapolation Evalua-
tion (N=NDCG, M=MRR, R=Recall)
Baseline N M R

10 50 100 10 50 100 10 50 100

CORE 0.10 0.53 0.82 0.04 0.12 0.15 0.32 2.33 4.13
SASRec 3.1 3.9 4.1 2.01 2.17 2.19 6.7 9.9 11.6
BERT4Rec 1.1 3.4 4.3 0.55 1.02 1.10 2.8 13.7 18.9
GRU4Rec 0.01 0.01 0.02 0.004 0.004 0.005 0.01 0.04 0.07

This four-way split disentangles temporal vs. user generalization, offering a more realistic testbed for87

sequential and foundation-style models.88

2.3 Task Formulation89

We propose the following task formulation to evaluate traditional and LLM based user modeling90

systems on HORIZON:91

Task 1 — Sequential Next-Item Prediction. Traditional ID-based sequential recommendation92

using the four-way evaluation protocol above. This establishes baselines for temporal and cross-93

domain generalization using established architectures.94

Task 2 — Generative Next-Item Prediction. Generative models like LLMs reformulate user95

histories into diverse search queries Q = {q1, . . . , q10} capturing multi-faceted user intent. Queries96

and catalog items are embedded into shared semantic space; an ANN index retrieves top-K candidates97

per query for final recommendation ranking. Figure 6 demonstrates the detailed pipeline used for the98

evaluation process.99

Task 3 — Long-Horizon Behavior Modeling. User modeling requires capturing longer-term100

behavior patterns over extended time windows [9, 10]. We propose long-horizon modeling on the101

HORIZON benchmark, leveraging longer cross-domain user histories. Given user interaction history102

prior to a temporal cutoff τ ., the generative model generates natural language descriptions of the103

next 10 likely engagement items, representing high-level future behavior summaries. Using the same104

retrieval pipeline (Figure 6), each description is embedded to retrieve matching catalog items.105

3 Results & Discussion106

3.1 Benchmarking traditional ID-based baselines107

Tables 1 to 4 demonstrate the performance of traditional ID-based baselines across both In-Distribution108

as well as of Out-of-distribution settings across both temporal alignment as well as extrapolation109

setups.110

Challenging Nature of the Task Unlike prior benchmarks on narrow domains (e.g., Beauty in [11]),111

HORIZON spans the full distribution of user activity across diverse product categories with 35M112

items. This multi-domain setting proves considerably more challenging: simple RNN-based models113

such as GRU4REC—which perform well in smaller setups [12]—struggle here, while attention-based114

models (BERT4REC, SASREC) prove more effective, underscoring the need for flexible context115

modeling in heterogeneous histories.116
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Table 5: Generative Next-Item Prediction
Model Recall Precision

@10 @50 @100 @10 @50 @100

LLAMA-3.1-8B 1.62 2.37 2.84 0.20 0.23 0.22
Qwen3-8B 2.06 2.95 3.50 0.25 0.28 0.28
Gemma2-9B 1.45 2.26 2.66 0.16 0.21 0.19

Table 6: Long-Horizon Behavior Modeling

Model Recall Precision

@10 @50 @100 @10 @50 @100

LLAMA-3.1-8B 1.26 6.52 13.25 0.51 0.52 0.53
Qwen3-8B 1.51 7.78 15.75 0.63 0.65 0.66
Gemma2-9B 0.98 5.07 10.39 0.42 0.43 0.44

Traditional Evaluation Overestimates Robustness Standard in-domain evaluation (Table 1)117

shows strong performance, creating false confidence in model capabilities. However, when tested118

on entirely unseen users (Table 2), performance drops sharply across all methods. The severity of119

performance drops is lower in case of attention-based models. This systematic overestimation of120

robustness validates HORIZON’s OOD-based evaluation design and highlights critical gaps in current121

benchmarking practices.122

Temporal Drift Exposes Fundamental Model Limitations Tables 3 and 4) causes catastrophic123

performance degradation across all methods. Critically, models generalize better to new users within124

the same timeframe than to the same users across distant horizons. This reveals heavy reliance125

on ID-based representations that fail when new items emerge without semantic grounding — a126

fundamental limitation for production systems facing evolving catalogs as time progresses.127

3.2 Benchmarking Query Reformulation-based Generative Recommendation128

Table 5 reports results for three prominent LLMs—LLAMA-3.1-8B, Qwen3-8B, and Gemma2-129

9B—on reformulating user histories into queries for item retrieval. Overall, performance is modest:130

Recall and Precision improve with larger candidate sets (10 → 100), suggesting LLMs capture131

fragments of user intent but struggle with consistent accuracy. Qwen3-8B outperforms the others132

across metrics. To assess semantic quality, we measured similarity between reformulated queries and133

ground-truth items using BLAIR embeddings. Average cosine scores (0.71–0.73) indicate that queries134

are reasonably related but not sharply aligned, leaving room for more targeted reformulation. We135

conducted fine-tuning experiments using parameter-efficient (LoRA) and full fine-tuning approaches136

with LLaMA-3.1-8B and Qwen3-8B models, demonstrating similar trends presented in Appendix F.137

3.3 Benchmarking Long-Horizon Generative Recommendation138

Table 6 summarizes LLM results on predicting user interests beyond immediate interactions. Here,139

Recall@K improves with larger k, showing that models capture some relevant signals across ex-140

tended horizons, but Precision remains low, reflecting a high rate of irrelevant predictions. As in141

query reformulation, Qwen3-8B consistently leads. Importantly, long-horizon tasks benefit from142

multiple valid future targets (unlike Task 2), which partly inflates Recall. Prior work [10, 9] has143

also relaxed strict temporal ordering, complicating direct comparisons. Thus, while results suggest144

some preference evolution modeling, current approaches to long horizon modeling remain limited in145

precision and robustness across tasks.146

4 Conclusion147

We identified a critical gap between real-world deployment requirements and existing time series user148

modeling benchmarks, which fail to test temporal generalization, cross-domain transfer, and cold-149

start adaptation. To address this, we presented HORIZON, a novel benchmark with five evaluation150

setups that systematically test models’ generalization capabilities across out-of-distribution users,151

temporal settings, and long-horizon scenarios. Our extensive experiments across multiple models152

revealed significant performance discrepancies in different generalization scenarios that traditional153

benchmarks fail to capture. These findings strongly suggest that future research on sequential154

recommendation should prioritize measuring temporal complex behavior modeling capabilities155

rather than focusing exclusively on next-item prediction performance, and explicitly account for156

the generalization discrepancies we observed in unseen users and temporal extrapolation scenarios.157

Thus, the HORIZON benchmark aims to drive progress toward more robust user behavior modeling158

techniques enabling more personalized/engaging user experiences in modern web platforms.159
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Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel255

Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska,256
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Attribute PF Amz-M2 MIND Amz-Reviews HORIZON

No. of users N/A N/A 1M 54.51M 54.51M
Avg User History Length N/A 4.2 N/A 3.86 9.07
No. of items N/A 1.42M 0.16M 34.52M 34.52M
No. of interactions N/A 16.78M 24.15M 485.89M 485.89M

Cross-domain ✓ ✓ × × ✓
Diversity ✓ × × × ✓
Interaction Timestamps – × × ✓ ✓
Open-Source × ✓ ✓ ✓ ✓

Table 7: Comparison of existing Sequential Recommendation Benchmarks with HORIZON. (PF refers
to PinnerFormer, Amz-M2 refers to Amazon M2, Amz-Reviews is the Amazon Reviews dataset.

A Benchmark and Benchmark Stats/Comparison with Existing Benchmarks283

Benchmark Description: User modeling and sequential recommendation aim to predict a user’s284

future interactions based on their past behavior. Formally, for a user u, we observe a sequence of285

interactions over time Hu = [i1, i2, . . . , it], where it denotes the item interacted with at time t. The286

objective is to estimate the likelihood of the next interaction it+1 or future next interactions over287

some time period T i.e. ît+1,..,T = (it+1, it+2, ....iT ), given the user’s historical context:288

ît+1 = argmax
i∈I

Pr(i | Hu),

where I denotes the candidate item set. This formulation underpins several established benchmarks289

such as MIND, M2, and Amazon Reviews [13, 14, 11]. As noted in Section 2, the Amazon Reviews290

dataset has become a widely used resource for training and evaluating sequential recommenders.291

However segregates user interactions by product categories, making it domain-specific and thus292

limiting its ability to capture holistic user preferences. In the real world, users engage with a variety293

of domains, and isolating interactions to a single domain introduces artificial boundaries, resulting in294

incomplete modeling of cross-domain behaviors and potentially spurious patterns causing incorrect295

user modeling.296

To address this limitation, we introduce HORIZON, a large-scale benchmark designed to support297

cross-domain user modeling and sequential recommendation. HORIZON is constructed by refactoring298

and consolidating the Amazon Reviews 2023 dataset [11], merging interactions across all available299

categories to create unified, realistic user histories. The resulting benchmark comprises of 53.5300

million users and 34.5 million unique items, enabling rigorous evaluation of models under settings301

that better reflect real-world recommendation scenarios.302

A.1 Comparison with Existing Benchmarks303

Table 7 provides a comparative analysis of our dataset against existing sequential recommendation304

benchmarks. While proprietary datasets like PinnerFormer [10] offer scale and diversity, they remain305

inaccessible to the broader research community. Public datasets such as Amazon-M2 [15] provide306

cross-domain capabilities but lack temporal depth due to being being restricted to session-based307

interactions rather than long-term user modeling. The MIND dataset [16], despite its million-308

user scale, covers only two weeks of user history, severely limiting its utility for long-horizon309

recommendation research. Similarly, the Amazon Reviews dataset [2, 11] provides timestamps but310

artificially segments interactions into isolated domains. In contrast, HORIZON uniquely combines311

cross-domain coverage, interaction diversity, and comprehensive temporal information, enabling312

more realistic evaluation of sequential recommendation systems across extended time horizons.313

B HORIZON Statistics and Plots314

The HORIZON benchmark is curated by reformulating the widely-used Amazon Reviews 2023 dataset315

[11], merging all 33 categories into unified user histories to enable robust long-term, cross-domain user316

modeling. This section provides an in-depth statistical analysis of the dataset through visualizations317

and derived insights.318
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Figure 2: Histogram Depicting the Frequency Distribution of User History Lengths in HORIZON.
The presence of ultra-long user histories highlights the need for architectures capable of modeling
long-range sequential dependencies.

Scale and Diversity: The benchmark comprises approximately 53.5M users and 34.5M unique319

items, amounting to nearly 486M interaction records. This scale is significantly larger than prior320

public benchmarks and captures highly diverse behavioral patterns. With the unified formulation,321

user histories naturally span multiple product categories—introducing heterogeneous context that322

is both semantically diverse and temporally rich. This setting reflects real-world personalization323

challenges more faithfully than isolated category-based modeling.324

Figure 3: Line Plot Depicting the Temporal Distribution of User Histories in HORIZON. The balanced
volume before and after 2020 makes it suitable for temporal extrapolation tasks.

User History Lengths: Figure 2 illustrates a long-tailed distribution of user history lengths in325

HORIZON. While a large portion of users exhibit short interaction sequences, there exists a substantial326

number with extremely long histories—extending beyond 1,000 timestamps for tens of thousands of327

users. This highlights the need for models capable of handling long-range dependencies and memory-328

efficient representations. Traditional sequence models struggle in this regime due to vanishing329

gradients and computational bottlenecks, motivating the exploration of transformer-based or memory-330

augmented architectures for this benchmark.331

Temporal Structure and Generalization: The temporal distribution of interactions (Figure 3)332

reveals a sharp rise in user activity post-2010, peaking around 2020. Crucially, nearly half the333
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Figure 4: Frequency Distribution of Products in the HORIZON Benchmark. The power-law structure
reflects extreme item sparsity, with most items having very few interactions.

interactions occur after the 2020 temporal cut-off used in our evaluation framework. Specifically,334

the average number of timestamps before 2020 is 4.99, while it remains comparable after 2020 at335

4.09. This temporal balance ensures that both training and test splits are adequately rich, setting up a336

robust testbed for extrapolative evaluation and temporal generalization. As models are evaluated on337

unseen user interactions post-2020, they are challenged to infer future behavior patterns from past,338

potentially outdated, preferences—mirroring real-world drift in user intent.339

Figure 5: t-SNE depicting the distinct user topic distributions in the in-distribution and OOD users.

Product Distribution: Figure 4 plots the frequency distribution of product IDs, which exhibits a340

pronounced long-tail trend. A small fraction of items dominate interactions, while the majority are341

sparsely interacted with. This reflects typical e-commerce dynamics but poses unique challenges for342

recommender systems: most prior models are biased toward frequent items. The high item cardinality343

(34M) and sparse tail necessitate models that generalize well to rarely seen or previously unseen344
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products. Incorporating textual features or content-based augmentations could be beneficial in this345

context, especially under cold-start settings.346

Benchmark Design Implications: The three key observations from these plots underscore the347

difficulty of the HORIZON benchmark:348

1. Long Histories: Users with thousands of interaction points require models that capture349

dependencies over extended horizons and adapt across evolving interests.350

2. Temporal Drift: A significant portion of test data lies beyond the training horizon (post-351

2020), enforcing extrapolation beyond the training distribution and testing robustness to352

temporal shifts.353

3. Item Sparsity: The skewed product frequency implies that many test items are low-354

frequency or unseen, further intensifying the generalization challenge.355

Taken together, HORIZON enables a comprehensive stress test of user behavior models across mul-356

tiple axes—scale, history length, temporal generalization, and sparsity. Its unified multi-category357

formulation fosters the development of general-purpose, temporally robust, and cross-domain recom-358

mendation architectures.359

C Task 1 Splits and Out-of-Distribution Analysis360

In our proposed Task 1 setup, the user population is explicitly partitioned into two cohorts to361

rigorously test generalization: in-distribution (IND) users observed during training, and out-of-362

distribution (OOD) users who are entirely held out. The fixed temporal cutoff at τ = 2020 allows us363

to decouple user generalization from temporal extrapolation. Below, we elaborate on the statistical364

and structural distinctions between these cohorts, which underline the difficulty of the proposed365

evaluation.366

Temporal Shift and Behavioral Drift: As visualized in Figure 3, a significant volume of user367

activity in the dataset occurs post-2020. By construction, OOD users are sampled from this post-2020368

pool, whereas IND users have interactions both before and after the temporal boundary. This creates369

a natural distributional shift: the OOD cohort is inherently more recent and behaviorally different,370

reflecting newer products, evolving user preferences, and potentially different session structures.371

Hence, even under temporally aligned evaluation (Subtask 1c), the OOD test set exhibits non-trivial372

variance from the training distribution.373

Semantic Divergence via Topic Modeling. To investigate the semantic distinctiveness between374

in-distribution (IND) and out-of-distribution (OOD) user groups, we apply Latent Dirichlet Alloca-375

tion (LDA) to model topics from user review histories, treating each user as a document composed376

of concatenated item descriptions and metadata. The resulting topic distributions uncover mean-377

ingful divergence in user interests. Both groups engage with broad product themes (e.g., books,378

electronics, fashion), yet OOD users demonstrate stronger focus on niche and emergent categories.379

For example, OOD-specific topics include terms like “telescope,” “kite,” “bjj,” “freemason,” and380

musical instruments such as “guitar,” “ukulele,” “pedal”, suggesting a shift toward specialized or381

subcultural interests. In contrast, IND topics reflect more mainstream and diversified engagement,382

including wellness supplements (e.g., “nootropic,” “creatine,” “arginine”) and general home goods.383

To quantify these patterns, we compute entropy and dominance over user topic distributions. OOD384

users show significantly lower entropy (mean = 1.18 vs. 1.28) and higher topic dominance (mean =385

0.51 vs. 0.48), indicating more focused topical preferences. A t-SNE projection of user topic vectors386

reveals clear separation between IND and OOD clusters. Additionally, the average KL divergence387

from IND to OOD topic distributions exceeds 0.8, reinforcing the semantic shift. These findings388

suggest that OOD generalization reflects not just temporal drift but substantive thematic changes in389

user behavior and product engagement.390

D Experimental Setup391

Task 1 Setup: We adopt a temporal cut-off of τ = 2020 to define the training window. From the392

full dataset of ∼54M users, we randomly sample 1M users which atleast have post-τ interactions393

as our out-of-distribution (OOD) user set, and treat the remaining 53M as the in-distribution (IND)394
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Figure 6: Pipeline Detailing the LLM Generation, Retrieval and Evaluation Process Proposed for
Tasks 2 and 3.

pool. From this IND pool, 1M users are sampled to construct the test set for sub-task (1c). Due to395

computational constraints, we train all models on a 100K user subset of the IND set, and evaluate on396

25K users each for sub-task (1d) (IND extrapolation) and sub-task (1c) (OOD prediction). For all397

baselines, we use the RECBOLE framework [17, 18], which offers standardized implementations and398

reproducible pipelines for recommendation models. The following popular item-ID-based baselines399

are included:400

Models and Setup: GRU4REC [19] employs a recurrent architecture with gated recurrent units401

to capture sequential dependencies in user histories. SASREC [4] adopts a transformer-based402

architecture with self-attention mechanisms to model user behavior sequences. BERT4REC [3]403

utilizes a bidirectional transformer encoder trained with a Cloze-style objective to leverage full-404

sequence context. CORE [20] formulates session representations as weighted linear combinations of405

item embeddings, aligning both session and item vectors in a shared latent space.406

Evaluation Metrics: While these methods are typically evaluated using either ratio-based or leave-407

one-out strategies, we retrain and evaluate them under the temporally grounded evaluation protocol408

described in Figure 1. All models are trained with standardized hyperparameters and evaluated on409

our four evaluation settings using MRR, Recall@K, and NDCG@K for K = {10, 50, 100}.410

Task 2 and 3 Setup:411

For Tasks 2 and 3, we use the held-out out-of-distribution (OOD) test set comprising 1M users as412

our evaluation benchmark. We primarily focus on evaluating the zero-shot capabilities of LLMs413

for modeling user behavior, as effective training paradigms for LLMs in recommendation settings414

remain an open research problem and present unique challenges in our context given the extremely415

long-tailed item distribution. Nevertheless, we include standard fine-tuning baselines (PEFT and full416

fine-tuning) for completeness.417

Models and Setup: We evaluate three recent and publicly available language models up to 9B418

parameter scale: LLAMA-3.1-8B [21], QWEN3-8B [22], and GEMMA2-9B [23]. All models are419

queried in a zero-shot manner using a standardized prompt for each task.420

Retrieval Pipeline: For encoding the items and queries, we the use the pre-trained BLAIR item421

encoder [11] as it is pre-trained on the Amazon-Reviews items and the FAISS library [24] for creating422

the ANN-based vector databases to perform retrieval. An approximate nearest neighbor (ANN) index423

is constructed over catalog item embeddings {ij}, and top-K candidates are retrieved for each query424

embedding qk. These are merged to form a final set of K recommendations Î .425
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Evaluation Metrics: As we do not perform ranking across queries, we compute standard retrieval426

metrics i.e. RECALL@K and PRECISION@K for K = 10, 50, 100 to assess the effectiveness of the427

generated outputs in retrieving relevant items.428

E Hyperparameters and Implementation Details429

E.1 RecBole Experiments - Task 1430

All models in Task 1 were trained using the RecBole framework [17, 18] with a consistent configura-431

tion to ensure a fair comparison. The common training hyperparameters were selected based on prior432

literature and empirical tuning on a held-out validation set. These include a small learning rate of433

2× 10−5 to stabilize optimization over long sequences, a maximum of 10 epochs for training, and434

early stopping with a patience of 10 epochs to prevent overfitting. To ensure reproducibility across all435

experimental runs, we fixed the random seed to 2025.436

Training Hyperparameters. All models were trained with the following consistent configuration437

• Learning rate: 2× 10−5438

• Maximum epochs: 10439

• Early stopping patience: 10440

• Random seed: 2025441

• Maximum sequence length: 100442

• Validation metric: MRR@10443

• Evaluation cutoffs: k ∈ {10, 20, 50, 100}444

• Test negative samples: 100445

To support uniform evaluation across models, we truncated all user interaction sequences to a446

maximum of 100 items and used mean reciprocal rank at cutoff 10 (MRR@10) as the primary447

validation metric. During testing, we sampled 100 negative items for each user-item query to simulate448

realistic top-k recommendation settings and report metrics at various cutoffs (k).449

Table 8: Model-specific hyperparameter configurations

Parameter BERT4Rec GRU4Rec SASRec CORE
Hidden/Embedding size 256 256 256 256
Number of layers 3 3 3 3
Attention heads 4 - 4 4
Dropout probability 0.15 0.15 0.15 0.15
Batch size 8192 8192 4096 4096
Loss function BPR BPR CE CE
Mask ratio 0.2 - - -

Model-Specific Hyperparameters Each model was configured using a 256-dimensional embed-450

ding and three layers to capture higher-order dependencies. Attention-based models (BERT4Rec,451

SASRec, and CORE) used 4 attention heads to balance modeling capacity and memory cost. A452

dropout rate of 0.15 was applied to all models for regularization. Batch sizes were tuned based on453

GPU memory availability and empirical training stability: 8192 for BERT4Rec and GRU4Rec, and454

4096 for SASRec and CORE due to their higher per-batch memory footprint. These are further455

detailed in Table 8.456

Architecture Details: Given below are the architectural details about the RecBole baselines which457

we have employed in our study on the HORIZON benchmark:458

• BERT4Rec: It leverages bidirectional Transformers to model sequence-wide context and459

predicts masked items using a masked language modeling (MLM) objective, with a mask460

ratio set to 0.2.461
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• GRU4Rec: GRU4Rec uses gated recurrent units (GRUs) to model sequential dependencies.462

• SASRec: SASRec is built on unidirectional self-attention layers, enabling it to capture short-463

and long-term dependencies without recurrence.464

• CORE: CORE integrates self-attention with collaborative filtering signals, enhancing per-465

sonalization through a hybrid architecture466

Loss Function Configuration. Given below are the possible loss function configurations available467

in RecBole for training sequential recommendation models:468

• BPR models (BERT4Rec, GRU4Rec, SASRec): Bayesian Personalized Ranking with469

negative sampling during training470

• CE models (CORE): Cross-entropy loss without negative sampling during training471

Models trained with BPR loss (BERT4Rec, GRU4Rec, SASRec) rely on dynamic negative sampling472

and optimize the ranking of positive over negative interactions. In contrast, CORE optimizes a473

classification objective using cross-entropy loss computed over the full softmax distribution.474

Execution Details. All experiments were conducted using a high-performance compute cluster475

equipped with 4 NVIDIA A100 GPUs (80GB VRAM each). We employed PyTorch’s automatic476

mixed precision (AMP) to accelerate training and reduce memory usage. Training time per epoch477

varied with architectural complexity: GRU4Rec, being lightweight, completed one epoch in approxi-478

mately 0.75 hours, while BERT4Rec, with its attention-heavy encoder and MLM objective, required479

around 1.25 hours per epoch. Multi-GPU training was implemented using the NCCL backend for480

synchronized distributed training. All hyperparameters and implementation choices were fixed across481

all splits to ensure experimental consistency and comparability.482

E.2 Task 2 and 3 Experiments483

Table 9: Hyperparameters used for different models.

Hyperparameter LLAMA-3.1-8B QWEN3-8B GEMMA2-9B

Batch Size 512 512 256
Temperature 0.7 0.7 0.7
Top-P 0.95 0.8 0.8
Top-K -1 20 -1
Max-Tokens (Task 2) 220 220 220
Max-Tokens (Task 3) 350 350 350

LLM Inference Setup. We adopt a consistent inference pipeline for both Task 2 (LLM-based484

Next Product Recommendation via Query Reformulation) and Task 3 (LLM-based Long-Horizon485

User Modeling), as described in Section 5 and illustrated in Figure 2. All models are prompted in a486

zero-shot setting, without any fine-tuning or retrieval augmentation, to evaluate their general-purpose487

reasoning capabilities over long user histories.488

We utilize three state-of-the-art, instruction-tuned open-source LLMs: LLAMA-3.1-8B [21],489

QWEN3-8B [22], and GEMMA2-9B [23]. These models were selected for their strong instruction-490

following capabilities and competitive performance on public benchmarks.491

Table 9 summarizes the decoding hyperparameters used. The temperature was fixed at 0.7 across492

all models to balance determinism and diversity in outputs. We set Top-P and Top-K sampling493

parameters based on model-specific best practices to control generation randomness. The maximum494

token limits were adjusted per task: 220 tokens for Task 2 (shorter search queries), and 350 tokens495

for Task 3 (longer next-item descriptions). Batch sizes were selected based on each model’s memory496

footprint and throughput on A100 GPUs, with the larger GEMMA2-9B model using a smaller batch497

size.498
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Execution Details. All inference was run using the vLLM engine on a compute cluster with499

4× NVIDIA A100 40GB GPUs. The full test set consists of 1 million users, with each user pro-500

cessed independently in batched decoding mode. End-to-end inference across all models required501

approximately 5 days due to the volume of input prompts and the autoregressive nature of generation.502

To support reproducibility and accessibility, we will release all evaluation code, prompt templates,503

and precomputed predictions on smaller held-out test splits post-acceptance. These subsets will504

enable low-resource experimentation on the same evaluation protocol without requiring access to505

large-scale GPU compute.506

Generating Query and Item Embeddings using BLAIR. To encode the item catalog and pre-507

dicted queries, we leverage the BLAIR item encoder [11], a RoBERTa-based model pretrained on508

Amazon review titles. We use the hyp1231/blair-roberta-base checkpoint via the HuggingFace509

Transformers library 1, and tokenize each product title with a maximum sequence length of 512510

tokens. Embeddings are obtained by extracting the [CLS] token representation from the final hidden511

layer, followed by ℓ2 normalization to facilitate cosine similarity-based retrieval. To scale embedding512

computation across a large number of titles, we utilize the Accelerate library with mixed-precision513

inference (fp16) and distributed processing across multiple GPUs, achieving efficient batch-wise514

encoding with a batch size of 4096. We shard the workload across processes and later merge the515

outputs to form a single embedding matrix for the catalog and prediction sets.516

Retrieval and Indexing using FAISS. For approximate nearest neighbor (ANN) search, we employ517

the FAISS library [24], which implements the Hierarchical Navigable Small World (HNSW) graph-518

based indexing algorithm. We build a HNSW index on the catalog embeddings using cosine similarity519

as the distance metric. The key hyperparameters used during index construction include: M=64, which520

controls the number of bi-directional links created for each new node and influences index accuracy521

and memory usage; and efConstruction=256, which sets the dynamic list size for the graph during522

construction and affects indexing time and final recall quality. At query time, we use efSearch=256523

to control the breadth of the search and balance between latency and retrieval performance. These524

values were selected based on a grid search over the validation set to optimize top-k recall, where525

k = 10, while ensuring sub-millisecond retrieval latency per query on a modern GPU setup.526

This setup enables scalable, low-latency nearest neighbor search over millions of product titles, while527

maintaining semantic alignment between predicted queries and candidate items.528

F LLM-Finetuning baselines529

Table 10: Comparison of Fine-tuned LLMs for Next-Item Prediction

Setting Recall@K (%) Precision@K (%)

FFT (LLaMA3) LoRA (LLaMA3) LoRA (Qwen3) FFT (LLaMA3) LoRA (LLaMA3) LoRA (Qwen3)

In-Domain Temporal Extrapolation (Task 1c)

K=10 1.45 1.65 1.38 0.98 1.29 0.90
K=50 1.67 1.82 1.60 0.97 1.28 0.90
K=100 2.02 2.09 1.93 0.97 1.28 0.89

Out-of-Domain Temporal Extrapolation (Task 1d)

K=10 1.24 0.71 1.18 0.82 0.42 0.77
K=50 1.41 0.84 1.37 0.81 0.42 0.77
K=100 1.71 1.07 1.67 0.80 0.42 0.76

We observe that fine-tuned models (LLaMA-3.1-8B with both FFT and LoRA, and Qwen3-8B with530

LoRA), which generate only the next single item per user, achieve comparable performance to our531

zero-shot retrieval baseline setup described in Table 5 that generates 10 queries. The zero-shot532

approach is thus both simpler in execution and more scalable, especially as item catalogs grow.533

Our findings highlight a key insight: standard instruction-tuning methods do not effectively exploit534

LLM capabilities in this long-tailed recommendation context. Unlike discriminative models that535

benefit from contrastive supervision and negative sampling (Task 1 results), LLM instruction-tuning536

tasks lack such structure. Future work should focus on novel training paradigms, such as contrastive537

1https://huggingface.co/hyp1231/blair-roberta-base
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losses with vocabularies explicitly aligned to item identifiers, which can help better exploit the538

representational and semantic power of LLMs in recommendation tasks.539

G Prompts540

G.1 Task 2: Query-Based Next-Item Recommendation.541

Task 2 evaluates an LLM’s ability to generate personalized search queries from a user’s Amazon542

product history. The prompt asks the model to produce 10 queries—ranging from directly relevant to543

tangential and intentionally unrelated—balancing relevance with serendipity. These queries act as544

soft proxies for next-item prediction, revealing how well the model generalizes user intent. The setup545

is zero-shot, requiring the model to function as a semantic encoder-decoder without fine-tuning or546

examples.547

PROMPT FOR TASK 2 - LLM-Based Next Item Recommendation:

You are an expert at turning a user’s Amazon product history into personalized search queries.

History: I1 <SEP> I2 <SEP> ..... <In>
This was the users Amazon product history.

Your task is to generate a set of 10 personalized search queries that reflect the user’s interests and
preferences.

Try to balance diversity and serendipity with relevancy to the user history. These queries will be
used to recommend the next product to the user.

Out of these 10 queries:
4 queries should be directly related to the user’s history;
3 queries should be tangentially related;
3 queries should be completely unrelated but interesting.

Process:
1. Think of a guideline explaining what intents or aspects you observed in the user history which

helped you formulate these queries. You don’t need to specify which is which.
2. Then, generate exactly 10 search queries balancing core interests with a bit of serendipity.

## Output Format
Provide the response only as a JSON object with one field: (do not generate anything else)

{
"queries": [
"query1",
"query2",
"...",
"query10"

]
}

548

G.2 Task 3549

Following is the prompt for Task 3: Long-Horizon User Modeling using Large Language Models550

(LLMs). This task is designed to evaluate a model’s ability to understand and extrapolate from a551

user’s product history over time. The prompt guides the LLM to generate forward-looking, autore-552

gressive item descriptions based on prior purchases, simulating realistic recommendation scenarios.553

Specifically, it instructs the model to infer underlying user preferences and behavioral patterns, and554

to generate coherent, temporally ordered predictions that balance relevance and serendipity. The555

prompt is framed in a zero-shot setting, encouraging the LLM to reason sequentially without access556

to explicit training examples.557
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PROMPT for Task 3 - LLM-Based Long-Horizon User Modeling:

You are an expert at predicting the next products a user may want based on their Amazon product
history.

History: I1 <SEP> I2 <SEP> ..... <In>
This was the user’s Amazon product history with exact product titles (NOT descriptions).

Your task is to generate descriptions for the next 10 items the user is most likely to be interested
in. Provide concise, onesentence descriptions that capture the essence of each potential item.
These will guide recommendation generation.

Try to model the sequences in the user history and provide a mix of relevant and serendipitous items
trying to capture the user’s interests, intents and changes in behavior. Use the first item
description to guide your next timestep’s item description generation in an autoregressive
manner.

Process:
1. Think of a guideline explaining the patterns or preferences you observed in the user history that

informed your item descriptions.
2. Provide exactly 10 next-item descriptions balancing relevance and serendipity generated one after

the other in temporal order.

## Output Format
Provide the response only as a JSON object with one field: (do not generate anything else)

{
"item_descriptions_timewise": [
"item_description_time_step1",
"item_description_time_step2",
"...",
"item_description_time_step10"

]
}

558
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