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ABSTRACT

Event-guided imaging has received significant attention due to its potential to rev-
olutionize instant imaging systems. However, the prior methods primarily fo-
cus on enhancing RGB images in a post-processing manner, neglecting the chal-
lenges of image signal processor (ISP) dealing with event sensor and the bene-
fits events provide for reforming the ISP process. To achieve this, we conduct
the first research on event-guided ISP. First, we present a new event-RAW paired
dataset, collected with a novel but still confidential sensor that records pixel-level
aligned events and RAW images. This dataset includes 3373 RAW images with
2248×3264 resolution and their corresponding events, spanning 24 scenes with 3
exposure modes and 3 lenses. Second, we propose a conventional ISP pipeline to
generate good RGB frames as reference. This conventional ISP pipleline performs
basic ISP operations, e.g.demosaicing, white balancing, denoising and color space
transforming, with a ColorChecker as reference. Third, we classify the existing
learnable ISP methods into 3 classes, and select multiple methods to train and
evaluate on our new dataset. Lastly, since there is no prior work for reference, we
propose a simple event-guided ISP method and test it on our dataset. We further
put forward key technical challenges and future directions in RGB-Event ISP. In
summary, to the best of our knowledge, this is the very first research focusing on
event-guided ISP, and we hope it will inspire the community.

1 INTRODUCTION

Since their invention in 1975, digital cameras have profoundly impacted various aspects of mod-
ern society (Delbracio et al., 2021; Kyung et al., 2016). Active pixel sensors (APS) (Liebe et al.,
1998) are used as the core of cameras to capture RGB color signals, recording images or videos.
This technology forms the foundation for widespread applications in smartphones (Delbracio et al.,
2021), autopilot systems (Ingle & Phute, 2016), drones (Zhu et al., 2018), virtual reality (Huang
et al., 2017), and more. However, nowadays APS has reached a bottleneck wrt. power consump-
tion, frame rate, and dynamic range due to its global recording characteristics (Gallego et al., 2020).
Event vision sensors (EVS), with their inherent asynchronous recording property, achieve lower
power consumption (< 10mW ), lower latency (< 1ms), and higher dynamic range (> 120dB)
(Gallego et al., 2020). As a result, integrating EVS as a significant enhancement to APS imaging
system has received considerable attention in recent years (Lu et al., 2023b; Tulyakov et al., 2021;
Gallego et al., 2020; Tulyakov et al., 2022). Heavy efforts have been put on developing new imag-
ing system combining EVS and APS (Shariff et al., 2024; Lu et al., 2023b;a). The introduction of
EVS has nearly reshaped the entire framework of imaging formation and enhancement, impacting
almost all relevant areas e.g., video super-resolution (Lu et al., 2023b; Jing et al., 2021), video frame
interpolation (Tulyakov et al., 2021; 2022; Lu et al., 2023a), deblurring (Yuan et al., 2007; Zhang
et al., 2022; Yunfan et al., 2023), high dynamic range imaging (Xiaopeng et al., 2024; Messikom-
mer et al., 2022), low-light image enhancement (Wang et al., 2020b; Liang et al., 2024), and rolling
shutter correction (Zhou et al., 2022; Lu et al., 2023a). However, the majority of previous work fo-
cuses on using events as auxiliary information to boost the performance of classical RGB imaging
systems, while methods and benchmarks that considering the challenges and opportunities of events
in the APS ISP process, are lacking.

Merging APS and EVS in ISP is non-trivial on the implementation level. Prism spectrometer is an
early stage attempt and it needs the corresponding optical mechanic setting (Tulyakov et al., 2022).
However, this prism-based approach is very cumbersome, requiring additional optical prisms and
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(a) RAW (b) Events (c) RGB Frame (d) ISP (e) Event-guided ISP

x
Motion

RAW RAW + Events

Figure 1: (a), (b), and (c) display a RAW, Events, and RGB frame captured by the hybrid vision sensor
(HVS), respectively. The RAW image follows a quad-Bayer pattern (Yang et al., 2022), while the events are
positioned at the lower-right corner of each color pixel block, making the RAW resolution twice that of the
events. (d) illustrates the traditional ISP process. (e) shows the potential event-guided ISP process, where the
higher temporal resolution of events can captures motion information for ISP.

failing to ensure the alignment between APS and EVS. Sensors that integrate both APS and EVS on
the photodiode level are referred to as hybrid-vision sensors (HVS) (Yaqi et al., 2024; MIPI Chal-
lenge 2024, 2024), which represent a cutting-edge technology, offering significant advancements in
camera imaging. Due to the manufacturing complexity and error-prone design process of HVS, the
RAW data generated by APS in HVS exhibits higher noise, missing values at fixed positions, and
is more sensitive to defects (MIPI Challenge 2024, 2024; Yaqi et al., 2024). Recent works have
acknowledged this challenge and proposed datasets for demosaicing, denoising, or defect correc-
tion for APS RAW, where the challenges in APS of HVS take precedence over the potential benefits
events signal could provide. With the inherent higher dynamic range and lower latency, events can
perceive a broader spectrum and capture more-instant motion information (Shekhar Tripathi et al.,
2022; Liang et al., 2021), allowing significant potential for boosting the denoising and color correc-
tion of ISP processing of APS RAW, as shown in Fig. 1.

To better explore the benefits of events on the ISP process of HVS, we propose a new dataset with
pixel-wise aligned events and APS RAW image. This dataset uses the under-development HVS-
ALPIX-Eiger sensor (Alpsentek, 2024), which rearranges event and APS in a quad-Bayer pattern
(a quarter photodiodes are dedicated for event, as in Fig.1). This sensor has a high resolution with
1224 × 1632 for events and 2248 × 3264 for RAW, and offers superior color and noise profiles
compared to the DVS346 (Scheerlinck et al., 2019). These features make it promising for various
applications (Lu et al., 2023b).

We ensure the dataset diversity in two ways: photographic setting and scenes. For photographic
setting, we adopt various values of aperture, focal length and exposure time. For the scene diversity,
we cover 12 categories of scenes, across a wide range of color scenes, including flowers, buildings,
under different weather and lighting conditions. In total, 3373 APS frames and the corresponding
events are captured. A standard 24-color ColorChecker (Goto et al., 2003) is applied at certain
frames as the color correction reference, as shown in Fig. 1 (c).

To generate the ground truth RGB images for the dataset, we propose a controllable ISP framework
based on MATLAB (Poon & Banerjee, 2001). This ISP framework, using the ColorChecker as a
prior, performs tasks such as black level calculation (Li et al., 2010), demosaicing (Hirakawa &
Parks, 2006), white balance (Weng et al., 2005), denoising (Abdelhamed et al., 2018), and color cor-
rection (McElvain & Gish, 2013), resulting in high-quality RGB images with controllable errors as
the reference ground truth. Since the controllable framework requires the ColorChecker information
as a prior, it cannot generalize to arbitrary scenes. The color accuracy and temporal stability of this
ISP are also analyzed.

We categorize the existing ISP methods with RAW input into three categories and benchmark their
performances on our dataset. We compare their performances across various scenarios and further
conduct analysis on certain phenomena we have observed. Additionally, we propose a simple UNet-
like (Ronneberger et al., 2015) event-guided ISP neural network to fuse events with RAW images.
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This simple network can effectively improve the outdoor performance of ISP compared to the origi-
nal UNet (Ronneberger et al., 2015). We also identify key contributions and challenges of events in
the ISP process, providing a foundation and direction for future research.

2 RELATED WORKS

Event-guided Imaging Datasets: Event camera-guided imaging enhancement is an emerging field
where the contribution of real datasets is crucial (Gallego et al., 2020). Currently, event cam-
eras have made significant progress in areas such as frame interpolation (Tulyakov et al., 2021;
Lu et al., 2023a; Niklaus et al., 2017; Bao et al., 2019), video super-resolution (Lu et al., 2023b;
Jing et al., 2021), low-light enhancement (Liang et al., 2024; 2023), and deblurring (Xu et al.,
2021; Lin et al., 2020; Jiang et al., 2020). These advancements are supported by many founda-
tional datasets (Tulyakov et al., 2021; Scheerlinck et al., 2019; Lu et al., 2023b). For example,
BS-REGB (Tulyakov et al., 2022) is a frame interpolation dataset using a beamsplitter to pair event
cameras and RGB cameras. The CED (Scheerlinck et al., 2019) dataset and APLEX-VSR (Lu et al.,
2023b) dataset have been used in research on event camera-guided video super-resolution. Overall,
these datasets serve as the cornerstone and pioneers in research on related tasks. However, these
datasets assume that event cameras can obtain high-quality RGB images through the ISP process,
an assumption that is often too idealistic. Recognizing this, the MIPI (Yaqi et al., 2024; MIPI
Challenge 2024, 2024) challenge introduced a RAW demosaic dataset for HVS in event cameras,
addressing challenges like high noise and missing values in RAW from HVS. Although this dataset
is the first to focus on the RAW domain ISP process in event cameras, it lacks real event streams,
thereby overlooking the potential role of events in the ISP process. To address this gap, we propose
the first dataset with aligned RAW and events from a new HVS, aiming at exploring the potential
value and role of event data in the ISP process.

Learning-based ISP: Traditional ISPs (Schwartz et al., 2018) consist of long pipelines. In re-
cent years deep learning has brought new insights to ISPs (da Silva et al., 2023a) and has achieved
higher performance. These methods can be roughly categorized into three types. The first type is
full pipeline replacement methods, such as PyNet (Ignatov et al., 2020b) which use CNN architec-
tures to replace the entire ISP pipeline. The second type is stage-wise enhancement methods, like
CameraNet (Liang et al., 2021) and AWNet (Dai et al., 2020), which divide the ISP pipeline into
restoration and enhancement stages. The third type is image enhancement network-based methods,
which utilze state-of-the-art image proessing backbone models such as UNet (Ronneberger et al.,
2015) and Swin-Transformer (Liu et al., 2021) to deal with ISP tasks. Though these methods have
proven effective for RAW to RGB conversion, the potential of events in this process is not explored.

Event-guided Image/Video Enhancement: Due to their high dynamic range and high temporal res-
olution (Gallego et al., 2020; Shariff et al., 2024), event cameras have garnered significant attention
in the field of image/video enhancement and restoration (Gallego et al., 2020; Shariff et al., 2024),
including many applications. Initially, the use of events focused primarily on single-task enhance-
ments of RGB images or videos (Tulyakov et al., 2021; Pan et al., 2019; Lu et al., 2023b). Recently,
researchers recognized image enhancement tasks are inherently coupled with various degradations
interwoven (Zhang & Yu, 2022; Song et al., 2022; Yunfan et al., 2023), suggesting a trend towards
using events for unified solutions in camera computational imaging for multiple tasks. However,
existing methods focus solely on enhancing RGB images or videos using events, overlooking the ISP
pipeline, which generate RGB images from RAW images. Additionally, existing methods neglect the
potential value that events could provide in the ISP process.

3 DATASET COLLECTION

As the first dataset, which we call HVS-ISP Dataset, featuring paired raw-event data collected using
a HVS, our aim is to facilitate research on event-guided RAW ISP. We selected the HVS-Eiger sensor
developed by ALPIX (Alpsentek, 2024), which can output both APS and EVS signals that align in
both time and space, as show in Fig. 2 (b). More parameter details of APS and EVS are shown
in Tab. 1. Compared to the Prophesee sensor (Tulyakov et al., 2021), which can only output event
signals, and the DVS346 sensor (Scheerlinck et al., 2019), which has lower resolution (260 × 346)
and higher noise, our choice offers significant advantages. Hence our dataset, captured with this
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Building Cars

Tree Flower

Fish Resolution Chart

Color
Checker Camera

Active Pixel Sensor

Event Vision Sensor

Hybrid Vision Sensor

(a) Examples of Dataset Scenes (b) Camera (c) Examples of Our Dataset

APS Frames and Color Checker Position

Events

Figure 2: Overview of dataset collection. (a) illustrates the variety of scenes in the dataset, including
buildings, plants, animals, and calibration boards. (b) presents a schematic of the HVS sensor,
composed of a stacked active pixel sensor (APS) and an event vision sensor (EVS). (c) displays
dataset samples.

Table 1: Comparison between active pixel sensor (APS) and event vision sensor (EVS) (Alpsentek,
2024) in our dataset collection. APS and EVS are stacked together to form a hybrid-vision sensor
(HVS).

Sensor Resolution Frame
Rate

Power
Consumption

Redundant
Data Rate

Dynamic
Range

APS 2248× 3264 10∼60 fps > 100 mW 10 MB/s 60 dB
EVS 1124× 1632 ≥ 800 fps ∼10 mW 40-180 KB/s > 120 dB

advanced new sensor, holds significant value for the event vision research, providing a foundation
resource for advanced exploration in event-guided RAW ISP.

The collection of the dataset focuses on two main aspects: (1) the diversity of the dataset, ensuring
it has broad representativeness to cover a wide range of real-world scenarios; (2) the inclusion of a
ColorChecker for ISP calibration, which helps the ISP accurately restore scene colors to generate
high-quality RGB frames as references.

(1) Dataset Diversity: In constructing our dataset, we paid particular attention to two types of di-
versity: camera parameter diversity and scene diversity. Camera Parameter Diversity: To ensure
that our dataset encompasses a variety of photographic conditions, we made extensive adjustments
to the camera parameters. This included aperture values ranging from F1.0 to F6.0, focal lengths
extending from 8mm to 52mm, and exposure times varying from 1ms to 100ms. Scene Diversity:
We focused on three key aspects to ensure comprehensive scene diversity: Light Source Diversity:
We distinguished between indoor artificial light and outdoor natural light, with special consideration
for different weather conditions. Data collection was performed under various lighting conditions,
including sunny and cloudy days. Motion Diversity: We captured both dynamic and static videos,
ensuring a mix of scenes with and without motion blur. This variety helps in testing and enhancing
the performance of image processing algorithms under different motion conditions. Material Diver-
sity: We included a wide array of scenes such as trees, plants, buildings, fish, dolls, and more. These
scenes exhibit a broad spectrum of colors and textures, providing a rich dataset for comprehensive
testing and improvement of image processing techniques.

(2) ColorChecker as ISP Reference: To ensure precise color correction and white balance in ISP
pipeline, we utilized a standard 24-color ColorChecker (Tian et al., 2002) as critical references.
At the start of each video shoot, we captured frames containing the ColorChecker and gradually
removed the chart from subsequent frames. We meticulously annotated the position of the Col-
orChecker in each frame using the LabelMe tool (Russell et al., 2008), as shown in Fig. 2 (c). For
frames without the ColorChecker, we applied previously determined ColorChecker parameters as
references. This approach guarantees reliable color correction data in our dataset. Incorporating the
ColorChecker allows generating high-quality RGB values, enhancing color fidelity. This method
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(a) Quad-bayer
pattern raw

(b) Black pattern,
Fixed-pattern (c) Demosacing (d) White Balancing (e) Denoise (f) Color space

transform & Gamma

Figure 3: Flows in controllable ISP process. (a) Quad-bayer pattern raw image, which serves as the initial
input. (b) Black pattern and fixed-pattern noise removal to suppress sensor-induced artifacts. (c) Demosaicing
to reconstruct a rgb image from the raw data. (d) White balancing using a ColorChecker for accurate color
reproduction. (e) Denoising to filter out spatial noise from the image. (f) Color space transformation and
Gamma to convert the image into the desired color space for final output.

ensures robustness for applications requiring accurate color restoration. Additionally, we conducted
a thorough manual review of the ColorChecker annotations to validate their accuracy, further im-
proving our dataset’s reliability for ISP algorithms.

In summary, based on these two main objectives, we captured a total of 24 videos. Each video
contains 80 to 140 frames, resulting in a total of 3373 APS RAW frames and their corresponding
events. Additionally, the dataset includes the positions of the ColorCheckers within the APS images.
We divided the dataset into training and test sets, with 3/4 of the data used for training and 1/4 for
testing. The testing set includes 3 indoor scenes and 3 outdoor scenes to ensure sufficient diversity.
For more details on data collection and visualizations, please refer to the supplementary material.

4 CONTROLLABLE ISP

(a) Fixed Pattern Noise (FPN) (b) ISP w/o remove FPN (c) ISP w remove FPN

Figure 4: Fixed pattern noise (FPN) removal. (a) Visualizes the
camera’s fixed pattern noise. (b) and (c) show the RGB images
without and with fixed pattern noise removal, respectively. The im-
age in (c) demonstrates lower noise and more accurate white bal-
ance after the removal of fixed pattern noise.

The controllable ISP aims to provide
module-based and analytically mea-
surable RGB frames based on the
APS RAW. With the support of the
contained ColorChecker, the result-
ing frames have good color accuracy
and low noise, serving as the refer-
ence for APS. Requirement of the
ColorChecker prevents from gener-
alizing to other arbitrary scenes. In
this section, we introduce each mod-
ule, followed by a quality evaluation
and pros-and-cons discussion, with
the hope that this ISP pipeline will be
beneficial for the community.

4.1 CONTROLLABLE
ISP PIPELINE

Fig. 3 depicts that how an image is
processed via a conventional ISP pipeline, making the reference for the APS data. (1) Black
Level and Fixed Pattern Subtraction: Taking an arbitrary unprocessed bayer raw as input, a pre-
calibrated global black level value blc is subtracted, following by subtracting a fixed pattern vector
fpn 1. blc is the min of a raw image taken under a pure-black environment while fpn is a vector that
records the per-row average value as the used sensor is only with horizontal fixed pattern, as shown
in Fig. 4.

1blc and fpn are calibrated in a pure-dark laboratory setting. Over five frames are captured and averaged to
increase the calibration accuracy.
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(a) CIEDE00 Error (b) CIELAB Δ!" Error (c) Time Domain Fluctuations 

Figure 5: Color errors and fluctuations of our ISP method, computed using a ColorChecker. (a) CIEDE 2000
Error Probability Density Distribution: Displays CIEDE 2000 error values distribution with annotations for
average (5.84), median (5.07), and maximum error means (14.62). (b) CIEDE Lab Error Probability Density
Distribution: Shows CIEDE Lab error values distribution, indicating average (8.99), median (7.0), and maxi-
mum error means (24.37). (c) Time-Domain Fluctuations of RGB Color Values: Illustrates RGB color values
fluctuations over time, representing temporal stability and variations in color accuracy.

(2) Demosaicing: Given bayer pattern, the well-adopted demosaicing method (Rainbow-Johnny-
Johnny-Image-Processing-Lim, 2022) is used. The resolution is preserved while the channel number
is tripled. Note that this method is still prone to generating false color in very high frequency area,
as shown in Fig. 3(c). (3) Manual White Balancing: On a RGB image (greenish due to no white
balance), we use LabelMe (Russell et al., 2008) to extract the mean colors of 24 ColorChecker
patches. The 21st patch is used as the groundtruth illumination for manual white balance. (4)
Spatial Denoising: We use a milestone denoising method BM3D (Dabov et al., 2009) to perform
spatial denoising with the setting of σ = 50. (5) Color Space transform: Following Finlayson
et.al. (Finlayson et al., 2015), given the retrieved ColorChecker values and the predefined oracle
ColorChecker values, we optimize towards the CIEDE00 error and obtain the final color correction
matrix ccm of the shape (3, 3). A linear sRGB image is then computed from the input image I:
Ilinsrgb = I ∗ ccm. (6) Gamma: Following sRGB standard (Anderson et al., 1996), a piecewise
gamma curve is applied for brightness perception. Due to space limitations, please refer to the
supplementary material for more details and hyperparameters of controllable ISP.

4.2 CONTROLLABLE ISP EVALUATION

We evaluated the controllable ISP in two main aspects: the color accuracy of individual images
and the temporal stability of color recovery in continuous videos. For color accuracy, we used
the CIEDE00 (Luo et al., 2001) and CIELAB ∆ab (Lee & Powers, 2005) metrics to evaluate color
accuracy. CIEDE00 is a widely used metric for color matching, considering the nonlinear char-
acteristics of color differences and the human eye’s sensitivity to colors, which accurately reflects
human visual perception of color differences. CIELAB ∆ab is a color difference metric based on the
CIELAB color space (Mahy et al., 1994). Specifically, as shown in Fig. 5 (a) (b), we conducted a
ColorChecker-based evaluation on 100 randomly selected samples. In CIEDE00 (Luo et al., 2001),
we obtained an average value of 5.84 and a median value of 5.07; For CIELAB ∆ab, we obtained
an average value of 8.99 and a median value of 7.00, demonstrating that our method can generally
restore colors up to an accurate level. We displayed the maximum error distribution per image,
showing that in CIEDE00 it is around 14, and in CIELAB ∆ab around 24, affected by color filter
sensitivity and photodiode layout. For temporal stability in frame estimation differences, as shown
in Fig. 5 (c). We selected a 140-frame video, marking the ColorChecker in each frame. After gen-
erating colors frame by frame, we observed that differences for the 24 ColorChecker colors are all
under 0.01, mostly within 0.005. This confirms our algorithm’s temporal stability.

In summary, we presented a controllable ISP pipeline and analyzed its performance. However, the
ISP contains numerous controllable variables and hyperparameters. We hope that future researchers
will focus on optimizing these controllable aspects of the ISP to further enhance its performance.
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Table 2: Comparison on Parameters, FLOPS, and Time. Top two models are highlighted in red and green.

Unet PyNet CameraNet AWNet PyNetCA MW-ISPNet InvertISP Swin
Transformer eSL Ev-UNet

Params↓ 16.64 47.55 25.79 96.07 29.27 7.22 92.44 8.87 0.737 21.51
GFLOPS↓ 4.52 111.96 19.19 120.21 51.27 29.22 1.41 14.24 48.49 6.89
Time (s)↓ 0.0100 0.0775 0.0300 0.2138 0.0308 0.0459 0.0436 0.0868 0.063 0.012

Table 3: Comparison of Methods on HVS ISP Dataset outdoor scenes. Top two models are highlighted in red
and green. ∗ refer to the results obtained by the same model with different hyperparameters.

2-Out-Tree-2 3-Out-Flower-2 4-Out-Building-1 Average
PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓

PyNET 31.70 0.9818 0.0190 35.12 0.9784 0.0127 30.60 0.9752 0.0223 32.47 0.9785 0.0180
PyNET∗ 27.56 0.9711 0.0310 32.35 0.9646 0.0175 28.20 0.9600 0.0311 29.37 0.9652 0.0265
PyNetCA 31.86 0.9788 0.0202 34.19 0.9773 0.0139 29.22 0.9725 0.0280 31.76 0.9762 0.0207
InvertISP 28.56 0.9487 0.0243 25.59 0.9298 0.0313 28.62 0.9307 0.0287 27.59 0.9364 0.0281
MV-ISPNet 27.05 0.9680 0.0256 33.61 0.9648 0.0137 28.62 0.9657 0.0304 29.76 0.9662 0.0232
CameraNet 11.18 0.2580 0.2289 12.39 0.2741 0.1899 10.52 0.2534 0.2609 11.36 0.2618 0.2266
CameraNet∗ 13.26 0.637 0.2044 13.59 0.2736 0.1770 10.06 0.2753 0.2474 12.30 0.3953 0.2096
AWNet 14.33 0.8836 0.1166 20.10 0.9316 0.0519 16.70 0.9390 0.0951 17.04 0.9180 0.0879
Swin-Transformer 25.02 0.9539 0.0308 29.14 0.9555 0.0231 21.57 0.9295 0.0523 25.24 0.9463 0.0354
UNet 21.97 0.9583 0.0393 29.43 0.9717 0.0208 22.12 0.9603 0.0460 24.51 0.9634 0.0354
UNet∗ 29.52 0.9752 0.0206 25.75 0.9623 0.0323 29.24 0.9680 0.0265 28.17 0.9685 0.0265
eSL-Net 25.67 0.9424 0.0342 19.39 0.9180 0.0576 24.01 0.9277 0.0502 23.02 0.9294 0.0473
EV-UNet 32.86 0.9795 0.0148 32.87 0.9698 0.0157 24.59 0.9600 0.0369 30.11 0.9698 0.0225

5 BENCHMARK AND DIRECTION

Based on the RGB frames obtained from the controllable ISP, we evaluate the performance of four
types of ISP methods, particularly in outdoor and indoor scenarios. The experiments are conducted
in the same environment and framework. Additionally, we will discuss the potential reasons behind
these results and propose future research directions.

Implementation Details: All our models were trained and tested on the same machine with a single
A40 GPU with 48GB of GPU memory. We used PyTorch (Paszke et al., 2017) for all experiments,
applying random cropping and rotation for data augmentation. The training batch size was 1, with
each patch sized at 1024 × 1024. The learning rate was 0.0001, and all models were trained for 50
epochs.

Evaluation Metrics: We evaluate model performances in two aspects: resource consumption, in-
cluding parameters in millions (M ), GFLOPS, and average inference time (s); and image recon-
struction for indoor and outdoor scenes, measured by PSNR (Hore & Ziou, 2010), SSIM (Brunet
et al., 2011), and L1 distance.

5.1 ISP BENCHMARK METHODS

Inspired by the prior ISP survey study (da Silva et al., 2023b), we categorize learning-based ISP
models into three classes: full pipeline, stage-wise, image enhancement network-based. We selected
two to four open-source models from each category for training and evaluation on our dataset. Fur-
thermore, we put forward another new category of event fusion method, and since there is no prior
research to refer to, we design a simple event-guided ISP neural network to test on our dataset. For
more details on ISP methods, please refer to the supplementary material.

Full Pipeline ISP: These models utilize CNN architectures to integrate traditional ISP processes
into an end-to-end conversion from RAW to RGB images. Notable models in this category include
PyNet (Ignatov et al., 2020b), PyNetCA (Kim et al., 2020), InvertISP (Xing et al., 2021), and MV-
ISPNet (Ignatov et al., 2020a).

Stage-wise ISP: They employ multiple specialized modules to handle different ISP tasks, either
sequentially or in parallel, to produce the final image. In our benchmark, we selected Camer-
aNet (Liang et al., 2021) and AWNet (Dai et al., 2020) for their distinct approaches. Note that due
to the unavailability of a PyTorch version of CameraNet (Liang et al., 2021), we experimented on a

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Events (b) RAW (c) Good RGB (d) UNet (e) PyNet (f) eSL-Net (g) EV-UNet

(h) RAW (i) Good RGB (j) AWNet (k) Swin-Transformer (l) Unet (m) PyNetCA

Figure 6: Visualization results of different methods on HVS-ISP Dataset outdoor scenes.

Table 4: Comparison of Methods on HVS ISP Dataset indoor scenes. ∗ refer to the results obtained
by the same model with different hyperparameters.

1-In-Fruit-2 3-In-ColChecker-40 4-In-RLChart-10 Average
Methods PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓
PyNET 13.09 0.7970 0.2182 11.38 0.7922 0.2489 11.42 0.7100 0.2563 11.97 0.7664 0.2412
PyNET∗ 14.46 0.8068 0.2008 24.02 0.9550 0.0497 13.58 0.7694 0.1978 17.36 0.8437 0.1494
PyNetCA 18.13 0.8843 0.1253 29.53 0.9723 0.0246 35.51 0.9727 0.0121 27.72 0.9431 0.0540
InvertISP 25.83 0.9098 0.0346 28.33 0.9500 0.0235 30.65 0.9578 0.0183 28.27 0.9392 0.0254
MV-ISPNet 31.91 0.9594 0.0185 29.56 0.9729 0.0265 31.88 0.9670 0.0170 31.12 0.9664 0.0207
CameraNet 13.06 0.2660 0.1947 13.58 0.2722 0.1836 12.47 0.2391 0.2257 13.04 0.2591 0.2013
CameraNet∗ 14.18 0.290 0.1630 10.60 0.2667 0.2545 13.26 0.2636 0.2044 12.68 0.2672 0.2073
AWNet 17.95 0.8665 0.1302 32.17 0.9807 0.0184 30.98 0.9596 0.0215 27.03 0.9356 0.0567
Swin-Transformer 25.73 0.9397 0.0301 25.50 0.9561 0.0359 26.18 0.9486 0.0252 25.80 0.9481 0.0304
UNet 17.62 0.9161 0.0747 13.96 0.8828 0.1454 15.53 0.8750 0.1170 15.70 0.8913 0.1124
UNet∗ 32.52 0.9659 0.0161 29.04 0.9740 0.0257 33.72 0.9716 0.0146 31.76 0.9705 0.0188
eSL 27.09 0.9428 0.0331 24.79 0.9548 0.0434 26.52 0.9415 0.0379 26.13 0.9464 0.0381
EV-UNet 14.16 0.8706 0.1533 31.64 0.9779 0.0214 32.33 0.9678 0.0173 26.04 0.9388 0.0640

converted version. The modules in the original AWNet (Dai et al., 2020) are trained independently,
however in our experiment we trained them end-to-end.

Image Enhancement Network-Based ISP: There have been numbers of high performance back-
bone models for image enhancement in image enhancement tasks like deblurring (Zhang et al.,
2022) and super-resolution (Chen et al., 2022). Though not initially designed for ISPs, minor modi-
fications can adapt these models for ISP tasks. For our benchmark, we selected UNet (Ronneberger
et al., 2015) and Swin-Transformer (Liu et al., 2021; Lu et al., 2024).

Event Fusion Method: As the first research on event-guided ISP, we have no prior research for
reference. Therefore, we selected eSL-Net (Wang et al., 2020a), an event-based backbone network
used in various tasks (Lu et al., 2023b). Additionally, we merged events as voxel-grid (Liu et al.,
2023) with UNet’s encoder as EV-UNet to verify events effectiveness and challenges.

5.2 COMPARATIVE EXPERIMENTS AND VISUALIZATION ANALYSIS

Computational Performance: In Tab. 2, InvertISP (Xing et al., 2021) excels in computational ef-
ficiency with 1.41 GFLOPS, significantly lower than the over 100 GFLOPS of AWNet (Dai et al.,
2020) and PyNet (Kim et al., 2020), which is suitable for limited computing resources. UNet sur-
passes CameraNet (Liang et al., 2021) in processing speed with a response time of 0.01 s, preferable
for real-time performance. Overall, UNet demonstrates balanced performance with low GFLOPS
and the fastest processing speed, due to its straightforward design.
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(a) Raw (b) Swin-Transformer (c) AWNet (d) MW-ISPNet

(e) Good RGB (f) U-Net (g) PyNetCA (h) PyNet

Figure 7: Visualizations on HVS-ISP Dataset indoor scenes.

Outdoor Performance: Tab. 3 shows the superior performance of PyNet across three outdoor back-
grounds. PyNet (Kim et al., 2020) achieves the best PSNR (Hore & Ziou, 2010), SSIM (Brunet et al.,
2011), and L1 with an overall average PSNR (Hore & Ziou, 2010) of 32.47, significantly higher than
other models. Specifically, EV-UNet shows significant improvement in outdoor scenes with UNet
after incorporating events gain, increasing from 28.17 to 30.11. In contrast, the commonly used
event-based method eSL-Net performs poorly with a PSNR (Hore & Ziou, 2010) of only 23. This
poor performance mainly results from the limited receptive field of eSL, which is insufficient for
estimating the global illumination information, and thus failing to achieve consistent global illumi-
nation enhancement. We further discuss on this issue in Sec. 5.3. we also visualize the results in
Fig. 6. PyNet has achieved the highest PSNR (Hore & Ziou, 2010) but exhibits edge artifacts, this
is likely due to the overfitting of the model. In outdoor scenes, event-enhanced outputs of EV-UNet
show good global consistency. Fig. 6 shows that AWNet (Dai et al., 2020) struggles with fine texture
restoration, explaining its inferior performance to other methods.

Indoor Performance: Tab. 4 shows that UNet∗ excels in indoor environments, especially when
handling multiple colored fruits and scenes with complex lighting and details. The output of
AWNet (Dai et al., 2020) has overall excessive brightness, as illustrated in Fig. 7, explaining its
low PSNR values. PyNet exhibits noticeable artifacts, consistent with the good RGB edge but with
significantly different brightness, likely due to the ill-posed nature of brightness recovery in the ISP
process, resulting in its poor indoor performance. Event-fusion methods perform poorly indoors,
primarily due to flickering light sources that complicate event characteristics. For more analysis
about these issues, please refer to Sec. 5.3.

Figure 8: The ill-posedness of brightness estimation in the ISP pro-
cess. We visualized the 5×5 region in the RAW image and the bright-
ness of corresponding pixel in the color image at the center of this
region. The results show that the same RAW region corresponds to
different brightness levels in different images.

Summary: These sections show
that the performance of numer-
ous ISP methods on HVS sensor
datasets varies significantly across
different scenes. For instance,
PyNet and AWNet (Dai et al.,
2020) exhibit great variability be-
tween indoor and outdoor environ-
ments, underscoring that learning-
based ISP methods are highly
scene-dependent. This highlights
the necessity for future work to
analyze different scenes individu-
ally to fully understand the per-
formance of a network. Further-
more, adding events to UNet sig-
nificantly improves performance
in outdoor scenarios but not in-
doors, mainly due to the flickering

indoor lighting. Addressing this issue remains a crucial challenge for future research.
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5.3 DISCUSSION AND FUTURE DIRECTION

Through the comprehensive and objective evaluation of various models on our dataset, we have also
observed a number of findings that can bring insights for future work.

Significant Indoor-Outdoor Performance Gap on PyNet and AWNet (Dai et al., 2020): We
observed a significant indoor-outdoor performance gap on PyNet (Ignatov et al., 2020b) and
AWNet (Dai et al., 2020). PyNet performs better in outdoor scenes than indoor, ranking the top
of all models, while AWNet (Dai et al., 2020) shows quite the opposite behavior. Generally, outdoor
scenes have more dynamic and varied lighting compared to indoor environments, which are difficult
for models to learn. The original AWNet (Dai et al., 2020) is designed to be trained in a multi-stage
manner with different loss functions. Therefore it might have fallen into sub-optima when trained
end-to-end in our experiment, resulting in the poor performance in modeling the harder outdoor
scenes.

Local Brightness Artifacts: Artifacts occur when the brightness in certain image areas significantly
deviates from the overall luminance (see Fig. 7). We investigated this by examining the relationship
between a brightness of a pixel and the RAW data within its 5× 5 vicinity. We treat the neighboring
RAW data as a 25-dimensional vector, and apply t-SNE to project it onto a 2D plane, recording
the (x, y) coordinates. We then converted the RGB values of the pixel to YUV, recording the Y
(brightness) as the z coordinate, as shown in Fig. 8. By plotting pixels from three random images
in 3D (Fig. 8), we show that pixel brightness and neighboring RAW data have a non-injective re-
lationship. Multiple brightness levels can emerge from the same RAW data, indicating that global
information, not just local RAW value, is essential for accurately determining pixel brightness to
avoid local artifacts.

Event Gains: The integration of events in our dataset significantly enhances performance in outdoor
scenes when comparing EV-UNET with UNet, primarily due to the additional motion information
and dynamic range provided by the events. However, simple fusion does not fully exploit these
characteristics, highlighting the need for more sophisticated designs in future research. Conversely,
performance decreases in indoor scenes, primarily due to the flickering of artificial light sources.

Flickering Artificial Lighting: Under certain indoor scenarios, some artificial light source (Xu
et al., 2023), e.g.LEDs, flicker because of the alternating current frequency. Given that the event
frame rate of the sensor significantly exceeds the usual AC frequency (50 or 60 Hz), the flicker-
ing lighting introduces considerable fluctuations in the event data over time. The distributions and
features of events in these conditions are completely different from that in the natural lighting con-
ditions, and could result in the model’s failure in restoring the images from RAW data.

6 CONCLUSION

In this work, we present the first events-RAW paired dataset for event-guided ISP research. The
dataset consists of 3373 high quality high resolution RAW images and corresponding pixel-level
aligned events. Subsequently, good RGB frames are generated by a controllable ISP pipeline we
proposed. A comprehensive evaluation and analysis of existing learnable ISPs and a simple event-
guided ISP method are conducted on our dataset. Based on this analysis, we summarize some key
points and challenges for event-guided ISP.

We wish to emphasize the potential of event data in ISP processes again. Event cameras have a high
dynamic range and high temporal resolution, which surpass the limits of human vision systems.
In terms of dynamic range and temporal sampling, the information captured by event sensor is
somehow a superset of that of human eye. Therefore, generating images perceptible to human
vision is a matter of downward compatibility.

Limitations: Firstly, the scale of our dataset is relatively small, because the HVS sensor we use
is still in the prototype stage and the associated hardware is cumbersome and exhibits low stability,
which has raised the cost in data collection and thus a limited size dataset. And yet we are committed
to expanding the dataset with more diverse real-world scenarios in future research. Secondly, our
dataset has not thoroughly addressed the issue of flickering in artificial lighting caused by alternating
current, especially in indoor scenarios. The flickering considerably impairs the performance of our
method and further research should pay attention to this problem.
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Appendix / Supplemental Material
Due to space limitations in the main text, additional details are presented in the supplementary
material. Specifically:

• Sec. A: We provide more information about the imaging principle, process and potential of
the sensor.

• Sec. B: We provide further details on dataset collection.
• Sec. C: We delve into more specifics about the controllable ISP.
• Sec. D: We describe the characteristics of the methods compared in the Benchmark.
• Sec. E: We provide more metrics of the methods compared in the Benchmark.
• Sec. F: We discuss additional points of discussion.

A HYBRID SENSOR IMAGING PROCESS, PRINCIPLES AND POTENTIAL

This section describes the imaging process and working principles of the hybrid vision sensor (HVS)
used in this paper. The HVS combines quad Bayer pattern-based RGB imaging with event-based
sensing, enabling high temporal resolution and high dynamic range. The following subsections elab-
orate on the Quad Bayer structure, event generation principles, and rolling shutter readout process.

A.1 QUAD BAYER PATTERN AND RGB IMAGING

The hybrid sensor utilizes a quad Bayer pattern, as shown in Fig. 1, where each group of four
pixels consists of three color pixels (red, green, and blue) and one event pixel. Let IRAW represent
the RAW image captured by the sensor, with pixel intensity values denoted as IRAW (x, y). For
the RGB pixels, the values correspond to the photonic response of the sensor to incoming light,
represented by:

IRGB(x, y) = KRGB · Φ(x, y) +NRGB , (1)
where Φ(x, y) is the incident light intensity, KRGB is the sensitivity coefficient, and NRGB is the
noise term.

The quad Bayer pattern increases the effective resolution of the sensor by allowing demosaicing
algorithms to interpolate missing color information. Additionally, the rolling shutter mechanism is
used to sequentially expose rows of the sensor, resulting in temporal offsets across the frame. This
is illustrated in Fig. 10.

A.2 EVENT GENERATION PRINCIPLES

In addition to RGB imaging, the hybrid sensor includes event pixels that detect changes in lumi-
nance. These event pixels operate in the logarithmic domain and generate an event E(x, y, t, p)
whenever the change in logarithmic intensity exceeds a predefined threshold θ. The mathematical
model for event generation is as follows:

∆L(x, y, t) = log(I(x, y, t))− log(I(x, y, t−∆t)), (2)

E(x, y, t, p) =

{
1, if ∆L(x, y, t) > θ,

−1, if ∆L(x, y, t) < −θ,
(3)

where I(x, y, t) is the light intensity at pixel (x, y) and time t, ∆t is the sampling interval, and
p ∈ {−1, 1} represents the polarity of the event (indicating an increase or decrease in luminance)

High Temporal Resolution: The event generation process is asynchronous and occurs indepen-
dently at each pixel, triggered only when a significant luminance change is detected. This enables
extremely high temporal resolution, as events can be recorded at microsecond-scale intervals. Let
ftemporal represent the temporal resolution of event recording, which depends on the sampling in-
terval ∆t:

ftemporal =
1

∆t
. (4)
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(a) Color Image (b) Color Image w Smaller Aperture

(c) Short-term Events (d) Short-term Events

(e) Long-term Events (f) Long-term Events

Figure 9: In fast-motion scenarios and low-light conditions, real-world data demonstrates the advantages of
events in achieving higher temporal resolution and greater dynamic range. For example, in the fast-motion
scene, the color checker in (a) exhibits blurred edges, while the corresponding short-term event frame shows
sharper edges, capturing motion more accurately. In low-light conditions, (b) illustrates the limitations of
traditional RGB imaging, where details are lost due to insufficient lighting. However, as shown in (d) and (f),
the event data captures motion effectively even under low light. Nevertheless, it is also evident that events
exhibit increased noise levels in low-light conditions, as highlighted in (f). Our data opens the possibility for
future low-light enhancement and deblurring in the RAW domain via events.

This high temporal resolution allows the sensor to effectively capture rapid motion and high-speed
dynamics that traditional RGB cameras, limited by frame rates, cannot resolve. For example, a
rolling ball or moving object creates a continuous stream of events corresponding to pixel-level
luminance changes, enabling precise tracking of motion trajectories in real-time. This characteristic
is particularly advantageous for motion deblurring and temporal interpolation tasks.

High Dynamic Range (HDR): The logarithmic domain operation of the event pixels inherently
provides a high dynamic range. Unlike traditional RGB sensors, which saturate under bright light-
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Figure 10: The camera utilized for data collection features a rolling shutter mode. The horizontal
axis in the figure represents time, and the vertical axis represents each row. Our sensor outputs both
APS frames and EVS events concurrently, with both being aligned in space and time. Specifically,
the APS frames are captured using a rolling shutter exposure method. In the diagram, the red lines
represent the rolling shutter pattern; the solid red line corresponds to the start of the rolling shutter
exposure, and the dashed line signifies the end of the exposure.The blue straight line represents
events.

ing conditions or lose detail in shadows, event pixels respond to relative changes in luminance rather
than absolute intensity. Let Imax and Imin represent the maximum and minimum detectable inten-
sities, respectively. The dynamic range DR can be expressed in decibels (dB) as:

DR = 20 log10

(
Imax

Imin

)
. (5)

Because events are triggered by logarithmic intensity changes, the sensor is capable of detecting
changes over a wide range of luminance levels, from very dark to extremely bright conditions. This
property enables effective operation in scenarios with challenging lighting conditions, such as low-
light environments or scenes with high contrast between bright and shadowed regions.

Practical Implications: The combination of high temporal resolution and high dynamic range
makes the hybrid sensor particularly well-suited for applications involving fast motion or extreme
lighting conditions. As illustrated in Fig. 9, events accurately capture motion details even in low-
light scenarios while preserving high-frequency temporal information. These unique characteristics
complement the RGB output, enhancing the performance of hybrid sensor ISP tasks such as motion
deblurring, HDR reconstruction, and low-light enhancement.

A.3 ROLLING SHUTTER AND TEMPORAL ALIGNMENT

The RGB output of the hybrid sensor follows a rolling shutter exposure mechanism, as shown in
Figure 10. In this method, each row of the sensor is exposed sequentially, introducing temporal
offsets between rows. Let tstart(r) and tend(r) represent the start and end times of exposure for row
r, respectively. The effective exposure time for row r is given by:

Texp(r) = tend(r)− tstart(r). (6)
To achieve temporal alignment between the RGB and event streams, the event data are synchronized
with the rolling shutter exposure times. Both events and frames have unified timestamps to ensure
time alignment. This alignment is critical for event-guided ISP tasks, where temporal information
from events complements the spatial information in RGB frames.

A.4 POTENTIAL BENEFITS OF EVENTS FOR DIFFERENT TASKS IN ISP

Demosaicing: Task Objective: Reconstruct the full-resolution RGB image IRGB(x, y) from incom-
plete color samples in the quad Bayer pattern. Benefits of Events: High temporal resolution events
provide precise edge information via spatial gradients ∇E(x, y, t):

∇E(x, y, t) =

(
∂E

∂x
,
∂E

∂y

)
,
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guiding interpolation along edges and reducing artifacts like color fringing. The high dynamic range
aids in preserving details across varying luminance levels.

Denoising: Task Objective: Reduce noise NRGB in RAW image IRAW (x, y) to enhance image
quality. Benefits of Events: Events, triggered by significant luminance changes ∆L(x, y, t) > θ,
help differentiate signal from noise. By weighting the denoising process with event activity
E(x, y, t):

Idenoised(x, y) = IRAW (x, y)− w(x, y) ·NRGB(x, y),

where w(x, y) = f(E(x, y, t)), we suppress noise while preserving details in dynamic regions.

White Balancing: Task Objective: Adjust image colors to render neutral whites under varying
illumination. Benefits of Events: Using event rate rE(x, y) =

∆E
∆t , we detect illumination changes

and adjust white balance coefficients KWB:

IWB(x, y) = KWB · IRAW (x, y),

enabling real-time adaptation to lighting variations due to the high dynamic range and temporal
resolution of events.

Color Correction: Task Objective: Map image colors to a standard color space for accurate rep-
resentation. Benefits of Events: Events highlight regions with significant luminance shifts, indi-
cating potential color deviations. Incorporating event information into the color correction matrix
MCC(E):

Icorrected(x, y) = MCC(E(x, y, t)) · IWB(x, y),

allows dynamic adjustment for scene changes, enhancing color fidelity, especially in scenes with
rapid motion or high contrast.

In summary, the hybrid sensor enables simultaneous RGB and event data acquisition, leveraging the
strengths of both modalities. The RGB data provide high spatial resolution, while the event data
capture motion and high-frequency changes with low latency and high dynamic range. This unique
combination not only enhances the traditional ISP process but also opens up significant potential
for advanced imaging applications. This combination facilitates advanced imaging tasks, including
motion deblurring, and low-light enhancement in future, as show in Fig. 12.

B MORE DETAILS ABOUT DATASET COLLECTION

In Fig. 11, we present additional samples from our dataset, showcasing the diversity and richness of
the collected data. The figure includes examples of RAW images, their corresponding high-quality
RGB frames, and the associated event streams. These examples highlight the variety of scenes
captured, encompassing urban environments with buildings, natural landscapes with vegetation, in-
tricate textures, vibrant flowers, and more.

To ensure accurate color representation, each scene includes an image featuring a color card, which
is systematically used for color calibration and estimation during the dataset processing. This ap-
proach enhances the reliability and usability of the dataset for ISP tasks.

By including diverse real-world scenarios, our dataset provides a robust platform for training and
benchmarking ISP algorithms, particularly in the context of event-guided approaches.

In Fig. 12, we present additional data collection scenarios, encompassing various scenes and dif-
ferent weather conditions. We used LabelMe (Russell et al., 2008) to annotate the positions of
the ColorChecker, specifically marking four points: cyan, white, brown, and black. Fig. 13 shows
our annotation interface. All annotated location information is stored in JSON format and forms a
one-to-one correspondence with the image.

B.1 DISCUSSION ON DATASET SCALE

To further demonstrate the adequacy of our dataset, we provide a comparative analysis with the most
related datasets in Table 5. Our dataset contains 3,373 images with a resolution of 2248×3264 pixels
(approximately 7.3 million pixels per image). Compared to MIPI, which includes only 800 images
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Figure 11: More samples in our dataset, from left to right: RAW, Good RGB frame and corresponding events..
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Table 5: Size Comparison of Related Datasets. The resolution of MIPI datasets is not uniform.
Dataset Resolution Scale Real-World Events Tasks Publication
Ours 2248× 3264 3373 Yes Yes Hybrid Sensor ISP -
MIPI 2040× 1356 800 No No Hybrid Sensor ISP CVPR 2024
ISPW 1368× 1824 197 Yes No ISP ECCV 2022
NR2R 3464× 5202 150 Yes No ISP CVPR 2022
DeepISP 3024× 4032 110 Yes No ISP IEEE TIP 2018

with resolutions around 2K (e.g., 2040 × 1356), our dataset is over four times larger and is based
on real-world data rather than simulated data. This difference makes our dataset more representative
and applicable for real-world ISP tasks.

It is worth noting that the MIPI dataset, despite its smaller scale, has already been demonstrated
to support the training of large networks such as Transformers (Xu et al., 2024b). Therefore, our
larger dataset is even better suited for training and testing ISP models, offering greater potential for
comprehensive research.

In addition to MIPI, we also consider prior ISP datasets such as ISPW (Shekhar Tripathi et al., 2022),
which contains 197 groups of images, some of which have higher resolutions (e.g., 4480 × 6720).
NR2R (Li et al., 2022) and DeepISP (Schwartz et al., 2018) as traditional ISP datasets have no more
than 200 images for training. But both have high resolution. However, the total image count in
ISPW is significantly smaller than our dataset, and it does not incorporate event data.

The scale of our dataset not only ensures a sufficient number of samples but also provides high-
resolution data, enabling effective training and testing for ISP tasks. Additionally, the dataset in-
cludes diverse scenes, lighting conditions, and event streams, which further enhance its applicability
to hybrid sensor ISP research.

In summary, our dataset provides a comprehensive resource for ISP research. Its real-world nature
distinguishes it from existing datasets and makes it particularly well-suited for event-guided ISP
tasks. Moreover, we are committed to the long-term maintenance of this dataset and plan to expand
it in the future to accommodate larger and more complex tasks.

C MORE DETAILS ABOUT CONTROLLABLE ISP

The MATLAB demo code of the Controllable ISP is provided in the end of the appendix.In this
section, we will elucidate further details in comment.

Fixed Pattern Noise: Practically, we capture pure black images (with the lens cap on) using dif-
ferent exposure times. The black frames captured with identical exposure times are averaged to
obtain the fixed pattern noise. This noise indicates the potential deviations of some pixels, devia-
tions which, if not addressed, can be exacerbated. The physical meaning of this noise is that even
without optics, these pixels will have intensity output due to dark current.

Sensor Value Range: Typically in the hardware design of sensors, the green channel will obtain a
larger value than the red and blue channels, as shown in Fig. 14. Therefore, when capturing a cloudy
sky (which appears white to the human eye), the green channel may reach its maximum value due to
overexposure, while the red and blue channels do not, resulting in a pinkish hue in the sky. In such
cases, we artificially set the overexposure. The specific operation is to use 95% of the preset value
of the sensor when normalizing the 8-bit values, setting the maximum value to 242 (255× 0.95) for
normalization.

D MORE DETAILS ABOUT BENCHMARK METHODS

In this section we explain in more detail the methods of the benchmark in the main paper.

(1) Full Pipeline ISP employs CNN architectures to streamline traditional ISP processes such as
demosaicing, white balancing, and denoising, enabling a direct conversion from RAW images to
RGB outputs in an end-to-end manner. This innovative approach has catalyzed extensive research,
leading to the development of sophisticated models such as ReconfigISP (Yu et al., 2021), Merging-
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Figure 12: More dataset scenes and labels. Our dataset encompasses various indoor and outdoor scenes,
captured under different weather conditions, including cloudy and sunny days. The initial segments of our
videos include a ColorChecker, which has been annotated using LabelMe (Russell et al., 2008).

ISP (Chaudhari et al., 2021), PyNet (Ignatov et al., 2020b), PyNetCA (Kim et al., 2020), InvertISP
(Xing et al., 2021), and MV-ISPNet (Ignatov et al., 2020a). In our benchmark, we selected several
models from a reputable open-source paper for comprehensive evaluation. Specifically, we chose
MV-ISPNet, which secured first place at AIM 2020, demonstrating its robustness. Alongside, we
included PyNet and its enhanced variant, PyNetCA, which incorporates attention layers for more
in-depth analysis. Additionally, we incorporated InvertISP, known for its proven ability to adeptly
handle various scenarios.
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Figure 13: LabelMe annotation interface: We use LabelMe software to mark the four corners of a color card
in images, which are white, cyan, brown, and black respectively. In practice, the images annotated by LabelMe
are demosaiced from RAW format. While annotators can distinguish the colors, there are deviations in the
image’s inherent color representation.
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Figure 14: The distribution of colors on the color card in different frames under the same light
source.

InvertISP (Xing et al., 2021): InvertISP is a pipeline with a specially designed reversible structure
for both rendering RGB images from RAW and to inversely recover the RAW data from RGB
images. It uses a series of reversible affine coupling layers and 1 × 1 convolutional layers to build
a single reversible neural network that can map from RAW data to sRGB data, and can inversely
restore RAW data from compressed RGB images.

MV-ISPNet (Ignatov et al., 2020a): MV-ISPNet is a multi-level wavelet ISP network based on U-
Net. It takes advantage of the Multi-level Wavelet CNN (MWCNN) and Residual Channel Attention
Network (RCAN) architectures, minimizes information loss through residual groups and discrete
wavelet transforms, and combines multiple loss functions and self-integration methods to improve
image quality.

PyNet (Ignatov et al., 2020b): PyNet utilizes a stack of CNN layers with different resolution level
to process the image, which allows the network to learn a more diverse set of features, ranging from
global brightness / color to local texture enhancement.

PyNetCA (Kim et al., 2020): PyNetCA is an enhanced version of the original PyNet. It adopts an
inverted pyramid structure and considers both global and local features of the image through multi-
scale feature fusion and residual connection. With a channel attention module (CA) to emphasize
important channel features, and uses a sub-pixel reconstruction module (SRM) in the last layer to
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improve upsampling efficiency and image quality through 1× 1 convolution and sub-pixel shuffling
technology.

(2) Stage-wise ISPs:.Instead of replacing the entire ISP pipeline with a single neural network, stage-
wise learning based ISPs employ multiple specifically designed modules to perform different sub
tasks and organize them sequentially or in parallel order to generate the final output. Note that these
modules are sometimes trained independently in some models, in our experiment we only keep the
model structures and train them end-to-end.

CameraNet (Liang et al., 2021): CameraNet designs two sequential modules and trains them sep-
arately to perform different tasks. The Restore-Net component is trained for demosaicing, white
balancing and denoising while the Enhance-Net for sRGB gamma mapping and detail adjustments.
The Pytorch version of CameraNet is not available, and therefore we experiments on a converted
version.

AWNet (Dai et al., 2020): AWNet employs two parallel UNet-based modules to capture global
and local content. The modules take in the original RAW image and a pseudo-demosaiced image
generated from the RAW image, then the output of these two modules are averaged to produce the
final output.

(3) Image Enhancement Network Based ISPs:. Transformer-based models have demonstrated
high capabilities in image enhancement tasks (e.g., deblurring, super-resolution). Even though these
models are not specifically designed for ISP, a minor conversion (i.e. replacing the projector in the
output layer) could evoke their potentials in ISP tasks.

UNet (Ronneberger et al., 2015): UNet is a CNN-based model which has been widely adopted in
areas of image processing due to its high performance in dealing with various sizes of images and
modelling complex structures within them. In our experiment a UNet is trained to perform the task
of ISP.

Swin Transformer (Lu et al., 2024): Swin Transformer is a transformer based general-purpose
backbone for image processing. It produces a hierarchical representation with shifted windows
transformer blocks and brings greater efficiency by limiting self-attention computation to non-
overlapping local windows while also allowing for cross-window connection.

E BENCHMARKING METRICS

In addition to PSNR and SSIM, the inclusion of Natural Image Quality Evaluator (NIQE) (Zhang
et al., 2015) and Perceptual Index (PI) (Zhang et al., 2014) provides deeper insights into the percep-
tual quality and naturalness of images across various models, as shown in Table. 6, and Table. 7. The
ablation study analysis of the methods in these two tables, including a discussion of the best perfor-
mances, a comparison between event-based methods (eSL and EV-UNet) and pure RGB methods,
and the differences of these methods in indoor and outdoor scenes.

Best Performance Analysis: Indoor Scenes (Table. 6): Swin-Transformer exhibited excellent per-
formance in indoor scenes, achieving the lowest average NIQE (7.7104) and PI (7.2125) values.
This indicates its advantage in enhancing both image quality and perceptual quality. InvertISP
closely followed, with an average NIQE of 8.8646 and PI of 7.8543, demonstrating good natural
image quality. AWNet also showed balanced performance, with an average NIQE of 8.5311 and PI
of 7.9843. Outdoor Scenes (Table 7.): InvertISP performed the best in outdoor scenes, achieving
the lowest average NIQE (6.7187) and a relatively low PI (6.8720), especially excelling in complex
flower and building scenes. Swin-Transformer also demonstrated excellent performance in outdoor
scenes, with an average NIQE of 7.0284 and PI of 7.2255. eSL performed well in outdoor scenes,
achieving an average NIQE of 6.9509 and PI of 7.1445.

Comparison Between Event-Based Methods and Pure RGB Methods: eSL achieved good NIQE
and PI values in both indoor and outdoor scenes. In particular, in outdoor scenes, it obtained an av-
erage NIQE of 6.9509 and PI of 7.1445, which are close to the best performances. EV-UNet’s per-
formance was relatively average in both types of scenes. It had an average indoor NIQE of 10.6250
and PI of 9.2131; in outdoor scenes, it achieved an average NIQE of 8.2537 and PI of 7.8705. Pure
RGB Methods Swin-Transformer, as a pure RGB method, performed excellently in both indoor
and outdoor scenes. This indicates its good generalization ability when handling different scenes.
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Table 6: Comparison of Methods on HVS ISP Dataset indoor scenes. ∗ refer to the results obtained
by the same model with different hyperparameters.

1-In-Fruit-2 3-In-ColChecker-40 4-In-RLChart-10 Average
Methods NIQE PI NIQE PI NIQE PI NIQE PI
PyNET 10.5604 8.9322 8.6510 7.8808 8.6960 7.9034 9.3024 8.2388
PyNET∗ 10.6142 9.0591 9.5254 8.4616 9.2743 8.2574 9.8046 8.5927
PyNetCA 9.5175 8.4227 9.5633 8.3391 10.0280 8.4848 9.7029 8.4155
InvertISP 9.6301 8.2957 7.7260 7.2639 9.2377 8.0033 8.8646 7.8543
MV-ISPNet 10.8919 9.2025 9.6756 8.3477 9.3904 8.3674 9.9859 8.6392
CameraNet 771.8745 392.2881 771.8748 392.2880 771.8735 392.2873 771.8743 392.2878
CameraNet∗ 667.3576 335.3488 667.356 335.3535 667.3693 335.3525 667.3644 335.3501
AWNet 9.0410 8.4831 8.8963 8.2489 7.6562 7.2208 8.5311 7.9843
Swin-Transformer 7.8467 7.3106 7.9101 7.2932 7.3744 7.0336 7.7104 7.2125
UNet 10.7405 9.3207 9.7168 8.6760 9.5778 8.5257 10.0117 8.8408
UNet∗ 11.5525 9.9720 10.3320 9.0237 10.7163 9.2440 10.8669 9.4132
eSL 8.9799 8.1130 8.5955 7.8486 8.9683 8.0099 8.8479 7.9905
EV-UNet 10.3218 9.2965 10.7447 9.1840 10.8084 9.1588 10.6250 9.2131

InvertISP, although a pure RGB method, performed outstandingly in outdoor scenes, especially in
improving image quality under complex lighting conditions. The event-based method eSL’s perfor-
mance in outdoor scenes was close to the best, which may be due to the advantage of event data in
capturing dynamic and high dynamic range scenes. EV-UNet’s performance was slightly inferior to
eSL, which may be related to its model structure or the degree to which it utilizes event data. Pure
RGB methods like Swin-Transformer and InvertISP performed outstandingly, indicating that even
without event data, excellent performance can be achieved through improved model structures and
algorithms.

Differences Between Indoor and Outdoor Scenes: Performance Differences: Most methods ex-
hibit better NIQE and PI values in outdoor scenes than in indoor scenes. This may be because
outdoor scenes have more complex lighting conditions and content, providing more information to
the models. Advantages of Event-Based Methods: Event-based methods display more significant
advantages in outdoor scenes, especially when handling rapid changes and high dynamic range en-
vironments. In such cases, event data can provide additional information to improve image quality.
Model Generalization Ability: Models like Swin-Transformer maintain consistently high perfor-
mance in both indoor and outdoor scenes, demonstrating good generalization ability suitable for
various environments.

Impact of Hyperparameters on the Model: We observed that hyperparameters can have a im-
pact on model performance. For instance, adjustments to learning rate, batch size, or the choice
of optimizer often lead to measurable variations in results. As a benchmark study, we strive to en-
sure fair and unbiased evaluation across all methods by carefully tuning hyperparameters to achieve
reasonable performance. However, finding the optimal hyperparameters for each model remains a
challenging task, particularly given the computational costs and the inherent differences in how mod-
els respond to tuning. In practice, hyperparameter tuning often requires balancing empirical results
with theoretical insights, as exhaustive grid searches are rarely feasible. Despite these challenges,
we will provide all training codes to ensure transparency and reproducibility, while acknowledging
that further fine-tuning might yield even better results for some models.

In summary, the best-performing models vary across different scenes; however, Swin-Transformer
and InvertISP demonstrate excellent performance in both indoor and outdoor environments. The
event-based method eSL performs close to the best in outdoor scenes, confirming the effectiveness
of event data in complex scenes. Pure RGB methods can also achieve excellent performance by
improving model structures. However, in specific scenes, the introduction of event data may pro-
vide additional advantages. The performance differences of methods in indoor and outdoor scenes
suggest that model design and training need to consider scene characteristics to achieve the best
results.
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Table 7: Comparison of methods on HVS ISP dataset outdoor scenes. ∗ refer to the results obtained
by the same model with different hyperparameters.

2-OUT-Tree-2 3-Out-Flower-2 4-Out-Building-1 Average
Methods NIQE PI NIQE PI NIQE PI NIQE PI
PyNET 8.9608 8.2063 8.4138 7.8977 8.0532 7.6866 8.4759 7.9302
PyNET∗ 9.3716 8.4749 9.2355 8.2926 9.1500 8.2384 9.2523 8.3353
PyNetCA 8.4343 7.8880 7.9795 7.6717 7.8525 7.6036 8.0888 7.7211
InvertISP 7.5380 7.3978 6.7139 6.9881 5.9043 6.2299 6.7187 6.8720
MV-ISPNet 8.1110 7.8820 7.4862 7.2422 7.4597 7.1434 7.6856 7.4225
CameraNet 771.8750 392.2857 771.8755 392.2860 771.8743 392.2864 771.8749 392.2860
CameraNet∗ 667.3654 335.3526 337.3615 335.3509 667.3656 335.3555 667.3632 335.3525
AWNet 8.6385 8.3241 8.4038 8.1231 7.0224 7.4135 8.0216 7.9536
Swin-Transformer 7.4143 7.4885 7.2316 7.4287 6.4391 6.7594 7.0284 7.2255
UNet 8.8706 8.2537 8.2972 7.8604 8.2363 7.7737 8.4680 7.9626
UNet∗ 8.8747 8.2149 8.4267 7.9218 8.4236 8.0117 8.5750 8.0495
eSL 7.8569 7.7214 6.7929 7.0928 6.2029 6.6194 6.9509 7.1445
EV-UNet 8.5472 8.0862 8.1830 7.8198 8.0310 7.7055 8.2537 7.8705

（a）Indoor (b) Outdoor 

Figure 15: Event counts in indoor and outdoor scenes. We randomly selected an indoor scene and
an outdoor scene. The indoor scene has a strong periodic change, while the outdoor scene does not
have a strong periodic change.

F MORE DISCUSSION

Impact of Indoor Light Flicker: As shown in Fig. 15, indoor light sources exhibit periodic flicker,
whereas outdoor light sources do not have this distinct periodic flicker. This issue has also been
noted in previous research (Xu et al., 2024a). Addressing this problem is crucial for enhancing
image quality. There are two potential solutions: first, applying data augmentation during data
input to enable the network to robustly handle flicker issues; and second, using temporal filtering
techniques to mitigate the flicker problem.

Network Structure of EV-UNet: EV-UNet integrates an event encoding branch into the existing
UNet architecture, adding the results of both encoders during the decoding process. Despite this
being a simple attempt, we observed that incorporating events can significantly enhance performance
in outdoor scenes. For more detailed visual results, please refer to Fig. 17 and Fig. 18.

Analysis of Overall and Scene-Specific Performance: The results in Tab. 8 reveal both overall
performance trends and context-specific strengths. For example, UNet demonstrates strong robust-
ness with an All-Average PSNR of 29.97, performing well across diverse scenarios. Similarly,
MV-ISPNet excels in outdoor scenes, but its performance drops indoors. These findings underline
the need to consider scene specific impacts when applying ISP methods, as overall metrics do not
always reflect performance in individual contexts. Future research should focus on adapting ISP
methods to specific scenarios to ensure optimal outcomes across diverse settings.
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Encoder Decoder

RAW

Events

RGB

Figure 16: EV-UNet framework.

Table 8: Comparison of Methods on HVS ISP Dataset indoor and outdoor scenes.
Out-Average In-Average All-Average

Methods PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓ PSNR↑ SSIM↑ L1↓
PyNET 32.47 0.9785 0.0180 11.97 0.7664 0.2412 22.22 0.8725 0.1296
PyNET∗ 29.37 0.9652 0.0265 17.36 0.8437 0.1494 23.37 0.9044 0.0880
PyNetCA 31.76 0.9762 0.0207 27.72 0.9431 0.0540 29.74 0.9596 0.0373
InvertISP 27.59 0.9364 0.0281 28.27 0.9392 0.0254 27.93 0.9378 0.0268
MV-ISPNet 29.76 0.9662 0.0232 31.12 0.9664 0.0207 30.44 0.9663 0.0219
CameraNet 11.36 0.2618 0.2266 13.04 0.2591 0.2013 12.20 0.2605 0.2139
CameraNet∗ 12.30 0.3953 0.2096 12.68 0.2672 0.2073 12.49 0.3312 0.2085
AWNet 17.04 0.9180 0.0879 27.03 0.9356 0.0567 22.04 0.9268 0.0723
Swin-Transformer 25.24 0.9463 0.0354 25.80 0.9481 0.0304 25.52 0.9472 0.0329
UNet 24.51 0.9634 0.0354 15.70 0.8913 0.1124 20.11 0.9274 0.0739
UNet∗ 28.17 0.9685 0.0265 31.76 0.9705 0.0188 29.97 0.9695 0.0226
eSL-Net 23.02 0.9294 0.0473 26.13 0.9464 0.0381 24.57 0.9379 0.0427
EV-UNet 30.11 0.9698 0.0225 26.04 0.9388 0.0640 28.08 0.9543 0.0432
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(a) Events (b) RAW (c) EV-UNet (d) Good RGB

Figure 17: More visualization results.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(a) Events (b) RAW (c) EV-UNet (d) Good RGB

Figure 18: More visualization results.
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Listing 1: MATLAB ISP Code.

1function ans_colors = RGBE_ISP(
2raw_npz_file,
3json_file,
4has_known_colors,
5known_colors,
6gamma)
7% RGBE_ISP: ISP for RGBE data.
8% raw_npz_file: the raw data file.
9% json_file: the json file for color card.
10% has_known_colors: has known colors.
11% known_colors: the known colors.
12% gamma: gamma value.
13fprintf(’RGBE_ISP:\n’);
14fprintf(’ raw_npz_file :%s\n’, raw_npz_file);
15fprintf(’ json_file :%s\n’, json_file);
16% Read the raw data for black level calibration.
17pth_blcraw = ’./rawdata/FixedPatternNoise.npy’;
18img_blc = readNPY(pth_blcraw);
19img_blc = double(img_blc) / 242.0;
20% get the file name
21[pathstr, file_name, ext] = fileparts(raw_npz_file);
22% Read rge quad raw data.
23% 242 is the max value of the raw data. The raw data is 8bit.
24% 242 = 255 * 0.95. The 0.95 is the saturation level.
25img_quad = readNPY(raw_npz_file);
26img_quad = max(0, min(img_quad, 242));
27img_quad = double(img_quad) / 242.0;
28img_quad = img_quad - img_blc;
29% clip the value to [0, 1]
30img_quad = max(0, min(img_quad, 1));
31[height, width] = size(img_quad);
32% demosaic the quad raw data.
33% This function can be found in the following link.
34% https://www.mathworks.com/matlabcentral/fileexchange/
35% 116085-quadbayer-cfa-modified-gradient-based-demosaicing
36img_rgb = quad_bayer_demosaic_full(
37img_quad, height, width, ’grgb’, 0, 0);
38if has_known_colors
39colors = known_colors;
40ans_colors = [];
41else
42vertex_pts = get_color_card_coords_from_json(json_file);
43% check the vertex_pts has 4 points
44if size(vertex_pts, 1) ˜= 4
45disp(’Error: vertex_pts has not 4 points’);
46return;
47end
48% get the colors from the image given 4 points’ location
49% The vertex_pts is the 4 points of the color card.
50[colors, coord] = checker2colors(
51img_rgb, [4, 6], ’mode’, ’auto’,
52’show’, false, ’vertex_pts’, vertex_pts);
53% save colors to file
54color_file = sprintf(’%s/%s_colors.mat’, pathstr, file_name);
55save(color_file, ’colors’);
56% the colors will be reture value.
57ans_colors = colors
58% check NaN value in colors. if has NaN value, return.
59if any(isnan(colors))
60disp(’Error: colors has NaN value’);
61fprintf(’raw_npz_file: %s\n’, raw_npz_file);
62return;
63end

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

64end
65% white balance
66wb_multipliers = [
67colors(21, 2) / colors(21, 1),
681.0,
69colors(21, 2) / colors(21, 3)];
70img_wb = img_rgb;
71img_wb(:, :, 1) = img_wb(:, :, 1) * wb_multipliers(1);
72img_wb(:, :, 3) = img_wb(:, :, 3) * wb_multipliers(3);
73img_wb = max(0, min(img_wb, 1));
74% denoise using rgb BM3D with default parameter
75randn(’seed’, 0);
76sigma = 25;
77[˜, img_denoise] = CBM3D(1, img_wb, sigma);
78% color correction.
79% The color card colors are sRGB from
80% the document of the color card,
81% treated as groundtruth sRGB under D65
82srgb = [
83112, 76, 60;
84197, 145, 125;
8587, 120, 155;
8682, 106, 60;
87126, 125, 174;
8898, 187, 166;
89238, 158, 25;
90157, 188, 54;
9183, 58, 106;
92195, 79, 95;
9358, 88, 159;
94222, 118, 32;
9525, 55, 135;
9657, 146, 64;
97186, 26, 51;
98245, 205, 0;
99192, 75, 145;
1000, 127, 159;
10143, 41, 43;
10280, 80, 78;
103122, 118, 116;
104161, 157, 154;
105202, 198, 195;
106249, 242, 238;
107];
108srgb = srgb / 255.0; %normlization
109srgb = srgb .ˆ 2.2; %sRGB to linear sRGB
110colors_wb = colors .* wb_multipliers % white balance correction
111% compute the color correction matrix.
112[cam2xyz, scale, ˜, ˜] = ccmtrain(colors_wb, ...
113srgb, ’omitlightness’, true, ’preservewhite’, true, ...
114’model’, ’linear3x3’, ’targetcolorspace’, ’sRGB’, ...
115’whitepoint’, whitepoint(’d65’));
116% apply the color correction matrix.
117lin_srgb = apply_cmatrix(
118img_denoise * (scale * 0.9),transpose(cam2xyz));
119lin_srgb = max(0, min(lin_srgb, 1));
120% gamma correction.
121img_srgb = lin_srgb .ˆ gamma;
122img_srgb = max(0, min(img_srgb, 1));
123good_rgb_file = sprintf(
124’%s/%s_good_rgb.png’, pathstr, file_name);
125imwrite(img_srgb, good_rgb_file);
126fprintf(’DONE: %s’, good_rgb_file);
127end
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