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Abstract

Medical image segmentation often suffers from ambiguity due to unclear boundaries, expert
inconsistencies, and varying interpretation standards. Traditional segmentation models
produce single deterministic outputs, failing to capture this uncertainty and the range of
plausible interpretations in such cases. In this work, we introduce AmbiguousTextDiff, a
novel text-guided diffusion model that generates diverse and plausible segmentation proposals
reflecting the ambiguity observed in medical imaging. By combining the strengths of text-
conditional diffusion models with ambiguity-aware training, our approach generates multiple
valid segmentations for a single input image. We use descriptive text prompts including
anatomical and diagnostic attributes as conditioning signals to guide segmentation. We
generate these prompts by extracting detailed metadata from the LIDC-IDRI dataset such
as nodule size, texture, spiculation, and malignancy. This text-based conditioning improves
both the controllability and clinical relevance of the model’s outputs, aligning them more
closely with radiologist interpretation. Extensive evaluations and ablations on the LIDC-IDRI
dataset demonstrate that AmbiguousTextDiff achieves superior performance across Combined
Sensitivity, Diversity Agreement, Generalized Energy Distance (GED), and Collective Insight
(CI) Score offering a comprehensive measure of both accuracy and uncertainty. Our results
highlight the value of text-guided diffusion for ambiguity-aware segmentation and establish a
new direction for controllable and interpretable medical image analysis. Codes and datasets
are in supplementary.

1 Introduction

Medical image segmentation plays an important role in modern medical image analysis, serving as an essential
step in numerous clinical applications such as disease diagnosis, treatment planning, surgical guidance, and
patient monitoring. Accurately identifying organs and diseased regions is essential for understanding and
analyzing medical images. However, in real-world practice, these images often carry inherent uncertainties,
making it difficult to achieve consistent segmentation results that all doctors and experts agree upon.

Several factors contribute to these ambiguities:

e Blurred anatomical boundaries: In many medical images, especially, MRI or ultrasound, the
boundaries of organs or abnormal areas are often unclear and blend with nearby tissues, making it
difficult to accurately identify them.

e Inherent limitations in imaging modalities: Factors such as unwanted marks (artifacts), random
noise, blurriness from movement, low contrast, and poor image quality make it harder to understand
and trust what we see in medical images. A sample is shown in Figure

e Subjective interpretation by medical experts: Inter-observer variability can occur when multiple
radiologists or clinicians annotate the same image differently because of differences in training, clinical
focus, or personal experience. This is well-documented in datasets such as LIDC-IDRI (Armato 111
et al., [2011).



Under review as submission to TMLR

Figure 1: Text annotation corresponding to the above image is: The annotation id is 128. The
subtlety is 5. The internalStructure is 1. The calcification is 6. The sphericity

is 5. The margin is 4. The lobulation is 1. The spiculation is 5. The texture is 4.
The malignancy is 4. The Subtlety is Obvious. The InternalStructure is Soft Tissue.

The Calcification is Absent. The Sphericity is Round. The Margin is Near Sharp. The
Lobulation is No Lobulation. The Spiculation is Marked Spiculation. The Texture is
Solid/Mixed. The Malignancy is Moderately Suspicious. The diameter mm is 31.92. The
volume mm® is 11568.45. The slice indices is [101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113]. The bbox is (slice(up.int64(264), np.int64(315), Nomne),
slice(np.int64(173), np.int64(217), None), slice(np.int64(101), np.int64(114), None)).
Average malignancy (meta): 5.00. Is cancer (any slice): True. Is clean (all slices):
False. Diameter: 20.6846910857402 mm. Malignancy level: 5.0. Malignancy (nodule):
1.0. Although there are descriptions of the concerned region, the requirement is to identify the segmentation
boundaries.

e« Contextual dependency on clinical priorities: Depending on the medical setting, such as
screening vs treatment monitoring or pediatric versus adult populations, different criteria may be
deemed relevant or unusual.

In our own experiments with the LIDC-IDRI dataset, we frequently saw radiologists’ annotations for the
same nodule vary dramatically. These disagreements span everything from high-level labels—Ilike ’suspicious’,
benign’, or even 'non-nodule’—to the fine-grained pixel-level boundaries themselves. This isn’t noise; it’s a
signal of genuine clinical ambiguity. By chasing a single ’ground truth’ output, current models risk ignoring
the multi-modality that defines real-world medical imaging. Our research asks a fundamental question:
can a model learn to represent the full spectrum of expert disagreement, instead of collapsing
it into a single, misleading average?

Recent advances have explored using diffusion models for segmentation (Wolleb et al.| [2021; [Wu et al.
2022)), but they often fall short in one of two ways. Text-guided diffusion models (TextDiff) can produce
segmentations from descriptive prompts (Feng, 2024), but typically yield a single, deterministic output, failing
to capture the necessary output variability for ambiguous cases. Conversely, conditional diffusion models
that generate multiple segmentations, such as CIMD (Rahman et al., 2023)), often lack strong semantic
control, especially when visual information is insufficient or unclear. Our work addresses both limitations by
introducing a framework that is both text-guided for semantic control and inherently stochastic to model
the full distribution of plausible clinical interpretations. Crucially, we also demonstrate the importance of
rigorous evaluation on complete, unfiltered datasets, revealing that the performance of prior methods may be
overestimated when tested on curated subsets.
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1.1 Our Contributions

To overcome this significant constraint, we present AmbiguousTextDiff, a novel framework in this study.
By producing multiple plausible segmentation masks that are conditioned on both the image and a textual
description of the ambiguity, AmbiguousTextDiff, a text-guided diffusion-based generative model,
explicitly captures the uncertainty and diversity in medical image segmentation. Inspired by recent advance-
ments in diffusion models and multi-modal learning, our approach introduces a new direction for modeling,
exploring, and interpreting segmentation ambiguity. To the best of our knowledge, this is the first attempt to
do ambiguous medical image segmentation using text guidance.

Our key contributions include:

e A Unified Framework for Text-Conditional Diffusion: We create a new diffusion-based
architecture that incorporates textual descriptions as conditioning inputs as shown in Figure 2
allowing the model to produce segmentations that represent ambiguous features learned during
training or described by medical experts.

e Novel Training Strategy: We integrate domain-informed text prompts, simulated ambiguous
regions, and diverse ground-truth annotations. Instead of predicting just one average result, the
model learns to produce a range of possible segmentations.

e Diversity and Quality-Centric Evaluation Metrics: To evaluate the diversity, plausibility, and
clinical validity of the generated results, we use specialized metrics like Generalized Energy Distance
(GED) (Selvan et al., [2020), Collective Insight (CI) score, and Diversity Agreement (Rahman et al.|
2023). Since multiple valid outputs are possible, we do not rely on standard single-output overlap
metrics like Dice or IoU.

e Comprehensive Experimental Validation: We perform comprehensive experiments on the
LIDC-IDRI dataset (Armato III et al., [2011)) under simulated ambiguity. Our results show that
AmbiguousTextDiff outperforms existing deterministic and stochastic segmentation methods in
capturing clinically important variations.

It is important to distinguish between the descriptive metadata used in our text prompts and the segmentation
task itself. Metadata like nodule diameter, texture, or even a bounding box provides a high-level, coarse
description of a region of interest. What it does not provide is the pixel-level detail needed for clinical
applications like volumetric analysis, radiotherapy planning, or precise morphological assessment. Our model
uses this descriptive information as context, guiding it to generate fine-grained boundary segmentations. In
essence, the metadata is not meant to replace pixel-level annotations but to help resolve ambiguity at the
pixel scale, mirroring how a radiologist uses clinical context to interpret unclear boundaries.

2 Related Work

2.1 Medical Image Segmentation

Medical image segmentation plays a key role in computer-aided diagnosis and treatment planning. Over the
years, it has evolved from early methods like thresholding, edge detection, and region growing, which often
struggled with noise and generalization to much more powerful deep learning approaches. A major break-
through came with convolutional neural networks (CNNs), especially the U-Net architecture (Ronneberger
et all 2015)), whose encoder-decoder design and skip connections help preserve spatial details essential for
accurate segmentation. U-Net and its many variants have since become standard tools across segmentation
tasks. More recently, researchers have pushed this further by blending CNNs with transformers. For example,
TransUNet (Chen et all 2021) enhances the classic U-Net by adding transformer modules that can capture
long-range dependencies, particularly useful for understanding complex anatomical structures. On the other
hand, UNETR (Hatamizadeh et al., 2022)) places transformers right at the start of the encoder path, allowing
the model to process 3D medical data more effectively by leveraging global contextual information.
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2.2 Ambiguity in Medical Segmentation

One of the biggest ongoing challenges in medical image segmentation is dealing with ambiguity: a common
issue that arises from low image quality, overlapping anatomical structures, and differences in expert opinions.
Even with the progress in segmentation models, this uncertainty remains hard to tackle. Multiple studies have
highlighted the need to model such ambiguity rather than ignore it (Kohl et al. [2018). Instead of producing a
single deterministic result, researchers have proposed probabilistic models that can learn from several expert
annotations and provide a variety of plausible segmentations. This unpredictability is explicitly captured by
architectures such as the probabilistic U-Net (Kohl et al.,|2018), which reflects the actual uncertainty observed
in clinical practice. A more structured and comprehensible method of modeling uncertainty has been provided
by more recent attempts to go one step further with hierarchical models that arrange ambiguity at several
levels (Kohl et al., [2019; Baumgartuner et al. [2019). By better simulating radiologist’s reasoning in ambiguous
situations, these methods hope to bring automated segmentations closer to expert-level decision-making.

2.3 Diffusion Models

Diffusion models have recently gained attention as powerful tools for generating images, often setting new
benchmarks in image synthesis. They started with denoising diffusion probabilistic models (DDPMs) (Sohl;
Dickstein et al., [2015]), which were originally introduced for natural image synthesis, which laid the foundation
for many later improvements (Ho et al.. |2020). One major breakthrough was latent diffusion models like
Stable Diffusion (Rombach et al.l [2022), which shift the denoising process to a lower-dimensional latent space
instead of the raw image space. This not only boosts efficiency but also enables the generation of high-quality,
high-resolution images guided by simple text prompts. These advances are particularly promising for medical
applications, where generating or processing large, high-dimensional data (like 3D scans) requires both
accuracy and efficiency.

2.4 Text-Guided Image Generation

Combining text with generative models has made huge strides in recent years. Models like DALL - E, Stable
Diffusion (Rombach et all 2022), and Imagen have shown that it’s possible to create realistic, high-quality
images directly from text prompts; making image generation more intuitive and flexible, especially in cases
where traditional labels or bounding boxes fall short. More recently, these text-guided generation techniques
have started making their way into medical imaging, where they’re being used for tasks like segmentation
and image synthesis (Feng [2024). Text-guided generation is being explored to incorporate expert knowledge
like radiology reports or clinical annotations into the generation process.

3 Methodology

Our proposed method, AmbiguousTextDiff, leverages a text-guided diffusion model to address the inherent
ambiguity in medical image segmentation. Instead of producing a single deterministic output, we aim
to model the conditional distribution of plausible segmentation masks p(y|x,c) given an input image x
and a descriptive text prompt ¢. This allows us to generate a diverse ensemble of segmentation proposals
{y(l)7 y@, Ly )} that reflects the range of valid interpretations present in ambiguous cases, such as those
arising from inter-observer variability among clinical experts.

3.1 Denoising Diffusion Probabilistic Models Preliminaries

Denoising Diffusion Probabilistic Models (DDPMSs) are a class of generative models consisting of two processes:
a fixed forward diffusion process and a learned reverse denoising process (Ho et al., 2020).

Forward Process (Diffusion). The forward process gradually adds Gaussian noise to an an initial data
sample yo (such as a clean segmentation mask) over T discrete timesteps. This is done step-by-step using a
Markov chain, where each noisy version ¥, is sampled from the previous one y;_1:

q(Yelyi—1) = N(ye; V1 = Beye—1, Bed), (1)
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Figure 2: An overview of the AmbiguousTextDiff architecture, which takes an input image, text annotations,
and noise, feeding the encoded features into a diffusion U-Net where cross-attention guides the generation of
multiple plausible segmentation outputs.

with {8;}Z_; defining the noise schedule. A useful property of this setup is that we can directly sample y;
from the original input yg, without simulating all intermediate steps—using:

q(yelyo) = N (ye; Varyo, (1 — ap)I), (2)

where iy =1 — 5; and oy = HZ:1 a¢. This makes it efficient to generate noisy versions of the original data at
any point in the diffusion process.

Reverse Process (Denoising). The reverse process aims to reconstruct the original data by gradually
removing noise, starting from a completely noisy input y7 ~ A(0, I). This denoising is learned through a
neural network parameterized by 6, which approximates the true reverse distribution p(y;—1|y:) at each step:

Po(Ye—1|yr) = N (yi—1; po(ys, t), Lo (yi. 1)). (3)

Instead of directly predicting the denoised data, the model is commonly trained to estimate the noise € that
was originally added making it easier to learn the denoising process and improve training stability.
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3.2 AmbiguousTextDiff Architecture

Our AmbiguousTextDiff model, depicted in Figure [2] is a conditional diffusion framework designed for
text-guided ambiguous segmentation. It combines information from two sources: the input image, which acts
as a fixed condition, and a text prompt that provides semantic guidance. The architecture consists of a visual
pathway to process the image, a text encoder to interpret the prompt, and a conditional U-Net denoiser at
its core. These components are connected using cross-attention, which allows the model to effectively align
and fuse the multi-modal information during the denoising process.

Input Representation and Conditioning. Our model takes a medical image «, normalized to the range
[-1, 1], as a fixed condition throughout the diffusion process. A crucial design choice is that the diffusion
process applies only to the segmentation mask, not the image itself. At each forward timestep ¢, Gaussian
noise is added only to the mask channel yg to produce a noisy mask y;. The U-Net denoiser receives the input
image and the noisy mask concatenated along the channel dimension, forming the input tensor z; = [x, y:].
This architecture ensures that the model learns the distribution of valid segmentations conditioned on a static
visual context.

Text-Guided U-Net Denoiser. The core of our model is a U-Net denoiser adapted to incorporate text
guidance. It follows a standard encoder-decoder structure with skip connections, operating at multiple
spatial resolutions (32, 16, and 8). To enhance its representational capacity, we integrate residual blocks
and self-attention modules at each resolution level. This enables the network to model complex spatial
dependencies while being guided by both the image features and time embeddings, which encode the current
diffusion timestep t.

Cross-Attention Mechanism. To integrate textual guidance, we employ cross-attention layers at multiple
resolution levels of the U-Net, serving as a bridge between textual and visual modalities (Figure [3p). The
text prompts are first encoded into 768-dimensional embedding vectors ¢ by a pre-trained Bio_ Clinical BERT
model (Alsentzer et al.,2019). These embeddings are projected to form the key (K) and value (V') matrices,
while the U-Net’s intermediate feature maps provide the query (Q). The attention operation is defined as:

Attention(Q, K, V) = soft (QKT) v )
ention(Q, K,V) = softmax | ——— ,
Vdy

where dj; is the dimensionality of the key vectors.

We inject the text embeddings at three resolution levels (32, 16, and 8) in both the encoder and decoder
paths. At each level, the feature maps act as queries and the projected text embeddings supply keys and
values, ensuring that semantic guidance consistently modulates the denoising process across different feature
scales. This design channels the model’s stochasticity toward clinically meaningful interpretations.

3.3 Ambiguity-Aware Training

During training, the model learns to predict the noise that was added to the segmentation mask in the forward
diffusion process. This prediction is guided by three inputs: the medical image, a text prompt describing
the expected outcome, and the current diffusion timestep. By conditioning on all three, the model learns to
generate segmentations that reflect both the visual context and the semantic variations captured in the text,
while accounting for ambiguity in the data. The overall process is visualized in Figure [Bb.

Hybrid Loss Function. To train the model to be both accurate and ambiguity-aware, we employ a hybrid
loss function that combines a standard denoising objective with a latent space regularization term:

Etotal = ‘Cmse + )\£k1~ (5)

The primary component, L, is the standard denoising score matching objective from DDPMs (Ho et al.
2020), implemented as the Mean Squared Error (MSE) between the true and predicted noise in pixel space:

Emse = Eyg,c,e,t |:||€ - Ee(zt; C, t)H2:| ) (6)
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Figure 3: Key components in AmbiguousTextDiff: attention mechanism and ambiguity-aware generation
pipeline.

where z; = [x, y¢] is the concatenation of the input image and the noisy mask, and eg is the noise predicted
by our U-Net.

To explicitly model the distribution of ambiguous annotations, we introduce a KL-divergence term, Lki,,
that operates in a learned latent space, inspired by the Probabilistic U-Net (Kohl et al.l |2018). This term is
computed using two lightweight convolutional networks: a posterior network ¢4(z | «,yo) and a prior
network py(z | @, 9o), where g is the U-Net’s prediction of the clean mask. The posterior network encodes
the ground-truth mask yg into a latent distribution, while the prior network encodes the model’s own
prediction. The KL-divergence then forces the model’s predictions to be encodable into a latent distribution
that is consistent with the ground truth:

Lxr = KL(gp (2 | x,90) || py (2 | 2,90)) - (7)

This latent regularization encourages the U-Net to generate segmentations that lie on the manifold of plausible
expert annotations. The weighting factor A is a crucial hyperparameter, which we detail in our implementation
details (Appendix A).

Training Process. The model is trained through an iterative process. In each training step, we sample a
mini-batch consisting of image, ground-truth mask, and text prompt triplets (x, yo, ¢) from the dataset. A
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random timestep ¢ is selected uniformly, and Gaussian noise € is added to the ground-truth mask to generate
a noisy version vy, following the forward diffusion schedule.

The U-Net denoiser then takes the noisy input y; concatenated with the original image «, along with the
current timestep ¢ and the corresponding text embedding c. Its goal is to predict the original noise, denoted
as €g.

Using this prediction, we compute the hybrid loss Lita1, and update the model parameters 6 using gra-
dient descent. This training cycle is repeated until the model successfully learns to generate meaningful
segmentations that reflect both the image content and the semantic guidance from the text.

3.4 Inference for Diverse Segmentation Generation

During inference, AmbiguousTextDiff takes advantage of its generative nature to produce a diverse set of
segmentation masks, each representing a different but plausible interpretation of the input image @. Specifically,
we generate 16 unique segmentation proposals by introducing diversity through two key mechanisms: variation
in text prompts and randomness in sampling.

To enable this, we created an annotation CSV by extracting and organizing metadata and descriptive
information from the dataset. This CSV provides a set of diverse text prompts designed to reflect different
semantic perspectives and guide the model toward varied interpretations during segmentation.

1. Text Variation: We use these curated text prompts ¢ to guide the model toward different plausible
anatomical or semantic interpretations of the image.

2. Stochastic Initialization: For each prompt, the reverse diffusion process is initialized with a
different random noise sample yr ~ N(0, I). The stochastic nature of this process ensures that even
with the same text input, the model can produce distinct but valid segmentation outputs.

This dual-source diversity allows the model to capture the real-world ambiguity inherent in medical imaging
tasks, producing a spectrum of clinically plausible segmentations.

The generation process unfolds over T' reverse diffusion steps, starting from an initial noise sample yr. At
each step ¢, the model predicts a slightly less noisy version of the mask, y;_1, based on the current noisy
input y;, the original image x, and the selected text prompt c¢. Through this iterative process, the model
gradually refines the noisy input, eventually producing a coherent segmentation mask that reflects both the
visual content of the image and the semantic guidance from the text.

4 Experiments

4.1 Datasets and Preprocessing

We conduct our experiments on the LIDC-IDRI dataset (Armato IIT et al. 2011}, which is widely considered
the gold-standard benchmark for evaluating segmentation ambiguity due to its unique multi-radiologist
annotations. It provides thoracic CT scans with detailed lung nodule annotations. While our method
is conceptually generalizable, we focus our evaluation on LIDC-IDRI as it provides the dense, real-world
inter-observer variability essential for validating our core contributions in ambiguity modeling. We use the
Kaggle-hosted version (ZhangWeiLed (on Kaggle)l |2025)) of this dataset, which offers preprocessed scans and
annotations derived from the original collection released by the Lung Image Database Consortium.

With 1012 subjects, LIDC-IDRI stands as one of the most comprehensive resources for computer-aided lung
cancer diagnosis. Each scan in the dataset underwent a rigorous two-stage annotation process involving
four board-certified thoracic radiologists. In the initial (blinded) phase, each radiologist independently
annotated the CT slices, classifying findings into three categories: nodules > 3 mm, nodules < 3 mm,
and non-nodules > 3 mm. In the subsequent (unblinded) phase, they reviewed each other’s anonymized
annotations and refined their decisions, resulting in a unique multi-reader consensus. Some slices, however,
remain partially annotated or unannotated; we conservatively treat these cases as signal absence (black).
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Unlike previous works such as CIMD (Rahman et al.| [2023), which focused on selected 2D lesion slices
from the LIDC-IDRI dataset, our approach includes all nodules, both smaller and larger than 3 mm. While
CIMD does not explicitly mention filtering by nodule size, their training and test sets (13,511 and 1,585
slices respectively) were constructed from lesion-centric views, likely favoring nodules with clearer or more
consistent annotations. To ensure a fair and robust comparison, we also evaluate CIMD baseline method on
the complete, unfiltered test set of 3,072 images.

In contrast, we introduce descriptive textual guidance that allows our model to better handle a wider range
of nodule sizes, especially small or ambiguous ones. We curate custom text annotations from radiology
reports and scan metadata, explicitly highlighting attributes like nodule size. These descriptions help guide
the diffusion model during both training and inference, enabling it to better capture clinically meaningful
variations across the full size spectrum.

Because our method does not rely on manual slice selection or size-based filtering, we are able to train on a
broader and more diverse dataset. Specifically, we consider all 3,072 nodules during evaluation, generating 16
diverse segmentation samples per test image. This strategy improves our ability to model uncertainty and
ambiguity in a more comprehensive and clinically relevant manner. The codes and datasets are uploaded as
supplementary material.

Text Prompt Curation. To provide meaningful semantic guidance, we curated descriptive text prompts
by systematically extracting and structuring metadata from the LIDC-IDRI dataset for each of the 1012
subjects. The raw metadata for each nodule includes several radiologist-provided ratings (e.g., subtlety,
sphericity, margin, texture, malignancy) on a 1-5 or 1-6 scale, along with corresponding descriptive labels
(e.g., “Soft Tissue,” “Marked Spiculation”). Our curation process involved converting these numerical and
categorical ratings into natural language sentences using a predefined template. For instance, a ‘spiculation
rating of 5 was translated to the phrase “The Spiculation is Marked Spiculation.” This process was repeated
for all available attributes, and the resulting sentences were concatenated to form a comprehensive descriptive
paragraph for each nodule. During training and inference, the same subject-level prompt was used for all
slices belonging to that subject. The long annotation shown in Figure [I]is an example of such a generated
prompt. This structured approach ensures that the textual guidance is consistent, grounded in clinical data,
and rich in semantic detail. We provide both numeric and text labels (e.g., “subtlety is 5” and “Subtlety
is Obvious”) as this redundancy was found empirically to create a more robust conditioning signal for the
frozen text encoder.

4

4.2 Implementation Details

We implemented our method in PyTorch and trained on 4 NVIDIA RTX 4090 GPUs. The core of our model
is a U-Net denoiser with self- and cross-attention mechanisms, guided by textual embeddings from a frozen
Bio_ClinicalBERT model (Alsentzer et al.,[2019). We employed a 1000-step diffusion process and trained the
model for 50,000 steps using the AdamW optimizer with an initial learning rate set to be 1 x 10~%. To ensure
stable training and better generalization, we utilized an Exponential Moving Average (EMA) of the model
weights. A comprehensive list of all hyperparameters, including the noise schedule, architectural specifics,
and optimizer details, is provided in the Technical Appendix in supplementary.

4.3 Baselines

We compare our approach against several existing state-of-the-art methods, including Probabilistic U-Net
(Kohl et al., [2018)), which generates diverse segmentations using a conditional VAE; PHiSeg (Baumgartner
et al., 2019), a hierarchical probabilistic model tailored for medical image segmentation; the Generalized
Probabilistic U-Net (Bhat et al., [2022)); and CIMD (Rahman et al., 2023, a recent approach for capturing
ambiguity in segmentation.
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4.4 Evaluation Metrics

To thoroughly evaluate our model on ambiguous segmentation tasks, we use a wide set of metrics. These
fall into two categories: standard metrics, which compare a single prediction to a single ground truth, and
ambiguity-aware metrics, which measure both the accuracy and diversity of the entire set of predicted
segmentations. This combination allows for a complete evaluation capturing how precise individual masks
are, as well as how well the model reflects the full range of possible interpretations. Although we include
standard metrics for completeness, our main focus is on ambiguity-aware metrics, as they
directly reflect the key goal of our approach: generating diverse and accurate segmentation
distributions.

For standard evaluation, we use the Dice Coefficient and Intersection over Union (IoU), which measure
geometric overlap. For ambiguity-aware evaluation, we employ a suite of metrics to assess the quality of the
generated distribution of samples (S) against the set of ground truth expert annotations (G). These include
Combined Sensitivity (S.), Maximum Dice Score (Dmax), and Diversity Agreement (DA), as proposed by
Rahman et al.|(2023). A detailed explanation of these metrics is provided in the Technical Appendix.

For a comprehensive assessment, we focus on two key metrics in our main analysis:

Generalized Energy Distance (GED) Measures the similarity between the distribution of predicted
segmentations (Px) and the distribution of ground truth segmentations (Py).

GED?(Px, Py) = 2E[d(X,Y)] (8)
—E[d(X, X")] - E[d(Y,Y")].

where X, X’ ~ Px are independent samples from the model, Y, Y’ ~ Py are independent ground truth
samples, and d(-,-) is a distance metric (e.g., 1 — Dice). While foundational, GED can inadequately
reward diversity that does not align with the ground truth distribution, motivating the use of the
following composite metrics (Rahman et al., |2023).

Collective Insight (CI) Score To provide a single, balanced score, we use the CI score, which is the
harmonic mean of the three key ambiguity metrics: Combined Sensitivity, Maximum Dice Score,
and Diversity Agreement. The harmonic mean ensures that a model must perform well on all three
aspects (coverage, accuracy, and diversity) to achieve a high score. This score was proposed in CIMD
(Rahman et al., [2023).

3 xS, X Dpax X DA

CI: Sc'Dmax‘FDmax'DA‘FSC'DA. (9)

5 Results and Discussion

5.1 Quantitative Results

Our key quantitative finding, presented in Table [1} is not only that AmbiguousTextDiff achieves state-of-
the-art performance, but also that it reveals a critical weakness in prior evaluation methodologies. While
CIMD reports strong results on a curated 1585-image subset, its performance deteriorates sharply when
evaluated on the full 3072-image test set, with the CI Score dropping from 0.759 to 0.470. This indicates
that its reported performance does not generalize to the full spectrum of clinical ambiguity. In contrast, our
model demonstrates robust performance across the complete benchmark, consistently surpassing all baselines.
This is particularly evident in the key metrics that capture diversity and distributional accuracy, where the
performance gap between our method and the baselines becomes substantially wider. This result showcases
the critical role of semantic conditioning in truly capturing clinical uncertainty, especially on challenging and
ambiguous cases that may have been excluded from smaller, curated test sets.

10
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Table 1: Quantitative comparison on the LIDC-IDRI dataset. Our method, AmbiguousTextDiff, significantly
outperforms prior work in diversity (CI) and coverage (GED). For CIMD, we report both their published
score on their random 1585-image subset and the score on the full 3072-image test set. The performance gap
widens considerably under this more comprehensive evaluation. Best results from our method are highlighted
in bold. ({) indicates lower is better, while (1) indicates higher is better. The lower Dy of our method is
an expected trade-off for generating more clinically plausible segmentations, as discussed in the text.

Method GED | CI1T Dpax
Probabilistic U-Net (Kohl et al., |2018) 0.353 0.731 0.892
PHI-Seg (Baumgartner et al., |2019)) 0.270 0.736 0.904
Generalized Prob. U-Net (Bhat et al., 2022) 0.299 0.707 0.905
CIMD (Their 1585 images subset) (Rahman et al.| [2023)  0.321 0.759 0.915
CIMD (All 3072 images) 0.306 0.470 0.684
AmbiguousTextDiff (500 images) 0.178 0.800 0.789
AmbiguousTextDiff (All 3072 images) 0.152 0.835 0.814

5.1.1 Superior Coverage of Diagnostic Uncertainty

Our most notable finding lies in the model’s outstanding performance on the Generalized Energy Distance
(GED) and Collective Insight (CI) metrics. AmbiguousTextDiff achieves a GED of 0.1523 (lower is
better) and a CI score of 0.8356 (higher is better), both significantly better than the previous state-of-the-art.

A low GED indicates that the distribution of our model’s predicted segmentations closely matches the range
of annotations provided by expert radiologists. At the same time, a high CI score shows that our model
generates diverse predictions that collectively capture the true variability found in expert annotations. This
improvement is driven by the use of semantic text prompts, which help the model explore a broader and
more clinically meaningful range of solutions going beyond predictions based solely on statistical patterns.

5.1.2 Interpreting the D,,,, Trade-off

While AmbiguousTextDiff leads in distributional metrics, it reports a slightly lower peak Dice score (Dmax
of 0.8142) than models like CIMD (Rahman et al., [2023). Rather than a shortcoming, we view this as
a meaningful trade-off and even a strength of our text-conditioned approach. The Dy, metric favors
a single best prediction that most closely matches one of the radiologist provided masks. However, our
model is guided by semantic prompts, for example, a phrase like “large, spiculated nodule” directs the
model to produce segmentations consistent with that specific morphology. It does not generate alternative
shapes, such as a “smooth” contour, just to achieve a higher Dice score if such a shape contradicts the given
prompt. This semantic grounding encourages the model to prioritize clinical realism over purely numerical
optimization. In doing so, AmbiguousTextDiff shifts the goal from simply maximizing overlap with a ground
truth mask to accurately capturing the diagnostic ambiguity expressed in natural language. Our strong
performance on GED and CI metrics supports this approach, demonstrating that it provides a more complete
and clinically meaningful representation of uncertainty in medical image segmentation. Codes and datasets
are in supplementary.

5.2 Qualitative Analysis

Visual inspection of the generated segmentations, shown in Figure Figure [6] and Figure [6] shows
that AmbiguousTextDiff produces a wide range of realistic and meaningful outputs. The model captures
differences in how boundaries are drawn, whether uncertain regions are included or left out, and how cautious
or detailed each segmentation is. For a detailed qualitative comparison against baselines (see Figure [7)) and
further examples of our model’s diverse outputs (see Figures |§| and |§[), please refer to the Technical Appendix.
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Input Ground Truth Probabilistic UNet PHi-Seg CIMD Ours

*® 1

Figure 4: We compare our method with three baselines: Probabilistic U-Net, PHi-Seg, and CIMD using a
qualitative analysis. on the left, we show example images from the LIDC-IDRI dataset, each with 4 expert
annotations. note that in this dataset, even empty segmentation masks are considered valid expert opinions.
to ensure a fair comparison, we display only the first 4 segmentation samples generated by each model. the
reader must note that in ambiguous segmentation, we don’t match the exact segmentation with ground truth,
but look at variability in output as captured by a suitable metric such as GED. for example, in row three,
we see the ground truth has many empty segmentations, but some methods including ours try to capture
possible variability.

5.3 Ablation Study

To better understand the design of AmbiguousTextDiff and quantify the importance of its core components,
we performed a series of ablation studies. As shown in Table |2| (and with qualitative results in Figure [5in the
appendix), the results clearly demonstrate that both text guidance and the ambiguity modeling objective play
a crucial role in achieving the model’s state-of-the-art performance. Removing either leads to a noticeable
drop in effectiveness, with the model producing less diverse or less clinically relevant segmentations. A
detailed breakdown of each ablation experiment is provided in the Appendix.

Table 2: Ablation study of AmbiguousTextDiff components. The ablated models show a clear performance
drop, underscoring the importance of both text guidance and the ambiguity modeling objective. Here, 500
and All denote the number of images, Ours refers to our method AmbiguousTextDiff, while DA and S,
represent Diversity Agreement and Combined Sensitivity, respectively.

Method CIt SeT Dmax T DA 1T GED |
Ours (500) 0.800  0.875 0.789 0.865 0.178
Ours (All) 0.835 0.895 0.814 0.885 0.152
w/o Text Guidance 0.766  0.876 0.743 0.864 0.214

w/o Ambiguity Modeling 0.716  0.773 0.731 0.851 0.173

6 Conclusion

We introduced AmbiguousTextDiff, a novel text-guided diffusion model designed to address the fundamental
challenge of ambiguity in medical image segmentation. By conditioning the generative process on rich,
semantically meaningful natural language prompts, our model generates diverse yet clinically consistent
segmentation proposals then a single “ground truth” mask, hence modeling the inherent uncertainty present
in complex medical images. A limitation of this study is its validation on a single dataset and modality
(lung CT scans). While LIDC-IDRI is the ideal testbed for ambiguity, future work is needed to validate
the generalizability of our approach to other anatomical regions and imaging modalities, contingent on the
availability of suitable multi-annotator datasets with corresponding textual metadata. Our work proves
that text guided models for ambiguous segmentation are not only relatively more accurate but also aware
of desirable ambiguity, thereby enabling them to function as explainable or reasoning models in real-world
clinical decision-making in ambiguous medical image segmentation.
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A Appendix

A.1 Implementation and Experimental Details

Dataset Splits and Preprocessing. We follow a subject-level split to prevent data leakage between
training and test sets. From the 1012 subjects in the LIDC-IDRI dataset, 80% were used for training and
20% for testing. All grayscale CT slices were resized to 128 x 128 pixels and normalized to the range [—1,1].
Slices with no annotations from any of the four radiologists were treated as having empty masks.

Diffusion Model. We used a diffusion process with T'= 1000 timesteps and a linear noise schedule for 3;
defined as:

Bu= B+ (B — Bu), (10)

where 8, = 10* and 87 = 0.02. The denoising backbone is a U-Net with a base channel size of 128. Both
self-attention and cross-attention modules were implemented using multi-head attention, with 64 channels per
head. The model was trained using the AdamW optimizer with an initial learning rate of 1 x 10~%, decayed
linearly over 50,000 steps. Training was run for 50,000 steps in total, and checkpoints were saved every 20,000
steps. Gradient clipping (max norm = 1.0) were applied for regularization and stability.

The model was trained on a composite loss function combining the standard diffusion reconstruction loss
(Lumsk) in pixel space with a KL divergence term (Lkr,) that regularizes the model’s predictions in a learned
latent space:

Liotal = Lnse + ALk (11)

We set the weighting factor A to 0.001. This value was determined empirically to balance the numerical scales
of the two loss components. It ensures that the primary pixel-level denoising objective is not overpowered
by the latent space regularizer, allowing the KL term to guide the model toward contextually appropriate
segmentations while maintaining a stable training process.

Text Encoder. To incorporate textual guidance, we used the Bio_ClinicalBERT model (Alsentzer et al.,
2019) as a frozen text encoder. Prompts derived from LIDC-IDRI metadata were tokenized and passed
through the BERT model to obtain 768-dimensional embeddings. These embeddings were then linearly
projected to match the 128-dimensional channel size used in the U-Net’s attention layers.

EMA and Optimization Techniques. We employed Exponential Moving Average (EMA) to maintain a
smoothed version of model weights during training, following the update rule:

Oema = Bbema + (1 — B) Ocurrent, S = 0.9999.

This technique helps stabilize training and improves generalization.
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Training Details. Our framework was implemented in PyTorch and trained on 4 NVIDIA RTX 4090
GPUs for 50,000 steps with a batch size of 4. We used the AdamW optimizer with a learning rate of 1 x 10~*
(linearly annealed to zero) and no weight decay. An Exponential Moving Average (EMA) with a decay rate of
0.9999 was maintained, and gradients were clipped at a max norm of 1.0. The KL-divergence loss weight, A,
was set to 0.001.

Inference Details. During inference, we generated N = 16 samples per test image using the standard
DDPM sampler with 7" = 1000 steps, without classifier-free guidance or conditioning dropout. Model outputs
were continuous masks in the range [—1, 1], binarized at 0.5 to produce segmentation masks for evaluation.
The 500-image subset used for initial validation was randomly sampled from the full test set.

Ablation Study All ablation experiments, including "w/o Text Guidance" and "w/o Ambiguity Modeling,"
were conducted using the same training and evaluation as our main model, trained on the full training set and
evaluated on the full test set to ensure a fair and direct comparison. The results in Table [2] are all reported
in the full test set, with the "Ours (500 images)" row included for reference to our initial pilot study.

A.2 Detailed Evaluation Metrics

A.2.1 Standard Metrics

These metrics are used to measure the geometric similarity between a single predicted mask, X, and a single
ground truth annotation, Y.

While they are commonly used in deterministic segmentation tasks, these metrics have clear limitations in
our setting. Since they compare only one prediction to one ground truth, they cannot fully capture how well
a model represents the range of possible valid segmentations. A model might still achieve a high score on
these metrics while failing to reflect the true ambiguity present in the data. Nonetheless, we include them for
a complete and fair comparison with existing methods.

Dice Coefficient (Dice) Measures the overlap between two binary masks. It is sensitive to the size of the
segmented region and is one of the most common metrics in medical image segmentation.

) 21X NY]|
DICQ(X, Y) = m (12)

Intersection over Union (IoU) Also known as the Jaccard Index, this metric quantifies the ratio of the
intersection to the union of the predicted and ground truth masks.

XnY]|

A.2.2 Ambiguity-Specific Metrics

Standard metrics are insufficient for ambiguous segmentation, as they do not account for the multiple valid ways
an object can be segmented. The following metrics assess the quality of a generated distribution of samples.
Let S = {s1,82,...,8,} be the set of n generated sample masks from our model, and G = {g1,92,...,9m} be
the set of m ground truth masks from multiple annotators.

Combined Sensitivity (S.). This metric evaluates the collective coverage of the generated sample
ensemble (S) against the complete set of ground truth annotations (G). It computes the sensitivity
(recall) of the union of all generated masks with respect to the union of all ground truth masks. First,
we define the union masks:

SU = LWJ S; and GU = O 9gj- (14)

i=1 j=1
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The Combined Sensitivity is then given by:

|Su NGyl
Se = —————. 15
Gol 15)
A higher S, indicates that the model’s predictions collectively capture all regions marked by any
expert.

Maximum Dice Score (Dmax). This metric assesses how well each ground truth mask in G is represented
by at least one of the generated samples in S. It finds the best-matching generated sample for each
ground truth mask and averages these maximum Dice scores.

Dyox = max Dice(s, g). (16)

1
|g‘ e seS

Diversity Agreement (DA). Quantifies how well the diversity in the model’s generated samples aligns
with the diversity observed in the human-annotated ground truths. It penalizes both under- and
over-diverse predictions.

B ‘Avmin| + |Avmax|
) .

DA =1 (17)

where:

o Let VGT VCOT he the minimum and maximum dissimilarities (e.g., 1 — Dice) among pairs of
ground truth segmentations.

o Let V5., V5 be the minimum and maximum dissimilarities among pairs of generated segmen-
tations. Then we define

o AVpin = VST VS and AViax = VST — 18

min min max max*

A DA score close to 1 indicates a perfect match in the range of diversity.

A.3 Detailed Ablation Analysis

Here we provide a more detailed breakdown of the ablation studies summarized in the main paper.

A.3.1 The Critical Role of Text Guidance

Methodology To understand the impact of semantic conditioning, we conducted an ablation where text-
based guidance was removed. In this variant, referred to as “w/o Text Guidance,” we skipped the text encoder
and instead used features from the input image extracted using the same image encoder already present in
the model as the conditioning signal. This allowed the model to rely solely on visual information, without
any explicit semantic prompts, enabling a clearer assessment of how much the natural language guidance
contributes to segmentation performance.

To better understand the design of AmbiguousTextDiff and quantify the importance of its core components, we
performed a series of ablation studies. Specifically, we systematically removed two key elements: text guidance
and the ambiguity modeling objective, and evaluated the resulting performance on the full LIDC-IDRI
dataset.

As shown in Table [2] the results clearly demonstrate that both components play a crucial role in achieving the
model’s state-of-the-art performance. Removing either leads to a noticeable drop in effectiveness, highlighting
their complementary contributions to modeling segmentation uncertainty. The qualitative results in Figure
further illustrate these performance differences.

Analysis As shown in Table [2] removing text guidance results in a noticeable drop in performance. The
most prominent decline is observed in Dyax, which decreases from 0.814 to 0.743, while GED increases from
0.152 to 0.214, indicating poorer alignment with the distribution of ground truth annotations. These results
suggest that without the semantic grounding provided by text prompts, the model struggles to generate
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Figure 5: Ablation analysis on the LIDC-IDRI dataset comparing AmbiguousTextDiff against
its variants. each column shows a separate example. the topmost image is the input CT scan slice, followed
by segmentation masks from four expert annotators (ground truth). we compare: (i) AmbiguousTextDiff
(our full model), (ii) without text (removing textual guidance), and (iii) without ambiguity (removing
ambiguity modeling). for fairness, the first 4 sampled masks from each model are visualized. note that empty
masks are valid annotations in LIDC-IDRI. AmbiguousTextDiff better reflects expert-level variability, while
removing text or ambiguity leads to overconfident or less diverse outputs.

segmentations that are both accurate (as reflected in Dice) and representative of the variability seen in expert
annotations (captured by GED). Although the model still produces some variation, the outputs tend to be
less clinically meaningful and often deviate from any realistic interpretation. This experiment highlights that
text guidance is not just an auxiliary feature, it plays a central role in guiding the model towards generating
semantically rich and diagnostically relevant segmentations.

A.3.2 The Necessity of Explicit Ambiguity Modeling

Methodology. We next explored the role of our explicit ambiguity modeling objective by ablating the
KL-divergence term from the loss function. The resulting variant, labeled “w/o Ambiguity Modeling,”
effectively disables the model’s incentive to learn the underlying distribution of expert annotations. Instead,
it learns to denoise a single, randomly selected ground-truth mask at each step, behaving like a conventional
text-guided diffusion model (Baranchuk et al.l [2021; Feng), |2024)) with no awareness of variability across
annotators.

Analysis. This ablation underscores the crucial role of our probabilistic training objective. When the KL
regularization is removed, the CI Score drops sharply from 0.8356 to 0.7160, indicating that the model fails
to capture the full range of expert-provided annotations. We also observe a decline in Diversity Agreement
(DA), pointing to mode collapse; where the model produces fewer distinct segmentations and gravitates
toward a narrow, oversimplified prediction space. Further evidence comes from worsened scores on GED,
Combined Sensitivity, and Dpyax, all of which reinforce the conclusion that without KL regularization,
the model loses its ability to represent diagnostic uncertainty. These findings confirm that the KL objective
is not just a regularization term; it is essential for encouraging diverse, clinically meaningful outputs that
reflect the true variability in expert interpretations.

A.3.3 Traditional Segmentation Metrics

Traditional metrics such as Dice and Intersection-over-Union (IoU), while commonly used in deterministic
segmentation tasks, are limited in their ability to evaluate models that generate diverse output distributions.
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These metrics tend to favor predictions that resemble an “average” of the ground truth masks, often penalizing
outputs that are diverse yet clinically meaningful; precisely the type of predictions our model is designed to
produce.

Nonetheless, we report mean Dice and IoU scores across all model variants for completeness. On the full
LIDC-IDRI dataset, AmbiguousTextDiff achieved Dice and IoU scores of 0.3925 and 0.3406 respectably.
On the 500-image pilot subset, the scores were 0.3845 and 0.3328 respectably. The variant without text
guidance obtained 0.3801 and 0.3315, while the model without ambiguity modeling scored 0.3871 and 0.3388
respectably.

These relatively small differences despite significant changes in distributional quality highlight the limitations
of traditional metrics. They fail to capture the nuanced improvements in diversity, uncertainty modeling,
and clinical relevance delivered by our approach. This reinforces the importance of using distribution-aware
metrics, as reported in Table [2] for evaluating models like AmbiguousTextDiff.

fnput °
Ground Truth - . . .
AmbiguousTextDitf - - - - - . - - - - - - - - -

Input “
N
(:r()und 'l‘ruth - - . -
AmbiguousTextbift . -. -- . - - . - . - - . - . . .

Figure 6: Few examples of segmentation using the AmbiguousTextDiff model. The figure displays the input
lung nodule from a CT scan and the corresponding ground truth. The bottom row presents 16 unique
samples generated by the model, followed by the consolidated ensemble average and the final majority vote
segmentation.
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Figure 7: Qualitative comparison of lung nodule segmentation. For each input CT slice, four expert-provided
ground truth annotations are shown. Results from CIMD were reproduced using the official GitHub repository
from their paper, while AmbiguousTextDiff shows 16 diverse segmentation samples generated by our model.
Both methods were trained on the full test set of 3,072 images. (a) and (b) depict two representative examples.
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A.4 Choice of Pixel-Space Diffusion.

Our model performs the diffusion process directly in the pixel space rather than a compressed latent space, as
seen in Latent Diffusion Models (LDMs) (Rombach et al.l [2022). While LDMs offer significant computational
efficiency, we opted for a pixel-space model for two primary reasons. First, medical image segmentation
requires extremely high fidelity and preservation of fine-grained details, such as subtle texture and irregular
boundaries, which can sometimes be lost or distorted during the compression and decompression stages of an
LDM’s autoencoder. Second, by operating directly on the pixels, our model avoids introducing an additional
source of architectural complexity and potential information loss, allowing for a more direct study of the
effects of text guidance and ambiguity modeling. We acknowledge the computational cost as a limitation and
view the integration of these principles into an efficient LDM framework as a promising direction for future
work.

A.5 Qualitative Validation of Semantic Control

While our quantitative results demonstrate the model’s overall performance, a crucial aspect of our work is
its ability to interpret and act upon the semantic content of text prompts. To better validate this capability,
we carried out a focused qualitative experiment to clearly test the impact of textual guidance. We chose two
challenging test cases with notable expert disagreement in their ground truth annotations and conditioned
our model on contradictory descriptive prompts for the same input image. The complete results are presented
in Figure

Example 1: Control over Nodule Texture (’Spiculated’ vs. ’Smooth’)

The first case, the Figure [§] features a highly subtle nodule where expert annotations varied greatly, with one
radiologist providing an empty mask. The textual metadata from the dataset for this nodule is particularly
revealing; for instance, the full prompt from one of the annotation includes the descriptions: 'The Subtlety
is Fairly Subtle. The Sphericity is Ovoid/Round. The Spiculation is No Spiculation.. Such descriptions
explicitly capture the uncertainty in how the nodule should be interpreted.

We first conditioned the model with a prompt aligned to one possible interpretation: “A lung nodule with
marked spiculation.” (Prompt A). The generated samples reflect the inherent ambiguity, spanning from an
entirely empty mask (matching the dissenting expert) to several small segmentations with jagged, irregular
contours consistent with spiculation.

Next, using the same input image, we provided a semantically contradictory prompt: “A lung nodule that is
smooth and round.” (Prompt B). The model responded clearly, producing segmentations with more compact
shapes and smoother, rounded boundaries; directly adapting its output to the new textual guidance.

Example 2: Control over Nodule Margin (‘Irregular’ vs. ‘Round’)

To test the consistency of this effect, the second case, the Figure [§] presents a visually complex and irregular
region where three of four experts provided empty masks. Here, the textual metadata strongly aligns with
the visual evidence. The full prompt for one of the annotation includes key descriptors such as: "The Margin
is Near Poorly Defined. The Lobulation is Marked Lobulation. The Spiculation is Marked Spiculation..

When guided by a factual prompt summarizing this description: “An irregular lung nodule” (Prompt A): the
model’s outputs reflected expert consensus. Most samples were empty, and the few non-empty masks were
highly fragmented and irregular, consistent with the “irregular” characterization.

The stronger test came with the contradictory prompt: “A perfectly round lung nodule” (Prompt B). Despite
the visually complex evidence, the model adapted to the textual instruction, generating masks that were
noticeably simpler and more rounded than those from Prompt A. This demonstrates the model’s ability to
enforce semantic constraints from text even when they conflict with the underlying image data.

Overall, these experiments demonstrate strong evidence of genuine semantic control. The model not only
interprets high-level concepts (e.g., “spiculated,” “round”) but also translates them into the corresponding
geometric characteristics of its segmentations. By grounding the evaluation in the dataset’s full descriptive
prompts, we show that the model can generate outputs aligned with factual descriptions and, more importantly,
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flexibly adjust when given contradictory semantic instructions. This highlights the central contribution of
our work: a controllable and ambiguity-aware segmentation model.

Example 1

Input @ \

Ground Truth . . . .
Prompt A . . . . . . . . Prompt: A lung nodule with marked spiculation
Prompt B . . . . . . . . Prompt: A lung nodule that is smooth and round

Example 2

e
Input .
Ground Truth . . .
Prompt A . . . . . . . - Prompt: An irregular lung nodule
Prompt B - . . . . . . . Prompt: A perfectly round lung nodule

Figure 8: Qualitative validation of semantic control across two distinct examples. For each input image (top
row of each example), we generate 8 segmentation samples using both a factually descriptive prompt (Prompt
A) and a semantically contradictory prompt (Prompt B), with expert-annotated ground truths provided for
reference. The model’s outputs consistently adapt to the textual description, producing shapes with the
requested geometric properties (e.g., spiculated vs. smooth in Example 1; irregular vs. round in Example
2), demonstrating its ability to interpret and act on semantic guidance while respecting underlying image
ambiguity.

A.6 Analysis of the Number of Generated Samples

An important aspect of our experimental setup is the number of samples (N) generated per input image. To
justify our choice and investigate the trade-off between diversity and computational cost, we performed an
ablation study by varying N from 1 to 32. The goal was to identify when additional samples stop contributing
meaningfully to capturing the ground-truth ambiguity.

The results, illustrated in Figure @ reveal a clear trend. For lower values of N (1 to 8), performance
improves significantly highlighting that a single deterministic output is insufficient for modeling diagnostic
uncertainty. As NN increases to 16, most key metrics: CI Score, Combined Sensitivity, Dnyax, and
Diversity Agreement either peak or approach saturation, indicating comprehensive coverage of the expert
annotation space.

Beyond N = 16, however, we observe a slight decline in performance. Metrics such as the CI Score and
Dpax decrease, while GED increases indicating a weaker alignment with the target distribution. A closer
qualitative inspection reveals that many of the additional samples beyond this point are blank (i.e., entirely
black masks), offering no meaningful contribution to the ensemble. These empty or degenerate outputs reduce
the overall diversity and coverage of the predictions, effectively introducing noise into the distribution.

This analysis confirms that N = 16 strikes an optimal balance: it ensures high-quality, diverse predictions
without introducing unnecessary redundancy or invalid samples. This choice not only improves efficiency but
also enhances the clinical relevance and reliability of the model’s outputs. As such, N = 16 is used throughout
all main experiments, consistent with findings from prior probabilistic segmentation work (Rahman et al.,
2023). We show few examples of 16 generated samples for our method in Figures [6] and [6]

20



Under review as submission to TMLR

Metric Trends over Number of Samples Used
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Figure 9: Trends in evaluation metrics as the number of generated samples (V) increases. Most metrics
improve noticeably up to N = 16, after which performance either levels off or begins to decline slightly. This
suggests that N = 16 offers an effective balance-capturing the breadth of diagnostic ambiguity while avoiding
the inclusion of redundant or low-quality samples.
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