
Minimax Tree of Thoughts: Playing Two-Player Zero-Sum Sequential Games
with Large Language Models

Wei Guo * 1 Xiaotian Hao * 1 Jianye Hao 1 Yan Zheng 1

Abstract
Large language models are being used to solve
an increasing number of tasks, but the existing
methods based on large language models are still
not good enough in playing two-player zero-sum
sequential games. In order to solve the related
challenges of large language models playing two-
player zero-sum sequential games, we propose
Minimax Tree of Thoughts, which combines the
idea of Tree of Thoughts and minimax search.
Experiment results show that our Minimax Tree
of Thoughts method significantly outperforms the
original Tree of Thoughts method in two-player
zero-sum sequential games tasks such as Word
chain and game of Ghost.

1. Introduction
Large language models (LLMs) such as GPT-4 (OpenAI,
2023) are language models with a large number of parame-
ters. In recent years, with the proposal of a series of LLM-
based planning methods such as Chain of Thoughts (CoT)
(Wei et al., 2023), Self-Consistency Chain of Thoughts
(CoT-SC) (Wang et al., 2023), Tree of Thoughts (ToT) (Yao
et al., 2023), LLMs have been discovered to have the po-
tential to complete a wide range of tasks, such as games,
common sense reasoning, math problems (Yao et al., 2023;
Wang et al., 2023; Wei et al., 2023), etc. However, in prac-
tice, although existing LLM-based planning methods such
as ToT are capable of single-player decision-making tasks
such as game of 24, mini crosswords game (Yao et al., 2023),
they do not perform well in two-player zero-sum sequential
games. Two-player zero-sum sequential games are a huge
category of tasks, which includes chess, Tic Tac Toe, etc. In
this paper, we only consider the games with perfect infor-
mation. The reason why methods like ToT are not good at
playing two-player zero-sum games is that these methods

*Equal contribution 1College of Intelligence and Computing,
Tianjin University, Tianjin, China.

Workshop on Large Language Models and Cognition at the 41 st

International Conference on Machine Learning, Vienna, Austria,
2024. Copyright 2024 by the author(s).

only try to plan a trajectory that leads to win, but they do
not sufficiently consider the adversarial behavior of the op-
ponent, which is necessary for playing two-player zero-sum
sequential games at a high level.

To design a LLM-based method that can play two-player
zero-sum sequential games effectively, we borrow the idea
from minimax search (Knuth & Moore, 1975). Minimax
search is a typical method for solving two-player zero-
sum sequential games without LLM. The original minimax
search algorithm suffers from the problem of high com-
putational cost. To deal with that, various methods have
been introduced, the most typical method being alpha-beta
pruning (Knuth & Moore, 1975) which can cut off some
sub-optimal branches by recording previous search results.
Although alpha-beta pruning can improve the efficiency of
minimax search, its improvement is not stable. In partic-
ular, there’s no improvement in the worst case (Knuth &
Moore, 1975). To deal with the problem of too many search
branches in minimax search, we borrowed the idea from
ToT and proposed the minimax tree of thoughts (Minimax
ToT), which uses LLMs to generate only a small set of
search branches thus significantly enhance the performance.
Moreover, we further improve the efficiency of minimax
search by limiting the number of search layers and using
Monte Carlo rollout (Tesauro & Galperin, 1996) to estimate
the value of the bottom nodes.

We compared our method with ToT on two tasks, Word
chain (Wise & Forrest, 2003) and Ghost (Morehead et al.,
2001). In Word chain, our method won about 71% of the
games against ToT. In Ghost, our method won 81% of the
games against ToT. In addition, we also conducted ablation
experiments on the two parts of our method, minimax search
and rollout, proving that both parts are helpful in improving
performance.

2. Background
The two-player zero-sum sequential game is a sequential
game played by two players in which the sum of the payoffs
of two players in every outcome is always zero. The game is
often represented as a game tree (Kuhn, 1950). Without loss
of generality, we define the value of the game as player 1’s

1



Minimax Tree of Thoughts

pay off. Therefore, player 1, who is trying to maximize the
value of the game, is called the maximizing player, while
player 2, who is trying to minimize the value of the game,
is called the minimizing player.

Tree of Thoughts (ToT) is a LLM-based planning method
that use the idea of tree search. ToT has two variants, ToT-
BFS and ToT-DFS, which corresponds to breads-first search
and depth-first search, respectively. Both of them are using
a LLM-based thought generator to generate actions, and
using a LLM-based states evaluator to evaluate states. The
thought generator can generate actions through two different
strategies, namely sample and propose. The states evaluator
evaluates new states by either valuing or voting. The goal
of ToT is to obtain a plan through tree search. However,
ToT does not perform well in two-player zero-sum games.
This is because ToT does not assume the optimality of the
opponent. Therefore, when a ToT-based agent confronts an
intelligent opponent, the actual trajectory may deviate from
the trajectory planned by the ToT, which makes the plan
obtained by ToT no longer practical.

The Minimax search is a decision-making method for two-
player zero-sum sequential games, which was widely used
in board games AI. The Minimax search algorithm simu-
lates the adversarial strategies of both players by taking the
maximum and minimum operations during the tree search
process, thereby obtaining the optimal decision for each
players. However, in the original minimax search, each
player loop over all possible actions, which result in large
computational cost. Although researchers later proposed
many ways to reduce its cost, such as alpha-beta pruning.
However, the effect of alpha-beta pruning is unstable and
does not guarantee any improvement in the worst case.

3. Minimax Tree of Thoughts: Playing
Two-Player Zero-Sum Sequential Games
with LLMs

To improve the respective drawbacks of ToT and minimax
search, we propose the Minimax Tree of Thoughts (Mini-
max ToT). In Minimax ToT, we adopt the idea from ToT to
use LLMs to generate actions. This allows us to take advan-
tage of the reasoning capabilities of the LLMs to generate
reasonable actions. Moreover, we borrow the idea from
minimax search of taking max and min operations during
searching to make our method adapt to two-player zero-sum
sequential games. Since the time complexity of the minimax
search increases exponentially with the search depth, we
introduced a maximum search depth D to limit.

The implementation of the Minimax ToT involves answering
three fundamental questions, which are: 1. How to generate
actions, 2. How to limit the depth of the search, and 3. How
to reduce the LLM calls.

1. How to generate actions. We generate actions in three
steps: generating, filtering, and sorting. These three steps
are similar to the thought generator of ToT.

• Generationg: At each sate, Minimax ToT generates
at most n actions (where n is a preset constant) for
each game state node. Similar to ToT, actions are
generated by either multiple or single samplings from
the LLM. Unlike ToT, we have removed the restrictions
of i.i.d during sampling. This allows us to reduce the
generation of repeated actions by prohibiting actions
already sampled through prompting.

• Filtering: Minimax ToT then filters the generated ac-
tions to refine the actions. The filtering process follows
the principles below:

1. Remove invalid actions (e.g. actions that breaking
the constraints of the task)

2. Remove duplicate actions.
3. Remove dominated actions (optional).

• Sorting: Placing the better actions to the front throught
sorting. The criteria of the sorting can be provided
either by LLM or by hand-crafted heuristics. This step
can enhance the effect of alpha-beta pruning.

2. How to limit the depth of the search. Since the time
complexity of the minimax search algorithm grows expo-
nentially with the increase in search layers, we limit the
search to at most D layers, where D is a preset constant.
If the algorithm does not reach an endgame after the D-th
layer, it needs to estimate the value of the D-th layer nodes.
The estimation is done through rollouts. The algorithm
will randomly rollout multiple trajectories of the game, and
then take the average of the end-game values from different
trajectories as the estimation of the node’s value. During
rollout, the generation of actions still uses the LLM, but
only sample one action each time.

3. How to reduce LLM calls. In experiments, we observed
that there were numerous calls to LLMs with exactly same
prompt. In order to reused the previous result of LLM
calls hence to reduce the usage of LLM tokens, we use a
dictionary to cache the LLM output to reused them later.
The experiment shows that this trick can reduce the number
of LLM calls effectively, thereby saving the tokens.

Whenever a player makes a decision, the Minimax ToT
will go through 3 steps. Step 1, generating a list of actions
using a LLM. Step 2, valuing each actions through minimax
search and rollout by calling the MinimaxToT function.
Step 3, selecting the action with the highest value to execute.
If there are multiple actions with same value, a random
break tie is performed. The main content of the algorithm

2



Minimax Tree of Thoughts

Algorithm 1 MinimaxToT
Function MinimaxToT(state, depth, α, β)
if GameEnds then return EndGameValue(state)
if depth = 0 then

Call RollOut(state) for n times and return the average.
end if
actionList← GenerateAternativeActions(state)
if is maximizing player then

maxEval← −∞
for action in actionList do

eval←MinimaxToT(NextState, depth - 1, α, β)
maxEval← max(maxEval, eval)
α← max(α, eval)
if β ≤ α then break

end for
return maxEval

else
minEval←∞
for action in actionList do

eval←MinimaxToT(NextState, depth - 1, α, β)
minEval← min(minEval, eval)
β ← min(β, eval)
if β ≤ α then break

end for
return minEval

end if

Table 1. Comparation between Minimax ToT and ToT.

TASK MINIMAX TOT WINNING RATE

WORD CHAIN ≈ 71.15%
GHOST 81%

in implemented in the function MinimaxToT. Algorithm 1
is the pseudo-code of MinimaxToT function.

The underlying LLM of the Minimax ToT algorithm can
be chosen flexibly such as GPT-4, Llama 2 (Touvron et al.,
2023). In conclusion, the Minimax ToT provides an ap-
proach to integrate minimax search with LLMs, and future
work can be further improved based on this approach.

4. Experiments
We tested our Minimax ToT algorithm under two tasks,
namely Word chain and Ghost. The experiments show that
Minimax ToT outperforms ToT in both games (See Table
1). In addition, we also conducted ablation studies between
the two components of Minimax ToT, which are minimax
search and rollout.

Table 2. Ablation studies of the two components of Minimax ToT
on Word chain task. (WR short for Winning Rate)

PLAYER 1 PLAYER 2 WR. OF PLAYER 1

MINIMAX TOT NO ROLLOUT ≈ 65.38%
MINIMAX TOT NO MINIMAX SEARCH ≈ 69.23%

4.1. Word chain

Word chain is a popular word game in which players find
words that begin with the letter that the previous word ended
with, and players are not allowed to say words that are du-
plicates of existing words. Since LLMs are more proficient
at memorizing obscure words compared to human players,
the game rules that apply to human players are not fully
applicable to LLMs. Generally, the LLM-based methods
may encounter three types of problems when playing the
original Word chain: 1) The game won’t end after a long
period of time; 2) The first-mover advantage is too large; 3)
The game lacks diversity. To deal with these problems, we
used a specific set of game rules (See Appendix A).

In the experiment, we had one agent based on the Minimax
ToT act as player 1, another agent based on the ToT act as
player 2. We tested a total of 52 games, which included two
games for each of the 26 English letters as the first letter of
the first word. In these two games, Player 1 went first in the
first game, and Player 2 went first in the second game, thus
covering all possible opening scenarios.

In the Minimax ToT used by player 1, we set the maximum
search depth D to 3, and the rollout number for valuing the
bottom nodes of the search tree to 3. The LLM we used is a
GPTQ quantized (Frantar et al., 2023) version of Llama 2
7b chat model with the temperature set to 0.5. We designed
few-shot examples (Brown et al., 2020) to prompt the LLM
only output common words to avoid outputting words that
not included in the dictionary (for detailed prompt, see
Appendix B).

In the ToT method used by player 2, we used ToT-DFS to
find a trajectory from current state that could lead player 2
to victory. If such a trajectory was found, player 2 would
perform the first action in the trajectory; otherwise, player 2
would perform the default action (output an empty string).

The experimental results are shown in Table 1. It can be
seen that the Minimax ToT agent wins 71% of the games
versus the ToT agent.

In addition to the comparison with ToT, we also conducted
an ablation experiments between the Minimax search and
rollout modules in the Minimax ToT. The experimental
setup remains the same, using each of the 26 letters as the
first letter of the first word, with each letter playing a round

3



Minimax Tree of Thoughts

with Player 1 going first and Player 2 going first, for a total
of 52 rounds. The experimental results are shown in Table
2. It can be seen from Table 2 that both the minimax search
and rollout contribute to performance improvement.

4.2. Ghost

Ghost is a popular word game played by two players. Dur-
ing the game, the two players take turns to say a letter. Each
player must ensure that the letter they say, combined with
the existing letters, must form a prefix of a word, but cannot
form a complete word (for example, ”answ” is a prefix of
”answer”, but it does not constitute a word itself). During
each turn, a player can either add a letter or challenge the
previous player to prove that the present fragment initiates a
word. If the challenged player can provide such a word, the
challenger loses; if not, the challenged player loses. Typi-
cally, in a Ghost game, the winner isn’t decided by a single
round. For simplicity, we adopted a single-round decisive
rule. Also, to avoid early game-ends due to abundant short
words in English, a word length limit is usually applied. In
our experiment, the words must have at least 5 letters.

We tested Minimax ToT and ToT in Ghost task. In our
experiment, player 1 is a Minimax ToT-based agent, while
player 2 is a ToT-based agent. We let player 1 and player 2
compete 100 games, and the first move in each game was
randomly selected. Player 1 used a quantified version of
Llama2 13b chat model, with the temperature set to 0.5, the
maximum search layer D set to 3, and the rollout number
for valuing the bottom nodes set to 3. For player 2, we used
ToT-DFS to find a plan that would lead to a win for player 2
starting from the current state. If such a plan could be found,
player 2 would execute the first action of the plan; otherwise,
player 2 would execute the default action (challenge player
1). We used three free dictionaries, NLTK (Bird et al., 2009),
WordNet, and Educalingo to verify whether a word exists.

The experimental results are shown in Table 1. Our Minimax
ToT agent wins 81% of the games versus ToT agent.

Finally, to verify that our method is also applicable to other
LLMs besides Llama 2, we tested a 20-round match between
Minimax ToT and ToT on GPT 3.5 Turbo, and the Minimax
ToT wins 70% of the games. This proves that our method is
applicable to different foundation models.

5. Related works
5.1. LLM-based Planning methods

(Huang et al., 2022) suggested that the pretrained LLM can
act as a zero-shot planner. The typical multi-step LLM-
based planning method is Chain of Thought (CoT), which
uses few shot in-context examples to enable LLMs to plan
step-by-step. Zero-shot-CoT (Kojima et al., 2023) achieves

the similar result by adding something like ”Let’s think
step by step.” in the prompt. Self-consistent CoT (CoT-SC)
plans multiple trajectories by running CoT multiple times,
then output the answer with the highest frequency. Tree of
Thoughts (ToT) is a tree search methods in which thoughts
are generated by LLMs. In A recently published LLM-
based tree search planning method is RAP, which employs a
world model to simulate the value of different plans through
Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári,
2006). However, these works are not focused on two-player
zero-sum sequential games.

5.2. Methods for playing two-player zero-sum
sequential games

A typical method for playing two-player zero-sum sequen-
tial games is minimax search, which can be regarded as a
special case of backward induction (Watson, 2002). The
minimax search with alpha-beta pruning has achieved super-
human performance in board games such as chess (Camp-
bell et al., 2002) and checkers (Schaeffer et al., 1992). An-
other method for two-player zero-sum sequential games is
using Monte Carlo tree search (MCTS), which borrowed
ideas from bandit problems. In 2016, AlphaGo (Silver et al.,
2016) achieved superhuman level in playing the game of
Go. In 2019, AlphaStar (Vinyals et al., 2019) was proposed,
which was designed to the game of Starcraft. However,
these works are not LLM-based.

6. Discussion
6.1. Limitations

The limitations of our algorithm are mainly on computa-
tional cost. The cost of both minimax search and Monte
Carlo rollout are too high when the game tree is large. Al-
though we have employed several tricks to limit the com-
putational cost, such as alpha-beta pruning and limiting the
search depth D, but the computational cost is still depend
on the length of trajectory.

6.2. Future directions

In the future, we’ll try to eliminate the limitations mentioned
above. There are several ways to do that, such as employing
MCTS with UCT (Kocsis & Szepesvári, 2006) or pUCT
(Rosin, 2011).

6.3. Conclusion

This paper presents a method combining Minimax search
with LLM, and verifies the feasibility of this method, which
provides a foundation for the subsequent work.

4



Minimax Tree of Thoughts

7. Acknowledgements
We extend our sincere gratitude to the reviewers for their
insightful feedbacks. We also thank Tianjin University for
providing necessary facilities and resources. Finally, we
wish to express our appreciation to our families and friends
for their continuous support and encouragement.

References
Bird, S., Klein, E., and Loper, E. Natural language process-

ing with Python: analyzing text with the natural language
toolkit. ” O’Reilly Media, Inc.”, 2009.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners, 2020.

Campbell, M., Hoane, A., and hsiung Hsu, F. Deep
blue. Artificial Intelligence, 134(1):57–83, 2002. ISSN
0004-3702. doi: https://doi.org/10.1016/S0004-3702(01)
00129-1.

Educalingo. About educalingo, 2024. URL https://
educalingo.com/en/about.

Fellbaum, C. (ed.). WordNet: An Electronic Lexical
Database. Language, Speech, and Communication. MIT
Press, Cambridge, MA, 1998. ISBN 978-0-262-06197-1.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers, 2023.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I.
Language models as zero-shot planners: Extracting
actionable knowledge for embodied agents. CoRR,
abs/2201.07207, 2022. URL https://arxiv.org/
abs/2201.07207.

Knuth, D. E. and Moore, R. W. An analysis of alpha-
beta pruning. Artificial Intelligence, 6(4):293–326,
1975. ISSN 0004-3702. doi: https://doi.org/10.1016/
0004-3702(75)90019-3.

Kocsis, L. and Szepesvári, C. Bandit based monte-carlo
planning. In Fürnkranz, J., Scheffer, T., and Spiliopoulou,
M. (eds.), Machine Learning: ECML 2006, pp. 282–293,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
ISBN 978-3-540-46056-5.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners, 2023.

Kuhn, H. W. Extensive games. Proceedings of the National
Academy of Sciences of the United States of America, 36
(10):570–576, 1950. ISSN 00278424.

Morehead, A., Mott-Smith, G., and Morehead, P. Hoyle’s
Rules of Games. Penguin Publishing Group, 2001. ISBN
9781101100233.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774,
2023.

Princeton University. About wordnet, 2010. URL https:
//wordnet.princeton.edu/.

Rosin, C. D. Multi-armed bandits with episode context.
Annals of Mathematics and Artificial Intelligence, 61(3):
203–230, Mar 2011. ISSN 1573-7470. doi: 10.1007/
s10472-011-9258-6.

Schaeffer, J., Culberson, J., Treloar, N., Knight, B., Lu,
P., and Szafron, D. A world championship caliber
checkers program. Artificial Intelligence, 53(2):273–289,
1992. ISSN 0004-3702. doi: https://doi.org/10.1016/
0004-3702(92)90074-8.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.,
Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis,
D. Mastering the game of go with deep neural networks
and tree search. Nature, 529(7587):484–489, Jan 2016.
ISSN 1476-4687. doi: 10.1038/nature16961.

Tesauro, G. and Galperin, G. On-line policy improvement
using monte-carlo search. In Mozer, M., Jordan, M.,
and Petsche, T. (eds.), Advances in Neural Information
Processing Systems, volume 9. MIT Press, 1996.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models, 2023.

5

https://educalingo.com/en/about
https://educalingo.com/en/about
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2201.07207
https://wordnet.princeton.edu/
https://wordnet.princeton.edu/


Minimax Tree of Thoughts

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T.,
Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I.,
Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V.,
Budden, D., Sulsky, Y., Molloy, J., Paine, T. L., Gulcehre,
C., Wang, Z., Pfaff, T., Wu, Y., Ring, R., Yogatama,
D., Wünsch, D., McKinney, K., Smith, O., Schaul, T.,
Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C.,
and Silver, D. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):
350–354, Nov 2019. ISSN 1476-4687. doi: 10.1038/
s41586-019-1724-z.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In ICLR 2023, 2023.

Watson, J. Strategy: An Introduction to Game Theory. W.W.
Norton, 2002. ISBN 9780393976489.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-thought
prompting elicits reasoning in large language models,
2023.

Wise, D. and Forrest, S. Great Big Book of Children’s
Games. SPANISH IMPORTS - BGR. McGraw-Hill Edu-
cation, 2003. ISBN 9780071422468.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. Tree of thoughts: Deliberate
problem solving with large language models, 2023.

6



Minimax Tree of Thoughts

A. The set of Word chain rules used in experiments
We have mentioned that when LLM-based agent playing the original Word chain, there are three problems, which are: 1)
The game won’t end after a long period of time; 2) The first-mover advantage is too large; 3) The game lacks diversity. To
deal with these problems, we used a specific set of game rules. Next, we will introduce the cause of these problems and the
rules we used to solve these problems.

• The game won’t end after a long period of time mainly manifests in that LLMs are too good at memorizing words.
Therefore, the original version of Word chain is too easy for LLMs, which can easily lead to very long game trajectories.
Therefore, in order to determine a winner within limited number of steps, we have borrowed a rule from a frequently
played variant of Word chain, that is, the player whose words’ total length exceeding a certain threshold wins the game.

• The first-move advantage being too large can be caused by many reasons. For example, during the experiment, we
found that after adopting the rule of determining the winner by the total word length exceeding a threshold, when we
prompt the LLM to output as long words as possible, it would output very long names of chemical substances or long
place names. The length of these rare nouns usually far exceeds the threshold we set for winning the game, which leads
to the first player always winning the game. Moreover, even if only shorter words are used (for example, only allowing
the LLM to use common adjectives), when both sides adopt the same algorithm (such as the ToT), the winner is also
likely to be the first player, because the first player acts first, so it is easier to exceed the threshold of the total letters
first. To limit the first-move advantage, we first limited the range of legal words to exclude nouns, thus excluding those
particularly long place names and names of chemical substances. In addition, we also added a rule that only half of
the letter count of the first word of the first player is calculated (rounded down when it cannot be evenly divided) to
eliminate the first-move advantage.

• The game lacks diversity is another problem to consider. It happens when we ask LLMs to output long verbs, we will
get a lot of words ending with letter e. It seems that verbs are very likely to have e as its end letter. As a result, the
game trajectories are similar between rounds. To deal with this problem, we limited the valid word set in the game to
adjectives. Experiments showed that this restriction effectively avoided the previous situation where every round was
quite similar.

Finally, the detailed rules of our Word chain variant is as follows:

• Two players take turns coming up with words, and the first letter of each word said by a player must be the last letter of
the word said by the previous player.

• The first-move player and the first letter of the first word raised by the first-move player differ from game to game,
which can either be randomly chosen or predetermined.

• The valid words is limited to adjectives.

• Whoever fails to respond or responds incorrectly loses the game. The words are verified through WordNet (Fellbaum,
1998; Princeton University, 2010) and Educalingo (Educalingo, 2024), two free online dictionaries, to confirm their
existence and correct part of speech. If both players can respond to each other’s words, the first to reach 40 letters wins.

• To reduce the first-move advantage, only half of the letters in the first word raised by the first player are counted (if it’s
not an even number, round down).

B. LLM prompts
B.1. Word chain

In the task of Word chain, we use the following promt to generate actions:

Give me 10 base form nouns starting with "a". The longer the words the better. Make sure
the words are commonly used. Don’t output compound words with hyphens.

1. Application; 2. Association; 3. Architecture; 4. Argumentation; 5. Abstraction; 6.
Advancement; 7. Anticipation; 8. Appreciation; 9. Authorization; 10. Accommodation

7



Minimax Tree of Thoughts

Give me 10 base form verbs starting with "c" excluding "come, alienate, exam". The longer
the words the better. Make sure the words are commonly used. Don’t output compound
words with hyphens.

1. Communicate; 2. Collaborate; 3. Contribute; 4. Calculate; 5. Coordinate; 6. Construct;
7. Criticize; 8. Cultivate; 9. Celebrate; 10. Customize

Give me 10 base form adjectives starting with "{letter}"{excluding_prompt}. The longer the
words the better. Make sure the words are commonly used. Don’t output compound words
with hyphens.

where {letter} is then replaced with the starting letter needed to satisfy, the {excluding_prompt} is then replaced
with a list of previous words to avoid. Note that we have limited the word to be commonly used and without hyphens, since
otherwise the word output by LLM may not included in a dictionary.

After obtaining the action list, we filter the actions using the following LLM prompt:

Is "bigger" an adjective?
YES
Is "heavy" an adjective?
YES
Is "make" an adjective?
NO
Is "{word}" an adjective?

where the {word} is then replaced with some word in the action list. This prompt aims to verify whether an action is valid.

B.2. Game of Ghost

In the task of Ghost, we use the following prompt to generate actions:

Please provide a word that starts with the letters "exc" but not starts with "excl" or "
excu" and has a length of at least 5.

exclaim
Please provide a word that starts with the letters "a" has a length of at least 6.
anyone
Please provide a word that starts with the letters "can" has a length of at least 5.
candidate
Please provide a word that starts with the letters "{prefix}" but not starts with "{

bannedPrefix}" and has a length of at least {length_min}

where the {prefix} is then replaced with current word fragment, {bannedPrefix} is then replaced with a list of
prefixes that the word shouldn’t start with, the {length_min} is then replaced with the minimum length of required.

Note that the above prompt is a little subtle. As an illustrative example, let’s assume the current fragment is ”stam”. We
may prompt the LLM to output a word that starts with ”stam” and has at least 6 letters. This will prevent the LLM from
outputting a word with exactly 6 letters, such as ”stamp”, since according to the rules of Ghost, each player must make sure
the letter they add to the fragment does not complete a word. If the LLM outputs ”stamina”, we will take the fifth letter ”i”
and add it to the action list. In the next sample, we may instruct the LLM to output a word that does not start with ”stami” to
avoid sampling duplicate actions.

After obtaining the action list, we filter the actions using the following LLM prompt:

Is "apple" a correct English word?
YES
Is "narrat" a correct English word?
NO
Is "like" a correct English word?
YES
IS "{word}" a correct English word?

where {word} is then replaced with the current fragment combines with the current action, this will check if an action is
indeed valid.

8


