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ABSTRACT

We present MVGE, a novel approach for estimating 3D geometry from extended
monocular video sequences, where existing methods struggle to maintain both
geometric accuracy and temporal consistency across hundreds of frames. Our
approach generates affine-invariant 3D point maps with shared parameters across
entire sequences, enabling consistent scale-invariant representations. We introduce
three key innovations: viewpoint-invariant geometry aligning multi-perspective
points in a unified reference frame; appearance-invariant learning enforcing consis-
tency across exponential timescales; and frequency-modulated positioning enabling
extrapolation to sequences vastly exceeding training length. Experiments across
diverse datasets demonstrate significant improvements, reducing relative point map
error by 24.2% and temporal alignment error by 34.9% on ScanNet compared to
state-of-the-art methods. Our approach handles challenging scenarios with complex
camera trajectories and lighting variations while efficiently processing extended
sequences in a single pass. Code will be publicly released, and we encourage
readers to explore the interactive demonstrations in our supplementary materials.

Video Frames MoGe MVGE (Ours)

…

…

…

…

Figure 1: Given a sequence of video frames, MVGE is capable of predicting scale-invariant and
temporal-consistent point maps in a single forward pass. We visualize the 3D mesh reconstructed
by TSDF integration of 100 point maps predicted by MVGE in a single shot, in comparison with
MoGe (Wang et al., 2025b) using ScanNet++ (Yeshwanth et al., 2023) dataset. MVGE maintains
geometric accuracy and long-range consistency across hundreds of frames with minimum drift,
enabling high-quality 3D reconstruction.
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1 INTRODUCTION

Estimating 3D geometry from monocular videos is a fundamental challenge in computer vision with
diverse applications in novel view synthesis, autonomous navigation, virtual reality, and 3D/4D re-
construction. Despite significant advances in single-image depth estimation, video-based approaches
still struggle with two critical challenges: achieving high geometric accuracy at multiple scales
within each frame and across the global coordinate system, while maintaining temporal consistency
throughout sequences of hundreds of frames without scale drift.

Existing methods typically excel in one area at the expense of the other. Single-image approaches
like MoGe (Wang et al., 2025b) capture detailed geometry but produce inconsistent results when
applied frame-by-frame to videos. Conversely, video-specific methods (Yang et al., 2025; Hu et al.,
2025; Chen et al., 2025; Wang et al., 2024a; Zhang et al., 2025) inherently lack geometric precision
while providing only short-term consistency, still exhibiting significant scale drift in longer sequences.
Traditional approaches rely on optical flow constraints (Wang et al., 2023; 2024b) that only link
adjacent frames, failing to prevent accumulation of errors. Video diffusion models offer consistency
through learned priors but at significant computational cost. Recent transformer-based approaches
like VGGT (Wang et al., 2025a) can process longer sequences but lack effective temporal position
encoding, limiting their effectiveness with complex camera motions.

Processing lengthy sequences with geometric and temporal accuracy requires simultaneous consid-
eration of hundreds of frames with precise temporal position encoding to handle complex scene
transformations. However, memory constraints make training on such long sequences impractical.
This creates a fundamental tension: models need to extrapolate effectively to sequences far longer
than their training examples. With robust extrapolation capabilities, overlapping inference techniques
can achieve minimal drift by maintaining substantial frame overlap between consecutive windows,
effectively scaling to unlimited sequence lengths.

We present a novel approach generating affine-invariant 3D point maps from RGB videos with
both geometric precision and long-range temporal consistency. Our method produces point maps
where all frames share the same scale and shift parameters, with a unified optimization approach to
recover scale-invariant representations for downstream applications. Our key innovations include:
Viewpoint-invariant geometry transforming points from multiple perspectives into a shared ref-
erence frame through camera pose integration; Appearance-invariant learning that supervises
geometric consistency across exponential time scales while isolating persistent structural features
from transient visual conditions; and Adaptive frequency-modulated positioning implementing an
NTK-guided rotary scheme with strategic training-time extrapolation simulation to process sequences
orders of magnitude longer than training examples. Our approach significantly outperforms previous
methods, reducing relative point map error by 24.2% on ScanNet and temporal alignment error by
34.9% compared to existing approaches, while maintaining superior performance across diverse
datasets from synthetic animations to real-world driving scenarios.

2 RELATED WORK

Monocular depth estimation. Recent advances in monocular depth estimation have significantly
improved both geometric accuracy and generalization. Early supervised approaches (Eigen et al.,
2014; Fu et al., 2018; Bhat et al., 2021; 2023) were limited by domain-specific datasets. More recent
methods overcame this limitation through affine-invariant representations (Ranftl et al., 2022; Birkl
et al., 2023; Ranftl et al., 2021) or scale alignment techniques (Yin et al., 2023; Hu et al., 2024).
Large-scale data-driven approaches (Yang et al., 2024a;b) and diffusion-based models (Ke et al.,
2024; Gui et al., 2024; Fu et al., 2024) have further enhanced generalization to diverse scenarios.
While some methods (Yin et al., 2021b; Piccinelli et al., 2024; 2025; Bochkovskii et al., 2025) predict
both depth and camera intrinsics, they often lack precision in local geometry. MoGe (Wang et al.,
2025b) achieves superior geometric accuracy through multi-scale supervision but operates only on
single images, lacking cross-frame consistency.

Video-based depth estimation. Extending depth estimation to video sequences introduces signifi-
cant temporal consistency challenges. Video diffusion models (Hu et al., 2025; Yang et al., 2025)
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provide inherent coherence but at high computational cost. For sequences longer than training exam-
ples, several strategies have emerged: sliding windows (Hu et al., 2025; Chen et al., 2025), keyframe
conditioning (Yang et al., 2025), and global attention (Wang et al., 2025a). However, these methods
still exhibit scale drift over extended sequences or struggle with complex camera trajectories. Current
approaches typically excel at either geometric accuracy or temporal consistency, rarely achieving
both across hundreds of frames.

Positional encoding for extrapolation. Transformers struggle with sequences longer than their
training examples. While standard sinusoidal encodings (Vaswani et al., 2017) and learned embed-
dings have limited extrapolation capabilities, Rotary Position Encoding (RoPE) (Su et al., 2021)
better generalizes by encoding relative positions through complex plane rotations. Strategic frequency
adjustments (Chen et al., 2023; Peng et al., 2024) and NTK-aware adaptations (Peng & Quesnelle,
2023; Sun et al., 2022) preserve both local details and global structure during extrapolation. Our work
adapts these techniques, primarily developed for language models, to video-based 3D reconstruction,
enabling effective processing of sequences substantially longer than training examples.

3 METHOD

We present a novel approach for generating geometrically accurate and temporally consistent 3D
point maps from RGB videos. Our method addresses two critical challenges: producing geometrically
precise representations for each frame, and maintaining long-range temporal consistency across
hundreds of frames - essential requirements for downstream 3D reconstruction tasks.

3.1 GEOMETRY-AWARE VIDEO POINT MAP ESTIMATION

Task definition. Given an RGB video sequence I = {I1, I2, ..., IT } with T frames, our goal is to
estimate scale-invariant and temporally consistent 3D point maps from unposed monocular videos.
Specifically, we predict a sequence of 3D point maps P = {P1, P2, ..., PT }, where Pt ∈ RH×W×3

represents the 3D coordinates of each pixel in frame t within that frame’s camera coordinate system.
Training setup: During training, our method takes multi-frame RGB images as network input and
optionally uses ground truth camera poses solely for computing the cross-frame geometric loss. The
poses enable multi-scale geometric supervision by transforming predicted point clouds to a common
reference frame, but are not required for all training data. Inference setup: At inference, our method
requires only multi-frame RGB images as input and outputs scale-consistent point maps in each
frame’s camera coordinate system. These point maps can subsequently serve as input to methods like
MegaSAM (Li et al., 2025) to estimate camera parameters and enable high-quality 4D reconstruction.

Positioning relative to existing approaches. Our method addresses fundamental limitations
of existing approaches across three categories: Single-frame pointmap methods (e.g., Depth-
Pro (Bochkovskii et al., 2025), MoGe (Wang et al., 2025b)) process frames independently, leading
to scale inconsistencies that degrade downstream reconstruction quality. Our approach achieves
superior long-range temporal consistency and global geometric accuracy, enabling more precise
camera pose estimation and 4D reconstruction. Video depth methods (e.g., DepthCrafter (Hu et al.,
2025), Video Depth Anything (Chen et al., 2025)) typically output affine-invariant depth maps, where
the missing shift parameter and camera intrinsics complicate direct 4D reconstruction. Compared to
these video depth prediction methods, our approach maintains scale consistency across significantly
longer temporal sequences. Single coordinate system methods (e.g., Dust3r (Wang et al., 2024a),
MonST3R (Zhang et al., 2025)) directly estimate global point maps and camera poses jointly. While
our approach requires external pose estimation, it produces more accurate 4D reconstructions and
handles significantly longer video sequences under identical memory constraints.

Scale-Invariant representation. Our model predicts affine-invariant point maps following
MoGe (Wang et al., 2025b), where each point map is agnostic to global scale s ∈ R and offset t ∈ R3.
The key distinction is that our entire video sequence shares these parameters: Pi

∼= sPi+t,∀i ∈ [1, T ].
During inference, we recover a single shared focal length f and Z-axis shift tz for all frames by
minimizing the projection error:
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Figure 2: Overview of MVGE. Top-Left: MVGE consists of a ViT backbone that processes video
input frames, followed by a temporal decoder with cross-attention and dynamic NTK scaling RoPE,
producing scale-invariant point maps (Sec. 3.1). Top-Right: Cross-frame geometric consistency
enforced across global and local geometric levels (G1, G2) to maintain structural coherence across
frames (Sec. 3.1). Bottom-Left: RoPE with dynamic NTK scaling applied to extend sequence context,
using frequency scaling that adaptively weights dimensions based on scale factor, and train-time
sequence stretching that creates a virtual extended sequence to sample positions (Sec. 3.2). Bottom-
Right: Hierarchical temporal consistency constraints applied multiple temporal strides (δ = 1, 2, 4, 8)
to enforce smooth, consistent point map predictions across time (Sec. 3.2).

min
f,tz

T∑
t=1

N∑
i=1

(
fxt,i

zt,i + tz
− ut,i

)2

+

(
fyt,i

zt,i + tz
− vt,i

)2

, (1)

where (xt,i, yt,i, zt,i) are the predicted 3D coordinates and (ut,i, vt,i) are the corresponding 2D pixel
coordinates. This ensures a metrically consistent representation across the entire video, essential for
3D reconstruction tasks. By recovering the shift parameter, we transform our predictions into scale-
invariant point maps, making them directly applicable for downstream tasks such as 3D reconstruction
and novel view synthesis.

Geometric accuracy through multi-scale training. To achieve fine-grained geometric accuracy,
we adopt MoGe’s multi-scale approach (Wang et al., 2025b). MoGe achieves superior geometric
precision through three key mechanisms: (1) affine-invariant alignment that handles ambiguities
in depth perception, (2) multi-scale local geometry supervision that enforces accuracy at different
spatial scales, and (3) normal consistency loss that ensures surface coherence. These mechanisms
collectively enable the capture of both global structure and fine geometric details.

Building on this foundation, our approach extends the geometric accuracy requirements to video
sequences. Additionally, other works (Bochkovskii et al., 2025; Yang et al., 2024b; Yin et al., 2021a;
2019) have demonstrated that spatial gradient regularization can further improve detailed depth
estimation by constraining the local surface structure. We incorporate these principles into our
video-based framework to maintain high-fidelity geometric representations across frames.

Cross-frame geometric constraints. To enforce geometric consistency across frames, we transform
all points to a common reference frame using camera poses. We randomly select one frame from
the sequence as the reference frame for each training iteration, providing diverse viewpoints during
training. This process involves first converting points from individual camera coordinates to world
coordinates using the camera-to-world transforms, and then transforming these world points to the
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randomly selected reference frame. This transformation allows us to directly compare geometric
structures captured from different viewpoints within a unified coordinate system.

We then apply a multi-scale geometric loss framework to the points in this common reference frame:

Lcross =
∑

l∈{1,G1,G2}

1

|Cl|
∑
c∈Cl

1

|Mc|
∑
i∈Mc

wi · ∥sc · pref
pred[i] + tc − pref

gt [i]∥1, (2)

where l is the grid size (with l = 1 representing global alignment), Cl is the set of cells at grid
size l, Mc is the set of valid points in cell c, wi is a depth-aware weight, and (sc, tc) are alignment
parameters computed independently for each cell.

For global alignment (l = 1), the entire point cloud is treated as a single cell. For local alignment, we
divide the 3D space into a grid of Gl ×Gl ×Gl cells. Our implementation uses grid sizes of 4 and
16, allowing the model to capture both coarse structure and fine details across the entire temporal
sequence. By enforcing geometric consistency at multiple scales, our approach ensures that the
predicted point maps maintain both local detail and global structure across the video.

3.2 LONG-RANGE TEMPORAL CONSISTENCY

Temporal consistency challenges. Downstream reconstruction tasks require point maps that exhibit:
(1) consistent geometric accuracy both within individual frames and across the entire sequence at
local and global scales, and (2) temporal stability over extended sequences rather than just between
adjacent frames. When these requirements aren’t met, particularly under challenging conditions with
dramatic lighting changes or significant camera movements, scale drift can accumulate, severely
degrading reconstruction quality and producing distorted or fragmented results.

Recent video diffusion model-based approaches (Hu et al., 2025; Yang et al., 2025; Shao et al.,
2025) leverage inherent temporal consistency mechanisms, but suffer from significant computational
inefficiency. Other methods utilize optical flow-based losses (Wang et al., 2023; 2024b; Kuang et al.,
2025; Chen et al., 2025) to maintain consistency between adjacent frames. However, these approaches
only constrain relationships between consecutive frames, causing error accumulation over longer
sequences. Furthermore, they struggle with large camera motions, which can substantially degrade
depth prediction accuracy by introducing conflicting geometric constraints when camera viewpoint
changes significantly.

Structure-Preserving temporal supervision. To address fundamental limitations in temporal
consistency, we introduce a hierarchical derivative supervision framework that operates across
multiple time scales:

Ltemp =

S−1∑
s=0

1

|Ms|

T−δs∑
t=1

∑
i∈Mt,t+δs

wt,i ·
∣∣∣∣∂Dpred

∂t
(t, i)− ∂Dgt

∂t
(t, i)

∣∣∣∣ , (3)

where s indexes temporal scale, S is the total number of scales, δs = 2s represents exponentially
increasing time intervals, T is the sequence length, Mt,t+δs denotes valid corresponding pixels
between frames t and t+ δs, |Ms| is the total number of valid pixels at scale s, wt,i is a depth-aware
weight for pixel i in frame t, and ∂D

∂t represents the temporal derivative of depth values.

To disentangle geometric structure from appearance variations, we apply frame-specific augmentations
with independently sampled color transformations and blur patterns across the sequence. This forces
the model to focus on invariant geometric features while ignoring transient visual cues, enabling
robust geometric consistency even under dramatic lighting changes and complex camera movements
that typically challenge conventional methods.

Scaling beyond memory constraints. Processing hundreds of frames simultaneously during training
is infeasible due to memory constraints. Existing methods address this limitation in various ways:
DepthCrafter (Hu et al., 2025) and Video Depth Anything (Chen et al., 2025) use overlapping frame
windows during inference, but suffer from scale drift due to limited training sequence length. Depth
Anything Video (Yang et al., 2025) processes key frames first and then uses them as conditions for
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other frames, but this approach has limited scalability and reduced efficiency. VGGT (Wang et al.,
2025a) employs global attention without temporal information injection, struggling with complex
camera trajectories where temporal relationships are critical.

Frequency-modulated extrapolation. To ensure robust handling of complex spatial relationships
while enabling effective extrapolation to sequences much longer than those seen during training, we
employ a specialized Rotary Position Encoding (RoPE) (Su et al., 2021; Chen et al., 2023; Peng &
Quesnelle, 2023; Sun et al., 2022) with Neural Tangent Kernel (NTK) adaptation.

Our implementation computes frequency components with dynamic NTK scaling:

θi,j =
j · s(1− i

d )

10000
2i
d

, (4)

where θi,j is the rotation angle, j is the position index, i indexes the frequency dimension, d is
the embedding dimension, and s =

Lseq

Ltrain
is a scaling factor applied when inference sequence

length exceeds training length. This adaptive scaling preserves the model’s capacity to capture both
fine-grained temporal patterns and global structure by applying graduated adjustments across the
frequency spectrum—attenuating changes to high-frequency components that encode local details
while amplifying adjustments to low-frequency components that capture long-range dependencies.

During training, we randomly apply sequence stretching with 50% probability, where we generate
position encodings for a virtual extended sequence and sample them at appropriate intervals to match
the original sequence length. Mathematically, this involves computing θ′i,j for a virtual sequence of
length Lvirtual = Lseq · r (where r is randomly sampled) and then sampling positions j′ = j · r to
obtain the final encodings. This technique simulates extrapolation during training, teaching the model
to handle sequences significantly longer than those in the training data.

To further enhance temporal generalization, we employ variable temporal context windows during
training. While maintaining a fixed 24-frame input size, we dynamically adjust the temporal stride
between frames, allowing these 24 frames to represent contexts spanning from densely sampled short
sequences to sparsely sampled long sequences of several hundred frames. This adaptive sampling
strategy complements our position encoding approach, enabling the model to simultaneously learn
representations for both fine-grained frame-to-frame transitions and long-range temporal relationships.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Model architecture. Our model builds upon MoGe (Wang et al., 2025b) by integrating temporal
modeling capabilities through strategically placed temporal attention modules in the decoder. Specif-
ically, we insert four transformer-based temporal modules after each feature level of the decoder
with 8 attention heads and single-block architecture, enabling effective information exchange across
frames while preserving spatial details. We employ DINOv2-L (Oquab et al., 2023) as our visual
encoder and initialize all parameters from MoGe’s pretrained weights.

Training datasets. For training, we use a diverse collection of synthetic datasets including Tar-
tanAir (Wang et al., 2020), PointOdyssey (Zheng et al., 2023), SPRING (Mehl et al., 2023),
VKitti2 (Cabon et al., 2020), Lightwheel (LightwheelAI & contributors, 2024), Hypersim (Roberts
et al., 2021), GTAIM (Cao et al., 2020), MVSSynth (Huang et al., 2018), UnrealStereo4K (Tosi
et al., 2021), GTASFM (Wang & Shen, 2019), IRS (Wang et al., 2021), and MidAir (Fonder &
Droogenbroeck, 2019).

Optimization strategy.We optimize using AdamW following MoGe’s base configuration with
learning rates of 10−4 for decoder parameters and 10−5 for encoder parameters. These rates are
dynamically scaled according to the square root of batch size ratio, using a reference batch size of 32
frames as baseline. Our learning schedule employs warmup, linear decay, and step decay phases with
all milestone parameters proportionally adjusted based on total iteration count. Throughout training,
we preserve input aspect ratios while resizing images to maintain spatial relationships in the scene.

Loss functions. Our loss function integrates MoGe’s original components with additional spatial and
temporal consistency objectives. We maintain the affine-invariant global loss (weight 1.0), multi-scale
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Method Sintel ScanNet Bonn KITTI Avg.
Relp ↓ δp ↑ Relp ↓ δp ↑ TAEp ↓ Relp ↓ δp ↑ Relp ↓ δp ↑ Rank↓

DepthPro (Bochkovskii et al., 2025) 0.400 0.441 0.132 0.942 0.095 0.130 0.975 0.191 0.810 3.67
VGGT (Wang et al., 2025a) 0.382 0.694 0.032 0.992 0.079 0.043 0.987 0.196 0.764 2.67
MoGe (Wang et al., 2025b) 0.281 0.627 0.132 0.896 0.126 0.086 0.967 0.101 0.971 2.25
Ours 0.257 0.617 0.100 0.961 0.082 0.068 0.979 0.091 0.976 1.25

Reld ↓ δd ↑ Reld ↓ δd ↑ TAEd ↓ Reld ↓ δd ↑ Reld ↓ δd ↑ Rank↓
DepthPro (Bochkovskii et al., 2025) 0.363 0.476 0.089 0.929 0.065 0.056 0.973 0.092 0.912 3.33
VGGT (Wang et al., 2025a) 0.359 0.680 0.029 0.989 0.048 0.040 0.981 0.187 0.728 2.67
MoGe (Wang et al., 2025b) 0.255 0.603 0.130 0.852 0.077 0.081 0.959 0.087 0.958 2.50
Ours 0.216 0.648 0.081 0.941 0.049 0.055 0.971 0.081 0.965 1.25

Table 1: Evaluation on point map estimation and depth estimation. Results are aligned with the
ground truth by optimizing a shared scale factor across the entire video. Lower values are better
for Rel and TAE (↓), while higher values are better for δ (↑). The best results in each column are
highlighted in bold. Gray values indicate methods trained on ScanNet.

Pos. Encoding Sintel ScanNet Bonn
Relp ↓ δp ↑ TAEp ↓ Relp ↓ δp ↑ TAEp ↓ Relp ↓ δp ↑

None 0.304 0.503 0.426 0.163 0.878 0.089 0.118 0.958
APE 0.324 0.475 0.451 0.153 0.895 0.089 0.115 0.956
RoPE 0.307 0.491 0.410 0.140 0.915 0.092 0.103 0.964
RoPE+ 0.304 0.503 0.394 0.138 0.923 0.086 0.095 0.963

Pos. Encoding Sintel ScanNet Bonn
Reld ↓ δd ↑ TAEd ↓ Reld ↓ δd ↑ TAEd ↓ Reld ↓ δd ↑

None 0.261 0.547 0.246 0.107 0.896 0.053 0.073 0.954
APE 0.279 0.526 0.252 0.108 0.889 0.052 0.076 0.947
RoPE 0.261 0.547 0.235 0.097 0.911 0.055 0.062 0.959
RoPE+ 0.253 0.563 0.222 0.095 0.919 0.047 0.064 0.959

Table 2: Ablation study on extrapolation strategies. Posi-
tion encoding methods on 270-frame sequences exceeding
our 24-frame training sequences. RoPE+ combines NTK-
adapted rotary encoding with sequence stretching training.

Method Sintel Bonn FPS
Reld ↓ δd ↑ Reld ↓ δd ↑

DepthCrafter 0.30 0.70 0.13 0.85 0.94
Video Depth Any. 0.30 0.64 0.07 0.96 4.47
DepthAnyVideo 0.41 0.66 0.06 0.97 6.48
MVGE (Ours) 0.20 0.73 0.06 0.97 39.1

Method ScanNet KITTI Time (s)
Reld ↓ δd ↑ Reld ↓ δd ↑

DepthCrafter 0.17 0.73 0.15 0.77 320.1
Video Depth Any. 0.09 0.92 0.08 0.95 67.2
DepthAnyVideo 0.09 0.93 0.11 0.89 46.3
MVGE (Ours) 0.09 0.93 0.07 0.97 7.7

Table 3: Video depth methods com-
parison. Evaluation on 300 frames at
378×672 resolution with affine-invariant
alignment.

local losses at levels 4, 16, and 64 (weights 1.0 each), normal loss (1.0), and mask loss (1.0). We
adopt established spatial gradient loss (4.0) to preserve depth details, and introduce our proposed
Ltemp (2.0) and Lcross (1.0). For frame-specific augmentation, we apply color jitter and Gaussian
blur with 0.5 probability to enhance robustness to appearance variations.

Computational resources. We trained our final model on 16 NVIDIA H20 GPUs for approximately
4.3 days. Each ablation study experiment required approximately 0.6 days of training on the same
hardware configuration.

4.2 EVALUATION

Evaluation datasets. We evaluate on five diverse datasets spanning various scenarios: Sintel (Butler
et al., 2012) consists of 23 synthetic videos with 50 frames each, providing precise depth labels in
complex scenes with challenging lighting and motion. ScanNet v2 (Dai et al., 2017) includes 100
indoor test videos with rich geometric structures, from which we sample every third frame to create
90-frame sequences for standard evaluation. Bonn (Palazzolo et al., 2019) contains 26 dynamic
videos with prominent foreground motions, where we use frames 30-140 to assess robustness to
object movement. KITTI (Geiger et al., 2013) provides 13 outdoor driving sequences, from which
we use the first 110 frames per sequence from the full validation set to evaluate performance in
structured environments. DDAD (Guizilini et al., 2020) is an autonomous driving dataset featuring
diverse outdoor scenes captured across varying weather conditions and environments, with sequences
ranging from 50 to 100 frames. For ablation studies focusing on long-range temporal consistency, we
extend our evaluation to 270-frame sequences using consistent sampling strategies across datasets
where ground truth is available.
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Figure 3: Qualitative visualizations of depth predictions across diverse scenarios. Each row shows
an input frame with its corresponding spacetime slice (right portion), comparing depth predictions
from VGGT, MoGe, and our method.

Inference Method ScanNet (270 frames) KITTI (270 frames) DDAD
Relp ↓ δp ↑ Reld ↓ δd ↑ Relp ↓ δp ↑ Reld ↓ δd ↑ Relp ↓ δp ↑ Reld ↓ δd ↑

Sliding Window 0.114 0.935 0.098 0.908 0.102 0.963 0.097 0.930 0.192 0.863 0.115 0.894
Single-Pass 0.113 0.937 0.094 0.913 0.092 0.974 0.084 0.963 0.187 0.879 0.108 0.916

Table 4: Effectiveness of single-pass processing for long sequences. We compare directly pro-
cessing entire 270-frame sequences with our frequency-modulated position encoding (Single-Pass)
against traditional sliding window approach with overlapping frames.

Video Frames MoGe MVGE (Ours)

Figure 4: 4D reconstruction comparison using MegaSAM (Li et al., 2025). Our method enables
coherent multi-view reconstruction from video sequences (right), while MoGe (middle) produces
fragmented results with significant distortion. Input video frames shown on left.

Quantitative results. Table 1 presents our method’s performance compared to state-of-the-art
approaches across diverse datasets. We report both point map estimation (Relp, δp) and depth
estimation (Reld, δd) metrics, where Rel measures relative absolute error (lower is better) and δ
represents the percentage of pixels with relative error less than 1.25 (higher is better). For temporal
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consistency, we employ the temporal alignment error (TAE) metric introduced by Yang et al. (2025).
All evaluations use a shared scale factor for alignment across entire video sequences to fairly assess
global consistency.

Our approach significantly outperforms previous methods, achieving the lowest average rank across
all datasets. Specifically, we achieve substantial improvements: 8.5% Relp reduction on Sintel,
24.2% accuracy and 34.9% temporal consistency (TAEp) improvements on ScanNet, and 9.9% Relp

reduction on KITTI compared to MoGe. Depth metrics show similar trends across datasets.

Table 3 evaluates our method against state-of-the-art video depth estimation approaches. Our
method achieves competitive or superior accuracy across all datasets while demonstrating remarkable
computational efficiency, processing sequences 6-42× faster than existing methods.

Qualitative comparison. Figure 3 presents spacetime slice visualizations where our method main-
tains superior temporal consistency across diverse scenarios compared to VGGT and MoGe. Figure 4
demonstrates the downstream impact, with our approach enabling coherent 4D reconstructions via
MegaSAM (Li et al., 2025) while MoGe produces fragmented results under identical conditions. To
quantify this reconstruction quality, we evaluated camera pose accuracy using our predicted point
maps as input to MegaSAM on the Sintel dataset. Our method achieves significant improvements with
ATE of 0.035 and RTE of 0.014, outperforming both MonST3R (ATE: 0.078, RTE: 0.038) and MoGe
(ATE: 0.087, RTE: 0.033) by 55% and 60% respectively in ATE, and 63% and 58% respectively in
RTE. Notably, our method achieved 100% success rate while MoGe failed completely on 2 scenes.

4.3 ABLATION STUDY

Extrapolation strategies for long sequences. Table 2 analyzes different position encoding strategies
for processing sequences significantly longer than our 24-frame training examples. We evaluate
four approaches: no temporal position encoding (None), absolute position encoding (APE), standard
rotary position encoding with NTK adaptation (RoPE), and our complete approach that combines
NTK-adapted RoPE with sequence stretching during training to simulate extrapolation (RoPE+).

Effectiveness of temporal and geometric constraints. We evaluate our hierarchical temporal
supervision (Ltemp) and cross-frame geometric constraints (Lcross) on Sintel, ScanNet, and DDAD
datasets. The combination of both losses achieves pointmap temporal consistency improvements of
9.53% on average across datasets and depth temporal consistency improvements of 18.4% compared
to baseline MoGe constraints.

Single-pass vs. sliding window inference. Table 4 compares our single-pass processing approach
with traditional sliding window techniques (Chen et al., 2025) for handling long sequences. Our
method directly processes entire 270-frame sequences in a single forward pass. This approach not
only eliminates computational redundancy but also consistently improves performance across all
datasets. On KITTI, single-pass processing reduces Relp by 9.8% compared to sliding window
approaches, highlighting the benefits of maintaining global context across the entire sequence rather
than processing overlapping segments independently.

Computational efficiency. Using an NVIDIA H20 GPU with FP16 inference, our model processes
300 frames at 378×672 resolution in 7.68 seconds (39.1 FPS) with 76.53 GB memory usage. The
optimization for 300 frames uses 0.337 seconds, averaging 1.12 ms per frame.

5 CONCLUSION

We presented a novel approach for monocular video geometry estimation that addresses the dual
challenge of high geometric accuracy and long-range temporal consistency. Our method generates
scale-invariant 3D point maps through three key innovations: viewpoint-invariant geometry aligning
points in a unified reference frame, appearance-invariant learning preserving structural features
despite visual variations, and frequency-modulated positioning enabling extrapolation to sequences
vastly exceeding training examples. Experiments demonstrate substantial improvements over state-
of-the-art methods, with our efficient single-pass approach maintaining both fine-grained detail and
global consistency across diverse datasets. Limitation: Our current approach relies on external
methods (Li et al., 2025) for camera pose estimation rather than direct prediction within our model,
which will be addressed in future work toward a fully end-to-end solution.
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