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Abstract

Generating synthetic Electronic Health Records (EHRs) offers significant potential
for data augmentation, privacy-preserving data sharing, and improving machine
learning model training. We propose a novel tokenization strategy tailored for
structured EHR data, which encompasses diverse data types such as covariates,
ICD codes, and irregularly sampled time series. Using a GPT-like decoder-only
transformer model, we demonstrate the generation of high-quality synthetic EHRs.
Our approach is evaluated using the MIMIC-III dataset, and we benchmark the
fidelity, utility, and privacy of the generated data against state-of-the-art models.
The code is available at https://github.com/hojjatkarami/SynEHRgy.

1 Introduction

Electronic Health Records (EHRs) are comprehensive digital repositories of patient health information,
encompassing a wide range of data types. In in-patient settings, EHRs include structured data such as
demographics and International Classification of Diseases (ICD) codes, time series data (e.g., vital
signs and lab results), and unstructured data (e.g., clinical notes and radiology images). These records
provide an invaluable resource for developing machine learning models, offering rich datasets that
can be harnessed to enhance patient care, predict outcomes, and support clinical decision-making.

Access to real-world EHRs is often limited due to privacy regulations such as HIPAA and GDPR,
as well as technical challenges and a lack of incentives for data sharing. Even pseudo-anonymized
data remains susceptible to re-identification by malicious actors. Techniques like federated learning
[1] and differential privacy [2] are being explored to mitigate these risks. Synthetic data provides a
promising alternative by replicating the statistical properties of real data without being tied to actual
individuals, thereby circumventing privacy regulations. It can be securely shared among stakeholders,
facilitating hypothesis generation, AI model pre-training, and data exploration without exposing
sensitive information. This approach not only alleviates privacy concerns but also reduces the effort
involved in accessing real data, allowing researchers to focus on validating more probable hypotheses
before turning to original datasets for confirmation.

Generating synthetic EHR data presents several challenges. EHRs comprise multiple data types
with distinct characteristics. For instance, clinical events like ICD codes are high-dimensional and
sequential, while time series data are relatively low-dimensional but feature irregular sampling and
significant missingness, which is often informative and not random [3, 4]. Additionally, patients may
have multiple visits or admissions, with data across visits being correlated. While many studies focus
on generating single data types, such as discrete ICD codes ([5, 6, 7, 8]) or time series data ([9, 10,
11]), few addresses the generation of multiple data types across multiple visits simultaneously ([12]).

In the era of Large Language Models (LLMs), many have been adapted to the clinical domain for
tasks such as diagnosis prediction [13], text embeddings [14], and medical reasoning [15, 16]. While
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these models can interpret structured data and numerical values presented in text format, they are not
directly applicable for generating synthetic structured EHR data. This limitation arises because LLMs
are typically not trained on large structured EHR datasets, particularly those containing complex
numerical data.

In this work, we present SynEHRgy, a framework designed to Synthesize mixed-type structured
EHRs, including covariates, ICD codes, and irregularly-sampled time series across multiple patient
visits. We introduce a novel tokenization strategy for structured EHR data, particularly for numerical
variables, allowing decoder-only transformer models to capture underlying data patterns within a
causal language modeling framework and generate high-quality synthetic EHRs. Using a small GPT
model, we demonstrate the efficacy of our approach on the MIMIC-III dataset [17], comparing the
generated data’s quality against state-of-the-art models in terms of fidelity, utility, and privacy. The
key contributions of this work are as follows:

• We propose a novel tokenization strategy for mixed-type structured EHR data (covariates,
ICD codes, irregularly-sampled time series) across multiple visits.

• We empirically demonstrate that a GPT-like decoder-only transformer model can generate
high-quality structured EHR data.

• We conduct a comprehensive evaluation of the proposed methodology on the MIMIC-III
dataset, comparing the generated data’s quality to state-of-the-art models in terms of fidelity,
utility, and privacy.

• Our framework shows exceptional performance in generating irregularly-sampled time series
data, a challenging task due to high missingness and irregular time points.

2 Related Works

Generating clinical events, particularly ICD codes, has garnered significant research interest in recent
years. In contrast, generating clinical time series presents a greater challenge due to irregularly-
sampled time points and substantial missingness.

ICD Code Generation A substantial body of work focuses on generating ICD codes using various
frameworks. Generative Adversarial Networks (GANs) have been employed for this purpose ([18,
6, 19, 20]), as have Variational Autoencoders (VAEs) ([21]) and diffusion models ([22, 23, 24, 25]).
Additionally, Large Language Models (LLMs) have been explored due to the sequential nature of
ICD codes and the feasibility of straightforward tokenization. For instance, PromptEHR [8] employs
an encoder-decoder transformer model with prompt learning to generate ICD codes conditioned
on numerical and categorical demographic features. HALO [12] utilizes a transformer encoder
coupled with a linear autoregressive module for generating ICD codes at both the visit and code levels.
CEHR-GPT [26] leverages GPT to produce sequences of visits based on demographic prompts and
visit time intervals.

Time Series Generation Research on time series generation has predominantly focused on
regularly-sampled time series, which are more common across various domains. Techniques such
as Generative Adversarial Networks (GANs) have been widely applied ([27, 28, 29, 30, 31]), as
well as diffusion models ([32, 33, 34]). However, generating irregularly-sampled time series is less
explored. Notable efforts in this area include RTSGAN [9], EHR-Safe [31], and TimEHR [11] using
GANs, and TS-Diffusion [35] and TimeDiff [10] using diffusion models. Additionally, research on
leveraging language models for time series generation remains limited. While pre-trained LLMs have
demonstrated effectiveness with numerical values in text format—e.g., LIFT [36] and GReaT [37]
excel in tabular data generation—they primarily treat numerical values as text. Some approaches
propose defining specific numerical tokens and training LLMs from scratch. For example, CodeAR
[38] utilizes a Vector Quantized Autoencoder (VQ-VAE) for codebook creation, followed by an
LSTM with next-token prediction loss. Chronos [39] discretizes numerical values into bins for time
series forecasting using encoder-decoder transformers, a strategy also employed by HALO [12] for
clinical time series and by [40] for financial time series. To the best of our knowledge, no existing
work, other than HALO [12], explores the generation of irregularly-sampled time series using LLMs.
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Figure 1: Left: Example of patient’s data. Right: Tokenized patient’s data

3 Methodology

3.1 Problem Formulation

An EHR dataset can be characterized as D = {Pi}Ni=1, where N denotes the number of patients
and Pi represents the data for the i-th patient. Each patient may have one or more visits, denoted
as Pi = {Vij}|Vi|

j=1, with each visit represented as Vj = {cj , yj , Ej , Tj}. Here, cj denotes the set of
covariates (e.g., demographics), yj represents the set of clinical outcomes (e.g., in-hospital mortality),
Ej = {em}|Ej |

m=1 is a sequence of clinical events such as ICD codes, and Tj is the time series data,
including vital signs and laboratory variables. The time series data for each visit is represented as

Tj = {tk, {(nkp, xkp)}|Lk|
p=1}

|Tj |

k=1
, where |Tj | denotes the total number of measurement times, and

|Lk| indicates the number of available data points per measurement. In this representation, tk ∈ R≥ 0
is the timestamp of the k-th measurement, while nkp and xkp are the variable name and value pairs.
An example of patient data is illustrated on the left side of Figure 1.

3.2 Tokenization

For numerical values, we employ uniform quantization to discretize numerical variables into equal-
sized bins, similar to Chronos [39]. Each bin is assigned a unique token. For instance, the token
<HR_0> represents heart rate values in the range of 55-66 beats per minute. For timestamps, we
compute the time intervals between consecutive measurements and discretize these intervals into
bins. For non-numerical values such as ICD codes and categorical variables, each code or category is
assigned a unique token.

We also use special tokens to delineate different sections of the data: <s> and </s> for the start
and end of a sequence, respectively; </covars>, </labels>, </ts>, and </visit> to signify the end of
covariates, labels, time series, and admissions. The padding token (<PAD>) is employed to ensure
that all tokenized sequences are of uniform length. If a patient has multiple admissions, the data
for new admissions is appended after the token </visit>. An example of tokenized patient data is
illustrated on the right side of Figure 1.

This tokenization strategy offers several advantages: First, it is scalable with respect to the number of
variables. For instance, when integrating a new dataset with additional variables, we simply update
the tokenization dictionary by incorporating new tokens. Second, numerical tokenization is more
efficient than treating numerical values as text. For example, the GPT-2 tokenizer would generate
seven tokens for ’Lactate:2.5’, whereas our method generates only one token.

3.3 Model Architecture

Decoder-only Transformer models, such as the ones used in language modeling (e.g., GPT [41]),
typically employ a causal language modeling (CLM) objective as their loss function. This objective
is also known as autoregressive language modeling. The core idea is to predict the next token in a
sequence given all previous tokens. The model generates a probability distribution over the vocabulary
for the next token, and the loss function measures the discrepancy between the predicted distribution
and the actual next token. For an tokenized patient sequence x = [x1, x2, . . . , xT ], the model predicts
the probability distribution over the vocabulary for each token in the sequence, conditioned on all
previous tokens:

p(xt | x1, x2, . . . , xt−1)

3



The loss for a single token prediction is typically computed using cross-entropy between the predicted
distribution and the one-hot encoded true next token. For the entire sequence, the loss function is:

L = −
T∑

t=1

log p(xt | x1, x2, . . . , xt−1)

3.4 EHR Data Generation

The generation of EHR data follows a process similar to text generation. We initiate the generation
with the start token (<s>) and continue generating tokens sequentially until the end token (</s>)
is produced. For the de-tokenization of numerical tokens, we apply uniform sampling within the
specified bin range to recover the original numerical values. This approach ensures that the generated
values are representative of the underlying distribution of the data. The de-tokenization of ICD codes
and categorical variables is straightforward, as each token directly maps to a specific code or category.

This method offers several advantages: First, it leverages the well-established text generation frame-
work, which allows for seamless integration with existing models and techniques. Second, uniform
sampling for numerical values maintains the integrity of the data distribution, providing a realis-
tic representation of the original values. Lastly, the straightforward de-tokenization of categorical
variables ensures simplicity and efficiency in generating accurate categorical data.

4 Experiments

4.1 Dataset

We utilize the MIMIC-III dataset for our experiments [17]. Specifically, we use the preprocessing
pipeline provided by [42] to extract data from approximately 42,000 patients with multiple hospital
visits. The dataset is divided into training, validation, and test sets using a 70-15-15 split. For each
patient, we include age and gender as covariates. Additionally, for each visit, we select 25 phenotype
labels along with an in-hospital mortality label. We include ICD diagnosis and procedure codes
with a frequency greater than five across the entire dataset, resulting in 4,656 unique ICD codes. We
also select 41 time series from vital signs and laboratory variables, including five categorical time
series. After tokenization, we have a total of 5,127 unique tokens, with the training split consisting of
29.6 million tokens. Each patient’s sequence starts with the <s> token and ends with the </s> token,
comprising demographics, ICD codes, and time series tokens, as explained in Section 3.2.

4.2 Evaluation Metrics

We evaluate the synthetic data based on Fidelity, Utility, and Privacy. Since all of our baselines,
except HALO, do not generate multiple data types, we assess our metrics separately for each data
type. Additionally, we use the test split as a reference for high-quality synthetic data to evaluate these
metrics.

Fidelity For ICD codes, similar to [12], we assess fidelity using unigram, bigram, and trigram
probabilities within each visit, as well as sequential bigram probabilities between consecutive visits.
For instance, the bigram probability of the sequence [icd1053, icd610] is calculated as its frequency
divided by the total number of patients. We report Pearson’s correlation between the top-1000 n-gram
probabilities of the train and test/synthetic data pairs.

For time series data, we create manual embeddings for each patient by computing common statistics
(min, max, mean, std) from the first 48 hours of the patient’s stay. We then report the precision, recall,
density, and coverage (PRDC) metrics [43] to evaluate the fidelity between the embeddings of the
train split and the test/synthetic split. Additionally, we calculate the pairwise temporal correlation
between all time series variables by concatenating the time series data from all patients and report
the mean squared error between the correlation matrices of the train split and the test/synthetic split
(MSEcorr). We also assess correlation accuracy [30] by discretizing the correlation coefficients into
five levels: High negative ([−1,−0.5)), Medium negative ([−0.5,−0.2)), Low ([−0.2, 0.2)), Medium
positive ([0.2, 0.5)), and High positive ([0.5, 1)). The confusion matrix of these correlation levels is
then reported. To assess the fidelity of the missingness patterns, we visualize the co-occurrence of
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measurements for each pair of time series variables and normalize this by the sum of occurrences for
each variable.

Utility We assess the utility of the synthetic data by evaluating its performance in two tasks:
in-hospital mortality prediction (binary classification) and phenotypes classification (multi-label
classification). Specifically, we use time series embeddings from the first 48 hours of patient
admission, as described earlier, and train a LightGBM model [44]. To examine the impact of data
augmentation with synthetic data, we incorporate the entire synthetic dataset into the training data at
various ratios (0, 0.1, 0.2, 0.5, 1.0) and evaluate the model on the test split.

Privacy We adopt the Membership Inference Attack (MIA) approach as described in EHR-Safe
[31], where the goal is to determine whether specific data points were included in the training dataset.
To accomplish this, we fit a K-Nearest Neighbors (KNN) model on the synthetic data and calculate
the nearest distances for each patient in both the training and test splits. A significant disparity
between the distance distributions in the synthetic-train and synthetic-test sets indicates lower privacy.
For ICD code sequences, we use the Hamming distance, whereas for time series embeddings, we
employ the Euclidean distance. We then fit Gaussian distributions to these distances and assess the
differences between the two distributions using the Wasserstein Distance (WD), Jensen-Shannon
Divergence (JSD), and Area Under the Receiver Operating Characteristic (AUROC) metrics.

4.3 Baselines

For ICD code generation, we compare our method with HALO [12], a hierarchical autoregressive
language model, and PromptEHR [8], which utilizes an encoder-decoder transformer model. For
time series generation, we compare our method with RTSGAN [9] and TimEHR [11], both of which
are GAN-based models designed for generating irregularly-sampled time series data. Additionally,
we include HALO in the comparison for time series generation, as it employs a similar tokenization
strategy for numerical variables.

Ablation study. We further demonstrate the effectiveness of numerical tokenization by removing
the discretization step and treating the numerical values as raw text. We refer to this model as
SynEHRgy0.

4.4 Training Details

We employ a small GPT-2 model from the Transformers library1. Our model consists of 4 layers, 4
attention heads, and 384 embedding dimensions. After testing various context lengths, we found that
1024 tokens offer a good balance between the quality of generated data and training time (notably,
context lengths of 256, 512, 1024, and 2048 correspond to 20%, 34%, 51%, and 68% of the original
data, respectively). For the ablated model (SynEHRgy0), we need to use a larger context length of
size 4098 due to its inefficient tokenization.

We use the Adam optimizer with a learning rate of 3× 10−4 and train the model for 20 epochs on a
system equipped with an NVIDIA Tesla V100-SXM2-32GB GPU. The batch size is set to 128, and we
employ gradient accumulation with a step of two. All other hyperparameters are set to their default
values as per the Transformers library. For generation, we use top-k sampling with a temperature of
0.7 and a top-k value of 50. We generate 30,000 synthetic patients which is the same size of training
split. Due to computational limitation, we have performed minimal hyperparameter tuning for our
model and for the baselines to ensure a fair comparison.

5 Results

5.1 Fidelity

Table 1 shows the correlation values between n-gram probabilities of the training and test/synthetic
splits. While HALO achieves the highest performance for unigram probabilities, our method consis-
tently surpasses all baselines, particularly in bigram, trigram, and sequential bigram probabilities.
This underscores the ability of our method to generate high-quality synthetic ICD codes.

1https://huggingface.co/docs/transformers
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Table 1: Fidelity metrics for ICD codes

Single-visit
Sequential BigramUnigram Bigram Trigram

Test split 0.998 0.722 0.742 0.634

SynEHRgy 0.987 0.729 0.786 0.568
HALO 0.885 0.265 0.302 0.524
PromptEHR 0.890 0.682 0.669 NA

Table 2: Fidelity metrics for Time Series. Bold and underline values indicate the best and second
best results, respectively.

Precision(↑) Recall(↑) Density(↑) Coverage(↑) MSEcorr(↓)

Test split 0.863 (0.004) 0.878 (0.003) 0.984 (0.005) 0.966 (0.001) 0.02

SynEHRgy 0.805 (0.006) 0.86 (0.003) 0.705 (0.008) 0.898 (0.005) 0.029
SynEHRgy0 0.452(.018) 0.227(0.020) 0.345(0.009) 0.150(0.014) 0.133

TimEHR 0.593 (0.008) 0.669 (0.011) 0.385 (0.011) 0.613 (0.003) 0.059
HALO 0.521 (0.021) 0.469 (0.002) 0.387 (0.022) 0.19 (0.003) 0.072

RTSGAN 0.725 (0.026) 0.113 (0.019) 0.744 (0.054) 0.108 (0.001) 0.097

Table 2 presents the precision, recall, density, and coverage (PRDC) metrics, as well as the temporal
correlation difference (MSEcorr) for evaluating the fidelity of time series embeddings. It is important
to consider these PRDC metrics collectively. For instance, while RTSGAN achieves the highest
density, it performs poorly on recall and coverage metrics. Our method excels in precision, recall, and
coverage, and ranks second in density. Additionally, our model demonstrates the lowest MSEcorr,
indicating strong performance in preserving structural correlations within the data. This is further
supported by the confusion matrix of correlation levels shown in Figure 2, where SynEHRgy displays
superior performance in capturing correlation levels. Moreover, the co-occurrence analysis in Figure 3
reveals that our method exhibits the highest fidelity in preserving missingness patterns, highlighting its
capability to generate realistic irregularly-sampled time series data. The ablated model (SynEHRgy0)
exhibits poor fidelity performance, demonstrating the importance of numerical tokenization.

5.2 Utility

Table 3 and Table 4 present the AUROC scores for the 25-phenotype and in-hospital mortality predic-
tion tasks, respectively, across different data augmentation settings. When training exclusively on
synthetic data and testing on real data (TSTR), our method surpasses all baseline models and achieves
performance closest to that of the Train on Real and Test on Real setting (TRTR). Additionally, our
method demonstrates the highest AUROC when synthetic data is incorporated into the training set,
although the performance gain diminishes as the proportion of real training data increases. This
suggests that while the models leverage the synthetic data effectively, they do not extend beyond
the real data distribution to generate new patient profiles that significantly enhance test performance.

Table 3: AUROC for phenotypes prediction. NA: Not Applicable.

Train ratio

0 (TSTR) 0.1 0.2 0.5 1

No synthetic NA 0.769 0.78 0.793 0.802(TRTR)
Val split 0.781 0.788 0.791 0.799 0.805

SynEHRgy 0.787 0.789 0.793 0.798 0.804
TimEHR 0.736 0.762 0.77 0.778 0.784

HALO 0.665 0.746 0.761 0.78 0.787
RTSGAN 0.546 0.764 0.774 0.788 0.799
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Figure 2: Confusion matrices of correlation levels for time series data

Figure 3: Co-occurrence of measurement for time series data

Furthermore, the validation split shows marginally better performance compared to other synthetic
data settings. These utility results highlight the potential of our method for data anonymization (with
no exposure of training data) and for data augmentation in scenarios with limited training data.

5.3 Privacy

Membership Inference Attack (MIA) metrics are reported in Table 5. As can be seen, none of methods
shows any potential privacy risk. It should be noted that these privacy metrics are computed based on
hamming distance of ICD codes and Euclidean distance of time series data, and the results may vary
for different distance metrics.

6 Conclusion

In this work, we introduced SynEHRgy, a novel methodology for generating synthetic structured
EHR data that incorporates mixed-type data (ICD codes and time series) across multiple visits. A
key innovation of our approach is the tokenization strategy for numerical variables, which enhances
compatibility with decoder-only transformer models. Despite its advantages, the proposed method
has limitations. Specifically, treating each data point (e.g., an ICD code or a heart rate measurement)
as a single token may become inefficient for very large sequences due to context length constraints.
Future work will explore more efficient tokenization strategies to mitigate this issue. Additionally,
integrating high-frequency continuous signals, such as ECG data, is currently not feasible with our
tokenization approach. We plan to address this limitation by incorporating patch-based tokenization
strategies [45, 39, 46]. Furthermore, we aim to expand our methodology to include other data
modalities, such as clinical notes and radiology images, to generate comprehensive multimodal EHR

Table 4: AUROC for in-hospital mortality prediction. NA: Not Applicable.

Train ratio

0 (TSTR) 0.1 0.2 0.5 1

No synthetic NA 0.889 0.898 0.912 0.92 (TRTR)
Val split 0.902 0.91 0.914 0.915 0.924

SynEHRgy 0.901 0.906 0.905 0.913 0.915
TimEHR 0.865 0.887 0.893 0.906 0.912

RTSGAN 0.58 0.878 0.891 0.906 0.919
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Table 5: Privacy metrics for ICD codes and Time Series

ICD codes Time Series

Model JSD WD AUROC Model WD JSD AUROC

SynEHRgy 0.014 0.001 0.479 SynEHRgy 0.002 0.001 0.493
HALO 0.013 0.000 0.511 TimEHR 0.003 0.001 0.495

PromptEHR 0.012 0.001 0.455 HALO 0.003 0.001 0.493
RTSGAN 0.002 0.001 0.494

data. Another promising direction for future research is to enhance the capabilities of clinical LLMs,
such as Meditron [16] and Med-PaLM [47], to better understand and generate structured data.
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