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ABSTRACT
Human Activity Recognition (HAR) as an emerging research field
has attracted widespread academic attention due to its wide range
of practical applications in areas such as healthcare, environmental
monitoring, and sports training. Given the high cost of annotating
sensor data, many unsupervised and semi-supervised methods have
been applied to HAR to alleviate the problem of limited data. In
this paper, we propose a novel video-enhanced cross-modal collab-
orative learning method, Vi2ACT, to address the issue of few-shot
HAR. We introduce a new data augmentation approach that utilizes
a text-to-video generation model to generate class-related videos.
Subsequently, a large quantity of video semantic representations
are obtained through fine-tuning the video encoder for cross-modal
co-learning. Furthermore, to effectively align video semantic repre-
sentations and time series representations, we enhance HAR at the
representation-level using conditional Generative Adversarial Nets
(cGAN). We design a novel Representation Conditional Discrimi-
nator that is trained to assess samples as originating from video
representations rather than those generated by the time series en-
coder as accurately as possible. We conduct extensive experiments
on four commonly used HAR datasets. The experimental results
demonstrate that our method outperforms other baseline models
in all few-shot scenarios.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Computing methodologies →
Machine learning algorithms.

∗The corresponding author is Wenzhong Li.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0686-8/24/10
https://doi.org/10.1145/3664647.3681664

KEYWORDS
Human activity recognition, Few-shot Learning, Conditional Gen-
erative Adversarial Nets

ACM Reference Format:
Kang Xia, Wenzhong Li, Yimiao Shao, and Sanglu Lu. 2024. Vi2ACT:Video-
enhanced Cross-modal Co-learning with Representation Conditional Dis-
criminator for Few-shot Human Activity Recognition. In Proceedings of
the 32nd ACM International Conference on Multimedia (MM ’24), October
28-November 1, 2024, Melbourne, VIC, AustraliaProceedings of the 32nd ACM
International Conference on Multimedia (MM’24), October 28-November 1,
2024, Melbourne, Australia. ACM, New York, NY, USA, 9 pages. https://doi.
org/10.1145/3664647.3681664

1 INTRODUCTION
Human Activity Recognition (HAR), as an emerging research field,
has garnered widespread academic attention [28, 40, 42]. HAR aims
to analyze and understand individual or group behaviors, habits
and other behavioral characteristics. With the rapid development
of smartphones [16, 27] and wearable devices, sensor technology
has been widely employed. The diverse and rich data generated by
sensors, such as accelerometers [12, 42], gyroscopes, and magne-
tometers [21], provide detailed behavioral information, enabling
researchers to comprehensively and precisely unveil human be-
havioral patterns in various environments. Its applications span
across various domains, including healthcare [16], smart home [13],
environmental monitoring [5], among others.

The development of HAR has undergone several stages, initially
focusing on manual representation extraction. It later entered the
era of machine learning, employing traditional algorithms such as
support vectormachines and decision trees. In recent years, with the
rise of deep learning technology, especially the successful applica-
tion of convolutional neural networks (CNN) [28, 30, 31], recurrent
neural networks (RNN) [4, 22] and Transformer [37, 40], HAR has
achieved end-to-end representation learning, greatly improving the
accuracy of recognition.

In deep learning-based HAR, a significant drawback is the cost
and complexity associated with acquiring labeled data. Training
supervised learning models requires a substantial amount of labeled
data, and manually annotating datasets is a time-consuming and
expensive task.
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Recently, Xia et al. [40] proposed TS2ACT to achieve few-shot
HAR. It uses label text to search for human activity images via a
search engine. Then it adopts a pre-trained CLIP [29] image en-
coder to jointly train with a time series encoder using contrastive
learning, where the time series and images are brought closer in
representation space if they belong to the same activity class. Al-
though using image representations for contrastive learning can
effectively enhance time series representations, it is still challeng-
ing to distinguish temporally opposite activities such as “opening
a door” and “closing a door” due to the lack of temporal informa-
tion in images. Moreover, the lack of a one-to-one correspondence
between time series data and their labeled image classes means
that straightforward application of contrastive learning may lead
to inaccuracies in data alignment.

To address the aforementioned issues, we propose a novel video-
enhanced cross-modal co-learning method, Vi2ACT, to achieve
few-shot HAR. We propose utilizing video semantic representa-
tions to enhance the time series encoder instead of image semantic
representations. Initially, we employ a text-to-video generation
model to create label-related videos, thereby generating semanti-
cally richer video content. Subsequently, we use these videos along
with their corresponding labels to train a video encoder. Second, we
design a novel Representation Conditional Discriminator. This mod-
ule is trained to assess samples as originating from video encoder
rather than those generated by the time series encoder. Through
the adversarial training, action representations and video semantic
representations can be aligned more efficiently.

To summarize, our main contributions are as follows.

• Wepropose a novel cross-modal co-learning approachVi2ACT
to strengthen few-shot HAR. To obtain a large number of
video semantic representations, we introduce a novel data
augmentation approach that leverages a text-to-video gener-
ation model to generate label-related videos. Subsequently,
we fine-tuning the video encoder for cross-modal co-learning.

• We design a novel Representation Conditional Discriminator
that guides the time series encoder to extract class-specific
semantic representations through specific class conditions,
thus improving HAR performance. To our knowledge, this
is the first attempt to enhance HAR from the representation
level using conditional Generative Adversarial Nets.

2 RELATEDWORK
2.1 Supervised Human Activity Recognition
Early HAR research primarily focused on manual representation
extraction and traditional machine learning techniques such as
SVM [8] and KNN [33]. Consequently, it often required domain
expertise and was limited to capturing surface-level features.

In contrast, deep learningmodels havemade significant strides in
autonomously learning hierarchical representations from raw sen-
sor data. Among the various deep learning architectures, CNNs [25,
28], RNNs [4, 22] and Transformers-based [9, 34] method have ex-
hibited promising performance. For instance, Zeng et al. [43] design
a CNN-based HAR method to capture the local correlations and
scale invariance of signals. Challa et al. [4] propose a CNN-BiLSTM

model which enables learning of both local representations in se-
quential data and long-term dependency relationships. Conformer-
HAR [17] introduces the Conformer, which is the state-of-the-art
(SOTA) model in the field of speech recognition.

2.2 Semi/Un-supervised and Few-shot HAR
In order to alleviate the problem of scarcity of labeled data, semi-
supervised, unsupervised learning, and particularly few-shot learn-
ing methods have been widely used in HAR.

Semi-supervised HAR [3, 23] primarily utilizes labeled data to
train an encoder, which is then used to assign pseudo-labels to a
large amount of unlabeled data for further encoder training. To
tackle the constraints posed by limited labeled data and class imbal-
ance, Chen et al. [6] propose a pattern-balanced semi-supervised
method. Tang et al. [36] utilize confidence to identify the most rele-
vant samples and propagates labels to the most confident samples.

UnsupervisedHAR [11, 41] typically employs a two-stage pipeline,
involving unsupervised pretraining followed by fine-tuning on la-
beled data. ColloSSL [14] leverages natural transformations in the
sensor data from multiple devices to perform contrastive learning,
and learns a robust encoder. Ma et al. [24] propose amulti-task learn-
ing framework integrating CNN-BiLSTM autoencoder, K-means
clustering, and classification tasks to achieve unsupervised HAR.

Few-shot HAR methods aim to recognize novel activities with
only a few or even one labeled sample. TS2ACT [40] uses label text
to search for human activity images, and then jointly trains a time
series encoder with the CLIP [29] image encoder to achieve few-
shot HAR. RF-CM [39] proposes a general cross-modal framework
which achieves few-shot radar-based HAR by using a large number
of public WiFi data.

2.3 Cross-modal HAR and LLMs for HAR
Due to the high cost associated with collecting sensor data, recent
studies have utilized vision as an auxiliary modality to assist models
in extracting representation from sensor data. For instance, IMU-
Tube [18, 19] proposes to generate virtual sensor data from videos
by applying pose estimation techniques to infer the 3D motion of
the human body in the video. This approach typically relies on
starting with a large number of videos, as only a segment of IMU
signal can be extracted from a single video. Additionally, since this
method often depends on the accuracy of pose estimation algo-
rithms, it makes the method highly sensitive to occlusions of the
human body. In contrast, our method does not require pose estima-
tion; instead, it utilizes a video action recognition model to directly
learn embeddings for HAR from entire video segments.

In addition, large language models (LLM) have been used to
achieve zero-shot HAR. HealthLearner [20] explores the potential
of LLMs as general few-shot learners based on time-series health
data. They discover that with minimal in-context tuning, LLMs
could ground digital time-series data from wearable and clinical-
grade sensor devices , significantly improving zero-shot inference
and supervised baselines in tasks such as activity recognition, calo-
rie computation, and atrial fibrillation classification. HARGPT [15]
processes raw IMU data by inputting it into an LLM and uses role-
playing and “think step-by-step” strategies for prompting, success-
fully identifying human activities from the raw IMU data.
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Figure 1: The framework of Vi2ACT.

3 METHOD
3.1 Overall Architecture
As shown in Figure 1, the overall architecture of Vi2ACT com-
prises five main components: a pre-trained text-to-video generator,
a video encoder F (·), a representation classifier 𝑔(·), a time series
encoder 𝐺 (·), and the Representation Conditional Discriminator
𝐷 (·, ·). Initially, we input label text into prompt templates as the in-
put for the text-to-video generator to generate a substantial amount
of label-relevant videos. Subsequently, these videos are utilized to
train the video encoder F and the representation classifier 𝑔. Then
the time series encoder𝐺 is employed to obtain representation from
the input time series and the Representation Conditional Discrimi-
nator 𝐷 works by discerning whether the representations originate
from time series encoder 𝐺 or video encoder F , facilitating the
joint optimization of the time series encoder. Finally, we employ
the representation classifier 𝑔 to directly classify the time series
representations.

We denote the collection of sensor data samples as 𝑆 = {𝑠1, 𝑠2, ...𝑠𝑛},
where each 𝑠𝑖 is derived by segmenting the original signal into
fixed-size segments. Each sample 𝑠𝑖 ∈ R𝐿×Dis characterized by
a multivariate time series, where 𝐿 represents the length of the
sample, and D is the channel dimension, containing all x, y, and
z-axis from the accelerometer, gyroscope, and magnetometer.

3.2 Cross-modal Video representation
Generation

Due to the limited availability of labeled data, we propose to use
text-guided video generation to supplement the data deficiency. Ini-
tially, we fill the label text (e.g., “jogging”) into pre-defined prompt
templates (e.g., “A man is [class]”) to construct textual prompts
(e.g., “A man is jogging”). Subsequently, these prompts are fed into
a text-to-video generation model to create videos relevant to the
labels. We utilize an open-source video generation model Mod-
elScopeT2V [38] to generate large amounts of semantically richer

videos. Following this, we employ a pre-trained video encoder to
acquire all the video representations.

Suppose that video 𝑋𝑐 is a randomly selected video from the
videos relevant to the class 𝑐 . We use the video encoder F (·) to
obtain video representations 𝑓 𝑉𝑐 ∈ R𝑑 by

𝑓 𝑉𝑐 = F (𝑋𝑐 ) (1)

3.3 Time Series Encoder
The time series encoder (denoted by𝐺 (·)) is intended for recogniz-
ing and encoding correlations within sensor data at various time
steps. However, unlike words in a sentence, individual time steps
in time series data lack inherent semantic meaning. Therefore, ex-
tracting local semantic information becomes crucial for meaningful
analysis. Previous HARmethods often directly applied Transformer
to time series data. In contrast, we enhance locality and capture
subsequence-level semantic information by aggregating time into
subsequences, as shown in Figure 2(a).

Specifically, for an input time series data 𝒔 ∈ R𝐿×D, we first
segment each input into patches Patching(𝒔) ∈ R𝑁×𝑙×D of equal
size using a sliding window of width 𝑙 with a 50% overlap, where
Patching(·) denotes the patching operation and 𝑁 is the number
of patches. To address any shortfall in the last patch, we dupli-
cate the last value and pad it to the end of the original sequence.
Then the input data dimensions are mapped to a 𝑑-dimensional
Transformer latent space 𝒔𝑝 ∈ R𝑁×𝑙×𝑑 through a convolutional
backbone consisting of 1D-CNN layers and SiLU [10] activation
functions.

𝒔𝑝 = SiLU(CNN(Patching(𝒔))) (2)
We employ a standard Transformer [37] as our backbone net-

work, consisting of several Transformer blocks. We take the av-
erage along the length dimension of 𝒔𝑝 ∈ R𝑁×𝑙×𝑑 and adding
learnable positional encodings W𝑝𝑜𝑠 ∈ R𝑁×𝑑 to get the input
𝒔𝑑 = Avg(𝑠𝑝 ) +W𝑝𝑜𝑠 , where 𝒔𝑑 ∈ R𝑁×𝑑 denote the token which
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Figure 2: The framework of Time Series Encoder and Representation Conditional Discriminator.

will be fed into Transformer encoder. Positional encoding ensures
that each position in the input sequence has a unique identifier,
enabling the Transformer model to utilize attention mechanisms for
processing information from different positions. Then the stacked
Transformer blocks transform the input into hidden layer outputs
through a variety of modules, operating as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑂𝑢𝑡𝑝𝑢𝑡𝑡 = Self-Attention(𝒔𝑑𝑡−1)

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝑡 = LayerNorm1(𝒔𝑑𝑡−1 +𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑂𝑢𝑡𝑝𝑢𝑡𝑡 )
𝐹𝐹𝑁𝑂𝑢𝑡𝑝𝑢𝑡𝑡 = FFN(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝑡 )

𝒔𝑑𝑡 = LayerNorm2(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚𝑂𝑢𝑡𝑝𝑢𝑡𝑡 + 𝐹𝐹𝑁𝑂𝑢𝑡𝑝𝑢𝑡𝑡 )
(3)

Here, Self-Attention(·) denotes multi-head self-attention, which
efficiently simulates interdependencies between positions in the
time series, capturing critical temporal relationships. The Feedfor-
ward Neural Network FFN(·) enhances model expressiveness by
introducing non-linearity to better represent inputs at a higher level.
The normalization operation LayerNorm(·) helps alleviate the is-
sue of internal covariate shift, enhancing independence between
representations, thereby improving the robustness and training
efficiency of the network.

Finally, we take the average of the output from the last Trans-
former block 𝒛𝑑 ∈ R𝑁×𝑑 as the input time series representation
𝑓 𝑇 ∈ R𝑑 . Therefore, for an input 𝒔 ∈ R𝐿×D, we can obtain its
representation through the encoder 𝐺 (·) by.

𝑓 𝑇 = 𝐺 (𝑠) ∈ R𝑑 . (4)

3.4 Representation Conditional Discriminator
To enhance the capability of the time series encoder in capturing
richer semantic representations, we align video representations and
time series representations within the same representation space.
However, simply using Contrastive Learning [7] or Mean Squared
Error loss may lead to inaccuracies in model alignment. To address
this issue, we introduce a Representation Conditional Discriminator
(denoted by 𝐷 (·, ·)) to implicitly align video representations and
time series representations.

The Time Series encoder and the Representation Conditional
Discriminator respectively play the roles of the generator model
𝐺 and the discriminator model 𝐷 in the Conditional Generative
Adversarial Network (cGAN). cGAN [26] is a method for training
generative models. The generator 𝐺 is trained to produce outputs
that the discriminator 𝐷 cannot distinguish from “real” data. The
discriminator 𝐷 is trained to evaluate samples as accurately as pos-
sible, determining whether they originate from the training data
or are generated by 𝐺 . In our framework, the Time Series encoder
is utilized to map 𝑠𝑐 to 𝑓 𝑇𝑐 , where 𝑠𝑐 represents a time series sam-
ple belonging to the action category 𝑐 . The discriminator 𝐷 (𝑓 , 𝑐)
outputs a scalar indicating the probability that representation 𝑓 ,
under the condition of class 𝑐 , originates from the video rather than
𝐺 . The Time Series encoder𝐺 (·) learns to deceive the discrimina-
tor. The discriminator 𝐷 is trained to classify between fake tuples
{𝑓 𝑇𝑐 , 𝑐}, {𝑓 𝑉

𝑖
, 𝑐 |where 𝑖 ≠ 𝑐} and real tuples {𝑓 𝑉𝑐 , 𝑐}, as shown in

Figure 1. Both the generator 𝐺 and the discriminator 𝐷 are trained
simultaneously. Specifically, the parameters of 𝐺 are adjusted to
minimize log(1−𝐷 (𝐺 (𝑠𝑐 ), 𝑐)), while the parameters of 𝐷 are tuned
to minimize log𝐷 (𝑓 𝑉𝑐 , 𝑐) and log(1 − 𝐷 (𝑓 𝑉

𝑖
, 𝑐)). The objective of

the Representation Conditional Discriminator can be expressed as:

min
𝐺

max
𝐷

L𝑐𝐺𝐴𝑁 (𝐺, 𝐷) =E𝑓 𝑉𝑐 ,𝑐

[
log𝐷 (𝑓 𝑉𝑐 , 𝑐)

]
+

E𝑓 𝑉
𝑖
,𝑐

[
log(1 − 𝐷 (𝑓 𝑉𝑖 , 𝑐))

]
+

E𝑠𝑐 ,𝑐 [log(1 − 𝐷 (𝐺 (𝑠𝑐 ), 𝑐))]

(5)

Representation Conditional Discriminator adopts a fully con-
nected network with multiple residual blocks as its backbone, as
shown in Figure 2(b). Layer normalization is applied to the discrimi-
nated representations within each residual block. To distinguish rep-
resentation categories within discriminator, class-specific condition
𝑐 projections are introduced in each residual block. The inference
process of the discriminator at block 𝑡 is shown in Equation 6

𝐶 =𝑊
(𝑖 )
𝑡 (SiLU(Layernorm(𝑐))) + 𝑏 (𝑖 )𝑡

𝐹 =𝑊
( 𝑗 )
𝑡 (SiLU(Layernorm(𝑓𝑡−1))) + 𝑏 ( 𝑗 )𝑡

𝑓𝑡 =𝑊
(𝑘 )
𝑡 (SiLU(Layernorm(ConCat(𝐹,𝐶)))) + 𝑏 (𝑘 )𝑡

(6)
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Ultimately, the output of the last block undergoes LayerNorm [1],
SiLU [10], and a linear layer to serve as the final output, i.e., 𝐷 (𝑓 , 𝑐).

3.5 Representation Classifier
After extracting the representation of the time series using the
encoder, we employ a representation classifier 𝑔(·) to derive the
final classification results. The representation classifier comprises
three fully connected neural network layers with SiLU activation
and is trained with labeled samples. Assuming 𝒚 represents the
label, and �̂� = 𝑔(𝑓 ) is the probability distributions predicted by the
classifier, the training objective of the representation classifier is to
minimize the classification error by employing cross-entropy loss.

L𝐶𝐸 = −
∑︁
𝑖

𝒚𝑖 log(�̂�𝑖 ) (7)

3.6 Train the Vi2ACT model
3.6.1 Fine-tuning the Video Encoder. Although a pre-trained video
encoder can effectively extract action representations from videos,
directly using it for video representation extraction may result in
suboptimal performance due to significant disparities between the
pre-trained and generated videos. Therefore, we initially fine-tune
the pre-trained video encoder using the generated videos. Simulta-
neously, we optimize the above Representation classifier, employed
as the video encoder’s classifier, through cross-entropy loss. This
approach eliminates the need to train a representation classifier
from scratch while effectively classifying semantic representations.
In particular, for the generated video 𝑋𝑖 , we use the following loss
function for fine-tuning.

For the generated video segments 𝑓 𝑉𝑐 = F (𝑋𝑐 ), we utilize cross-
entropy loss to simultaneously optimize the video encoder and
representation classifier through the following formula.

L𝐶𝐸 = −
∑︁
𝑖

𝒚𝑖 log(𝑔(F (𝑋𝑖 ))) (8)

3.6.2 Training the Time Series Encoder and Representation Con-
ditional Discriminator. The encoder and discriminator are trained
following the Conditional Generative Adversarial Network (cGAN)
framework. For unlabeled data, we first use the time series encoder
𝐺 to extract time series representations, which are then fed into a
classification head to obtain pseudo-labels (e.g., 𝑐′) for the unlabeled
time series (e.g., 𝑠𝑐′ ). To jointly leverage labeled and unlabeled data
while mitigating the impact of noisy pseudo-labels, we utilize the
following loss function to optimize the time series encoder and
Representation Conditional Discriminator.

min
𝐺

max
𝐷

L𝑐𝐺𝐴𝑁 (𝐺, 𝐷) =E𝑓 𝑉𝑐 ,𝑐

[
log𝐷 (𝑓 𝑉𝑐 , 𝑐)

]
+

E𝑓 𝑉
𝑖
,𝑐

[
log(1 − 𝐷 (𝑓 𝑉𝑖 , 𝑐))

]
+

E𝑠𝑐 ,𝑐 [log(1 − 𝐷 (𝐺 (𝑠𝑐 ), 𝑐))] +
𝜆E𝑠𝑐′ ,𝑐′

[
log(1 − 𝐷 (𝐺 (𝑠𝑐′ ), 𝑐′))

]
(9)

Here, the hyperparameter 𝜆 ∈ (0, 1) is employed to achieve a bal-
ance between labeled and unlabeled data during training.

Table 1: Statistics of the datasets. The four columns represent
the number of users, the number of activities, the sensor type
(A = accelerometer, G = gyroscope, M = magnetometer)

Dataset Users Activity classes Sensor Type

UCI-HAR 30 6 A,G
HHAR 9 6 A,G

MotionSense 24 6 A,G
PAMAP2 9 12 A,G,M

4 EVALUATION
In this section, we extensively evaluate the proposed model based
on several publicly available HAR datasets.

4.1 Datasets
We consider four publicly available datasets that cover a wide va-
riety of device types and activity recognition tasks in different
environments. Table 1 provides a summary of the statistical infor-
mation for all four datasets. For data preprocessing, we only use
the acceleration, gyroscope and magnetometer sensing signals to
form the time series. Then we split the time series into segments of
equal window size as input. Each segment contains 500 data points
with 50% overlap. Following the literature [32, 40], we randomly
selecting 80% of the users to construct the training set, and the rest
for testing. The validation data is the unlabeled data in the training
set, which is used for generating pseudo-labels and fine-tuning the
model hyperparameters.

4.2 Baseline Algorithms
We compare the proposedmethodwith several state-of-the-art HAR
solutions including both supervised and semi-supervised methods.
The following are two fully supervised baseline algorithms.

• TCN [2]. TCN combines the best practices such as dilated
convolutions and residual connections with causal convolu-
tions for autoregressive prediction.

• ConformerHAR [17]. ConformerHAR introduces the state-
of-the-art (SOTA) model Conformer in the field of speech
recognition. Furthermore, they improved the performance
by incorporating CNN layers that excel at extracting local
representations effectively.

We also compare our method with mainstream semi-supervised
and unsupervised HAR algorithms as follows.

• FixMatch [35]. FixMatch is a semi-supervised learning frame-
work. It generates pseudo-labels for large amounts of unla-
beled data and then use these pseudo-labels, along with the
original labeled data, to train the model.

• SimCLR [7]. The idea of SimCLR is to learn useful features
through contrastive learning. The algorithm augments input
data with random transformations (such as flipping, crop-
ping, rotating, etc.) and uses a shared neural network to
extract features. It then uses a contrastive loss function to
encourage features between similar classes to be closer to-
gether, and features between dissimilar classes to be farther
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Table 2: Performance comparison with different HAR methods. In the table, “*” indicates a supervised learning algorithm, “+”
indicates a semi-supervised learning algorithm, “-” indicates an unsupervised learning algorithm.

Dataset UCI-HAR HHAR MotionSense PAMAP2

Model Shot Acc Recall F1 Acc Recall F1 Acc Recall F1 Acc Recall F1
∗ TCN 1 0.433 0.445 0.382 0.324 0.315 0.309 0.387 0.362 0.352 0.358 0.320 0.309
∗ ConformerHAR 1 0.488 0.465 0.423 0.364 0.366 0.351 0.455 0.422 0.413 0.363 0.330 0.319
− SimCLR 1 0.606 0.577 0.633 0.506 0.498 0.488 0.563 0.561 0.553 0.469 0.446 0.433
− MDC 1 0.729 0.713 0.719 0.682 0.682 0.680 0.727 0.711 0.709 0.641 0.624 0.622
+ FixMatch 1 0.629 0.630 0.620 0.526 0.540 0.512 0.582 0.551 0.533 0.566 0.542 0.538
+ TS2ACT 1 0.758 0.757 0.758 0.711 0.701 0.703 0.747 0.744 0.743 0.692 0.697 0.676
Ours 1 0.782 0.781 0.780 0.755 0.754 0.743 0.761 0.753 0.750 0.733 0.725 0.721
∗ TCN 5 0.567 0.566 0.493 0.432 0.422 0.416 0.472 0.430 0.421 0.520 0.468 0.471
∗ ConformerHAR 5 0.613 0.612 0.611 0.499 0.482 0.348 0.533 0.491 0.483 0.612 0.602 0.601
− SimCLR 5 0.636 0.632 0.631 0.546 0.540 0.492 0.598 0.594 0.569 0.631 0.624 0.620
− MDC 5 0.742 0.744 0.741 0.706 0.704 0.707 0.728 0.716 0.708 0.703 0.672 0.678
+ FixMatch 5 0.676 0.661 0.611 0.619 0.614 0.615 0.652 0.638 0.635 0.665 0.665 0.639
+ TS2ACT 5 0.835 0.810 0.811 0.752 0.745 0.747 0.773 0.760 0.756 0.780 0.764 0.763
Ours 5 0.856 0.833 0.829 0.785 0.762 0.768 0.822 0.813 0.809 0.860 0.854 0.851
∗ TCN 10 0.748 0.721 0.720 0.532 0.522 0.515 0.689 0.630 0.616 0.612 0.583 0.563
∗ ConformerHAR 10 0.795 0.774 0.775 0.668 0.589 0.576 0.731 0.716 0.705 0.712 0.718 0.696
− SimCLR 10 0.810 0.798 0.796 0.718 0.706 0.708 0.762 0.733 0.734 0.759 0.735 0.741
− MDC 10 0.825 0.834 0.832 0.749 0.735 0.740 0.732 0.722 0.725 0.806 0.791 0.795
+ FixMatch 10 0.848 0.856 0.854 0.766 0.768 0.766 0.788 0.723 0.720 0.772 0.756 0.750
+ TS2ACT 10 0.916 0.914 0.912 0.822 0.814 0.813 0.874 0.869 0.852 0.901 0.892 0.899
Ours 10 0.921 0.916 0.918 0.865 0.855 0.854 0.902 0.889 0.891 0.922 0.913 0.912
∗ TCN 20 0.821 0.811 0.807 0.719 0.720 0.684 0.792 0.753 0.749 0.721 0.675 0.667
∗ ConformerHAR 20 0.845 0.843 0.841 0.745 0.688 0.652 0.833 0.819 0.802 0.772 0.760 0.752
− SimCLR 20 0.852 0.862 0.859 0.758 0.754 0.753 0.809 0.742 0.753 0.809 0.794 0.791
− MDC 20 0.864 0.859 0.858 0.755 0.756 0.757 0.768 0.751 0.755 0.846 0.832 0.833
+ FixMatch 20 0.885 0.883 0.880 0.822 0.826 0.824 0.854 0.830 0.813 0.852 0.837 0.839
+ TS2ACT 20 0.924 0.922 0.921 0.887 0.886 0.888 0.926 0.917 0.916 0.943 0.936 0.941
Ours 20 0.933 0.930 0.929 0.913 0.905 0.906 0.941 0.936 0.931 0.955 0.943 0.949
∗ TCN Fully 0.923 0.921 0.920 0.915 0.915 0.913 0.909 0.891 0.876 0.935 0.926 0.923
∗ ConformerHAR Fully 0.965 0.963 0.963 0.942 0.931 0.932 0.943 0.939 0.935 0.964 0.952 0.957
− SimCLR Fully 0.927 0.927 0.925 0.918 0.916 0.915 0.915 0.910 0.896 0.945 0.942 0.942
− SSL Fully 0.906 0.897 0.895 0.822 0.797 0.786 0.915 0.898 0.901 NUL NUL NUL
− MDC Fully 0.901 0.875 0.864 0.903 0.867 0.885 0.878 0.865 0.851 0.892 0.883 0.886
+ FixMatch Fully 0.924 0.923 0.922 0.914 0.908 0.906 0.913 0.912 0.912 0.942 0.935 0.933
+ TS2ACT Fully 0.941 0.939 0.939 0.933 0.934 0.933 0.944 0.936 0.937 0.971 0.959 0.964
Ours Fully 0.958 0.946 0.947 0.952 0.946 0.942 0.967 0.962 0.963 0.979 0.967 0.968

apart. After unsupervised training, we only keep the back-
bone network and freeze its parameters. We further train a
two-layer fully connected network as a classifier using the
same amount of labeled samples.

• Self-supervised Learning (SSL) [32]. Self-supervised learn-
ing predicts time series transformations by training eight
proxy tasks. After self-supervised training, they freeze the
model parameters and use the labeled data to train a neural
network classification head for HAR.

• Multi-Task Deep Clustering (MDC) [24]. Multi-task deep
clustering uses an autoencoder to get the feature. The K-
means clustering algorithm is then applied to divide the
dataset into different groups for generating pseudo-labels.
Finally, a DNN is further trained for HAR.

4.3 Implementation Details
We implement the proposed Vi2ACT using Python and Pytorch.
Following the literature [40], we employ 6 Transformer blocks



Vi2ACT:Video-enhanced Cross-modal Co-learning with Representation Conditional Discriminator for Few-shot Human Activity RecognitionMM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

W
alk

ing

W
alk

ing
_u

pst
air

s

W
alk

ing
_d

ow
nst

air
s

Sitti
ng

Stan
din

g
Lyin

g

Predicted Label

Walking

Walking_upstairs

Walking_downstairs

Sitting

Standing

Lying

Tr
ue

 L
ab

el

0.95 0.018 0.028 0 0 0

0.047 0.89 0.059 0 0 0

0.04 0.007 0.95 0 0 0

0 0.004 0 0.85 0.13 0.014

0 0 0 0.13 0.87 0

0 0 0 0 0 1

TS2ACT on UCI dataset

Biki
ng

Sitti
ng

Stai
r_u

p

Stai
r_d

ow
n

Stan
din

g

W
alk

ing

Predicted Label

Biking

Sitting

Stair_up

Stair_down

Standing

Walking

Tr
ue

 L
ab

el

0.92 0.010 0.008 0.009 0.044 0.006

0.003 0.88 0.001 0 0.12 0

0.006 0 0.94 0.026 0.001 0.026

0.009 0 0.042 0.93 0 0.019

0.019 0.11 0 0 0.87 0

0.002 0 0.035 0.006 0 0.96

TS2ACT on HHAR dataset

Dow
nst

air
s

Jog
gin

g
Sitti

ng

Stan
din

g

Upst
air

s

W
alk

ing

Predicted Label

Downstairs

Jogging

Sitting

Standing

Upstairs

Walking

Tr
ue

 L
ab

el

0.7 0.052 0.033 0.004 0.11 0.11

0.007 0.97 0 0 0.011 0.007

0 0 1 0 0.002 0

0.002 0 0 0.99 0 0.004

0.059 0.004 0 0.061 0.86 0.011

0.002 0 0 0.002 0.083 0.91

TS2ACT on MotionSense dataset

W
alk

ing

W
alk

ing
_u

pst
air

s

W
alk

ing
_d

ow
nst

air
s

Sitti
ng

Stan
din

g
Lyin

g

Predicted Label

Walking

Walking_upstairs

Walking_downstairs

Sitting

Standing

Lying

Tr
ue

 L
ab

el

0.96 0.014 0.022 0 0 0

0.028 0.96 0.017 0 0 0

0.029 0.002 0.97 0 0 0

0 0.004 0 0.88 0.1 0.012

0 0 0 0.11 0.89 0

0 0 0 0 0 1

Ours on UCI dataset

Biki
ng

Sitti
ng

Stai
r_u

p

Stai
r_d

ow
n

Stan
din

g

W
alk

ing

Predicted Label

Biking

Sitting

Stair_up

Stair_down

Standing

Walking

Tr
ue

 L
ab

el

0.93 0.008 0.007 0.009 0.04 0.005

0.003 0.89 0.001 0 0.11 0

0.006 0 0.97 0.005 0 0.023

0.006 0 0.02 0.96 0 0.018

0.017 0.088 0 0 0.89 0

0.001 0 0.027 0.004 0 0.97

Ours on HHAR dataset

Dow
nst

air
s

Jog
gin

g
Sitti

ng

Stan
din

g

Upst
air

s

W
alk

ing

Predicted Label

Downstairs

Jogging

Sitting

Standing

Upstairs

Walking

Tr
ue

 L
ab

el

0.83 0.044 0.015 0 0.011 0.096

0.007 0.98 0 0 0.007 0.007

0 0 1 0 0 0

0 0 0 1 0 0

0.024 0 0 0.024 0.94 0.009

0.002 0 0 0.002 0.058 0.94

Ours on MotionSense dataset

Figure 3: Confuse matrix of TS2ACT and Our method on different datasets (with 1% labeled samples).

with the number of heads and the dimension 𝑑 set to 16 and 512,
respectively. We employ the Adam optimizer for both fine-tuning
the video encoder andmodel training stages. During the fine-tuning
stage, the learning rate for the video encoder F is set to 0.000001,
while the learning rate for the representation classifier 𝑔 is set to
0.0005. In the model training stage, the learning rates for the time
series encoder 𝐺 and Representation Conditional Discriminator
𝐷 are both set to 0.0005. The hyperparameter 𝜆 for balancing the
training of labeled and unlabeled data in Eq. 9 is set to 0.01 by default.
In the hyperparameter analysis section, we will provide a detailed
discussion of our hyperparameter settings. The experiments were
conducted on a personal computer equipped with Intel(R) Core(TM)
i7-12700 CPU@4.90 GHz 20 cores, an NVIDIA GeForce RTX 3090Ti
graphics card and 32GB RAM.

4.4 Comparison with State-of-the-Arts
We compare Vi2ACT with existing work on four commonly used
HAR datasets, as shown in Table 2. Vi2ACT exhibits a substantial
advantage over other baseline models in all scenarios with lim-
ited samples. Even when utilizing the entire set of labeled samples,

competitive results are consistently achieved. Furthermore, Vi2ACT
significantly outperforms the other two supervised algorithms, TCN
and ConformerHAR. Additionally, Vi2ACT outperforms other semi-
supervised and unsupervised representation learning approaches,
indicating its superior ability to leverage video representations
for enhancing the model’s acquisition of semantic representations
compared to alternative semi-supervised learning methods. Simul-
taneously, Vi2ACT addresses the gap between unsupervised pre-
training tasks and downstream inference tasks. From the experi-
mental results using fully dataset, Vi2ACT demonstrates its efficacy
both in effectively mining semantic representations from temporal
data with a limited number of labeled samples and in further en-
hancing the semantic classification capability of the encoder with
a substantial number of labeled samples.

4.5 Confusion Matrix
The accuracy for each class is illustrated in the Figure 3. Vi2ACT
demonstrates remarkable performance across the three datasets,
achieving up to 98% accuracy in specific classes and even reaching
100% accuracy. Furthermore, Vi2ACT exhibits enhanced ability
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Table 3: Performance comparison of aligning representations using different methods

UCI-HAR HHAR MotionSense PAMAP2

Alignment Method Acc Recall F1 Acc Recall F1 Acc Recall F1 Acc Recall F1

Euclidean distance 0.913 0.908 0.905 0.917 0.907 0.907 0.928 0.910 0.912 0.947 0.936 0.933
Contrastive Learning 0.936 0.933 0.928 0.928 0.926 0.925 0.944 0.938 0.936 0.965 0.950 0.953
Representation Conditional Discriminator 0.958 0.946 0.947 0.952 0.946 0.942 0.967 0.962 0.963 0.979 0.967 0.968

Table 4: Performance comparison with different prompt designs, where [class] denotes the class token.

UCI-HAR HHAR MotionSense PAMAP2

Prompts Acc Recall F1 Acc Recall F1 Acc Recall F1 Acc Recall F1

a video of [class] 0.913 0.905 0.903 0.881 0.883 0.882 0.897 0.861 0.852 0.906 0.896 0.903
an action video of [class] 0.931 0.928 0.926 0.934 0.920 0.921 0.923 0.916 0.918 0.937 0.922 0.921
a man is [class] 0.958 0.946 0.947 0.952 0.946 0.942 0.967 0.962 0.963 0.979 0.967 0.968

Table 5: The depth of Rep-
resentation Conditional Dis-
criminator.

# Blocks Acc Recall F1

3 0.935 0.921 0.922
6 0.967 0.962 0.963
12 0.954 0.951 0.950
18 0.956 0.948 0.946

Table 6: The width of Rep-
resentation Conditional Dis-
criminator.

HiddenDim Acc Recall F1

128 0.917 0.908 0.907
256 0.944 0.930 0.928
512 0.967 0.962 0.963
1024 0.963 0.961 0.961

Table 7: Number of generated
videos

# Videos Acc Recall F1

25 0.931 0.915 0.912
100 0.963 0.958 0.955
500 0.967 0.962 0.963
700 0.968 0.963 0.963

Table 8: Hyperparameter 𝜆.

𝜆 Acc Recall F1

0.005 0.902 0.887 0.874
0.01 0.967 0.962 0.963
0.05 0.829 0.812 0.801
0.1 0.734 0.710 0.708

in discriminating between "Walking downstairs" and "Walking
upstairs," thereby effectively mitigating the drawbacks associated
with image semantic representation guidance.

4.6 Effectiveness of RCD
To validate the effectiveness of our proposed Representation Condi-
tional Discriminator 𝐷 , we compare its performance with directly
using the Euclidean distance (i.e., replacing 𝐷 with mean square
error loss function) and contrastive learning (i.e., replacing 𝐷 with
contrastive loss function). The results are summarized in the Ta-
ble 3. It can be observed that due to the lack of strict one-to-one
correspondence between time series and video, our method can
more effectively align these two modalities.

4.7 Analysis of Different Prompts
We present three prompts templates for Vi2ACT in Table 4, which
include “a video of [class] ”, “an action video of [class]” and “a
man is [class]”. We evaluate the model’s inference performance
across videos generated with different prompts. For each prompt,

we conduct 10 evaluations using all labeled data and compute the
average accuracy. The difference in prompt will also lead to per-
formance variance, among which “a man is [class]” has the best
performance. Therefore, we use the prompt “a man is [class]” in
our model training.

4.8 Hyperparameter Analysis
We conduct experiments with different hyperparameters, and the
results are shown in Tables 5 6 7 and 8. It is worth noting that a
deeper Representation Conditional Discriminator does not neces-
sarily lead to better performance, as excessively deep networks
may cause overfitting. Additionally, the performance of Vi2ACT
improves as the number of generated videos increases, and the
model performance almost converges when using 500 videos. This
validates our proposal of using rich video representations to en-
hance the time series encoder. Finally, setting 𝜆 to 0.01 achieves a
good balance between labeled and unlabeled data.

5 CONCLUSION
In this paper, we propose a video-enhanced cross-modal co-learning
method, Vi2ACT, to achieve few-shot HAR. We introduce a new
data augmentation approach that utilizes a text-to-video genera-
tion model to generate class-related videos. Subsequently, a large
quantity of video semantic representations are obtained through
fine-tuning the video encoder for cross-modal co-learning. Further-
more, to effectively align video semantic representations and time
series representations, we design a novel Representation Condi-
tional Discriminator to enhance HAR at the representation level.
Finally, we conduct extensive experiments to demonstrate the ef-
fectiveness of our method.
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