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Abstract

High-dimensional imaging of neural activity, such
as widefield calcium and functional ultrasound
imaging, provide a rich source of information for
understanding the relationship between brain ac-
tivity and behavior. Accurately modeling neural
dynamics in these modalities is crucial for under-
standing this relationship but is hindered by the
high-dimensionality, complex spatiotemporal de-
pendencies, and prevalent behaviorally irrelevant
dynamics in these modalities. Existing dynamical
models often employ preprocessing steps to ob-
tain low-dimensional representations from neural
image modalities. However, this process can dis-
card behaviorally relevant information and miss
spatiotemporal structure. We propose SBIND,
a novel data-driven deep learning framework to
model spatiotemporal dependencies in neural im-
ages and disentangle their behaviorally relevant
dynamics from other neural dynamics. We vali-
date SBIND on widefield imaging datasets, and
show its extension to functional ultrasound imag-
ing, a recent modality whose dynamical modeling
has largely remained unexplored. We find that our
model effectively identifies both local and long-
range spatial dependencies across the brain while
also dissociating behaviorally relevant neural dy-
namics. Doing so, SBIND outperforms existing
models in neural-behavioral prediction. Overall,
SBIND provides a versatile tool for investigating
the neural mechanisms underlying behavior using
imaging modalities.
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1. Introduction
Recent advances in neuroimaging techniques, such as wide-
field calcium and functional ultrasound imaging, have pro-
vided unprecedented access to high-dimensional neural data
that can measure the brain at larger spatial scales than tra-
ditional electrophysiological modalities (Macé et al., 2011;
Musall et al., 2019; Benisty et al., 2022). These imag-
ing techniques are increasingly central to modern neuro-
science, offering complementary insights to electrophys-
iological recordings by enabling the study of large-scale
network dynamics, distributed neural representations, and
functional connectivity, which is critical for understand-
ing cognition and complex behavior (Cardin et al., 2020;
Mace et al., 2018). Widefield calcium imaging utilizes flu-
orescent indicators to monitor calcium influx in neurons,
capturing mesoscale neural activity across a large expanse
of the cortical surface with relatively high temporal resolu-
tion compared to other neural imaging modalities (Musall
et al., 2019; Ren & Komiyama, 2021; Nietz et al., 2023).
Functional ultrasound, on the other hand, detects changes
in cerebral blood volume, which are correlated with both
single-neuron activity and local field potentials, offering
wider spatial coverage and a less invasive approach com-
pared to electrophysiological implants, with great potential
for brain-computer interfaces (BCIs) (Nunez-Elizalde et al.,
2022; Griggs et al., 2024; Rabut et al., 2024).

Despite the rich spatial and temporal information that these
imaging modalities can provide as well as their potential
application in BCIs, fully capturing their complex spatiotem-
poral dynamics and their link to observed behavior has re-
mained elusive due to several challenges (Dinsdale et al.,
2022). Specifically, these modalities are high-dimensional
and have spatiotemporal patterns that are complex and in-
clude both local and global dependencies. Furthermore,
these patterns also contain prevalent behavior-irrelevant
components. Hence, developing new methods that address
the distinct challenges of neural imaging data to accurately
model such datasets is crucial to both investigate brain-
behavior links and enable their use as new modalities in
BCIs (Norman et al., 2021; Griggs et al., 2024).

To analyze these high-dimensional neural imaging datasets,
existing work often employ an initial dimensionality re-
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duction step in the form of preprocessing before behavior
decoding or latent state modeling. This step may utilize
unsupervised methods such as principal component analysis
(PCA) (Musall et al., 2019), or rely on pre-defined regions
of interest (ROIs) in the brain (Saxena et al., 2020; Wang
et al., 2020). These preprocessed low-dimensional features
are then used in modeling, for example, to investigate neural-
behavioral relationships in widefield calcium imaging data
(Batty et al., 2019; Whiteway et al., 2021; Benisty et al.,
2024; Wang et al., 2024) or to decode movement intentions
from functional ultrasound data (Griggs et al., 2024). While
computationally efficient, these preprocessing approaches
may discard spatiotemporal information and inadvertently
remove behaviorally relevant dynamics, limiting the ability
to fully capture the complex spatiotemporal patterns that
link neural activity to behavior.

Further complicating this problem, neural recordings often
contain a vast amount of information that does not relate
to a specific behavior of interest (Sani et al., 2021; Stringer
et al., 2019; de Vries et al., 2020; Hasnain et al., 2023;
Vahidi et al., 2024). This is especially the case for neural
imaging modalities because they cover a large spatial scale
in the brain, including many regions (Musall et al., 2019;
Whiteway et al., 2021). Thus, a challenge in modeling neu-
ral activity is to disentangle behaviorally relevant neural
dynamics from other ongoing processes in the brain (Sani
et al., 2021). Indeed, traditional unsupervised learning meth-
ods for modeling neural activity may not optimally extract
the behaviorally relevant neural components and may mix
them with other neural components. To address this chal-
lenge, recent studies have jointly used neural and behavioral
data during model training, leading to more accurate infer-
ence of behaviorally relevant neural dynamics (Sani et al.,
2021; Hurwitz et al., 2021; Schneider et al., 2023; Gondur
et al., 2024; Sani et al., 2024; Wang et al., 2024; Oganesian
et al., 2024; Vahidi et al., 2025). Some of these works have
employed dynamical models, which model the temporal
evolution of time-series data in terms of a latent state. How-
ever, neural-behavioral models have either not focused on
neural imaging modalities or used a preprocessing step as
noted above.

Contributions To address the above limitations, we pro-
pose SBIND (Spatiotemporal modeling of Behavior in Imag-
ing Neural Data), a novel deep learning framework for dy-
namical modeling of complex local and global spatiotempo-
ral patterns in neural imaging data and disentangling their
behaviorally relevant components. SBIND utilizes convo-
lutional recurrent neural networks (ConvRNNs) to capture
local short-range spatiotemporal dependencies and com-
bines them with self-attention that is integrated into the
dynamics to capture global spatiotemporal dependencies in
the original image data. Moreover, to disentangle behav-
iorally relevant dynamics in these local and global patterns,

we devise a two-phase learning approach, where one Con-
vRNN first learns the behaviorally relevant dynamics, and
then a subsequent ConvRNN captures other neural dynam-
ics. To our knowledge, SBIND is the first neural-behavioral
dynamical model to learn directly from raw widefield and
functional ultrasound imaging data, without relying on pre-
processing. Also, our work demonstrates the first dynamical
latent modeling of functional ultrasound modality. We show
that SBIND achieves superior performance in both behav-
ior decoding and neural prediction for widefield imaging
and functional ultrasound imaging data compared to other
neural-behavioral models. Also, SBIND can learn neural
dynamics in datasets with various behavior distributions,
such as continuous, categorical, and intermittently recorded
behavior.

2. Related Work
When working with widefield imaging data, preprocessing
in the form of dimensionality reduction is almost always
employed to obtain low-dimensional representations from
raw widefield images. These methods can be broadly cate-
gorized into two families: (1) Unsupervised dimensionality
reduction, where methods like PCA or Independent Com-
ponent Analysis are used to reduce the data dimensionality
before further neural modeling (Musall et al., 2019; Nietz
et al., 2023; West et al., 2024; Scaglione et al., 2024). How-
ever, these unsupervised techniques can discard the spatial
dependencies between brain regions inherent in widefield
data. (2) ROI-based methods, which leverage brain atlases
to incorporate spatial information during dimensionality re-
duction (Mishne et al., 2018; Liu et al., 2019; Wang et al.,
2020). A popular example in the second family is LocaNMF
(Saxena et al., 2020), which is frequently used in modeling
widefield data (Batty et al., 2019; Wang et al., 2024). In
functional ultrasound imaging (fUSI), while the literature is
more limited, unsupervised techniques such as PCA have
been used before decoding movement intentions from these
neural images (Norman et al., 2021; Griggs et al., 2024).

These dimensionality reduction methods are often optimized
to extract features that capture maximum variance in neural
images, sometimes incorporating auxiliary losses to account
for spatial information, such as in LocaNMF. Current meth-
ods then utilize these extracted features for dynamical mod-
eling (Batty et al., 2019; Wang et al., 2024; Benisty et al.,
2024; Karniol-Tambour et al., 2024) . However, a common
drawback of this approach for dynamical modeling is that
spatial information may be lost during feature extraction;
furthermore, dimensionality reduction is performed without
considering the behavior of interest, which can lead to miss-
ing crucial behavior-related information in neural imaging
data. Our approach addresses these limitations by 1) directly
modeling the raw neural image data, capturing both local
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and global spatiotemporal dependencies through ConvRNN
and self-attention mechanisms, and 2) learning the dynami-
cal model jointly with neural images and behavioral data to
disentangle behaviorally relevant image dynamics.

Outside the neural imaging domain and primarily for mod-
eling electrophysiological neural modalities, various unsu-
pervised learning methods have been developed to capture
neural dynamics agnostic to behavior (Pandarinath et al.,
2018; Le & Shlizerman, 2022; Wang et al., 2023; Li et al.,
2024; Lu et al., 2025; Abbaspourazad et al., 2024). For
example, STNDT (Le & Shlizerman, 2022) models spa-
tiotemporal structure in Poisson-distributed spiking activity
using a Transformer architecture. However, these unsuper-
vised methods neither incorporate image priors nor aim to
dissociate behaviorally relevant dynamics.

To learn behaviorally relevant neural dynamics, recent stud-
ies have developed neural-behavioral models that jointly
consider neural activity and behavior during learning (Sani
et al., 2021; Hurwitz et al., 2021; Schneider et al., 2023;
Sani et al., 2024; Wang et al., 2024; Oganesian et al., 2024).
A method termed PSID (Sani et al., 2021) dissociates behav-
iorally relevant neural dynamics within a linear dynamical
system model. A recent method named CEBRA (Schneider
et al., 2023) extracts latent embeddings using a learning
framework that incorporates behavioral supervision through
a contrastive loss. Another recent method termed DPAD
(Sani et al., 2024) learns a dynamical model in the form
of a two-section RNN that dissociates behaviorally rele-
vant dynamics by incorporating an optimization stage fo-
cused solely on behavior prediction, while having subse-
quent stages learn other neural dynamics. Other methods
such as BeNeDiff (Wang et al., 2024), TNDM (Hurwitz
et al., 2021), and DFINE (Abbaspourazad et al., 2024) use a
combined loss that incorporates both behavior and neural re-
construction to fit their dynamics. There are also multimodal
methods such as mm-GP-VAE (Gondur et al., 2024) that
fuse neural and behavioral data for behavior reconstruction,
unlike the above neural-behavioral methods that only use
the neural data for latent and behavior inference. Although
effective, these methods either do not explicitly consider
an image prior for the observed neural activity or do not
directly address neural imaging data. Therefore, they may
struggle in learning spatial information when raw image
data is passed to the model.

Our method also jointly considers the neural-behavioral
data during model training and disentangles behaviorally
relevant neural dynamics. However, unlike the above neural-
behavioral approaches that are not designed for raw neural
images, our method integrates spatial priors directly into
the model to capture both local and global information from
raw neural images with image distributions. We show that
this leads to more accurate neural-behavioral prediction for

neural imaging modalities.

3. Methods
3.1. SBIND Model

Problem Formulation. Figure 1 demonstrates the SBIND
architecture. Neural activity (Yk ∈ Rny×H×W ) and si-
multaneously recorded behavior (zk ∈ Rnz ) are modeled
as observations generated by a dynamical system with la-
tent states (Xg

k ∈ Rnx×H′×W ′
). The generative model is

defined as: 
Xg

k+1 = fg
A(Xg

k) +wk

Yk = Cg(Xg
k) + vk

zk = Dg(Xg
k) + ϵk

(1)

where Xg
k represents the latent state at time k, modeled

as a spatiotemporal representation in the form of a 3 di-
mensional (3D) latent volume characterized by its depth
(number of channels, nx), height (H ′), and width (W ′).
wk ∈ Rnx×H′×W ′

represents the noise affecting the latent
state dynamics, and vk ∈ Rny×H×W and ϵk ∈ Rnz are the
observation noises for neural images and behavior, respec-
tively. Here, H and W are the height and width of the input
neural images, ny is the number of input image channels
(ny = 1 in all the experiments, but here included for gener-
ality of the formulation), and nz is the dimensionality of the
behavior vector.

Given this dynamical system, we can infer the latent state
from neural observations Yk using an RNN as follows:

Xk+1 = fA(Xk) +K(Yk)

Ŷk = C(Xk)
ẑk = D(Xk)

(2)

The RNN is parameterized by fA (recurrence) and K (en-
coder); it estimates the latent state Xk+1, given the past
neural images {Y1, . . . ,Yk}. This latent state encapsulates
all observed information up to time k. The predicted neural
image at time k, Ŷk, is derived from Xk via the neural
decoder C(·), while the decoded behavior ẑk is obtained
using the behavior decoder D(·).

Model Parameterization and Design. Our model is con-
structed using four key mappings that serve distinct roles
in capturing the relationship between neural images and
behavior: fA(·) describes the latent state recursion. the
encoder, K(·), maps the observed neural images into this
latent representation. The decoders, C(·) and D(·), map
the latent state to the corresponding neural and behavior
observation spaces, respectively.

The mappings C, D, and K are all parameterized by con-
volutional layers. This choice is motivated by the inherent
spatial structure in the neural image data. Convolutional lay-
ers are well-suited for hierarchically capturing local spatial
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Figure 1. (a) A schematic representation of SBIND for jointly modeling neural image and behavior data. SBIND uses two ConvRNNs to
learn behaviorally relevant neural dynamics (ConvRNN1) and behaviorally irrelevant neural dynamics (ConvRNN2) by separating the
latent states into two subsets, X(1)

k and X
(2)
k , respectively. (b) The recurrence function, f (1)

A (.) in ConvRNN1 captures both spatial and
temporal dependencies by applying a convolutional layer that captures local information followed by self-attention on patches of the latent
state images to learn global spatial information. f (2)

A (.) applies a similar function to X
(2)
k using a different set of parameters. The neural

encoders are shallow convolutional networks designed to locally process the input images and downsample them into lower-dimensional
latent representations. The behavior decoder predicts the behavior time-series based on the behaviorally relevant latent X(1)

k+1, while the
neural decoder uses both the behaviorally relevant and irrelevant latent states, X(1)

k+1 and X
(2)
k+1, to predict the neural image time-series.

dependencies and features in such data (LeCun et al., 1998).
Specifically, K utilizes a few nonlinear convolutional layers
to downsample the neural images and extract local features.
The neural decoder C uses convolutional layers to upsample
and transform the latent representation back to the original
image space to predict the neural images one-step into the
future. For D, convolutional layers decode behavior from
the latent representation, with additional fully connected
layers incorporated to decode continuous behavioral data
that may not have a spatial structure.

The recursion function, fA(·), is formulated as fA(.) =
GlobalAttn(A∗(.)), where GlobalAttn represents the self-
attention mechanism, ∗ indicates the convolution operator,
and A is a set of convolutional kernels. fA(·) is designed
to capture spatiotemporal dependencies in the latent state
dynamics not only locally but also globally. To do so, it
utilizes a convolutional layer, A, to aggregate local features
in the latent states. To additionally capture global context,
a self-attention mechanism is incorporated (Vaswani et al.,
2017). Within each time step, we divide the latent state im-
age, Xk, into patches, {xk,1,xk,2, ...,xk,M}, where each

patch xk,i has dimensions nx × P × P and approximately
represents features from a specific region of the brain (Fig-
ure 1b). Multi-head self-attention is then applied across
these patches, allowing the model to learn spatial relation-
ships between different regions (See details in Appendix
A.1.2). Thus, as part of fA, the self-attention mechanism
calculates spatial dependencies within each time step on the
latent images, while the temporal dependencies are handled
by the recurrent application of the entire fA function (Equa-
tion 2). This combination of convolutional and self-attention
layers constitutes the recursion function, fA(Xk), which
is summed with the encoded neural image from the current
step, K(Yk), to obtain Xk+1. This enables the model to
learn temporal dynamics as well as both local and global
spatial patterns in neural image time-series data.

3.2. Neural and Behavioral Loss Functions and
Distributions

We use one-step-ahead behavior decoding and neural image
prediction losses to fit the parameters of the model. For neu-
ral prediction, we use a combination of L1, L2, and gradient
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difference loss (GDL) (Mathieu et al., 2016). The GDL loss
encourages the preservation of local image structure and im-
proves the accuracy and structural fidelity of the predicted
neural images (See formulation in Appendix A.1.3).

SBIND is designed to handle various behavioral data
types, including continuous, categorical, and intermittently
recorded behavior. This is achieved by modifying the train-
ing process and behavior loss. For Gaussian and categorical
distributions, mean squared error (MSE) and cross-entropy
losses are used, respectively, across time points. Moreover,
in cases of intermittently recorded behavior, where behav-
ior observations are sparse or missing, during training, our
model utilizes a masked behavior loss to account for the
missing observations while learning the latent representa-
tions from neural images as usual. Note, during inference,
only neural images are used for inference of latents and
decoding of behavior. Further details regarding the specific
loss functions employed for each scenario are provided in
Appendix A.1.3.

3.3. Dynamical Model Architecture and Learning

To effectively disentangle behaviorally relevant neural dy-
namics from other neural dynamics, we construct a model
architecture consisting of two ConvRNNs, each integrated
with self-attention mechanisms. To learn the model, we
dedicate the latents of ConvRNN1 to capturing the behav-
iorally relevant dynamics to optimize behavior decoding
and the latents of ConvRNN2 to finding the other neural
dynamics to optimize neural prediction. We learn these
two parts of our model sequentially for simpler interpreta-
tion and separation of the latents (Sani et al., 2024), though
it is straightforward to learn them simultaneously with a
combined neural-behavioral loss.

Behaviorally Relevant Dynamics. The first ConvRNN in-
tegrated with self-attention mechanisms focuses on finding
the behaviorally relevant latents, decoding behavior, and
capturing the corresponding neural dynamics. This Con-
vRNN is parameterized by f

(1)
A (·), K(1)(·), C(1)(·), and

D(1)(·). In the first phase of learning, f (1)
A (·), K(1)(·), and

D(1)(·) are optimized to minimize the error in predicting
behavior from the neural activity. This allows the model
to learn a latent state representation, denoted as X(1)

k , that
captures the behaviorally relevant neural dynamics. Also,
C(1)(·) is optimized to reconstruct the neural images from
the learned behaviorally relevant states, X(1)

k .

Other Neural Dynamics. The second ConvRNN integrated
with self-attention mechanisms focuses on learning the re-
maining neural dynamics that are not captured by the first
ConvRNN. This ConvRNN is parameterized by f

(2)
A (·),

K(2)(·), and C(2)(·). It takes as input the neural images,
as well as the behaviorally relevant states from the first

ConvRNN, X(1)
k , as fixed values. In the second phase of

learning, f (2)
A (·), K(2)(·), and C(2)(·) are optimized to

minimize the error in predicting the neural image dynamics
from both X

(1)
k and X

(2)
k . Doing so allows X(2)

k to capture
neural image patterns not already captured by X

(1)
k . This

process cleanly separates the behaviorally relevant latents
X

(1)
k from other latents X(2)

k .

The full inference model and learning details are formulated
in Appendix A.1.1 and Appendix A.1.4, respectively.

3.4. Metrics and Evaluation

After training the model, we compute the one-step-ahead
predictions of neural images and behavior on the test set
using Equation 2 based only on neural image data. We use 5-
fold cross-validation for widefield calcium imaging datasets
and 10-fold cross-validation for each fUSI session. We
report several metrics depending on the nature of the task.
For neural prediction, we compute the MSE and coefficient
of determination (R2) between the predicted and observed
neural images for one-step-ahead prediction. For behavior
decoding, we use different metrics based on the type of
behavioral data. We compute the MSE for one-step-ahead
decoding of continuous behavioral data. For categorical
data, we report accuracy and Area Under the Curve (AUC),
and for imbalanced datasets, we use the F1-score.

(a) (b)

nose
(c)

eye
paw

0.0 1.7 3.3 5.0
Time (s)

face

left handle
(d)

right handle
left spout

0.0 1.7 3.3 5.0
Time (s)

right spout

Figure 2. (a) Behavior videos recorded from a head-fixed mouse
reporting the spatial position of visual or auditory stimuli. (b) Ex-
ample widefield neural image. (c) Extracted continuous behavior
from ROIs in behavior videos for dataset WFCI 1. (d) Behavior as
4 binary traces for dataset WFCI 2.
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(b)(a)
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cuefixation
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Figure 3. (a) samples frames of fUSI dataset. (b) Memory-guided
saccade task timeline. The monkey fixated, viewed a brief periph-
eral cue (2 or 8 locations), maintained fixation during a memory
period, and then made a saccade to the remembered target location.

4. Experiments
4.1. Experimental Details

4.1.1. DATASETS

We evaluate our model on three different neural-behavioral
datasets: two publicly-available widefield calcium imaging
(WFCI) datasets (Churchland et al., 2019) (Figure 2) and
one publicly-available fUSI dataset (Griggs et al., 2023)
(Figure 3).

WFCI 1: In this dataset, neural activity across the mouse
dorsal cortex was optically recorded (Figure 2b), prepro-
cessed, and downsampled to 1x128x128 pixel images. This
dataset consists of 248 trials (49008 neural image frames)
in which mice indicated the perceived spatial location (left
or right) of an auditory or visual stimulus by licking the
corresponding spout. Concurrently, behavior videos were
recorded using two cameras (Figure 2a). We extracted 14
dimensions of continuous behavior from ROIs in the videos
(Figure 2c). This continuous behavioral data was used for
behavior decoding (see Section A.4.1 for details).

WFCI 2: This dataset comprises 412 trials (38927 neu-
ral image frames) with the same trial structure and neural
recordings as WFCI 1. However, instead of behavior videos,
four binary sensor traces were recorded from handles and
spouts, providing categorical behavioral data for decoding
(Figure 2d).

fUSI: This dataset consists of 13 sessions of functional ul-
trasound imaging recordings from a non-human primate
performing memory-guided saccade or reach movements
to one of 2 or 8 peripheral targets (Figure 3b). Functional
ultrasound images were recorded at 2 Hz (Figure 3a). Be-
havior for this dataset consists of the directions the monkey
saccaded to in successful trials. Thus, we use a categorical
distribution for the behavior. Also, in this case, since there
is one target per trial, we take behavior as available only
during the period when the monkey was actually fixating on

the target and as missing during other periods of the trial.
This provides an intermittently recorded behavior type for
validation. Each session has 154.77 ± 93.75 successful tri-
als, and each trial has a length of 15 seconds, corresponding
to 30 image frames (see Appendix A.4.2 for more details).

4.1.2. IMPLEMENTATION DETAILS

We used three convolutional layers for both the encoder, K,
and the decoder, C, to capture local spatiotemporal features
and downsample the feature maps in the image dimension
to 32x32. The transition function, A, is parameterized by
a single convolutional layer, and f(·) is parameterized by
multi-head self-attention (Vaswani et al., 2017) with 8 heads
and an embedding dimension of 256, applied to patches of
size n1 × 4 × 4 (ConvRNN1) and n2 × 4 × 4 (ConvRNN2).
For behavior decoding, D uses a few convolutional layers
followed by a fully connected layer. A single inference
step of the SBIND model takes 17.9 ms on average on an
NVIDIA RTX 6000 Ada Generation GPU, which is shorter
than the effective sampling rate of up to 10 Hz used in fUSI
(Rabut et al., 2024; Macé et al., 2011) and sampling rate
of 30 Hz used in WFCI, suggesting potential feasibility
for real-time applications such as BCIs. See Appendix
A.1.6 and Table A.1 for details on training information,
hyperparameter tuning, and the choice of hyperparmeters
for each of the datasets.

4.2. All SBIND Model Components Contribute to
Accurate Neural Image Modeling

Here, we perform ablation studies by systematically remov-
ing or modifying specific parts of the model and comparing
the resulting performances using relevant behavior decoding
and neural prediction metrics (Table 1). We find that each
component in our SBIND contributes to accurate neural-
behavioral prediction as follows.

First, we assess the importance of using convolutional layers
compared to Multi-Layer Perceptrons (MLPs) by construct-
ing MLP-SBIND. MLP-SBIND parameterizes all the map-
pings with MLPs, with an option to also incorporate com-
monly used preprocessing methods for WFCI data. We show
that even using this preprocessing – whether LocaNMF or
PCA – as is done in current neural image models, this ap-
proach underperforms SBIND in both neural and behavior
predictions due to lack of inductive bias for image data, un-
like SBIND, which has convolutional layers as a component
(Table 1).

Next, we assess the importance of our disentangled model
architecture and neural-behavioral losses during learning.
We construct SBIND-Unsup to train only the second phase
of our model, i.e., learning neural dynamics in an unsuper-
vised manner, which leads to just a single set of latents. We
find that this ablated model exhibits inferior behavior de-
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Table 1. One-step-ahead behavior decoding and neural prediction performances (Mean ± SEM) for various ablations of SBIND across 5
folds for widefield (WFCI) datasets in terms of mean-squared error (MSE) and/or F1-score as appropriate. As indicated by the arrows,
lower is better for MSE and higher is better for F1-score. See Tables A.1 and A.2 for additional comparisons.

WFCI 1 WFCI 2

MODEL PREPROCESSING BEH. MSE ↓ NEUR. MSE ↓ BEH. F1-SCORE ↑ NEUR. MSE ↓
MLP-SBIND FLATTEN 0.6383± 0.0281 0.1239± 0.0040 0.3066± 0.0108 0.1889± 0.0052

MLP-SBIND LOCANMF 0.5980± 0.0253 0.0539± 0.0016 0.3804± 0.0072 0.2467± 0.0106

MLP-SBIND PCA 0.6067± 0.0245 0.0589± 0.0029 0.2998± 0.0289 0.2834± 0.0241

SBIND-UNSUP - 0.5413± 0.0185 0.0403± 0.0020 0.3985± 0.0194 0.1497± 0.0116

SBIND NOATT - 0.5392± 0.0203 0.0552± 0.0013 0.4039± 0.0191 0.1948± 0.0047

SBIND W/O fA - 0.7866± 0.0447 0.0812± 0.0033 0.3645± 0.0197 0.2150± 0.0032

SBIND - 0.4955± 0.0254 0.0414± 0.0029 0.4569± 0.0036 0.1644± 0.0090

(a) (b)
-0.9

-2.0

-3.0

-4.0

< -5

Log10 of M
ean Attribution

Figure 4. Mean contribution of all brain regions to predicting the
activity of the pixel marked by × in the brain map, using (a) SBIND
NoAtt vs. (b) SBIND. See Figure A.4 for more examples.

coding compared to SBIND with the same number of latent
states (Table 1), highlighting the importance of our method
for disentangling behaviorally relevant dynamics in neural
image data.

Next, we investigate the recurrence unit by constructing
SBIND w/o fA that removes the recurrence (see Equation
A.13). SBIND w/o fA fails to capture long-term temporal
dependencies, leading to inferior neural-behavioral predic-
tions than SBIND (Table 1). Finally, to show the importance
of the self-attention mechanism, we build SBIND NoAtt that
removes the self-attention layer in the recurrence mapping,
simplifying the recurrence function to a local convolutional
layer. SBIND NoAtt has inferior performance in both be-
havioral and neural predictions (Table 1), showing the im-
portance of self-attention for capturing global dependencies.
To further explore this result, we increased the patch size
used in the self-attention mechanism and observed improved
neural prediction performance (Figure A.6). This suggests
that larger patches allow the model to focus on more global
information, complementing the local processing of the con-
volutional layers.

To pinpoint the brain regions that drive the neural predic-

tions, we employed Integrated Gradient implementation in
Captum framework (Sundararajan et al., 2017; Kokhlikyan
et al., 2020) to assess the contribution of brain-wide activity
to the prediction of a specific target location in the brain.
We averaged the attribution of all brain regions in predicting
the target location across all frames of the test set in WFCI
1 data. The resulting attribution maps (Figure 4) demon-
strate that SBIND, unlike SBIND NoAtt, leverages more
global information for neural prediction. This confirms that
the self-attention mechanism enables the model to capture
dependencies beyond the local receptive fields of the convo-
lutional layers, highlighting the importance of self-attention
in understanding whole-brain dynamics.

4.3. Comparison with Existing Neural-Behavioral
Models

We also find that SBIND outperforms recent neural-
behavioral models on the same two WFCI datasets as in the
previous section (Table 2). First, we compared SBIND with
DPAD (Sani et al., 2024), which has nonlinearity options
in its RNN and its encoder-decoder architecture. Despite
this flexibility, DPAD performs worse in behavior decoding
and neural prediction for neural image modalities, whether
taking flattened widefield images as input or using prepro-
cessing on the images in the form of LocaNMF or PCA
(Table 2). This highlights the benefits of incorporating spa-
tial priors for neural images in the model architecture, as in
SBIND. Using common preprocessing techniques improves
DPAD’s neural prediction but does not change its behavior
decoding performance, both of which still remain inferior
to SBIND.

Next, we find that SBIND outperforms CEBRA (Schneider
et al., 2023) in neural-behavioral prediction, regardless of
whether CEBRA uses common preprocessing techniques,
such as LocaNMF or PCA, or not (Table 2). CEBRA’s low
neural prediction performance (Table 2) can be attributed
to the fact that it does not learn any residual dynamics for
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Table 2. Behavior decoding MSE or F1-score and neural prediction MSE (Mean ± SEM) across folds for each dataset. As indicated by
the arrows, lower is better for MSE and higher is better for F1-score. More detailed comparisons are provided in Table A.3 and Table A.4.

WFCI 1 WFCI 2

MODEL PREPROCESSING BEH. MSE ↓ NEUR. MSE ↓ BEH. F1-SCORE ↑ NEUR. MSE ↓
DPAD LOCANMF 0.5877± 0.0226 0.0543± 0.0009 0.3613± 0.0145 0.2483± 0.0092

DPAD PCA 0.6164± 0.0254 0.0628± 0.0030 0.2688± 0.0299 0.2550± 0.0063

DPAD FLATTEN 0.6179± 0.0270 0.1302± 0.0013 0.3177± 0.0091 0.2211± 0.0071

CEBRA LOCANMF 0.6250± 0.0194 0.4976± 0.0241 0.3113± 0.0183 0.4363± 0.0168

CEBRA PCA 0.6312± 0.0239 0.6856± 0.0222 0.3005± 0.0235 0.5323± 0.0245

CEBRA FLATTEN 0.5995± 0.0228 0.7032± 0.0201 0.2909± 0.0116 0.2795± 0.0109

SBIND - 0.4955± 0.0254 0.0414± 0.0029 0.4569± 0.0036 0.1644± 0.0090

neural prediction and relies on the embeddings guided by
behavior. Figures A.2 illustrates that CEBRA primarily cap-
tures neural activity related to the observed behavior, with
limited ability to predict activity in other brain regions. This
highlights that neural activity encodes more information
than just the studied behavior (Musall et al., 2019), and it is
important to model residual neural dynamics to gain a more
complete understanding of brain function.

Finally, in two additional baseline comparisons, SBIND
again demonstrated its superiority for joint neural image
and behavioral modeling by outperforming adapted versions
of STNDT (Le & Shlizerman, 2022) and TNDM (Hurwitz
et al., 2021). Originally developed for spiking electrophys-
iology data, we adapted these methods for our widefield
imaging data as follows: we used LocaNMF features as
input, placed a Gaussian prior over these inputs, and trained
the models using an MSE loss instead of their original Pois-
son likelihood. Even with these adaptations, STNDT, which
employs two separate sets of Transformers to capture spatial
and temporal information, still underperforms in both neu-
ral and behavioral predictions compared to SBIND (Table
A.5). Similarly, SBIND surpassed the adapted TNDM, a
sequential variational autoencoder that learns two sets of
latent factors for behaviorally relevant and irrelevant dy-
namics using a mixed neural-behavioral objective. These
results consistently highlight the strength of SBIND’s model
design in modeling raw spatiotemporal neural images and
disentangling behaviorally relevant neural dynamics.

4.4. Functional Ultrasound Imaging Data Results

For the fUSI dataset, behavior consisted of the target the
monkey reached or saccaded to for each trial; thus, behavior
was only taken as available for the time-steps in the trial
during which the monkey was fixated on the target. This
gave us a categorical and intermittently recorded behavior
time-series for modeling. In the 2-directional tasks, we
used binary target classification with a binary cross-entropy
loss. In 8-directional tasks, similar to (Griggs et al., 2024),

we used a multi-decoder approach in the decoder mapping,
D(1), to predict the vertical and horizontal directions (left-
right-stationary) (Appendix A.4.2). During evaluation, we
used the latent state at the last time-step in the trial to predict
the direction of movement. We first performed ablation
studies on all sessions. The ablated models underperformed
SBIND in neural-behavioral prediction, again showing the
importance of each component in our model (Table A.7 and
Table A.8).

We then compared SBIND with other deep learning base-
lines as well as the original method used in (Griggs et al.,
2024) for this fUSI dataset – i.e., PCA + linear discriminant
analysis (LDA). For DPAD, we made similar decoder mod-
ifications to classify both 2-directional and 8-directional
movements. For CEBRA, we found that labeling the entire
trial with the target location yielded better embeddings for
the decoding task than using only the samples during tar-
get fixation (See Appendix A.4.2 for details). As shown in
Table 3, all models are inferior to SBIND in behavior de-
coding and neural prediction, again showing the importance
of capturing image spatiotemporal structures through our
ConvRNN and self-attention mechanisms.

5. Discussion
We develop SBIND, a novel approach for modeling dynam-
ics in neural image data and their relationship to behavior,
and demonstrate its success for two diverse neural imaging
modalities: optical widefield and focused ultrasound imag-
ing. We address the challenges of high-dimensionality and
complex spatiotemporal patterns in these image modalities
by designing a convolutional recurrent architecture com-
bined with a self-attention mechanism. This enables us to
learn both local and long-range spatiotemporal dynamics
directly from raw neural image data without the need for
preprocessing. Additionally, we tackle the challenge of
prevalent behaviorally irrelevant dynamics in these images
by disentangling the behavior-predictive dynamics while
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Table 3. Behavior decoding accuracy (quantified as proportion of trials whose target was correctly decoded) and neural prediction MSE
(Mean ± SEM) across 10 folds and all sessions in the fUSI dataset. As indicated by the arrows, lower is better for MSE and higher is
better for accuracy. See Table A.7 and Table A.8 for comparison with ablated variants of SBIND. See Table A.9 for more comparisons.

2-DIRECTIONAL SESSIONS 8-DIRECTIONAL SESSIONS

MODEL PREPROCESSING BEH. ACCURACY ↑ NEUR. MSE ↓ BEH. ACCURACY ↑ NEUR. MSE ↓
LDA PCA 0.7001± 0.0177 - 0.2806± 0.0204 -
DPAD FLATTEN 0.5631± 0.0191 0.8409± 0.0072 0.1840± 0.0131 0.9236± 0.0083

DPAD PCA 0.6783± 0.0167 0.6391± 0.0056 0.2864± 0.0183 0.7109± 0.0034

CEBRA FLATTEN 0.6813± 0.0193 1.6647± 0.0128 0.2705± 0.0165 1.6966± 0.0144

CEBRA PCA 0.7276± 0.0203 1.5832± 0.0088 0.2633± 0.0163 1.6934± 0.0190

SBIND - 0.7300± 0.0191 0.4725± 0.0165 0.3521± 0.0201 0.3919± 0.0107

simultaneously capturing other ongoing neural processes.
In contrast to other neural-behavioral models that rely on
preprocessing, SBIND assumes an image prior on the in-
put, enabling the learning of spatiotemporal information for
modeling neural images and predicting behavior. Our model
outperforms existing neural-behavioral models in predicting
behavior, regardless of the prior distribution of the behav-
ior of interest. Furthermore, to our knowledge, our work
presents the first dynamical latent state model for fUSI data.

In this study, we focused on neural imaging modalities
with relatively high temporal resolution, namely widefield
calcium imaging and functional ultrasound imaging that also
has potential for BCIs. This is in contrast to some imaging
modalities such as functional magnetic resonance imaging
(fMRI) that have lower temporal resolution and are largely
not usable for portable BCIs. Indeed, for this reason, prior
deep learning approaches for fMRI are different in goals
compared to our work. These fMRI models largely focus on
classifying task conditions or participant demographics (e.g.,
age, sex) (Gadgil et al., 2020; Kan et al., 2022; Malkiel et al.,
2022; Li et al., 2023) rather than modeling behaviorally
relevant temporal dynamics and disentangling them from
other neural temporal dynamics, which is our goal here.

Our work focused on learning the model using data from a
single session or animal. An important direction for future
work is to extend SBIND to enable multi-session learning,
for example by adding session specific read-in and read-
out layers while keeping the model core uniform across
sessions. Doing so may both improve performance and
allow for investigating how whole-brain local and global
spatiotemporal dynamics change across sessions and an-
imals using SBIND. Indeed, for training their PCA-LDA
decoder on fUSI data, Griggs et al. (2024) showed that using
multi-session data for pretraining the decoder can be helpful
since day-to-day recordings have similarities in their neural
representations. Finally, tracking time-varying dynamics
through adaptive learning can be another interesting future
direction (Ahmadipour et al., 2021; Yang et al., 2021).

SBIND offers significant practical advantages for BCIs
(Shanechi, 2019; Shenoy & Carmena, 2014; Oganesian &
Shanechi, 2024). SBIND’s inference time is faster than typ-
ical sampling rates of WFCI and fUSI (Rabut et al., 2024;
Macé et al., 2011). This property, coupled with SBIND’s re-
cursive inference, can enable real-time and computationally
efficient modeling of neural images and behavior decoding.
Also, SBIND’s recurrent architecture inherently supports
neural forecasting of behavior several steps into the future,
without a need for model retraining. These capabilities, com-
bined with SBIND’s successful demonstration on diverse
imaging modalities, could help enable future non-invasive
BCIs using fUSI, which is a recent promising modality
whose dynamical modeling was previously unexplored.
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A. Appendix
A.1. Methods Supplementary Details

A.1.1. FORMULATION OF THE FULL INFERENCE MODEL

Our model employs a two-RNN architecture to effectively capture and disentangle behaviorally relevant neural dynamics
from other neural dynamics. The first RNN (ConvRNN1) focuses on behaviorally relevant dynamics before the second RNN
(ConvRNN2) learns the remaining dynamics.

ConvRNN1 is parameterized by f
(1)
A (·), K(1)(·), C(1)(·), and D(1)(·). It takes as input the neural images, Yk, and outputs

a latent state representation, X(1)
k ∈ Rn1×H′×W ′

, that captures the behaviorally relevant neural dynamics.

ConvRNN2 is parameterized by f
(2)
A (·), K(2)(·), and C(2)(·). It takes as input the neural images, Yk, as well as the latent

states from ConvRNN1, X(1)
k , and outputs a latent state representation, X(2)

k ∈ Rn2×H′×W ′
, that captures the residual

neural dynamics not captured by ConvRNN1.

In Equation 2, both latent states were combined for simplicity. The full inference model (Figure 1a) can be formulated as
follows:


X

(1)
k+1 = f

(1)
A (X

(1)
k ) +K(1)(Yk)

X
(2)
k+1 = f

(2)
A (X

(2)
k ) +K(2)(Yk,X

(1)
k+1)

Ŷk = C(1)(X
(1)
k ) +C(2)(X

(2)
k )

ẑk = D(1)(X
(1)
k )

(A.1)

where Ŷk ∈ Rny×H×W is the predicted neural images and ẑk ∈ Rnz is the predicted behavior at time index, k.

The full set of states can be denoted as Xk ∈ Rnx×H′×W ′
where nx = n1+n2, and is achieved by concatenating the image

latent states in the channel dimensions. As seen in Equation A.1, X(1)
k is calculated independently of X(2)

k . As discussed
in Section A.1.4, X(1)

k are learned to decode behavior, so they essentially capture behaviorally relevant neural dynamics.
X

(2)
k learn other neural dynamics by optimizing for neural prediction. This is achieved by passing the neural images and

states from ConvRNN1 as residuals in the calculation of the second set of states. The above formulation can be written in
combined form as in Equation 2, where:

Xk =
[
X

(1)
k X

(2)
k

]T
,

fA(Xk) =

[
f
(1)
A (X

(1)
k )

f
(2)
A (X

(2)
k )

]
=

[
GlobalAttn(1)(A(1) ∗X(1)

k )

GlobalAttn(2)(A(2) ∗X(2)
k )

]
,

K(Yk) =

[
K(1)(Yk)

K(2)(Yk,X
(1)
k+1)

]
,

C(Xk) = C(1)(X
(1)
k ) +C(2)(X

(2)
k ),

D(Xk) = D(1)(X
(1)
k )

These notations connect the full inference model (Equation A.1) and the combined form in Equation 2. Also, fA(.) =
GlobalAttn(A ∗ (.)), where GlobalAttn represents the self-attention mechanism, and A represents the convolutional
kernels applied on the states prior to self-attention.

A.1.2. DETAILS OF SELF-ATTENTION OPERATION

The recurrence function, f (1)
A (·), is designed to capture spatiotemporal dependencies in the latent state representation of

ConvRNN1 both locally and globally (Figure A.1). For simplicity, we explain details of applying the recurrence function
f
(1)
A (·), on the latent state at time index k, X(1)

k . However, the same function is applied at all other time indices recurrently.
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Figure A.1. Details of self-attention mechanism in f
(1)
A . Self-attention is used here to capture global spatial relationships within the latent

state. f (2)
A applies the same self-attention mechanism to X

(2)
k using a different set of parameters

A(1) is a single convolutional layer to capture local dependencies in the latent state. Additionally, the recurrence functions
incorporate a self-attention mechanism to capture global context and long-range dependencies in the latent state dynamics.
Here we explain the details of applying self-attention to X

(1)
k .

Reduction in channel dimension. For f (1)
A (·), the process begins by passing X

(1)
k through a 1x1 convolutional layer to

reduce the channel size from nx to c, resulting in a representation with dimensions c×H ′ ×W ′. This reduction in channel
size is optional and makes subsequent self-attention computation more efficient. In our experiments, we found that reducing
the channel dimension to c = 2 provided a good balance between computational and parameter efficiency, and model
performance.

Patching. Next, the latent state representation is divided into patches, {x(1)
k,1,x

(1)
k,2, ...,x

(1)
k,M}, similar to the approach used

in (Dosovitskiy et al., 2021). The total number of patches, M , is calculated as M = (H ′ ×W ′)/(P × P ), where P is the
patch size. Each patch, x(1)

k,i , has dimensions c× P × P and can be interpreted as a representation of features from roughly
a specific brain region.

Self-attention block. The patches are then flattened into vectors of shape cP 2 and treated as tokens for the self-attention
mechanism. A one-dimensional learnable embedding is added to each of the tokens (patches), so the self-attention layer is
informed of the position of the embedding in the latent state images. Multi-head self-attention is applied to these tokens
(Vaswani et al., 2017), allowing the model to learn spatial relationships between different patches. layer normalization is
applied before and after the self-attention.

Projecting back to the latent state representation. After applying self-attention to the embedded patches, the patches
are reshaped and rearranged into c×H ′ ×W ′ to get to the original spatial dimensions, effectively reversing the patching
operation. A 1× 1 convolutional layer then projects the c×H ′ ×W ′ latents to an n1 ×H ′ ×W ′ dimensional space. The
resulting representation is added to the output of A(1), forming the final output of the recurrence function.

This combination of convolutional layers and self-attention layers in the recurrence function enables the model to effectively
capture both local and global spatial dependencies. The same recurrence function is applied to X

(2)
k , which has dimensions

n2×H ′×W ′, across all time points using a different set of parameters to learn a separate set of dynamics for the behaviorally
irrelevant component of the neural images.

A.1.3. LOSS FUNCTIONS

Neural Prediction Loss For neural prediction, we use a combination of L1, L2, and gradient difference loss (GDL)
(Mathieu et al., 2016). The GDL loss encourages the preservation of local image structure by penalizing differences between
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the gradients of the predicted and ground-truth images. This combined loss function aims to improve the accuracy and
structural fidelity of the predicted neural images. The L1, L2, and GDL functions are defined as follows:

LL1(Ŷk, Yk) =
∑
i,j

|Ŷ i,j
k − Y i,j

k |, (A.2)

LL2(Ŷk, Yk) =
∑
i,j

(Ŷ i,j
k − Y i,j

k )2, (A.3)

Lgrad(Ŷk, Yk) =
∑
i,j

∣∣||Y i,j
k − Y i−1,j

k || − ||Ŷ i,j
k − Ŷ i−1,j

k ||
∣∣+ ∣∣||Y i,j−1

k − Y i,j
k || − ||Ŷ i,j−1

k − Ŷ i,j
k ||

∣∣, (A.4)

where i, j index the spatial dimensions of the image. The total loss for neural image reconstruction is given by:

LY = LL2(Ŷk, Yk) + λL1LL1(Ŷk, Yk) + λgradLgrad(Ŷk, Yk), (A.5)

where λL1 and λgrad are hyperparameters that control the relative weights of the L1 and GDL losses.

Behavior Decoding Loss For behavior decoding, the loss function, Lz, is chosen based on the distribution and availability
of data at each time point.

• Continuous Behavior: Assuming an isotropic Gaussian distribution for this type of behavior, we use the MSE loss.

• Categorical Behavior: We use class-weighted cross-entropy loss for categorically distributed behavior to address
potential class imbalance (Lin et al., 2017). For instance, in the WFCI 2 dataset, where the mouse is not touching the
sensors over 90% of the time, we assign a weight of 0.9 to class 1 (indicating when the mouse is touching a sensor—left
handle, right handle, left spout, or right spout) and 0.1 to class 0 (indicating when the mouse is not touching a sensor).

• Intermittently Recorded Behavior: We utilize a masking strategy to handle intermittently recorded behavior. The
behavior loss is calculated only at the sparse time points where the behavior is observed.

A.1.4. TWO-PHASE LEARNING DETAILS

To disentangle behaviorally relevant neural dynamics from other neural dynamics, we design a model architecture with two
ConvRNNs, each incorporating self-attention mechanisms. The parameters of these two ConvRNNs are learned in two
sequential phases to achieve the disentanglement.

Phase 1: Learning Behaviorally Relevant Dynamics

First, the parameters of ConvRNN1 - i.e., f (1)
A (·), K(1)(·), and D(1)(·) - and the behaviorally relevant latent states, X(1)

k ,
are learned to minimize the error in predicting behavior from the neural images. The following recurrent formula is used to
predict behavior, ẑ(1)k , one-step into the future:

 X
(1)
k+1 = f

(1)
A (X

(1)
k ) +K(1)(Yk)

ẑ
(1)
k = D(1)(X

(1)
k )

(A.6)

The optimization is formulated as:

min
f

(1)
A ,K(1),D(1)

∑
k

Lz(zk, ẑ
(1)
k ), (A.7)

where Lz is the loss function for behavior decoding chosen based on the distribution of behavior (Appendix A.1.3).
k ∈ [1, 2, ..., T ] where T is the total number of samples. This optimization ensures that ConvRNN1 learns neural dynamics
that are relevant to behavior.
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Once ConvRNN1 is learned, its parameters are fixed, and the decoder C(1)(·) is optimized to predict neural images one step
into the future from the learned latent states, X(1)

k . This can be formulated as:

Ŷ
(1)
k = C(1)(X

(1)
k ) (A.8)

and the optimization is formulated as:

min
C(1)

∑
k

LY(Yk, Ŷ
(1)
k ), (A.9)

where LY is the loss function for neural reconstruction, defined in Equation A.5.

Phase 2: Learning Residual Neural Dynamics

In this phase, the parameters of ConvRNN2 - i.e., f (2)
A (·), K(2)(·), and C(2)(·) - are learned to minimize the error in

predicting the residual neural images, i.e., the part of neural images not predicted by the behaviorally relevant states of
ConvRNN1. This is achieved by training ConvRNN2 to predict the difference between the observed neural images and
the neural images predicted by ConvRNN1. The residual neural predictions are calculated using the following recurrent
formulation:

 X
(2)
k+1 = f

(2)
A (X

(2)
k ) +K(2)(Yk,X

(1)
k+1)

Ŷ
(2)
k = C(2)(X

(2)
k )

(A.10)

This step learns the residual neural dynamics and the latent states, X(2)
k . The optimization is formulated as:

min
f

(2)
A ,K(2),C(2)

∑
k

LY(Yk − Ŷ
(1)
k , Ŷ

(2)
k ) (A.11)

This concludes learning the ConvRNNs and the total latent states Xk. Note that in the two optimization steps in Equations
A.9, and A.11, the optimization only controls and learns the parameters in the current optimization, and the parameters from
previous optimizations are fixed.

A.1.5. ALTERNATIVE FORMULATION FOR THE INFERENCE MODEL

We can optionally concatenate the mappings from the encoder, K(Yk), with the states of the current ConvRNN before
feeding the latent states into the recurrence function. This can be formulated as:


X

(1)
k+1 = f

(1)
A (X

(1)
k ,K(1)(Yk))

X
(2)
k+1 = f

(2)
A (X

(2)
k ,X

(1)
k+1,K

(2)(Yk))

Ŷk = C(1)(X
(1)
k ) +C(2)(X

(2)
k )

ẑk = D(1)(X
(1)
k )

(A.12)

This can be thought of as including the information from the neural images at the current time index within the mapping.
This does not change the dimensions of the latent states, but the input to the convolutional layer within the recurrence uses
more kernels. This is a more general form of Equation A.1, and for the first two datasets, this form achieves slightly better
performance (See Table A.6).

A.1.6. SBIND ARCHITECTURE AND IMPLEMENTATION DETAILS

The Neural Encoders, K(1) and K(2), each consist of three convolutional layers that downsample the input neural images
to a 32 × 32 spatial resolution. These layers process the images statically and locally. To ensure stable learning, each
convolutional layer is followed by batch normalization to normalize activations, and Leaky ReLU (Xu et al., 2015) is used
as the activation function. Padding is applied to preserve spatial dimensions during convolutions.
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The neural decoders, C(1) and C(2), consist of three transposed convolutional layers, which are designed to upsample the
latent states and project them back into the neural image observation space. The same activation function and normalization
are applied to these decoders.

The behavior decoder, D, begins by further downsampling the 32× 32 latent state to a 4× 4 spatial resolution using three
convolutional layers, each with stride 2, batch normalization, Leaky ReLU activation, and channel dropouts (Tompson et al.,
2015). This reduction is followed by a fully connected layer to project the latent state into the behavior observation space.

The recurrence functions, f (1)
A and f

(2)
A , each use a single convolutional layer with 3× 3 kernels to process the latent states

locally. Afterward, the model applies multi-head self-attention to patches of the latent state images to capture long-range
dependencies across the latent space. Each latent patch is mapped to a 256-dimensional embedding space, which is then
used to compute the self-attention.

Training details, including the learning rate, optimizer choice, and hyperparameters of the mappings, are summarized in
Table A.1.

Hyperparameter Tuning:

We use latent states with dimensions nx × 32× 32 across all experiments. The first n1 channels of the latent states are used
in ConvRNN1 to model behaviorally relevant dynamics. Any additional channels are used for ConvRNN2 to learn residual
neural dynamics (n2 = max(nx − n1, 0)). We use n1 = 8 across all experiments. The number of latent channels, nx, was
tuned in the set {1, 2, 4, 8, 16, 32}, where for nx ≤ 8 only ConvRNN1 is trained, and for nx > 8 ConvRNN2 is learned in
the second phase in addition to ConvRNN1. The patch size for the self-attention layer in f

(1)
A and f

(2)
A was tuned in the set

{1, 2, 4, 8, 16}.

Implementation Details : For WFCI 1 dataset with 39200 neural image samples used for training, it takes 2445 seconds on
average to run all 3 optimization steps for 80 epochs on an NVIDIA RTX 6000 Ada Generation GPU, and the inference
takes 13.5 seconds on 9800 sequential samples.

A.2. Ablation Details

A.2.1. MLP (PARAMETERIZED)-SBIND

This ablation explores the importance of convolutional layers in our model by replacing them with MLPs. It maintains the
same two-phase learning scheme as SBIND, but uses MLPs to parameterize all the mappings in both phases and relies on
MLPs to learn spatiotemporal structure in neural image data. The states X(1)

k and X
(2)
k are vectors of shape Rn1×1×1 and

Rn2×1×1, respectively, disregarding the spatial distribution in neural images.

Optionally, we use commonly used preprocessing techniques on widefield and ultrasound data to obtain a low-dimensional
representation (as a vector) for the neural images. This representation is then used as input for training and inference on the
model. After learning the model and obtaining predictions in the low-dimensional space, we project the prediction back to
the neural image space to compare the performance in neural prediction with SBIND.

A.2.2. SBIND W/O fA

This ablation investigates the importance of recurrent neural networks in our model by removing the recurrence mapping,
fA(·). This is essentially a Convolutional Autoencoder (CAE) that takes neural images as input and attempts to predict
neural images one-step into the future. This is equivalent to our model without the recurrence function, just optimizing for
K, C, and D. This ablation is used to pinpoint the importance of using information from neural images more than one
sample in the past for modeling. A behavior decoder mapping, D is trained downstream to project the latent representation
of the CAE, Xk, to the behavior of interest. The same loss functions from SBIND are used for neural and behavioral
prediction. The inference of this model can be formulated as:


Xk+1 = K(Yk)

Ŷk+1 = C(Xk+1)
ẑk+1 = D(Xk+1)

(A.13)
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Table A.1. SBIND Model and Training Details and Hyperparameters Across All Datasets
Component Hyperparameter WFCI 1 WFCI 2 fUSI

General

Input Dimensions 1x128x128 1x128x128 1x128x128
n1 8 8 8
n2 8 24 24

Batch Size 7 7 30
Sequence Length 63 63 30

Learning Rate 1e-3 1e-3 1e-3
LR Schedule StepLR StepLR StepLR

Max Training Epochs 80 80 80
Weight Decay 1e-6 1e-6 1e-6

Neural Encoders K(1) (K(2))

Layers 3 3 3
Kernel Size 5x5 5x5 5x5

Strides 2, 2, 1 2, 2, 1 2, 2, 1
Channel Dropout 0 0 0

Num Kernels 32, 32, n1 (n2) 32, 32, n1 (n2) 32, 32, n1 (n2)

Neural Decoder C(1)(C(2))

Layers 2 2 2
Kernel Size 5x5 5x5 5x5

Strides 2 2 2
Channel Dropout 0 0 0

Num Kernels 32, 32, 1 32, 32, 1 32, 32, 1
λL1 2.0 2.0 2.0
λgrad 0.3 0.3 0.3

Behavior Decoder (D(1))

Conv Layers 3 3 4
Kernel Size 5x5 5x5 5x5

Strides 2 2 2
Channel Dropout 0.4 0.4 0.4

Num Kernels 64, 64, 64 64, 64, 64 16, 16, 16, 16
FCN Layers 1 1 1

FCN hidden units 64 64 16

Recurrence function f
(1)
A (f (2)

A )

Conv. Layers 1 1 1
Kernel Size 3x3 3x3 3x3

Strides 1 1 1
Channel Dropout 0 0 0

Hidden Dim 48 48 48
Num Kernels n1 (n2) n1 (n2) n1 (n2)

Self-Attention Heads 8 8 8
Patch Size 8 8 8

Embedding Dim 256 256 256
Positional Embedding Learnable Learnable Learnable

Num Patches 16 16 16

A.2.3. SBIND MSE LY

This ablation explores the effect of the neural loss function in Equation A.5 by removing the GDL and L1 loss components.
This ablation uses the same model architecture and training procedure as SBIND, but trains the model using only the MSE
loss for neural prediction in the optimizations of Equations A.9 and A.11.

A.2.4. SBIND-UNSUP (UNSUPERVISED)

This ablation investigates the importance of disentangling behaviorally relevant dynamics by removing the first phase of
our algorithm. This forces the model to learn all neural dynamics without considering their relevance to behavior, as it
predicts neural data one step into the future without using behavior information. Effectively, this ablation sets n1 = 0 and
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nx = n2, as it learns X(2)
k and ConvRNN2 parameters while still using self-attention in the recurrence and convolutional

layers. Because SBIND-Unsup only learns a single ConvRNN for neural prediction, it may learn behaviorally irrelevant
neural dynamics in neural images, potentially resulting in inferior behavioral prediction performance.

We use the same latent state dimensions, nx ×H ′ ×W ′, whenever we compare the performance of SBIND with this variant.

A.2.5. SBIND NOATT

This ablation assesses the impact of the self-attention mechanism by removing it from the recurrence function, fA(·).
This model still disentangles behaviorally relevant neural dynamics using the two-phase learning scheme. It also uses the
same hyperparameters for all other mappings (K, C, and D) and the same loss functions as SBIND. However, it does not
utilize self-attention to capture long-range spatial information in the latent space, and consequently, in the neural image
space. By removing self-attention, fA(·) simplifies to a local convolutional layer. This prevents the model from capturing
dependencies between distant brain regions and using these dependencies for neural and behavioral prediction (Figure 4).

A.3. Baseline Neural-behavioral Models and Preprocessing Methods

First, we list the two dimensionality reduction methods that are commonly used when working with widefield calcium and
functional ultrasound imaging data. We use these as optional preprocessing steps to obtain a low-dimensional representation
for neural-behavioral baselines. We compare our model with CEBRA (Schneider et al., 2023), which extracts latent
embeddings informed by behavior and fits decoders for neural and behavior observations. Moreover, we compare our model
performance with DPAD (Sani et al., 2024), which is a nonlinear dynamical model that learns behaviorally relevant neural
dynamics.

A.3.1. PCA

PCA is often performed on widefield calcium imaging data as a dimensionality reduction technique before performing
modeling (Musall et al., 2019). Enough principal components are extracted to explain a sufficient amount of variance in the
neural images. For functional ultrasound imaging, PCA serves the same purpose and is also employed to decode movement
intentions (Griggs et al., 2024; Norman et al., 2021).

When using PCA for preprocessing the baseline models, we tune the number of principal components (PCs) used to represent
the neural images, treating it as a hyperparameter. We select the number of PCs from the set of values {25, 50, 100, 200, 400}.
After training baseline models with PCA preprocessing and obtaining predictions of PCs in the low-dimensional space, we
project the predictions back to the neural image space to compare the performance in neural prediction with SBIND.

A.3.2. LOCANMF

Localized semi-nonnegative matrix factorization (LocaNMF) (Saxena et al., 2020) is a dimensionality reduction method
that decomposes widefield imaging data into localized spatial components and corresponding temporal components. The
temporal component is used as a low-dimensional representation of widefield calcium imaging data. LocaNMF leverages
the Allen brain atlas (Wang et al., 2020) to initialize spatial components and encourages localization by limiting their spread,
while still allowing contributions from neighboring regions to capture relevant variance. The result is a more interpretable
decomposition, where each temporal component primarily corresponds to a specific brain region

When using LocaNMF for preprocessing, we tune its hyperparameters. The number of components for Singular Value
Decomposition is varied within the set of values {100, 200, 400, 1000}. The ”minrank” hyperparameter is selected from the
set {1, 2, 5}. Other hyperparameters are set to their default values.

A.3.3. CEBRA

CEBRA (Schneider et al., 2023) is a non-dynamic model that uses convolutional neural network encoders in its architecture
to process neighboring time points of the data within a small, fixed window length. It uses a contrastive loss to extract latent
embeddings informed by either simultaneous behavior labels or time information. CEBRA-Behavior uses an objective
that aligns neural activity in the embedding space such that time points with similar behavior have similar embeddings.
CEBRA-Time uses time information to extract the embeddings. After learning the embeddings, it fits decoders to map the
embeddings from each time point to the observation space (i.e., behavior or neural).
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We performed hyperparameter tuning for CEBRA. We used the default “KNN-Decoder” for categorical behavior prediction
in WFCI 2 and fUSI datasets. For neural prediction and continuous behavior, we tested the default “KNN-Decoder”,
“L1 Linear Regressor”, and Ridge regressor decoder, with the latter achieving superior performance. We report neural
reconstruction (zero-step-ahead) across folds and all the pixels within the brain areas for CEBRA. For continuous behavioral
data, we report same-step decoding performance, and for categorical behavioral data, we report accuracy, auc, or F1-score as
appropriate. The embedding dimension was explored from 1 to 256 in powers of 2. For widefield datasets, the “time-offset”
was selected from {5, 10, 20}, while for the functional ultrasound imaging dataset, it was chosen from {3, 5, 10}. The
“temperature” hyperparameter was varied within the set {0.01, 0.1, 1, 10}. The best-performing model across folds is
reported for all experiments.

A.3.4. DPAD

DPAD (Dissociative Prioritized Analysis of Dynamics) (Sani et al., 2024) is a nonlinear dynamical model that focuses on
learning behaviorally relevant neural dynamics and dissociating them from other dynamics in neural activity. It achieves
this by fitting two dynamical models, formulated as a two-section RNN, one for behaviorally relevant neural dynamics and
another for the remaining neural dynamics. DPAD also replaces linear mappings in the dynamical models with MLPs to
flexibly learn the source of nonlinearity in the data. However, it is not specifically designed for image data and thus does not
explicitly account for the spatial structure in the image-distributed neural data.

To compare with DPAD, we first identified the source of nonlinearity by using MLPs for each of the parameters of the
model. We identified behavior readout parameter, Cz , as source of nonlinearity and used an MLP with 1 or 2 hidden layers
for this parameter. We tuned DPAD hyperparameters by varying the latent state dimension from 1 to 256 in powers of 2. For
neural prediction and continuous behavioral data, we report one-step-ahead prediction for comparison. For categorical data,
we report accuracy, AUC, or F1-score as appropriate.

A.3.5. STNDT

STNDT (Le & Shlizerman, 2022) utilizes a Transformer architecture for spatiotemporal modeling of neural population
spiking activity. Originally designed for spiking data, we adapted STNDT to accept preprocessed LocaNMF features as
input, as its direct application to raw images is computationally prohibitive due to the quadratic complexity of its spatial
self-attention mechanism over a large number of pixels. For these LocaNMF features, we placed a Gaussian prior on the
components and employed an MSE loss instead of the model’s original Poisson likelihood. STNDT was trained using
its original objectives, including masked reconstruction and a contrastive loss. For behavior decoding, we followed the
approach discussed on STNDT’s OpenReview forum, which is to use ridge regression to decode behavior from the learned
latent states.

For hyperparameter tuning when using STNDT with LocaNMF features, we used the default hyperparameter choices such
as number of transformers, masking ratio, etc., and varied the number of LocaNMF components provided as input (i.e.,
embedding dimension for STNDT), exploring values in the set {55, 123, 270}. Table A.5 reports performance of the adapted
STNDT model which achieves the best behavior decoding.

A.3.6. TNDM

TNDM (Hurwitz et al., 2021) is a sequential autoencoder-based model designed to learn two distinct sets of latent factors
from spiking data, with dimensionalities n1 and n2, corresponding to behaviorally relevant and behaviorally irrelevant
dynamics, respectively. It achieves this by optimizing a combined neural-behavioral reconstruction loss. Given TNDM’s
original design for Poisson-distributed spiking data, we adapted it for our widefield imaging datasets. This involved using
preprocessed LocaNMF features as input, assuming a Gaussian distribution for these input features, and changing TNDM’s
neural reconstruction loss to MSE.

Hyperparameter tuning for TNDM involved sweeping the dimensionalities for the behaviorally relevant latent factors, n1,
selected from {8, 16, 32, 64}, and the behaviorally irrelevant latent factors, n2, selected from {0, 8, 16, 32, 64}. Table A.5
reports performance of the adapted TNDM model which achieves the best behavior decoding.
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A.4. Datasets Details

A.4.1. WIDEFIELD CALCIUM IMAGING (WFCI) DATASETS

The WFCI datasets were collected from head-fixed mice performing a decision-making task, where they reported the spatial
position of auditory or visual stimuli by licking the corresponding spout (Churchland et al., 2019). Neural activity across the
dorsal cortex was optically recorded at 30 and 15 Hz for WFCI 1 and WFCI 2 datasets, respectively. We preprocessed the
neural images to remove hemodynamic artifacts using a linear regression method (Musall et al., 2019; Valley et al., 2020).
The raw neural images, with dimensions 540x640 pixels, were cropped to include only the brain regions and downsampled
to 128x128 pixels. A pixel-wise temporal causal filter (0.1 Hz, 2nd order Butterworth high-pass) was applied to remove drift
in the time series.

WFCI 1: This dataset consists of 248 trials with variable lengths (6.59±0.50 seconds). Concurrently with neural recordings,
behavior videos were recorded from two viewpoints (face and bottom; see Figure 2a). Following a similar procedure to
(Musall et al., 2019), 14 dimensions of continuous behavior were extracted from seven regions of interest (eye, nose, whisker,
paw, chest, body, and mouth) in the videos (see Figure 2c). For each region, the first principal component of both the original
video frames and the motion video frames (computed as the absolute temporal derivative of frames) was extracted and used
for behavioral prediction (see Figure A.5).

WFCI 2: This dataset comprises 412 trials with variable lengths (6.30± 0.37 seconds) with the same trial structure and
neural recordings as WFCI 1. However, instead of behavior videos, four binary sensors detected contact with the animal’s
forepaws (handles) and tongue (spouts), providing categorical behavioral data for decoding (see Figure 2d), where 1’s in any
of the binary traces represents the time samples where the mouse was touching the corresponding sensor.

A.4.2. FUNCTIONAL ULTRASOUND IMAGING (FUSI) DATASET

The fUSI dataset consists of recordings from a non-human primate performing a memory-guided saccade or reach task to
either 2 or 8 peripheral targets (Griggs et al., 2023). Trials began with a 5 ± 1 second fixation period, followed by a 400 ms
presentation of a peripheral cue. After the cue disappeared, there was a 5 ± 1 second memory period before the monkey
executed a saccade or reach to the remembered target location. Successful trials were followed by a 1.5 ± 0.5 second hold
period and then a reward. Each trial was followed by an inter-trial period before the next trial started.

Preprocessing: We applied a causal temporal voxel-wise filter (0.02 Hz high-pass Butterworth, 2nd order) to remove drift
during the sessions. Similar to (Griggs et al., 2024), we z-scored the data voxel-wise over a rolling 60-frame buffer. Next, a
pillbox spatial filter with a radius of 2 pixels was applied to each frame. The images were originally 128×132 pixels and
cropped to 128×128 pixels.

Decoding: In this dataset, behavior consisted of the target the monkey reached or fixated on for each trial. Thus, we
considered behavior as available only during the 1.5-second period (equivalent to 3 samples) before reward period when the
monkey was fixating on the target. This gave us a categorical and intermittently recorded behavior time-series for modeling.
We used these 3 samples as the only samples in the trials of length 30 where we have intermittent behavior available. To fit
all variants of SBIND, we masked out other time points in the trial and optimized the parameters only for those 3 specific
samples, effectively implementing intermittent behavior decoding during training. In the 2-directional tasks, we used binary
target classification. In 8-directional tasks, similar to (Griggs et al., 2024), we used a multi-decoder approach in the decoder
mapping to predict the vertical and horizontal directions. Thus, the decoder D(1) has 6 softmaxed output dimensions: 3
for probabilities of left-right-center summing to 1, and 3 for probabilities of up-center-down summing to 1. For training
PCA+LDA, we used either the 3 samples before the reward period, as in (Griggs et al., 2024), or all samples of the trial to
decode directions. For training CEBRA, we used either the 3 samples before the reward period or all the samples (default
choice for target classification task) of the trials for learning the embeddings, with the latter proving more effective for the
target classification task. To fit DPAD, we used the 3 samples before reward period to fit the first RNN. During evaluation,
we used the latent embedding at the last time-step in the trial to predict the direction of movement.

A.5. Supplementary Experiments
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Table A.1. One-step-ahead behavior decoding and neural prediction performances for various ablations of SBIND across 5 folds for WFCI
1 dataset in terms of R2. As indicated by the arrows, higher is better for R2. For neural prediction, R2 (Mean ± SEM) is reported across
5 folds and all pixels within the brain areas. For behavior decoding, R2 (Mean ± SEM) is reported across 5 folds and 14 dimensions of
behavior.

MODEL PREPROCESSING BEH. R2 ↑ NEUR. R2 ↑
MLP-SBIND FLATTEN 0.3620± 0.0194 0.8209± 0.0033

MLP-SBIND LOCANMF 0.4025± 0.0152 0.8702± 0.0015

MLP-SBIND PCA 0.3934± 0.0145 0.8926± 0.0016

SBIND-UNSUP - 0.4589± 0.0108 0.8724± 0.0039

SBIND NOATT - 0.4612± 0.0107 0.8652± 0.0032

SBIND W/O fA - 0.2080± 0.0453 0.8543± 0.0037

SBIND MSE LY - 0.5030± 0.0179 0.8217± 0.0133

SBIND - 0.5059± 0.0166 0.8724± 0.0069

Table A.2. One-step-ahead behavior decoding and neural prediction performances for various ablations of SBIND across 5 folds for WFCI
2 dataset in terms of R2 and AUC. As indicated by the arrows, higher is better for R2 and AUC. For neural prediction, R2 (Mean ±
SEM) is reported across 5 folds and all pixels in the brain areas. For behavior decoding, AUC (Mean ± SEM) is reported across 5 folds
and 4 classification tasks for left handle, right handle, left spout, and right spout.

MODEL PREPROCESSING BEH. AUC↑ NEUR. R2↑
MLP-SBIND FLATTEN 0.8706± 0.0038 0.7503± 0.0076

MLP-SBIND LOCANMF 0.8823± 0.0037 0.6402± 0.0041

MLP-SBIND PCA 0.8120± 0.0325 0.6703± 0.0239

SBIND-UNSUP - 0.9182± 0.0039 0.7970± 0.0133

SBIND NOATT - 0.9071± 0.0060 0.7451± 0.0043

SBIND W/O fA - 0.8934± 0.0045 0.7339± 0.0022

SBIND MSE LY - 0.9299± 0.0029 0.7418± 0.0049

SBIND - 0.9282± 0.0020 0.7749± 0.0074

Table A.3. Behavior decoding and neural prediction R2 (Mean ± SEM) across folds for WFCI 1 dataset. As indicated by the arrows,
higher is better for R2. For neural prediction, R2 (Mean ± SEM) is reported across 5 folds and all pixels in the brain areas. For behavior
decoding, R2 (Mean ± SEM) is reported across 5 folds and 14 dimensions of behavior.

MODEL PREPROCESSING BEH. R2 ↑ NEUR. R2 ↑
DPAD FLATTEN 0.3826± 0.0189 0.8434± 0.0022

DPAD LOCANMF 0.4128± 0.0133 0.8697± 0.0011

DPAD PCA 0.3839± 0.0157 0.8902± 0.0008

CEBRA FLATTEN 0.4001± 0.0132 0.5957± 0.0216

CEBRA LOCANMF 0.3745± 0.0081 0.4453± 0.0099

CEBRA PCA 0.3686± 0.0127 0.4638± 0.0079

SBIND - 0.5059± 0.0166 0.8724± 0.0069
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Table A.4. Behavior decoding AUC and neural prediction R2 (Mean ± SEM) across folds for WFCI 2 dataset. As indicated by the arrows,
higher is better for R2 and AUC. For neural prediction, R2 (Mean ± SEM) is reported across 5 folds and all pixels in the brain areas. For
behavior decoding, AUC (Mean ± SEM) is reported across 5 folds and 4 classification tasks for left handle, right handle, left spout, and
right spout. For CEBRA, a ”KNNDecoder” is used for decoding which does not directly report AUC.

MODEL PREPROCESSING BEH. AUC↑ NEUR. R2↑
DPAD FLATTEN 0.8782± 0.0059 0.7440± 0.0049

DPAD LOCANMF 0.8888± 0.0057 0.6374± 0.0033

DPAD PCA 0.8039± 0.0090 0.7182± 0.0038

CEBRA FLATTEN - 0.7228± 0.0052

CEBRA LOCANMF - 0.4971± 0.0045

CEBRA PCA - 0.4913± 0.0131

SBIND - 0.9282± 0.0020 0.7749± 0.0074

Table A.5. Comparison of baselines including adapted STNDT and TNDM on WFCI1 dataset. Behavior decoding and neural prediction
MSE and R2 (Mean ± SEM) across folds.

MODEL PREPROCESSING NEUR. MSE ↓ NEUR. R2 ↑ BEH. MSE ↓ BEH. R2 ↑
DPAD LOCANMF 0.0543± 0.0009 0.8697± 0.0011 0.5877± 0.0226 0.4128± 0.0133

CEBRA LOCANMF 0.4976± 0.0241 0.4453± 0.0099 0.6250± 0.0194 0.3745± 0.0081

STNDT LOCANMF 0.0685± 0.0090 0.8376± 0.0088 0.6033± 0.0240 0.3951± 0.0156

TNDM LOCANMF 0.7912± 0.0290 0.5022± 0.0081 0.7749± 0.0240 0.2233± 0.0109

SBIND-UNSUP - 0.0403± 0.0020 0.8724± 0.0039 0.5413± 0.0185 0.4589± 0.0108

SBIND - 0.0414± 0.0029 0.8724± 0.0069 0.4955± 0.0254 0.5059± 0.0166

Table A.6. Performance comparison of SBIND on WFCI1 datasets using two recurrent update formulations for integrating current neural
image information (Yk). The table contrasts the concatenation approach as in Eq. A.12, where the encoded input K(Yk) is concatenated
with the latent state Xk before the recurrent function, against the summation approach as in Eq. A.1. Results demonstrate that the
concatenation method Eq. A.12 yields improved neural prediction MSE, neural R2, behavioral MSE, and behavioral R2. for WFCI1
dataset.

Model Formulation Neural MSE Neural R2 Beh MSE Beh R2

SBIND w. Recurrent Eq. A.12 0.0414 ± 0.0029 0.8724 ± 0.0069 0.4955 ± 0.0254 0.5059 ± 0.0166
SBIND w. Recurrent Eq. A.1 0.0664 ± 0.0013 0.8545 ± 0.0027 0.5306 ± 0.0198 0.4680 ± 0.0182

Table A.7. Comparison of various ablations in behavior decoding accuracy (quantified as proportion of trials whose target was correctly
decoded) and AUC across 10 folds and all sessions of fUSI Data. For 8-directional sessions a multi-decoder approach is used with two
decoders to predict vertical and horizontal directions (left-right-stationary). Multi-class AUC averaged over two vertical and horizontal
directions, 4 sessions and 10 folds are reported. As indicated by the arrows, higher is better for accuracy and AUC.

2-DIRECTIONAL SESSIONS 8-DIRECTIONAL SESSIONS

MODEL PREPROCESSING BEH. ACCURACY↑ BEH. AUC↑ BEH. ACCURACY↑ BEH. AUC↑
MLP-SBIND FLATTEN 0.5984± 0.0162 0.6285± 0.0216 0.2175± 0.0169 0.5833± 0.0196

MLP-SBIND PCA 0.6565± 0.0178 0.7296± 0.0214 0.2966± 0.0183 0.6823± 0.0170

SBIND-UNSUP - 0.7030± 0.0180 0.7859± 0.0194 0.3411± 0.0187 0.7304± 0.0176

SBIND NOATT - 0.6889± 0.0184 0.7480± 0.0237 0.2893± 0.0179 0.6975± 0.0145

SBIND - 0.7300± 0.0191 0.8067± 0.0180 0.3521± 0.0201 0.7393± 0.0169
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Table A.8. Comparison of various ablations of SBIND in one-step-ahead neural prediction performance (MSE and R2) across 10 folds
and all sessions of fUSI dataset. As indicated by the arrows, lower is better for MSE and higher is better for R2.

2-DIRECTIONAL SESSIONS 8-DIRECTIONAL SESSIONS

MODEL PREPROCESSING NEUR. MSE↓ NEUR. R2↑ NEUR. MSE↓ NEUR. R2↑
MLP-SBIND FLATTEN 0.7885± 0.0067 0.2641± 0.0060 0.8743± 0.0065 0.2274± 0.0071

MLP-SBIND PCA 0.6322± 0.0054 0.3985± 0.0043 0.7058± 0.0030 0.3586± 0.0038

SBIND-UNSUP - 0.4453± 0.0127 0.6029± 0.0112 0.3827± 0.0086 0.6683± 0.0073

SBIND NOATT - 0.5036± 0.0155 0.5545± 0.0133 0.4230± 0.0109 0.6344± 0.0090

SBIND MSE LY - 0.4900± 0.0108 0.5555± 0.0094 0.4225± 0.0076 0.6287± 0.0064

SBIND - 0.4725± 0.0165 0.5736± 0.0144 0.3919± 0.0107 0.6558± 0.0094

Table A.9. Comparison of baselines in behavior decoding AUC and neural prediction R2 across 10 folds and all sessions (Mean ±
SEM). For DPAD and SBIND, in 2-directional sessions the AUC for binary classification is reported over 10 folds and 9 sessions of
fUSI Data. In 8-directional sessions, a multi-decoder approach is used with two decoders to predict vertical and horizontal directions
(left-right-stationary). Multi-class AUC averaged over two vertical and horizontal directions, 4 sessions, and 10 folds are reported. For
CEBRA, a ”KNNDecoder” is used for decoding which does not directly report AUC. As indicated by the arrows, higher is better for AUC
and R2.

2-DIRECTIONAL SESSIONS 8-DIRECTIONAL SESSIONS

MODEL PREPROCESSING BEH. AUC↑ NEUR. R2↑ BEH. AUC↑ NEUR. R2↑
LDA PCA 0.7130± 0.0242 - 0.6987± 0.0164 -
DPAD FLATTEN 0.5940± 0.0221 0.2355± 0.0066 0.6060± 0.0157 0.2011± 0.0079

DPAD PCA 0.7399± 0.0208 0.3938± 0.0045 0.6752± 0.0179 0.3554± 0.0040

CEBRA FLATTEN - −0.3839± 0.0128 - −0.3518± 0.0085

CEBRA PCA - −0.2731± 0.0069 - −0.3076± 0.0103

SBIND - 0.8067± 0.0180 0.5736± 0.0144 0.7393± 0.0169 0.6558± 0.0094
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Figure A.2. Pixel-wise neural prediction R2 values across brain regions. Neural prediction maps for the WFCI 1 dataset are depicted
for (a) CEBRA, (b) SBIND, (c) SBIND NoAtt, and (d) DPAD. SBIND produces more detailed neural predictions compared to its variant
without the self-attention mechanism. CEBRA poorly predicts neural activity because it uses latent embeddings guided by behavior and
lacks extra embedding dimensions for residual neural activity unrelated to behavior. This is consistent with the observation that widefield
calcium imaging datasets often contain significant neural activity unrelated to behavior (Musall et al., 2019). Higher is better for R2.

24



Dynamical Modeling of Behaviorally Relevant Spatiotemporal Patterns in Neural Imaging Data

(a) (b) (c) (d)

0.0

0.2

0.4

0.6

0.8

1.0

NRM
SE

Figure A.3. Pixel-wise neural prediction NRMSE values across brain regions. Neural prediction maps for the WFCI 1 dataset are
depicted for (a) CEBRA, (b) SBIND, (c) SBIND NoAtt, and (d) DPAD. Lower is better for NRMSE.
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Figure A.4. Mean contribution of all brain regions to predicting the activity of three different pixels marked by × in the brain
map. The plots display the mean attribution of whole-brain activity to the neural prediction of specific points, derived using the Captum
framework. We calculated the attribution of each input image across all time points to the neural prediction of the specified points in
different plots. These attribution maps were then averaged across time for different neural images to find the mean attribution. This
analysis was performed on the test data from the WFCI 1 dataset after training both models. (a-c) SBIND NoAtt. (d-f) SBIND.
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Figure A.5. SBIND example behavior decoding. Predictions over 6 dimensions of continuous behavior extracted from behavior videos
for WFCI 1 dataset. (See Appendix A.4 and Figure 2 for details of behavior extraction.)
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Figure A.6. Larger Self-Attention Patch Sizes Lead to Better Neural Prediction. Neural prediction MSE across different patch sizes
for the WFCI 1 dataset across 5 folds and 2 runs.
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