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(a) Volumetric representation (b) Quadric representation

Figure 1: Comparison between the volume representation and our quadric representation.We parti-
tion the 3D scenes into different quadric surfaces. Instead of processing every points independently,
we can fully exploit the correlation between points on the same quadric surfaces.

Abstract: In this paper, we reimagine volumetric representations through the lens
of quadrics. We posit that rigid scene components can be effectively decomposed
into quadric surfaces. Leveraging this assumption, we reshape the volumetric rep-
resentations with million of cubes by several quadric planes, which results in more
accurate and efficient modeling of 3D scenes in SLAM contexts. First, we use the
quadric assumption to rectify noisy depth estimations from RGB inputs. This
step significantly improves depth estimation accuracy, and allows us to efficiently
sample ray points around quadric planes instead of the entire volume space in pre-
vious NeRF-SLAM systems. Second, we introduce a novel quadric-decomposed
transformer to aggregate information across quadrics. The quadric semantics are
not only explicitly used for depth correction and scene decomposition, but also
serve as an implicit supervision signal for the mapping network. Through rig-
orous experimental evaluation, our method exhibits superior performance over
other approaches relying on estimated depth, and achieves comparable accuracy
to methods utilizing ground truth depth on both synthetic and real-world datasets.
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1 Introduction

Recent years have seen a renaissance of simultaneous localization and mapping (SLAM), thanks to
the advances in learning-based localization methods [1, 2, 3] and neural radiance fields (NeRFs) [4,
5, 6]. In its basic incarnation, SLAM involves estimating per-frame camera poses and reconstructing
3D scenes from visual inputs. The key challenging of monocular SLAM lies in the accurate 3D scene
geometry modeling from visual inputs.
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To enable high-quality 3D scene reconstruction, recent SLAM approaches resort to NeRFs and
Gaussians as key map representations. Specifically, NeRFs [7], employing neural networks i.e.
MLPs, are recognized for their ability to achieve photo-realistic novel-view synthesis, as demon-
strated in studies such as iMAP [5], Nice-SLAM [8]. Conversely, 3D Gaussian Splatting (3DGS)
[9] relies on dense Gaussian representations to learn scene geometries effectively. Despite achieving
photo-realistic novel-view synthesis, NeRFs and Gaussians have a few drawbacks when applied in
SLAM systems. On the one hand, MLP-based NeRFs are slow to train while achieving significant
memory efficiency. On the other hand, 3D Gaussian Splatting offers near-real-time training capabili-
ties but suffer from large memory consumption and sensitivity to inaccurate camera pose estimation.
Additionally, both methods focus on dense high-quality reconstruction, demanding substantial rep-
resentation efforts to capture fine-grained details.

Addressing these challenges necessitates the design of map representations that are compatible with
both learning-based localization front-end and NeRF(GS)-based reconstruction module. There-
fore, to enhance scene geometry representation in SLAM, we introduce a novel method, termed
Q-SLAM. As illustrated in Figure 1, we integrate the proposed quadric representations across the
SLAM pipeline in several key areas.

(1) The well-established front-end tracking module can take RGB stream as input and offer a rough
depth estimation while estimating camera poses. Nevertheless, this depth estimation encounters
significant challenges, particularly at edges and in texture-less regions, where accuracy tends to
degrade. To address these issues, we introduce a quadric- based depth correction module, leveraging
quadric surfaces to refine the depth estimation, thus improving overall scene reconstruction accuracy,
especially in complex and challenging environments.

(2) In the mapping module, departing from previous NeRF-based SLAM approaches like [4, 8],
which rely on volumetric representations, our method transforms densely volumetric scenes - com-
prising millions of cubes (e.g., 300 × 300 × 300 voxels) - into a more manageable set of quadric
surfaces (50-100 quadric surfaces per keyframe). This approach maintains the integrity of the 3D
scene descriptions while significantly reducing complexity, by sampling around the quadric surfaces
instead of the whole 3D space.

(3) During the rendering phase, we develop a quadric-ray transformer. We employ importance-
sampling based on the quadric-rectified depth values, and we emphasize that sampled points on a
quadric naturally belong to the same instance, which facilitates the modeling of their interrelation-
ships during rendering, akin to the method in [10, 11]. We first perform feature interaction between
points along a ray to aggregate information and then model the relationships between these surface
points across rays using a transformer.

(4) Notably, we extend the utility of quadric semantics beyond mere depth correction and scene
decomposition. They are also used as a supervision signal throughout the optimization of the NeRF
network to learn robust and accurate features. With the integration of quadrics into the pipeline, we
also consider the estimated pose as a learnable parameter in our mapping phase. This introduces a
differentiable optimization process to refine the pose estimation, enhancing overall system accuracy.

2 Related Work

2.1 Dense Visual SLAM

Neural Radiance Fields (NeRF) [12] have exhibited notable efficacy in diverse applications, includ-
ing view synthesis [12, 10, 13] and 3D reconstruction [14, 15]. RGBD SLAM: Innovative contri-
butions such as iMAP [5] and Nice-SLAM [8] have pioneered the integration of NeRF into SLAM
systems, demonstrating commendable tracking and mapping performance for indoor scenes. Co-
SLAM [1] adopts a multi-resolution hash-grid representation for the scene to expedite convergence.
E-SLAM [16] integrates the multi-scale axis-aligned perpendicular feature planes for efficient re-
construction of 3D scenes. By anchoring neural scene features in a point cloud generated iteratively
in an input-driven manner, Point-SLAM [17] optimizes runtime and memory usage while maintain-
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ing fine detail resolution. Besides using NeRF as the map representation, recent SLAM systems also
resort to 3D Gaussian Splatting (3DGS) [9] due to its explicit representation property and real-time
rendering performance. SplaTAM [18] pioneers in replacing NeRF with 3DGS and has achieved
promising results in both tracking and mapping. GS-SLAM [19] further proposes a coarse-to-fine
technique to select reliable 3D Gaussian representations for camera pose optimization effectively.
However, these GS-based approaches have one drawbacks in common, much higher requirements
for memory usage. All these approaches above rely on ground truth depth map for supervision
of NeRF (or 3DGS) training, which is hard to obtain in real-world environment, thereby limiting
their applicability in robotics. Conversely, Monocular SLAM method emerges, with only RGB
images as input. In particular, NeRF-SLAM [4] integrates DROID-SLAM [20] for pose estimation
and depth prediction and use Instant-NGP [21] to fit a NeRF. GO-SLAM [2] globally optimize poses
and 3D reconstruction. However, the performance of these methods in 3D reconstruction is impeded
by the inherent limitations of noisy predicted depth maps.

2.2 Scene representations

Volumetric Representations are predominantly utilized in Neural Radiance Fields (NeRFs) [22,
23, 12], and in 3D perception [24, 25, 26]. These representations encapsulate a 3D scene through a
volumetric approach, where each volume element embodies occupancy probabilities or task-specific
features. However, deriving volumetric representations solely from visual inputs presents significant
challenges, particularly in terms of geometric estimation, leading to ambiguous and noisy outputs.
Point-Cloud Representation offers a sparser alternative [27]. Point-SLAM [17] utilize a dynamic
point density strategy to reduce computational and memory usage. Yet sparse point-clouds struggle
to depict scenes comprehensively, while dense point-clouds encounter similar complications to vol-
umetric representations, as previously mentioned. Consequently, few vision-based SLAM systems
adopt point-based representations. Additionally, primitives like Planes [28] and Quadric-Meshes
[29, 30, 31] have been proposed for scene representation. QuadricSLAM [32] estimates 3D quadric
surfaces from 2D multi-view images and uses them as landmark representations for camera track-
ing in the SLAM pipeline. Dense Planar SLAM [33] uses bounded planes and surfels extracted
from depth images to build a real-time SLAM system, but ignore the fine-grained reconstruction
of 3D scenes. Point-plane SLAM [34] exploits the constraints of plane edges, which are predomi-
nant features that are less affected by measurement noise. ManhattanSLAM [35] utilizes the indoor
structural information to estimate camera poses based on the Manhattan World (MW) assumption.
However, these are typically employed for regularization during optimization or are challenging to
optimize, limiting their applicability in visual SLAM. Drawing inspiration from quadric represen-
tations in LiDAR SLAM [3], we introduce quadric representations in visual monocular SLAM.

3 Q-SLAM

3.1 Overview

Our framework, Q-SLAM, as illustrated in Fig. 2, takes monocular RGB sequences as input. Ini-
tially, Droid-SLAM [20] predicts rough depth maps and initial camera poses from these inputs.
Concurrently, a pretrained segmentation network is employed to estimate segmentation masks from
these images. These masks are then utilized by the quadric-based depth correction module to refine
the noisy depth maps, yielding more accurate corrected depth maps. Alongside the corresponding
RGB images, camera poses, and segmentation results, they are inputted into the NeRF network.

For NeRF optimization, the RGB images, corrected depth and segmentation masks serve as super-
vision signals. To capture the semantic relationship across quadric surfaces, we further propose a
quadric ray transformer, enabling effective feature interaction within and across the sampled rays.
During the mapping process, both the camera poses G = gt and the 3D scene representation pa-
rameters Θ are jointly optimized to enhance tracking and mapping accuracy. With the learned NeRF
parameters, we can render RGB images, depth maps, and semantic maps for novel views, which can
then be utilized to reconstruct the 3D mesh using TSDF-Fusion [36].
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Figure 2: Overview of our proposed method. From the input RGB sequences, we can predict depth
map, camera pose and segmentation mask. Subsequently, the initially estimated depth undergoes
correction based on the quadric assumption. Along with the segmentation mask, camera poses,
and image frames, the corrected depth are used for optimization of NeRF network. During the 3D
reconstruction process, our proposed quadric ray transformer leverages the quadric priors effectively.

3.2 Quadric depth correction

Through the inverse re-projection with the pixel locations (u, v) and the depth values d, a set of 3D
points p can be obtained for each segmented patch, where the depth value directly serves as the z
coordinate and K is the calibration matrix: [X,Y, Z]T = d · (K−1[u, v, 1]T )

To represent the points of each segmented patch as quadric surfaces, we define the quadric implicit
function as follows:

f(C,x) = CT
q q+ CT

l x = c (1)

where x = [x, y, z]
T is the linear term and q =

[
x2, y2, z2, xy, yz, xz

]T
is the quadric term cal-

culated from x, and Cq , Cl and c are the coefficients to be fitted. Following Narunas et al. [37],
we define the cost function for the least-square fitting as the sum of squared distances between the
quadric surface and the actual N points to be fitted:

C ≜
N∑
i=1

(Cq · qi + Cl · xi − c)
2 (2)

Minimizing over Eq. 2, we obtain the quadric coefficients. We preserve the patches with fitting error
below a predefined threshold, which implies a good fitting surface for the following depth correction.
By substituting (X,Y ) back into f(C,x), an equation involving z with other variables as constants
is obtained. Solving this equation yields new Z values, representing the rectified depth values.

Patch selection Quadric fitting Correction

Figure 3: Quadric depth correction

The established quadric surface
model proves effective in mitigating
noise impact on depth information,
ultimately improving the fidelity
of the reconstructed spatial data.
Fig. 3 illustrates the effectiveness of
our proposed quadratically rectified
approach. The original patch exhibits
drifting points, particularly along the
boundary where significant depth
value changes occur. However, the
proposed approach rectifies these
points, fitting them to the quadric surface.

The incorporation of additional constraints imposed by quadric surfaces contributes to a more pre-
cise depth prediction, thereby enhancing tracking and mapping accuracy.
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3.3 Quadric Ray transformer

Intra-Ray Transformer: Drawing inspiration from IBRNet [10], our approach employs an atten-
tion mechanism along the ray to model relationships between sampled points. (Fig. 4)

Initially, Ns points are uniformly sampled along each ray within the range [dnear, dfar]. Utilizing
the corrected depth values, denoted as d, we refine the sampling process by selecting additional Nd

samples within the range of [0.95d, 1.05d]. Given the sampled points p ∈ RB×(Ns+Nd)×3, where
B is the number of sampled rays, we query the volume density features fσ ∈ RB×(Ns+Nd)×D

and feed them into the intra-ray transformer. Processing density features instead of color features
is a wise choice as they solely depend on xyz positions, simplifying feature aggregation based
on the attention mechanism. Additionally, the smaller number of feature channels in density does
not significantly increase the computational burden, resulting in an efficient representation for the
application of SLAM.

The density features of each point along the ray are updated using self-attention:

f
′

σ = Attention (Q(fσ + δp),K(fσ + δp), V (fσ + δp)) (3)

where δp is the positional encoding in attention mechanism. This self-attention mechanism facili-
tates feature aggregation along a ray, enabling the capture of more information from the surface and
nearby points for more precise surface reconstruction.

Inter-Ray Transformer: Intuitively, points belonging to the same semantic quadric are more likely
to exhibit similar textural and spatial features, while rays sampled from different quadric surfaces
might differ from each other in terms of textures and geometries. Therefore, we further propose the
inter-ray transformer to capture the relationship across rays.

The inter-ray transformer operates on the updated density features from intra-ray transformer. First,
the updated density features f

′

σ are concatenated with the semantic features fs. Followed by a fusion
network, new density features with semantic priors, f

′′

σ ∈ RB×N×D , can be obtained.

f
′′

σ = MLPfusion

(
f

′

σ ⊕ fs

)
(4)

As shown in Fig. 4, the inter-ray transformer then takes the transposed density features, f
′′T
σ ∈

RN×B×D, as input, where attention map is calculated across different rays along the B dimension:

f
′′′T
σ = Attention

(
Q(f

′′T
σ + δ

′

p),K(f
′′T
σ + δ

′

p), V (f
′′T
σ + δ

′

p)
)

(5)

where δ
′

p is the positional encoding in attention mechanism.

The inter-ray transformer further facilitates feature interaction across rays. This process allows sur-
face points to capture more inter-ray information from other rays from the same quadric surface.
Together with the intra-ray transformer, our proposed network achieves feature aggregation across a
broad range of ray points, enhancing rendering accuracy by incorporating quadric priors and addi-
tional spatial information.

Intra-ray
transformer

𝑓𝑓𝜎𝜎 from other samples on the same ray

Fusion Inter-ray
transformer

𝑓𝑓𝜎𝜎 from other samples 
on different rays

(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

(𝜃𝜃,𝜙𝜙)

RGB (c)

Semantic (s)

Density (𝝈𝝈)

𝑓𝑓𝜎𝜎 𝑓𝑓𝜎𝜎

𝑓𝑓𝜎𝜎 𝑓𝑓𝜎𝜎
𝑓𝑓𝑠𝑠

𝑓𝑓𝑐𝑐 𝑓𝑓𝑐𝑐 Position

View

Hidden feature

Density feature

Color feature

Semantic feature

Figure 4: The detailed structure of quadric ray transformer.
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3.4 Joint Optimization of Rendering and Pose Estimation

During mapping, we map the 3D coordinates x, and viewing directions d to volume density, color
and semantic logits (σ, c, s). Subsequently, volume rendering is utilized to reconstruct color Ĉ,
depth D̂, and semantic map Ŝ. For points {pi|i = 1, · · · ,M} on a fitted quadric surface, the color
and depth loss is calculated as follows:

Lc =
1

εM

M∑
m=1

∣∣∣Cm − Ĉm

∣∣∣ ;Ld =
1

εM

M∑
m=1

∣∣∣Dm − D̂m

∣∣∣ (6)

Here, the fitting error ε serves as an uncertainty penalty. In cases where the fitting is not perfect, the
quadric plane is less likely to exhibit similar texture and spatial features, resulting in reduced use-
fulness of the quadric transformer. Consequently, such patches are down-weighted by incorporating
the fitting error ε. Following [38], we use a multi-class cross-entropy loss as the semantic loss Ls.
Hence the rendering loss is a weighted sum of Lc, Ld and Ls with hyperparameters λ1, λ2.

L = Lc + λ1Ld + λ2Ls (7)

For joint optimization, the camera pose G = {gt}, a 4 × 4 transformation matrix, is converted to
quaternion (4× 1) and translation (3× 1) vector, which are then taken as trainable parameters to the
network, optimized together with the NeRF parameters while minimizing the rendering loss. In this
way, the camera poses G and network parameters Θ can be jointly optimized.

4 Experiments

4.1 Experimental Setup

Dataset. Q-SLAM is evaluated on a variety of datasets, including Replica [39], ScanNet [40], and
KITTI MOT dataset [41]. For evaluation of the reconstruction quality, we test our method on 8
synthetic scenes from Replica, which provides high-quality synthetic scenes. Following GO-SLAM
[2], we evaluate the tracking accuracy on ScanNet dataset which offers extensively annotated RGB-
D scans of real-world scenarios, encompassing challenging short and long trajectories. KITTI MOT
dataset is an outdoor autonomous driving dataset with dynamic objects, such as cars. For camera
tracking assessment, our approach is evaluated under two distinct modes: one utilizing ground truth
and the other utilizing estimated depth from monocular images as inputs.

Metrics. We evaluate tracking accuracy by aligning the estimated trajectory with the ground truth
trajectory and computing the Root Mean Square Error (RMSE) of the Absolute Trajectory Error
(ATE). This metric quantifies the Euclidean distance between the estimated pose and the corre-
sponding ground truth pose. Following NeRF-SLAM [4], we utilize Peak Signal-to-Noise Ratio
(PSNR), SSIM [42], and LPIPS [43] for image rendering evaluation, which evaluate the similarity
between the rendered images and the ground truth images, and Accuracy [cm], Completion [cm],
Completion Ratio [%] for 3D reconstruction assessment, which measures the reconstruction quality
by comparing the reconstructed mesh and the ground truth mesh.

Table 1: Photometric (PSNR [dB], SSIM, LPIPS) and Geomertric (Acc. [cm], Comp. [cm], Comp.
Ratio [%]) results on Replica dataset [39].

Setting Method PSNR ↑ SSIM ↑ LPIPS ↓ ATE ↓ Acc. ↓ Comp. ↓ Comp. Ratio (%) ↑

RGBD

Nice-SLAM [8] 24.42 0.81 0.23 1.95 3.87 3.87 82.41
Vox-Fusion [44] 24.41 0.80 0.24 0.54 2.67 4.55 86.59
SplaTAM [18] 34.11 0.97 0.10 0.36 2.88 3.57 71.68
Ours 35.34 0.98 0.12 0.34 2.17 2.47 91.13

Mono

COLMAP [45] 13.94 0.72 0.35 - 8.69 12.12 67.62
DROID-SLAM [20] 21.69 0.81 0.25 0.42 5.50 12.29 63.62
Nicer-SLAM [46] 25.41 0.83 0.19 1.88 3.65 4.16 79.37
Ours 32.49 0.89 0.17 0.38 2.89 3.55 84.79
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Table 2: ATE RMSE [cm] Results on ScanNet dataset [40]. ’VO’ denotes visual odometry. Results
of DROID-SLAM are from [2] and results of iMAP∗ and Nice-SLAM are from [8].

Setting Scene ID 0000 0054 0233 0465 0059 0106 0169 0181 Avg.
# Frames 5578 6629 7643 6306 1807 2324 2034 2349

RGBD

iMAP* [5] 55.95 70.11 86.42 85.03 32.06 17.50 70.51 32.10 56.21
Nice-SLAM [8] 8.64 20.93 9.00 22.31 12.25 8.09 10.28 12.93 13.05
DROID-SLAM (VO) [20] 8.00 29.28 6.75 11.37 11.30 9.97 8.64 7.38 11.59
DROID-SLAM [20] 5.36 8.89 4.90 8.32 7.72 7.06 8.01 6.97 7.15
GO-SLAM [2] 5.35 8.75 4.78 8.15 7.52 7.03 7.74 6.84 7.02
Ours 5.23 8.57 4.68 8.33 7.63 7.02 7.66 6.52 6.96

Mono

DROID-SLAM (VO) [20] 11.05 204.31 71.08 117.84 67.26 11.20 16.21 9.94 63.61
DROID-SLAM [20] 5.48 197.71 72.23 114.36 9.00 6.76 7.86 7.41 52.60
GO-SLAM [2] 5.94 13.29 5.31 79.51 8.27 8.07 8.42 8.29 17.59
Ours 5.77 12.62 5.27 76.96 8.46 8.38 8.74 8.76 16.87

Implementation Details. All experiments are conducted on an NVIDIA A6000 GPU using Py-
Torch 1.10.0. We use Adam as the optimizer with β1 = 0.9 and β2 = 0.999. The tracking module
is adapted from Droid-SLAM [20], and pretrained weights are utilized to estimate depths and poses.
Our mapping backbone is adapted from Point-SLAM [17], incorporating our proposed depth cor-
rection and quadric ray transformer. For faster image segmentation, we use the MobileSAM [47]
to obtain segmentation masks from each input RGB frame. Diverging from methodologies where
scene meshes are reconstructed using marching cubes on Signed Distance Function (SDF) values
of queried points, Q-SLAM renders images and depths over the estimated camera trajectory and
use TSDF-Fusion [36] for mesh construction with voxel size 1 cm. During the fitting process, only
quadric surfaces with fitting error lower than the specified threshold undergo depth correction; oth-
erwise, the uncorrected predicted depth is used for the supervision of NeRF training. For joint op-
timization, the scene representation parameters Θ are optimized for five steps, and the accumulated
losses are then utilized to update camera pose G.

4.2 Comparison with SOTA

Replica dataset. We evaluate on the 8 scenes as Nice-SLAM and iMAP. As shown in Tab. 1,
the results demonstrate comparable performance across almost all scenes in terms of rendering and
reconstruction metrics. Notably, our approach exhibits performance on par with SLAM systems that
utilize ground truth depth for supervision.

ScanNet dataset. For a comprehensive comparison, we further evaluate our SLAM system on Scan-
Net [40] dataset, encompassing both long and short sequences. As depicted in Tab. 2, our method
outperforms other approaches in both monocular and RGBD setting, with a more pronounced supe-
riority evident in the case of monocular inputs.

Table 3: Runtime and memory usage.
Method Memory Tracking Mapping
Nice-SLAM [8] 10.13 GB 1.32s 10.92s
Vox-Fusion [44] 12.45 GB 0.36s 0.55s
Ours 14.59 GB 0.44s 0.89s

Runtime and Memory Usage. In Table 3, we also
report the runtime and memory usage on the Replica
dataset. The tracking and mapping time is reported per
frame. It can be observed that our method can achieve
comparable speed with Vox-Fusion [44], but providing
much higher rendering quality as shown in Tab 1. We
also report the runtime of individual breakdown components in Tab 5.

4.3 Ablation Study

Depth Correction. In Tab. 4 (a), we compare the performance with or without the proposed quadric
depth correction module. It can be observed that the depth correction process enhances the accuracy
of the predicted depth map by introducing additional surface constraints, rectifying drifting points
that deviate from the surfaces. This improvement positively impacts both tracking and mapping
performance, especially for the Depth L1 metric.
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Table 4: Ablation on Replica dataset.
Setting Depth L1 PSNR ATE
Full Setting 2.76 32.49 0.38
(a) w/o depth correction 3.23 31.42 0.40
(b) w/o quadric transformer 2.98 31.87 0.39
(c) w/o joint optimization 2.81 32.14 0.42
(d) w/o semantic supervision 2.91 32.09 0.39

Table 5: Breakdown of runtime.
Components Timing (per frame)
Droid-SLAM prediction 54 ms
MobileSAM segmentation 37 ms
Depth Correction 143 ms
Tracking (pose optimization) 442 ms
Mapping 894 ms

Figure 5: Qualitative reconstruction results on Replica dataset. We compare our solution with recent
SOTA SLAM systems Co-SLAM [1] and GO-SLAM [2]. Our method can recover better texture
features, especially on the boundary of instances.

Quadric Transformer. In experiments without the quadric ray transformer, the points along a sam-
pled ray are processed independently, lacking feature interaction between each other. The introduc-
tion of the quadric ray transformer can help capture information along the ray, and hence improve
the performance, as illustrated in Tab. 4 (b).

Joint Optimization. For experiments without joint optimization, the estimated camera poses are not
optimized using the rendering loss during the mapping process. It can be observed from Tab. 4 (c)
that joint optimization of camera poses and 3D reconstruction demonstrates a modest improvement
in both tracking and mapping accuracy. We believe that the limited improvement stems from the
fact that joint optimization is solely conducted on keyframes during the mapping process. Given
that keyframes constitute only a small portion of the entire sequence, while the evaluation of camera
poses spans all frames, this potentially constrains the impact of joint optimization.

Semantic Supervision. With an additional semantic head, our model not only renders color and
depth but also generates the semantic map. It’s intuitive to utilize segmentation results from previous
modules as a supervisory signal, enriching the available information. As shown in Table 4 (d),
incorporating semantic supervision can significantly enhance performance.

5 Conclusion

In this paper, we introduce quadratic surfaces as the map representation for SLAM. Based on seg-
mentation results from RGB images, the roughly estimated depth values can be corrected by incor-
porating additional surface constraints. We utilize the rectified depths and quadric semantics as a
prior for sampling points along the ray, significantly reducing the required number of samples to
achieve comparable results, thus alleviating the computational burden. Additionally, we employ
a novel quadric-ray transformer model to capture interrelations across different samples along the
ray within the constraints of quadric surfaces. Furthermore, we propose an end-to-end joint opti-
mization approach for pose estimation and 3D reconstruction. Sufficient experiments on various
datasets demonstrate the effectiveness of our proposed method in terms of novel-view synthesis,
depth estimation, and camera tracking.

Limitations. The heavy computational cost of our method compared to traditional SLAM systems
and the difficulty in scaling to unbounded outdoor scenarios. We also acknowledge that the quadric
assumption of the surface is not ubiquitous, especially for complex structures in outdoor scenarios,
such as trees. Additionally, the smoothing process heavily relies on the segmentation results. We
plan to explore more efficient representations, such as gaussian splatting, in the future work.
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Figure 6: Structure overview of Q-SLAM. 1) Tracking: initialize per-frame camera poses and depth
prediction. Correct the noisy depth using our proposed depth correction module based on the seg-
mentation results from monocular inputs. 2) NeRF: using the selected keyframes to supervise the
optimization of NeRF network equipped with our proposed quadric-decomposed transformer. 3)
Mapping: global bundle adjustment to jointly optimize the scene representation and camera poses
taking rays sampled from all keyframes. Reconstruct the complete scene by fusing the rendered
RGB images and depth maps with TSDF-fusion [36].

A Additional Methodology Details

A.1 Camera tracking

The initial depth and camera poses are obtained from the learning-based Droid-SLAM [20]. Taking
sequences of RGB images as input, Droid-SLAM can predict camera pose and pixel-wise depth
through recurrent iterative updates. We do not make changes to the Driod-SLAM codebase but
use them to initialize the predicted depths and poses. The rough depths are then rectified with our
proposed depth correction module, and the camera poses are optimized with our joint optimization
technique.

A.2 Local bundle adjustment

By setting a window size of 25, we will perform a local bundle adjustment. Following Nice-SLAM
[8], we treat camera poses as trainable parameters. We sample 400 rays per image within the window
and optimize their corresponding poses using the rendering loss.

L = Lc + λ1Ld + λ2Ls (8)

where Lc is the color loss, Ld is the depth loss and Ls is the semantic loss with hyperparameters
λ1, λ2.

A.3 Keyframe management

Following Droid-SLAM, our system takes as input a live RGB stream, and applies a recurrent update
operator based on RAFT [48] to compute the optical flow of each new frame compared to the last
keyframe. If the average flow is larger than a predefined threshold τflow, a new keyframe is created
out of the current frame and added to the maintained keyframe buffer.
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A.4 Quadirc surface fitting and depth correction

By setting ∇Cc = 0 in Eq. 2 to obtain the optimal c∗

c∗ =
1

N

N∑
i=1

(Cq · qi + Cl · xi) ≜ Cq · q̄+ Cl · x̄ (9)

The cost function in Eq. 2 becomes:

C =

N∑
i=1

(Cq · (qi − q̄) + Cl · (xi − x̄))
2 (10)

where q̄ = 1
N

∑N
i=1 qi are the quadric term averaged on points in a patch, x̄ = 1

N

∑N
i=1 xi is the

linear term.

The intermediate variables are defined as follows:

L ≜
∑N

i=1 (xi − x̄) (xi − x̄)
T

M ≜
∑N

i=1 (qi − q̄) (qi − q̄)
T

N ≜ −
∑N

i=1 (qi − q̄) (xi − x̄)
T

(11)

Setting ∇CCl
= 0 gives

L C∗
l = NTCq (12)

By substituting C∗
l back to Eq. 10, we can obtain

C ≜
N∑
i=1

∥∥∥((qi − q̄)
T
+ (xi − x̄)

T L−1NT
)
Cq
∥∥∥2

= CqTΨCq , where Ψ ≜ M− N L−1NT

(13)

Minimizing Eq. 13 over cq gives the eigenvector c∗q of Ψ corresponding to the minimum eigenvalue,
and c∗l can be solved from Eq. 12, and c∗ from Eq. 9.

As defined by Taubin et al. [49], the distance from a point x to a quadric surface f is:

d(x, f) ≈ f2(C,x)
|∇xf(C,x)|2

(14)

For every fitted patch, we calculate the average distance between the original points to the fitted
surface as the fitting error. Those patches with error exceeding the given threshold will be discarded.
We only preserve the patches with relatively small fitting error, which implies a good fitting surface
for the following depth correction.

A.5 Ray points sampling

Initially, rays are constructed from the provided image and calibration matrix, and Ns points are
uniformly sampled along each ray within the range [dnear, dfar]. Utilizing the corrected depth
values, denoted as d, we refine the sampling process by selecting additional Nd samples within the
range of [0.95d, 1.05d]. We do not simply sample around d because potential errors in the corrected
depth values might lead to an extended sampling distance away from the true surface.

A.6 Extension to dynamic scenes

While the static assumption applied in existing NeRF SLAM methods is suitable for indoor environ-
ments, it becomes inadequate for outdoor scenarios with moving objects, particularly in autonomous
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Figure 7: Qualitative reconstruction results on KITTI MOT dataset. We compare our solution with
recent SOTA NeRF-SLAM systems Co-SLAM [1] and GO-SLAM [2].

driving contexts, limiting their applicability. We propose to extend our method to outdoor scenarios,
which are rarely explored in previous methods [8, 17, 16, 18]. By incorporating an additional dy-
namic branch, we can effectively model the reconstruction of moving objects using semantic priors.
Unlike the static branch, which outputs (σs, cs), the dynamic branch produces outputs (σd, cd) that
vary with time t. The time embedding, derived from t is integrated into the dynamic branch along
with other inputs. The final density σ and color c for rendering are calculated as follows:

σ(x, t) = σs(x) + σd(x, t), c(x,d, t) =
σs

σ
cs(x,d) +

σd

σ
cd(x,d, t) (15)

where x and d represents the 3D coordinates and viewing direction respectively, and t is the times-
tamp. The subscript s and d stand for static and dynamic branch respectively, and the outputs of
dynamic branch depend on time, while the static branch does not.

The color Ĉ and depth D̂ are rendered as follows:

Ĉ(r, t) =

∫ +∞

0

T (s)σ(r(s), t)c(r(s),d, t) ds (16)

D̂(r, t) =

∫ +∞

0

T (s)σ(r(s), t)ds (17)

We do not incorporate the semantic head for outdoor scenes, because there are much more classes
of objects compared to indoor scenes. To supervise the training on dynamic objects, we generate the
static masks following [50], and apply a regularization loss of dynamic branch on the static regions.

Lr =
∑

x∈static

|σd(x, t)|1 (18)

We conducted experiments on KITTI dataset [41], including outdoor scenes with moving cars. The
qualitative results are presented in Fig. 7.

B Additional Implementation Details

B.1 Data source

The data of other NeRF-SLAM methods in Tab. 1 is sourced from Nicer-SLAM [46], and the
geometric reconstruction results (Acc., Comp., etc.) of SplaTAM [18] comes from RTG-SLAM
since the original paper does not report these metrics. The results of other method in Tab. 2 are
mainly taken from GO-SLAM [2].

B.2 Dataset

Q-SLAM is evaluated on a variety of datasets, including Replica [39], ScanNet [40], and TUM
RGB-D [51] dataset. For evaluation of reconstruction quality, we test our method on 8 synthetic
scenes from Replica, which provides high-quality synthetic scenes, akin to the evaluation frame-
work adopted by NeRF-SLAM [4]. Following GO-SLAM [2], we evaluate the tracking accuracy
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on ScanNet dataset which offers extensively annotated RGB-D scans of real-world scenarios, en-
compassing challenging short and long trajectories. Following Nice-SLAM [8], we also evaluate
on various scenes on indoor TUM RGB-D dataset, with ground truth poses provided by a motion
capture system. For camera tracking assessment, our approach is tested under two distinct modes:
one utilizing ground truth and the other utilizing estimated depth from monocular images as inputs.
The batch size of sampled rays to NeRF network is 8192.

B.3 Evaluation Metrics

We evaluate tracking accuracy by aligning the estimated trajectory with the ground truth trajectory
and computing the Root Mean Square Error (RMSE) of the Absolute Trajectory Error (ATE). This
metric quantifies the Euclidean distance between the estimated pose and the corresponding ground
truth pose. In line with the evaluation approach of NeRF-SLAM [4], we utilize Peak Signal-to-
Noise Ratio (PSNR), SSIM [42], and LPIPS [43] for image rendering evaluation, and Accuracy
[cm], Completion [cm], Completion Ratio [%] for 3D reconstruction assessment.

• Absolute Trajectory Error (ATE) (cm) ↓: Evaluates trajectory estimation accuracy by mea-
suring the average Euclidean translation distance between corresponding poses in estimated
and ground truth trajectories, often reported in terms of Root Mean Square Error (RMSE).

• Peak Signal to Noise Ratio (PSNR) ↑: Measures image quality by evaluating the ratio
between the maximum pixel value and the root mean squared error, usually expressed in
terms of the logarithmic decibel scale.

• Structural Similarity Index Measure (SSIM) ↑: Assesses image quality by examining the
similarities in luminance, contrast, and structural information among patches of pixels.

• Learned Perceptual Image Patch Similarity (LPIPS) ↓: Utilizes learned convolutional fea-
tures to assess image quality based on feature map mean squared error across layers.

• Accuracy (cm) ↓: Computes the average distance between sampled points from the recon-
structed mesh and the nearest ground-truth point.

• Completion (cm) ↓: Measures the average distance between sampled points from the
ground-truth mesh and the nearest reconstructed.

• Completion Ratio (%) ↑: the percentage of points in the reconstructed mesh with Comple-
tion under 5 cm.

B.4 Hyperparameters

All experiments are conducted on NVIDIA A6000 GPU with PyTorch 1.10.0. We use Adam as our
optimizer with β1 = 0.9, β2 = 0.999. The tracking backbone is Droid-SLAM, where we use the
pretrained weights to estimate depths and poses. We use Point-SLAM as the mapping backbone,
equipped with our proposed depth correction and quadric transformer. The threshold for motion
filter is 4.0 pixels, a tracked frame is considered as a keyframe only if the average optical flow is
greater than the threshold. The window size for local bundle adjustment is 25. During the joint
optimization process, camera poses are optimized for one epoch, and the NeRF network parameters
are optimized for five epochs.

B.5 Segmentation and Quadric Fitting

For the segmentation network, we use Segment Anything Model (SAM) [52] and MobileSAM [47]
for faster inference, an off-the-shelf network to produce the mask for quadric fitting. To prevent the
negative effect of outliers, quadric fitting only applies to segments with area larger than 200 pixels.

During the fitting process, we calculate the coefficient of determination to evaluate the fitting per-
formance. Let zi be the predicted depth value and fi be the corresponding corrected depth. The
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coefficient of determination is calculated as follows:

z̄ =
1

n

n∑
i=1

zi

SSres =
∑
i

(zi − fi)
2

SStot =
∑
i

(zi − z̄)
2

R2 = 1− SSres

SStot

We only perform depth correction on quadric surfaces with fitting coefficient greater than the given
threshold 0.85, otherwise, we just use the predicted depth for the supervision of NeRF training.

B.6 Mesh Reconstruction

Different from other approaches that reconstruct mesh of a scene by running marching cubes on the
Signed Distance Function (SDF) values of the queried points, we render images and depths for the
selected keyframes. The reason for the difference is that our rendering requires to correlate points
along and across rays, while other approaches process 3D points independently. We first render
RGB images and depth maps, and then use TSDF-fusion [36] to reconstruct the 3D volume mesh.

C Additional Experimental Results

TUM-RGBD dataset. We evaluate the tracking performance of our methods on the small-scale
indoor-scene dataset with two different inputs, monocular and RGBD images. As presented in Ta-
ble 6, our approach outperforms traditional SLAM, including ORB-SLAM2 [53] and ORB-SLAM3
[54], which exhibits failures in certain scenarios. In comparison to recent NeRF-based SLAM sys-
tems, our solution consistently achieves superior results across most scenes. We attribute the im-
provements to our proposed quadric representation and quadric transformer, especially for scenes
with well-segmented planes and surfaces such as desks, floors, and rooms.

Following GO-SLAM [2], we also test our solution with RGBD images as input, as indicated in
Table 7. While the quadric-based depth correction is not performed under this setting, our proposed
quadric ray transformer and semantic supervision also contribute to the performance improvement.

D Visualization

In Fig. 8, we provide the qualitative results of the reconstruction. It can be observed that our method
outperforms GO-SLAM, especially on the boundaries of objects.

Table 6: ATE RMSE [m] Results on TUM [51] dataset freiburg1 set (monocular setting). ORB-
SLAM2 [53] and ORB-SLAM3 [54] fail on certain scenes.

360 desk desk2 floor plant room rpy teddy xyz avg

ORB-SLAM2 [53] - 0.071 - 0.023 - - - - 0.010 -
ORB-SLAM3 [54] - 0.017 0.210 - 0.034 - - - 0.009 -

DeepV2D [55] 0.243 0.166 0.379 1.653 0.203 0.246 0.105 0.316 0.064 0.375
DeepFactors [56] 0.159 0.170 0.253 0.169 0.305 0.364 0.043 0.601 0.035 0.233

DROID-SLAM [20] 0.111 0.018 0.042 0.021 0.016 0.049 0.026 0.048 0.012 0.038
GO-SLAM[2] 0.089 0.016 0.028 0.025 0.026 0.052 0.019 0.048 0.010 0.035

Ours 0.086 0.013 0.023 0.026 0.027 0.049 0.021 0.049 0.009 0.033
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Table 7: ATE [m] Results on TUM dataset [51] with RGB-D inputs from freiburg1, freiburg2 and
freiburg3 set.

Method fr1/desk fr2/xyz fr3/office

Kintinuous [57] 0.037 0.029 0.030
BAD-SLAM [58] 0.017 0.011 0.017
ORB-SLAM2 [53] 0.016 0.004 0.010

iMAP [5] 0.049 0.020 0.058
NICE-SLAM [8] 0.027 0.018 0.030

Ours 0.014 0.005 0.011

Figure 8: Qualitative reconstruction results on Replica dataset. We compare our solution with recent
SOTA SLAM systems Co-SLAM [1] and GO-SLAM [2]. Our method can recover better texture
features, especially on the boundary of instances.

We provide several selected visualization results for depth correction as shown in Fig. 9. Benefiting
from the segmentation mask, the depth correction improves the sharpness of the boundary of objects.
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Figure 9: Qualitative results of depth correction.
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