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ABSTRACT

Electrocardiograms (ECGs) are fundamental to cardiac diagnostics, providing
noninvasive insights into cardiovascular conditions. Recent advancements in deep
learning have led to foundation models (FMs) capable of learning powerful rep-
resentations of ECG signals. However, these models often fail to fully exploit the
periodic nature and diagnostic frequency bands of ECGs, leading to inefficiencies
in computational cost and interpretability. We propose a novel ECG foundation
model that learns nested embeddings, where each subset of dimensions encodes
progressively higher-frequency information. By explicitly modeling frequency
structures and applying a correlation penalty, the method achieves compact, high-
rank representations that reduce model size without sacrificing performance. We
evaluate our approach on two large-scale datasets for embedding redundancy and
prediction performance on downstream clinical tasks such as arrhythmia classi-
fication and cardiac condition detection. We observe similar prediction perfor-
mance AUROC scores and lower embedding redundancy, offering a computation-
ally efficient and interpretable framework for ECG analysis. Finally, we demon-
strate that running genome-wide association studies (GWAS) on representations
obtained from our model in UK Biobank data captures known cardiovascular vari-
ants and detects novel loci, which can be applied to drug discovery.

1 INTRODUCTION

Electrocardiograms (ECGs) are a key tool for non-invasive cardiac diagnostics, providing insights
into a patient’s heart health at the initial point of clinical contact. Accurate interpretation of ECG
signals is essential for effective patient care, yet traditional methods are subject to variability and
inaccuracies. Recent advancements in artificial intelligence (AI) have expanded the potential appli-
cations of ECGs in diagnostic and predictive medicine (Sau et al., 2024). In particular, foundation
models that leverage self-supervised learning (SSL) to capture representations of ECG signals have
emerged as a promising solution to scale ECG analysis to large datasets without the need for manual
annotation. These models compress high-dimensional ECG signals into low-dimensional repre-
sentations or features, which transfer to a variety of clinically meaningful tasks such as detecting
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arrhythmias, heart failure, and stratifying patient risk (Abbaspourazad et al., 2024; McKeen et al.,
2024; Song et al., 2024; Han et al., 2024).

Given their applications in the clinical setting, it is important that the models deployed are transpar-
ent and interpretable (Kiseleva et al., 2022). Such interpretability is also important due to legal and
regulatory requirements in healthcare applications (Ennab & Mcheick, 2022). This motivates the
development of foundation models which, in addition to learning useful embeddings for prediction,
can also allow inspection into what the learned representations encode. ECG signals are periodic
and have been shown to have frequency-specific characteristics that can be used for diagnosis and
predictive applications (Zhang et al., 2022; Zyout et al., 2023). Also, in cases where ECG machines
provide on-device diagnosis, small foundation models which allow efficient and local inference are
desirable (Abbaspourazad et al., 2024).

Existing SSL approaches have attempted to address some of these modeling goals, but not all. Ab-
baspourazad et al. (2024) proposed a PPG and ECG foundation model with 256-dimensional repre-
sentations. This is considerably smaller than the ECG foundation models proposed in the literature,
where the representations are typically chosen to be 1024-dimensional (Song et al., 2024; McKeen
et al., 2024). However, they do not exploit frequency-domain information in the ECG signal, and do
not focus on the interpretability of the learned representations. Zhang et al. (2022) use frequency-
domain information to learn representations using a contrastive loss (Chen et al., 2020a). However,
their focus is not on learning a foundation model for ECG signals, and their learned representations
do not provide insight into which features of the ECG signal are being captured. McKeen et al.
(2024) utilize saliency maps extracted from the final attention layer in the encoder. However, these
saliency maps can only be obtained in transformer architectures, and do not provide interpretable
attributions for the learned representations.

To address these challenges, we propose a novel ECG foundation model with nested representations
(ECG-Nest-FM) that combines a transformer-based encoder with a Matryoshka-inspired decoder
(Kusupati et al., 2022). Our model learns nested representations that learn increasingly high fre-
quency components of the ECG signal. By comparing the predictions of the representations from
different levels of the hierarchy, we can identify which range of frequencies contribute to a specific
task. Our model employs a VICReg loss to minimize cross-correlation between dimensions and
incorporates frequency- and time-domain reconstruction losses to enforce interpretability (Bardes
et al., 2022). Our approach ensures high effective rank in the representations, giving us diverse and
informative representations of the ECG signal. We evaluate our model on two large-scale datasets,
MIMIC-IV-ECG and CODE-15%, across multiple clinically relevant prediction tasks like atrial fib-
rillation. We show how our model’s predictions can used to infer the frequency bands that are
most important for a specific prediction task. We observed that the ECG-Nest-FM representations
derived from UK Biobank Sudlow et al. (2015) data, which includes genomic information, cap-
ture genetic signals and replicate known genetic variants previously associated with cardiovascular
disease. Furthermore, this interpretability and feature diversity does not come at the cost of down-
stream performance. Our results show that ECG-Nest-FM achieves comparable performance (w.r.t.
AUROC and AUPRC) to standard foundation modeling architectures of similar representation size.

2 RELATED WORK

Self-supervised learning In recent years, self-supervised learning has become increasingly pop-
ular across many areas of deep learning. Our work is most related to a large body of self-supervised
learning research using masked reconstruction to learn representations without the need for labels
(He et al., 2022; Dosovitskiy, 2020; Nie et al., 2023). This is in contrast to contrastive learning,
which requires identification of positive and negative samples in the batch to learn representations
(Chopra et al., 2005; Chen et al., 2020b). Self-supervised methods are susceptible to representa-
tion collapse, and several architectures have been proposed to avoid this, some of which do not
require positive and negative samples (Caron et al., 2021; Bardes et al., 2022; He et al., 2020).
Self-supervised pre-trained models are promising because they have been shown to encode signifi-
cant amount of information about downstream targets without seeing any labels during pre-training
(Baevski et al., 2020; Cheng et al., 2020; Chen et al., 2021; Gopal et al., 2021; Kiyasseh et al.,
2021; Mehari & Strodthoff, 2022; Baevski et al., 2022). There are several works looking at ways
to build representations appropriate for time series data (such as ECG), (Zeng et al., 2023; Salinas
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Figure 1: Top: Overall pipeline of ECG-Nest-FM for ECG representation learning. Bottom: Indi-
vidual aspects of the architecture and loss computation. A: 12-lead ECGs are patched, optionally
masked and encoded using a transformer encoder to generate masked and unmasked views of ECG
representations. B: Both views are pooled and projected to create the embeddings. C: Masked rep-
resentations are decoded using a Matryoshka-decoder, producing reconstructions with progressively
increasing frequency information. D: Loss computation leverages embeddings to enforce decorrela-
tion of representation dimensions and ensure encoding of increasing frequency information within
the ECG signal representation.

et al., 2020; Sharma et al., 2024; Ruan et al., 2019). However, transformers have been shown to have
competitive performance (Nie et al., 2023), leading us to choose a transformer encoder.

SSL in ECG analysis SSL has proven to be effective in ECG analysis, with new methods devel-
oped to leverage the special structure of ECG signals. These works use 12-lead ECG signals to learn
ECG representations via a self-supervised approach like contrastive learning or masked autoencoder
(Abbaspourazad et al., 2024; McKeen et al., 2024; Song et al., 2024; Han et al., 2024; Kiyasseh
et al., 2021; Oh et al., 2022; Friedman et al., 2025). However, to the best of our knowledge, none of
these works aim to develop nested representations focused at interpreting ECG signals.

Using Frequency information in ECG analysis Both supervised and unsupervised/self-
supervised learning methods have been developed to focus on the frequency information in ECG
signals (Hu et al., 2020; Aziz et al., 2021; Zyout et al., 2023; Pradhan et al., 2023; Perkins et al.,
2020; Zhang et al., 2022). However, these methods do not focus on learning a foundation model
whose representations can transfer to predicting several cardiac outcomes.

3 METHODS

3.1 OVERALL APPROACH

Our method aims to create an ECG foundation model with representations that are increasingly
complex in the dimension index (i.e., first 64 dimensions are more complex than first 32 dimensions).
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To achieve this, we combine a transformer-based encoder with a Matryoshka-style decoder (inspired
by Kusupati et al. (2022)). We used a pre-training loss that incorporates masked reconstruction
in both frequency- and time-domains, and a correlation penalty to encourage disentanglement of
representation dimensions. We present the full architecture of ECG-Nest-FM in Figure 1.

3.2 DATASETS

We use two large-scale datasets to train and evaluate our model: MIMIC-IV-ECG (Gow et al., 2023)
and CODE-15% (Ribeiro et al., 2021). We use 60%-20%-20% splits for training, validation, and
held-out evaluation on MIMIC-IV-ECG, and reserve all of CODE-15% as a held-out dataset to
test our model’s generalization. The splitting is done on the patient IDs to avoid any leakage of
same-patient ECGs into validation/test sets. The MIMIC-IV-ECG dataset contains 800,035 ECG
recordings from 161,352 subjects. Each ECG is sampled at 500 Hz for 10 seconds (5,000 time
steps). Within the CODE-15% dataset, ECG records have lengths of either 10 seconds or 7 seconds
(sampled at 400 Hz), and all records are zero-padded to 4,096 timesteps. The CODE-15% dataset
contains 345,779 ECGs from 233,770 patients.

Data Preprocessing Both datasets are band-pass filtered from 0.67 Hz to 150 Hz to align with
American Heart Association (AHA) recommendations (Kligfield et al., 2007). For the CODE-15%
dataset, we used the 10-second ECG records. We first removed the zero-padding, and then upsam-
pled the 400 Hz signal to 500 Hz to match the ECG sampling rate in MIMIC-IV-ECG dataset. This
ensured consistent input dimensionality across all samples. We were left with 105,192 ECGs from
73,658 patients in the CODE-15% dataset after this filtering step.

3.3 MODEL ARCHITECTURE

Our model adopts a standard transformer encoder as the backbone. We distinguish representations
from embeddings following Bardes et al. (2022): a token vector x ∈ RD is encoded by the encoder
fθ into its representation y = fθ(x), which is then transformed by the projector hφ onto the embed-
dings z = hφ(y). The representations are used for downstream evaluations and the embeddings are
used for computing the VICReg loss. We define fθ and hφ in the following setup.

Patching Let X ∈ RL×T be the L-lead ECG matrix (L = 12 for 12-lead ECGs). Note that the
actual data also includes a leading mini-batch dimension but we omit it for clarity. Each lead—i.e.,
each row of X—is a univariate time series with T timesteps. To avoid O(T 2) processing time by a
transformer, we reshape X on the T dimension to get N non-overlapping patches of length P (such
that T = NP ) to get Xp ∈ RL×N×P . Such patching is a standard way to ‘tokenize’ a time series
(Nie et al., 2023). For our 5000-timestep-ECGs, we patch the inputs to 10 patches of 500 samples
each.

Masking Many SSL methods build two views from input by applying two transformations on it
(Balestriero et al., 2023). We create the first view X l

p (superscript l denotes ‘left’ view) to be a
masked version of X where the patches are multiplied with a Bernoulli mask B ∈ {0, 1}L×N
which zeros-out each patch with probability p. We used the second view Xr

p to be the same as
unmasked input Xp (superscript r denotes ‘right’ view). The patches are independently projected
to the representation space of dimension D by a 1-layer MLP to get tensors X̃ l, X̃r ∈ RL×N×D.
In our setup below, we drop the superscripts l and r whenever a transformation is applied to both
views.

Encoder and projector The encoder transformer function fθ : RN×D → RN×D maps each
patch X̃ l, X̃r to representations Y l,Y r ∈ RL×N×D (all L leads are processed independently by
the transformer encoder). We use a transformer encoder with 20 layers and 16 self-attention heads
per layer. Each attention head has a dimension of 8, leading to a final representation of size 128.
We mean-pool the representations over the leads (L) and patches (N ), followed by using a projector
hφ : RD → RDe that maps the representations to get the ECG embeddings zl, zr ∈ RDe , as
computing the losses on the embeddings leads to better performance in practice (Balestriero et al.,
2023; Bardes et al., 2022).
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Matryoshka Decoder Following Kusupati et al. (2022), we choose a set of representation sizes,
M ∈ {1, · · · , D}. Given a size m ∈ M and a representations tensor Y , we get nested repre-
sentations Ym := Y:,:,1:m ∈ RL×N×m by indexing on the final dimension of Y . These nested
representations are the first m dimensions of the D−dimensional representations for each lead and
patch. For each m ∈ M, we also choose frequency thresholds ωm such that Y m is constrained to
only contain information up to ωm Hz of the signal. Each nested representation Ym is mapped to
time-domain reconstruction patches X̂m ∈ RL×T by using a decoder network gm : Rm → RP fol-
lowed by reshaping the patches to ECG’s length T (the decoder and reshape operations are applied
to each lead independently). Because of its resemblance to the Matryoshka-doll style indexing of the
representations, the decoder {gm}|M|m=1 is called a Matryoshka decoder (Kusupati et al., 2022). We
use the representation sizes m ∈ {32, 64, 128} and frequency thresholds ω32 = 5Hz, ω64 = 20Hz,
ω128 = 150Hz. These thresholds were decided based on the fact that the typical ranges for the
T-wave, the P-wave, and the QRS complex are 0–10 Hz, 5-30 Hz, and 8-50 Hz, respectively (Zyout
et al., 2023; Tereshchenko & Josephson, 2015). Note that our usage of a Matryoshka decoder is
different from Kusupati et al. (2022) because their reconstructions {X̂m}m would be aim to recover
the full ECG X , whereas our reconstructions aim to recover only the signal up to ωm Hz, as we
discuss next.

3.4 PRE-TRAINING OBJECTIVES

We train our model using a combination of masked patch reconstruction loss (Nie et al., 2023) and a
correlation penalty (Bardes et al., 2022) to encourage the learned representations to capture informa-
tive frequency-domain features while ensuring that representations from different views (Y l,Y r)
remain consistent with each other and diverse in the representation dimensions.

Masked reconstruction loss To encourage the model to learn frequency-domain features, we pro-
pose two reconstruction losses. In the first loss, we match the reconstruction of the masked inputs
(X̂ l

m) in the frequency domain:

Lmω-RECON(X̂m,X;ωm) =
1

L

L∑
j=1

||maskωm
(FFT(X̂m[j]))−maskωm

(FFT(X[j]))||22 (1)

where X[j] ∈ RT indexes the lead j from the ECG signal. FFT denotes the forward Fourier trans-
form, which converts a time domain signal into its frequency-domain representation. By using the
maskωm , only frequency components below ωm are considered when comparing the reconstructed
and original signals.

The second loss reconstructs the masked components in the time domain:

LmX-RECON(X̂m,X;ωm) =
1

L

L∑
j=1

||FFT−1
(

maskωm

(
FFT(X̂m[j])

))
− FFT−1maskωm

(FFT(X[j]))||22

(2)

where FFT−1 is the inverse Fourier transform that takes a masked frequency-domain signal back to
the time domain.

VICReg Correlation Penalty To enforce consistency between the two representation views Y l

and Y r while preventing representation collapse, we incorporate a loss introduced on the em-
beddings zl, zr (Bardes et al., 2022). We denote Zl = [zl1, . . . ,z

l
B ] and Zr = [zr1 , . . . ,z

r
B ]

be the two batches composed of B embedding vectors of dimension De: LVICREG(Zl,Zr) =
λs(Zl,Zr) + µ

(
v(Zl) + v(Zr)

)
+ η

(
c(Zl) + c(Zr)

)
where the similarity term s(Zl,Zr), en-

courages similarity between representations of two views of the same input, the variance term v(Z)
helps maintain sufficient variation in each latent dimension to avoid representation collapse (i.e.,
trivial or constant representations), and the covariance term, c(Z), acts as a decorrelation penalty
so that different dimensions in the representation are not redundant. We discuss the loss terms and
implementation details in Appendix A.2.
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Figure 2: Representation diversity on the CODE-15% dataset. (a) Average pairwise cross-
correlation of representations. Lower values indicate less redundancy in the learned features thus
possibly better embeddings. (b) Smooth Effective Rank (SER) of representations. Lower cross-
correlations and higher SER values indicate a greater number of linearly independent features
and suggest that the representations possess a higher effective rank and greater feature diversity
(Balestriero et al., 2023), both of which are associated with improved downstream task performance.
Higher values indicate possibly better embeddings. (c) Log of normalized singular values for the
representations matrix provide further evidence that ECG-Nest-FM representations have a more uni-
form spectrum, suggesting that representations the higher-rank subspace.

3.5 EVALUATION METRICS

Embedding Cross-Correlation To verify that the correlation penalty in 3 effectively reduces re-
dundancy across embedding dimensions, we compute the average absolute cross-correlation of the
representations: 1

|U |
∑
i<j |Rij |, where R ∈ RD×D is the correlation matrix of the representation

features (with U denoting the set of off-diagonal index pairs) computed over the test data. Lower
average cross-correlation indicates greater decorrelation among features, which has been shown to
improve performance on downstream tasks (Bardes et al., 2022).

Smooth effective rank Smooth effective rank (SER) is the entropy of the normalized singular
value distribution of a matrix (Roy & Vetterli, 2007). SER serves as a metric to quantify the diver-
sity and rank collapse of learned representations, helping assess the effectiveness of representation
learning methods without the use of any labels (Garrido et al., 2023). Also, without requiring the
labels, average cross-correlation and SER help in model selection since they correlate with down-
stream “usefulness” (Balestriero et al., 2023).

Downstream Classification Performance on CODE-15% To ensure clinical validity of the
learned representations on a held-out dataset, we perform non-linear probing of representations to
predict the outcomes in the CODE-15% dataset. These outcomes include the patient’s sex, and the
following cardiac conditions: 1st degree AV block (1dAVb), left/right bundle branch block (LBBB,
RBBB), sinus bradycardia (SB), sinus tachycardia (ST), and atrial fibrillation (AFib). We use a non-
linear probe to better quantify the diagnostic information captured about each frequency band in
the representations (Pimentel et al., 2020b), and also to be sure that low-frequency representations
indeed have no information about higher frequencies when they have lower AUROC/AUPRCs. We
also share the linear probing results in the Appendix A.3 to accompany the non-linear probing re-
sults to show sensitivity of performance to probe complexity (Pimentel et al., 2020a). We present
both AUROC and AUPRC values for these classification tasks in Figure 6. While AUROC quanti-
fies the overall discriminative quality, AUPRC is particularly useful for rare outcomes, like in our
dataset, as it quantifies how the model correctly classifies the outcome label. We train a Histogram-
based Gradient Boosting Classification Tree on each subset of the learned representations (32, 64,
or 128 dimensions) as a non-linear probe. Detailed descriptions of how the targets are created are
provided in Appendix A.1. We also present analogous results for the MIMIC-IV-ECG dataset in
Appendix A.3. On MIMIC-IV-ECG, the outcomes include sinus rhythm, atrial fibrillation, sinus
arrhythmia, left and right ventricular hypertrophy, left-axis deviation, sinus tachycardia, and sinus
bradycardia.
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Figure 3: Comparison of AUROC (left) and AUPRC (right) for predicting clinical outcomes using
32-dim, 64-dim, and 128-dim representations in CODE-15% dataset. The x-axis shows AUROC
with 32-dim representations (information up to 5 Hz), while the y-axis shows AUROC with higher
dimensions–—crosses for 64-dim (up to 20 Hz) and circles for 128-dim (full signal up to 150 Hz).

4 RESULTS

ECG-Nest-FM helps identify outcomes with low frequency components While most outcomes
perform best with full representations, Figure 3 shows that 32-dimensional representations already
perform comparably in classifying atrial fibrillation, sinus tachycardia, and sinus bradycardia. Fib-
rillatory wave frequencies are typically identified in the range of 4–9 Hz (Husser et al., 2007). Thus,
it is clinically relevant that even representations limited to up to 5 Hz of information perform well
in classification. Sinus tachycardia is characterized by a heart rate exceeding 100 beats per minute
(bpm), often due to physiological or pathological causes (Mayuga et al., 2022). This corresponds to
a frequency range of approximately 1.67–3.33 Hz (corresponding to 100–200 bpm, where 100 bpm
is the diagnostic lower bound and 200 bpm is the typical upper bound). Sinus bradycardia is defined
by a heart rate below 60 bpm, which typically translates to a frequency range of 0.5–1 Hz for heart
rates between 30 and 60 bpm (Hafeez & Grossman). Note that this analysis was only enabled by
our nested representations—unlike standard representation learning methods for ECG, which do not
disentangle the effects of different frequency ranges. A natural question arises if this comes at a cost
of downstream performance of the representations.

ECG-Nest-FM representations encode patient health information We evaluated the health in-
formation encoded in the ECG-Nest-FM representations using non-linear probing on MIMIC-IV-
ECG and CODE-15%, and present the AUROC and AUPRC values in Figure 6. We compared
ECG-Nest-FM to alternate architectures: PatchTST (i.e., a masked autoencoder without the VICReg
loss and the matryoshka decoder) and VICReg (i.e., ECG-Nest-FM with the matryoshka decoder).
ECG-Nest-FM achieved AUROCs and AUPRCs similar to those of PatchTST and VICReg (Fig-
ure 6). This indicates that introducing nested representations does not compromise downstream
performance. Combined with the previous result, we observe that the improved interpretability does
not come at a cost of predictive performance. By disentangling frequency components, our model
helps the practitioner understand which frequencies contribute to which outcomes. Notably, our
approach effectively predicted left and right bundle branch blocks, which aligns with previous work
demonstrating that the frequency spectrum of the QRS complex (typically 8–50 Hz) is informative
for these diagnoses (Niebauer et al., 2014; Alventosa-Zaidin et al., 2019; Zyout et al., 2023). By
disentangling frequency components, our representations are able to capture these clinically relevant
features. However, performance was weaker for predicting left and right ventricular hypertrophy,
likely due to the more complex and less standardized frequency-based diagnostic criteria for these
conditions. We see from Figure 2 that ECG-Nest-FM achieves high effective rank compared to the
baseline models. This suggests that the learned features are decorrelated and diverse, and that the
representations can capture more information.
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Figure 4: ECG-Nest-FM representations enhance genetic discovery. a) Manhattan plot of 128 ECG-
Nest-FM representation GWAS. GWAS p-values for all 22 autosomal chromosomes. Black gene
names indicate the closest gene for each locus with − log10 p > 20. Purple dots denote the GWS
loci uniquely detected by all 128 ECG-Nest-FM. Orange dots indicate loci also identified in first
32 ECG-Nest-FM, b) Power comparison between ECG-Nest-FM 0-128 (all) and 0-32 (first 32) rep-
resentations, and c) Power comparison between ECG-Nest-FM 32-64 and 0-32 representations, d)
Power comparison between ECG-Nest-FM 64-128 and 0-32 representations, and e) Power compar-
ison between ECG-Nest-FM 64-128 and 32-64 representations.

ECG-Nest-FM representations enhance genetic discovery To utilize ECG-Nest-FM representa-
tions for genetic discovery, we performed genome-wide association study (GWAS). We considered
four main GWAS: GWAS on learned representations for the first 32 representations (ECG-Nest-
FM-0-32), GWAS on learned representations for 32 to 64 representations (ECG-Nest-FM-32-64),
GWAS on learned representations for 64 to 128 representations (ECG-Nest-FM-64-128), and finally
GWAS on all learned representations (ECG-Nest-FM-0-12)). To be able to combine the GWAS for
a set of desired learned representations, we performed PCA to make ECG-Nest-FM representations
uncorrelated Aschard et al. (2014); Zhou et al. (2024) and then combined the GWAS statistics. For
more details on GWAS process, see Appendix A.4. We observed that all four GWAS had reasonable
genomics inflation (Figure 10, Figure 11, Figure 12, and Figure 13), obtained 55, 48, 194, and, 911
genome-wide significant loci from the ECG-Nest-FM-0-32, ECG-Nest-FM-32-64, ECG-Nest-FM-
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Figure 5: Genetic loci identified using ECG-Nest-FM representations overlap with known loci from
the GWAS Catalog related to cardiovascular diseases and traits.

64-128, and ECG-Nest-FM-0-128, respectively (Figure 4). In addition, ECG-Nest-FM-0-128 have
non-zero heritability for some learned representations Table 2.

We observed that 52/55, 47/48, 126/194, and 517/911 loci associated with cardiovascular traits were
replicated in the GWAS catalog (i.e., have been previously reported in existing literature). Although
GWAS on 128 ECG-Nest-FM representations have the highest power compared to 64 and 32, the 32
ECG-Nest-FM representations capture the largest fraction of known cardiovascular disease (Figure
5).

5 DISCUSSION AND CONCLUSION

We proposed a foundation model for learning ECG representations. ECG-Nest-FM disentangles the
effects of different frequency bands, thereby providing insights into which frequencies are most use-
ful for a diagnosis. Our model’s architecture allowed us to provide empirical evidence that specific
frequency bands suffice for specific diagnoses, as the clinical literature suggests. This attribution
to frequency bands makes our representations interpretable. Notably, this interpretability does not
come at a cost of downstream diagnostic quality of the representations, as the model remained com-
petitive in diagnosing common cardiac conditions. The trade-off between interpretability and predic-
tive performance is a well-known challenge in machine learning (Huysmans et al., 2006; Dziugaite
et al., 2020), often hindering the adoption of more interpretable methods. However, it is possible
to build performant, interpretable models (Bell et al., 2022), and in the context of ECG foundation
modeling, we show that our architectural innovation achieves both (a notion of) interpretability and
high diagnostic accuracy .

Limitations and Future Work While ECG-Nest-FM offers improvements in interpretability and
maintains competitive diagnostic performance, our approach has limitations that warrant further
investigation. One limitation is that while the paper emphasizes interpretability in the frequency do-
main, certain outcomes have a more natural interpretation in the time domain (Pradhan et al., 2023).
Therefore, it would be interesting to learn hybrid representations which can attribute contributions
of both frequency- and time-domain features towards a specific diagnosis. A challenge in build-
ing such representations is the possible collapse of frequency-domain features if the time-domain
features are sufficient to reconstruct the signal (or vice versa) (Havasi et al., 2022). However, this
may need rethinking the decorrelation penalty because the frequency- and time-domain features are
correlated. Addressing these limitations would improve the model’s diagnostic capabilities, as well
as provide alternate ways to interpret the representations from the model.
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A APPENDIX

A.1 DATASET DETAILS

We describe the labels in the CODE-15% and MIMIC-IV-ECG datasets in Table 1.
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Table 1: Labels in ECG dataset

Dataset Label Description

CODE-15% is male Indicates whether the patient is male.
CODE-15% 1st degree AV block (1dAVb) Presence of a first degree atrioventricular block.
CODE-15% right bundle branch block (RBBB) Presence of a right bundle branch block.
CODE-15% left bundle branch block (LBBB) Presence of a left bundle branch block.
CODE-15% sinus bradycardia (SB) Presence of sinus bradycardia.
CODE-15% sinus tachycardia (ST) Presence of sinus tachycardia.
CODE-15% atrial fibrillation (AFib) Presence of atrial fibrillation.
CODE-15% normal ecg Indicates a normal electrocardiogram.

MIMIC-IV-ECG abnormal ecg Patient has an overall abnormal electrocardiogram.
MIMIC-IV-ECG atrial fibrillation Patient exhibits an irregular, often rapid heart rhythm.
MIMIC-IV-ECG left axis deviation The electrical axis of the heart is shifted leftward.
MIMIC-IV-ECG left ventricular hypertrophy Patient’s left ventricle is enlarged.
MIMIC-IV-ECG right ventricular hypertrophy Patient’s right ventricle is enlarged.
MIMIC-IV-ECG sinus arrhythmia Patient has a sinus rhythm with irregular heart rate.
MIMIC-IV-ECG sinus bradycardia Patient has a slow sinus rhythm (below 60 bpm).
MIMIC-IV-ECG sinus rhythm Patient exhibits a normal sinus rhythm.
MIMIC-IV-ECG sinus tachycardia Patient has a fast sinus rhythm (above 100 bpm).

A.2 TRAINING DETAILS

VICReg Correlation Penalty To enforce consistency between the two representation views Y l

and Y r while preventing representation collapse, we incorporate a loss introduced on the embed-
dings zl, zr (Bardes et al., 2022). We denote Zl = [zl1, . . . ,z

l
B ] and Zr = [zr1 , . . . ,z

r
B ] be the two

batches composed of B embedding vectors of dimension De.

LVICREG(Zl,Zr) = λs(Zl,Zr) + µ
(
v(Zl) + v(Zr)

)
+ η

(
c(Zl) + c(Zr)

)
(3)

where the terms are defined as:

s(Zl,Zr) =
1

B

B∑
b=1

||zlb − zrb ||2 (4)

v(Z) =
1

De

De∑
k=1

max

(
0, 1−

√
[Cov(Z)]kk + ε

)
(5)

c(Z) =
1

De

∑
i 6=j

[Cov(Z)]
2
i,j (6)

where ε is a small constant to avoid numerical instabilities and Cov(Z) ∈ RDe×De is the covariance
matrix of embeddings z estimated from the current batch (computed for each view separately):

Cov(Z) =
1

B − 1

B∑
b=1

(zb − z̄)(zb − z̄)>, where z̄ =

B∑
b=1

zb (7)

The similarity term s(Zl,Zr), encourages similarity between representations of two views of the
same input, the variance term v(Z) helps maintain sufficient variation in each latent dimension
to avoid representation collapse (i.e., trivial or constant representations), and the covariance term,
c(Z), acts as a decorrelation penalty so that different dimensions in the representation are not re-
dundant.

Optimizer We use the Adam optimizer, employing an inverse-decay learning rate schedule:

α(t) =
α0√
D

min

(
t+ 1

T
3/2
warmup

,
1√
t+ 1

)
(8)
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Figure 6: Non-linear probing results (AUROC and AUPRC) of the foundation models for different
clinical outcomes predicted on the held-out CODE-15% dataset (n = 26, 264 ECGs). Error bars
indicate the 95% confidence intervals from 100 bootstrap samples. ECG-Nest-FM demonstrates
comparable performance across most cardiac outcomes. Prevalence of outcomes: Sex (M): 41.2%,
1dAVb: 1.6%, RBBB: 2.2%, LBBB: 1.8%, SB: 1.6%, ST: 2.1%, AF: 2.2%.

where α0 = 0.5 is the base learning rate, Twarmup = 4000 is the number of warmup steps, and
D = 128 is the transformer encoder dimension. After warmup, the learning rate decays according
to the inverse square root of the current step, mitigating overfitting and ensuring stable convergence.

Implementation Details We implement our model in the Pax (Paxml, 2022) framework and train
on TPUs for scalable computation. The training runs for a total of 2 million steps with a batch size
of 1,024.

A.3 SUPPLEMENTARY RESULTS

Here, we present additional analyses to further show the behavior of the learned representations
across different embedding dimensionalities and probing methods on both the MIMIC-IV-ECG and
CODE-15% datasets. For the MIMIC-IV-ECG dataset, we include two sets of experiments. The first
set, illustrated in Figure 8, employs a non-linear probe to compare the diagnostic performance of
32-dimensional sub-embeddings against their 64- and 128-dimensional counterparts using AUROC,
AUPRC, cross-correlation, and smooth effective rank (SER) metrics. The second set, shown in
Figure 9, presents similar comparisons using a linear probe (using ridge regression). For the CODE-
15% dataset, Figure 7 summarizes the linear probing results, analogous to the Figures 3, 2 and
6 in the main paper. Together, these supplementary analyses provide a comprehensive view of
how embedding dimensionality and probe selection influence representation quality and downstream
diagnostic performance.

A.4 GENOMICS-WIDE ASSOCIATION STUDY (GWAS)

We generated ECG-Nest-FM representations for the 12-lead ECG using the combined training and
validation data. To achieve uncorrelated coordinates, we applied principal component analysis
(PCA) to each set of representations. First, genome-wide association study (GWAS) were then
conducted on each PCA-ed ECG-Nest-FM representations using REGENIE Mbatchou et al. (2021).
We adjusted GWAS for age, sex, body mass index, standing height, genotyping array, and the top
15 genetic principal components.

To obtain an overall result of genetic discovery on the multimodal representations, we combined
the PC GWAS. We summed the chi-square statistics for each GWAS and computed the combined
p-value using the combined chi-square statistic, with the number of phenotypes as the degrees of
freedom. This combined chi-square statistic provided the final GWAS result used in this work
Aschard et al. (2014).

We consider hits as independent genome-wide significant variants (R2 ≤ 0.1 and P ≤ 5 × 10−8)
and loci were obtained by merging hits within 250 kb.
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Figure 7: Linear probing results and avg-cross correlations and smooth effective ranks for represen-
tations on the CODE-15% dataset.

Representations S-LDSC Intercept S-LDSC SNP-heritability

Latent-0 0.9853 (0.0106) 0.1929 (0.0275)
Latent-1 1.0218 (0.0088) 0.0577 (0.0218)
Latent-2 0.9885 (0.0096) 0.005 (0.0257)
Latent-3 0.9987 (0.0117) 0.0041 (0.0298)
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Latent-4 1.0059 (0.0083) 0.0131 (0.0205)
Latent-5 1.0027 (0.01) -0.0028 (0.0238)
Latent-6 0.9992 (0.0094) 0.0326 (0.0229)
Latent-7 0.9943 (0.0091) 0.018 (0.0226)
Latent-8 1.0026 (0.0107) 0.1218 (0.0256)
Latent-9 1.0019 (0.0089) 0.0048 (0.0225)
Latent-10 0.9963 (0.0091) -0.0016 (0.021)
Latent-11 0.9949 (0.0103) 0.1292 (0.0262)
Latent-12 0.9909 (0.014) 0.0682 (0.0365)
Latent-13 1.0031 (0.0092) -0.0079 (0.022)
Latent-14 1.0079 (0.0088) 0.0133 (0.0219)
Latent-15 1.0094 (0.0092) -0.0158 (0.0231)
Latent-16 0.995 (0.009) 0.0183 (0.0214)
Latent-17 1.0037 (0.0093) 0.0043 (0.0213)
Latent-18 1.0032 (0.009) -0.0046 (0.0229)
Latent-19 0.9963 (0.0092) 0.0162 (0.0228)
Latent-20 0.9986 (0.0126) 0.0247 (0.0335)
Latent-21 1.0032 (0.0093) 0.0247 (0.0227)
Latent-22 0.9948 (0.0152) 0.0702 (0.0435)
Latent-23 1.0122 (0.0089) -0.0149 (0.0217)
Latent-24 0.9995 (0.0096) 0.0163 (0.0221)
Latent-25 0.9872 (0.0095) 0.0405 (0.023)
Latent-26 0.9938 (0.0102) 0.0836 (0.0245)
Latent-27 1.0043 (0.0098) 0.0004 (0.0268)
Latent-28 0.9948 (0.0083) 0.0223 (0.0217)
Latent-29 0.9958 (0.0089) 0.0172 (0.0214)
Latent-30 1.0028 (0.009) 0.0059 (0.0242)
Latent-31 1.0082 (0.0093) -0.0121 (0.0208)
Latent-32 1.0111 (0.0091) 0.0098 (0.0211)
Latent-33 1.0082 (0.0093) -0.0078 (0.0218)
Latent-34 0.9981 (0.0082) 0.0278 (0.0219)
Latent-35 0.9939 (0.0118) 0.0275 (0.0292)
Latent-36 0.9888 (0.0126) 0.0593 (0.0333)
Latent-37 1.0076 (0.0094) 0.0323 (0.0227)
Latent-38 1.003 (0.0092) 0.0577 (0.0239)
Latent-39 0.9796 (0.0176) 0.1229 (0.0501)
Latent-40 0.9826 (0.0096) 0.0515 (0.0211)
Latent-41 0.9965 (0.0087) 0.0364 (0.0231)
Latent-42 0.9828 (0.0101) 0.0613 (0.028)
Latent-43 0.9987 (0.0084) -0.0026 (0.0218)
Latent-44 1.0094 (0.0102) -0.0038 (0.0264)
Latent-45 0.996 (0.0088) 0.01 (0.0194)
Latent-46 0.9774 (0.0097) 0.0703 (0.0241)
Latent-47 0.9861 (0.0104) 0.0394 (0.0256)
Latent-48 0.9775 (0.0098) 0.113 (0.0205)
Latent-49 0.9984 (0.0088) 0.022 (0.0202)
Latent-50 1.0053 (0.0091) 0.0142 (0.0218)
Latent-51 0.9905 (0.009) 0.028 (0.0217)
Latent-52 1.0116 (0.0097) -0.0225 (0.0225)
Latent-53 1.0015 (0.0087) 0.002 (0.0209)
Latent-54 1.0027 (0.0087) -0.0008 (0.0192)
Latent-55 1.0063 (0.0092) -0.0132 (0.0196)
Latent-56 1.007 (0.0089) 0.0036 (0.0218)
Latent-57 1.0021 (0.009) 0.0161 (0.0217)
Latent-58 0.9913 (0.009) 0.0286 (0.0224)
Latent-59 0.9945 (0.0088) 0.0433 (0.0226)
Latent-60 0.9938 (0.0086) 0.016 (0.0218)
Latent-61 0.9971 (0.0094) 0.013 (0.0232)
Latent-62 1.0083 (0.0083) 0.0144 (0.0212)
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Latent-63 1.0048 (0.0099) 0.0223 (0.025)
Latent-64 0.9925 (0.0081) 0.0211 (0.0198)
Latent-65 0.9999 (0.0095) 0.0311 (0.0229)
Latent-66 1.0148 (0.0093) -0.0197 (0.0217)
Latent-67 0.9981 (0.0097) 0.0196 (0.0226)
Latent-68 0.9929 (0.0098) 0.0343 (0.0223)
Latent-69 0.9933 (0.0102) 0.0278 (0.0254)
Latent-70 0.9926 (0.0085) 0.0295 (0.021)
Latent-71 1.0036 (0.0091) -0.0081 (0.0226)
Latent-72 1.0071 (0.0098) -0.0187 (0.0234)
Latent-73 1.0002 (0.0086) 0.0257 (0.0218)
Latent-74 1.0064 (0.0087) 0.0014 (0.0229)
Latent-75 0.9922 (0.0091) 0.0411 (0.023)
Latent-76 1.0137 (0.0091) -0.013 (0.0206)
Latent-77 0.9966 (0.0102) 0.0204 (0.0255)
Latent-78 0.9995 (0.008) -0.0034 (0.0193)
Latent-79 0.9963 (0.008) 0.0091 (0.0204)
Latent-80 1.013 (0.0084) -0.017 (0.0204)
Latent-81 0.9996 (0.009) 0.0369 (0.0217)
Latent-82 0.9969 (0.0088) 0.0191 (0.0211)
Latent-83 0.982 (0.0149) 0.0824 (0.0399)
Latent-84 0.9933 (0.0092) 0.0298 (0.0218)
Latent-85 1.012 (0.0088) -0.0074 (0.0218)
Latent-86 1.0082 (0.0089) -0.0129 (0.0226)
Latent-87 0.9951 (0.0088) -0.0021 (0.0219)
Latent-88 0.9945 (0.0093) 0.0366 (0.0225)
Latent-89 0.9993 (0.0141) 0.0264 (0.0382)
Latent-90 1.0039 (0.0085) -0.01 (0.0212)
Latent-91 1.0116 (0.0089) -0.0081 (0.0227)
Latent-92 1.0183 (0.0101) -0.0362 (0.0252)
Latent-93 1.0054 (0.0091) -0.0073 (0.0221)
Latent-94 1.0032 (0.0089) 0.0083 (0.0218)
Latent-95 1.0039 (0.009) -0.0164 (0.0207)
Latent-96 0.9981 (0.0092) 0.0206 (0.0245)
Latent-97 1.0097 (0.0093) -0.016 (0.0209)
Latent-98 0.999 (0.0086) -0.0024 (0.0219)
Latent-99 0.9962 (0.0085) 0.0178 (0.0231)
Latent-100 1.0112 (0.0082) -0.0062 (0.0208)
Latent-101 1.0105 (0.0092) -0.0165 (0.0221)
Latent-102 1.0165 (0.0108) -0.0162 (0.0256)
Latent-103 0.9952 (0.0086) 0.0047 (0.0222)
Latent-104 0.9935 (0.0094) 0.0114 (0.0224)
Latent-105 1.0019 (0.0091) -0.0076 (0.0225)
Latent-106 1.009 (0.0093) -0.0113 (0.0223)
Latent-107 0.9908 (0.0083) 0.0116 (0.0227)
Latent-108 1.0044 (0.0095) 0.0004 (0.0229)
Latent-109 0.9876 (0.008) 0.0131 (0.021)
Latent-110 0.9882 (0.0102) 0.0264 (0.0232)
Latent-111 0.99 (0.0106) 0.0367 (0.0246)
Latent-112 1.0026 (0.0088) -0.0146 (0.0237)
Latent-113 1.0133 (0.0095) -0.0327 (0.0233)
Latent-114 1.0041 (0.0084) 0.005 (0.0227)
Latent-115 1.0132 (0.0091) -0.0098 (0.0225)
Latent-116 0.9883 (0.0088) 0.0235 (0.0205)
Latent-117 1.0006 (0.0093) 0.0094 (0.0224)
Latent-118 1.0013 (0.0085) 0.0099 (0.0214)
Latent-119 1.01 (0.0086) -0.0309 (0.0222)
Latent-120 0.9875 (0.0087) 0.0095 (0.0211)
Latent-121 1.0017 (0.0113) -0.0004 (0.028)

18



Published as a workshop paper at MLGenX 2025

Latent-122 0.9997 (0.0098) 0.0018 (0.0232)
Latent-123 0.9977 (0.0086) 0.0184 (0.0222)
Latent-124 1.0019 (0.0087) 0.0201 (0.0206)
Latent-125 1.0062 (0.0097) -0.0052 (0.023)
Latent-126 0.9956 (0.0089) 0.0187 (0.0213)
Latent-127 0.9885 (0.0087) 0.0291 (0.023)

Table 2: S-LDSC intercept and SNP-heritability for ECG-Nest-FM-0-128 GWAS. In LD score re-
gression (S-LDSC), the intercept is a crucial diagnostic measure for assessing potential biases and
confounding in GWAS results. Ideally, we want the S-LDSC intercept to be as close to 1 as possible.
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Figure 8: Non-linear probing results and avg-cross correlations and smooth effective ranks for rep-
resentations on the MIMIC-IV-ECG dataset.

20



Published as a workshop paper at MLGenX 2025

0.5 0.6 0.7 0.8 0.9 1.0
AUROC of ECG-Nest-FM (32-dim)

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C 
of

 C
om

pa
ris

on
 M

od
el

s

MIMIC-IV: AUROC

0.0 0.2 0.4 0.6 0.8 1.0
AUPRC of ECG-Nest-FM (32-dim)

0.0

0.2

0.4

0.6

0.8

1.0

AU
PR

C 
of

 C
om

pa
ris

on
 M

od
el

s

MIMIC-IV: AUPRC

Outcomes (CODE-15%)
Sinus Rhythm (NSR)
Atrial Fibrillation (AFib)
Sinus Arrhythmia (RSA)

Left Ventricular Hypertrophy (LVH)
Right Ventricular Hypertrophy (RVH)
Left Axis Deviation (LAD)

Sinus Tachycardia (ST)
Sinus Bradycardia (SB)

Model Name
ECG-Nest-FM (128-dim)
ECG-Nest-FM (64-dim)

NSR AFib RSA LVH RVH LAD ST SB
Outcome

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

MIMIC-IV: AUROC

Model
ECG-Nest-FM
PatchTST
VICReg

NSR AFib RSA LVH RVH LAD ST SB
Outcome

0.0

0.2

0.4

0.6

0.8

AU
PR

C

MIMIC-IV: AUPRC

0.00 0.05 0.10 0.15 0.20 0.25
Average absolute cross-correlation

PatchTST

VICReg

ECG-Nest-FM

M
od

el

Average absolute cross-correlation

(a)

0 1 2 3 4
Smooth Effective Rank

PatchTST

VICReg

ECG-Nest-FM

M
od

el

Smooth Effective Rank

(b)

0 25 50 75 100 125
Index

10 3

10 2

10 1

Lo
g 

of
 N

or
m

al
ize

d 
Si

ng
ul

ar
 V

al
ue

Log of Normalized Singular Values
PatchTST (entropy: 3.08)
VICReg (entropy: 3.94)
ECG-Nest-FM (entropy: 4.23)

(c)

Figure 9: Linear probing results and avg-cross correlations and smooth effective ranks for represen-
tations on the MIMIC-IV-ECG dataset.
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Figure 10: QQ-plot ECG-Nest-FM combined on all 32 representations obtained from 12 lead
ECG.
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Figure 11: QQ-plot ECG-Nest-FM combined on all 32 to 64 representations obtained from 12
lead ECG.
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Figure 12: QQ-plot ECG-Nest-FM combined on all 64 to 128 representations obtained from 12
lead ECG.
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Figure 13: QQ-plot ECG-Nest-FM combined on all 128 representations obtained from 12 lead
ECG.
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