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Abstract
We develop an analytically tractable single-step diffusion model based on a linear denoiser and
present an explicit formula for the Kullback-Leibler divergence between the generated and sampling
distribution, taken to be isotropic Gaussian, showing the effect of finite diffusion time and noise
scale. Our study further reveals that the monotonic fall phase of Kullback-Leibler divergence begins
when the training dataset size reaches the dimension of the data points. Finally, for large-scale
practical diffusion models, we explain why a higher number of diffusion steps enhances production
quality based on the theoretical arguments presented before.

1. Introduction

In recent years, generative artificial intelligence has made tremendous advancements - be it image,
audio, video, or text domains—on an unprecedented scale. Diffusion models [29, 35, 55, 58, 59]
are among the most successful frameworks [46, 48, 50, 52]. The quality of the generated images
can be enhanced through guided diffusion at the cost of reduced diversity [13, 18, 21, 28, 64]. Also,
experimentally it is observed that increasing diffusion steps leads to more visually appealing images
[36]. Theoretically understanding this phenomena and generalization ability of the diffusion models
is a challenging task. Keeping this goal in mind, we introduce and study a linear denoiser based
generative model that is analytically tractable and features some of the properties of a single denoising
step in a realistic diffusion model.

1.1. Our contributions

Our main contributions to this paper are as follows:

1. We define a linear denoiser based generative model. Within the framework of the model, we
present explicit formula for the Kullback-Leibler divergence between generated and sampling
distribution, taken to be isotropic Gaussian, showing the effect of finite diffusion time and
noise scale. In particular, our formula shows we can recover the sampling distribution from
the generative model only if the noise scale is small enough compared to certain function of
diffusion time.

2. We establish that aforementioned Kullback-Leibler divergence starts to decrease monotonically
with addition of new training data when the size of the training set reaches the dimension of
the data points as opposed to an exponential scale indicated by the curse of dimensionality.
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3. For a realistic diffusion model on Gaussian mixture training set, we quantify the fact that larger
diffusion step leads to better production quality. In addition, we show that the theorem that we
proved before gives us theoretical explanation of this fact.

1.2. Related works

The main theoretical setup of our work is that of higher dimensional statistics, i.e, when the dimension
and number of train data size both scale large simultaneously staying proportional to each other. In the
context of linear regression [2, 23, 24, 27, 37, 45], kernel regression [11, 15, 41, 54, 56, 57, 61], and
random feature models [1, 6, 7, 19, 22, 26, 27, 30, 40–43, 66] method of deterministic equivalence
has been used extensively for discussions of higher dimensional statistics.

Traditionally diffusion models are trained with datasets whose size is much smaller compared to
the exponential of the data dimension. For example a comonly used dataset for training diffusion
models is laion-high-resolution that contains around 108 images of dimension 1024×1024. Motivated
by these facts, in this paper we study a specific linear denoiser based generative model that captures
a single diffusion step of the realistic diffusion model using the method of deterministic equivalence.
For stochastic differential equation based models, there are notable works discussing bound on
the distance between sampling and generated distribution under the assumption of a given score
estimation error [8, 16, 17, 38, 53]. On the other hand, in our work, we focus on the error in denoising
for a single step taking into account finite sample size.

2. A generative model based on a linear denoiser

In this section, we define and study a linear denoiser based generative model which is analogous
to a one step diffusion model. Before explaining the model, we note certain basic facts about the
diffusion process based on a finite number of samples. Given n samples ρ(x) can be approximated
by the Dirac delta distribution ρ̂(0, x) ≡ 1

n

∑n
k=1 δ(x − xk), x ∈ Rd. The time evolution of the

probability distribution under Ornstein-Uhlenbeck diffusion process is given by (see Appendix A for
more details)

ρ̂(t, x) =
1

n

n∑
k=1

N (x|xke−t, 1− e−2t) (2.1)

This motivates us to sample Yk, k = 1, 2, .., n from the underlying distribution ρ(x) and add noise
Zk ∼ N (0, Id) to it to obtain noisy samples

Xk = e−TYk +
√

∆TZk,∆T = λδT = λ(1− e−2T ) (2.2)

Here T is the diffusion time cut-off and λ is a free hyperparameter that controls the amount of noise
added 1.

The denoiser based model, trained on the data above, as input takes a noisy sample X and
generates a clean sample Y . In this paper, we consider a linear model Y = θ̂0 + θ̂1X as prototype
denoiser for analytical tractability. The parameters θ̂0, θ̂1 are solution to the linear regression problem

1. This corresponds to scaling the noise term in (A.13) by a factor of
√
λ.
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of predicting {Yk} given {Xk} and given by2

θ̂T1 = (xTx)−1xT y, θ̂0 = Ŷ − θ1X̂ X̂ =
1

n

n∑
k=1

Xk, Ŷ =
1

n

n∑
k=1

Yk (2.3)

Here x, y are n× d dimensional matrices whose k-th row is (Xk − X̂)T , (Yk − Ŷ )T respectively.
To generate samples from the trained diffusion model we first draw X from N (µX , σ2

XId) where
with

µX = e−T Ŷ , σ2
X = e−2T 1

nd

n∑
k=1

|Yk − Ŷ |2 +∆T (2.4)

and then use the diffusion model to predict corresponding Y = θ̂0 + θ̂1X . The generated probability
distribution for a given set {(Xk, Yk), k = 1, 2, .., n} is

ρG(Y |{(Xk, Yk)}) = N (Y |θ̂0 + θ̂1µX , σ2
X θ̂T1 θ̂1) (2.5)

Effect of finite diffusion time

In this subsection, we study the effect of finite diffusion time T and noise scale λ on generalization
error for the linear diffusion model defined above. We restrict our discussion to sampling from
isotropic Gaussian distribution ρ = N (µ, σ2Id). The distance between the underlying distribution ρ
and the generated ρG distribution from the diffusion model as given in (2.5) can be measured in terms
of Kullback–Leibler divergence. Further it can be decomposed as KL(ρ||ρG) = KLmean + KLvar ≥
KLvar. Where the contributions KLmean,KLvar are related to the difference between generated and
the underlying distribution in mean and variance

KLmean(ρG|ρ) =
1

2σ2
(µ− µ̂G)

T (µ− µ̂G), KLvar(ρG|ρ) =
1

4
Tr
((

Σ̂G

σ2
− I

)2)
(2.6)

Here µ̂G = θ̂0 + θ̂1µX , Σ̂G = σ2
X θ̂T1 θ̂1. The inequality follows because KLmean is a positive semi-

definite quantity. We numerically show in figure 1 that there exists a regime of small λ where
KLmean ≪ KLvar making the inequality above an approximate equality.

Theorem 1 When the linear diffusion model described above is trained on n samples from isotropic
Gaussian distribution ρ = N (µ, σ2Id) in the limit of n → ∞ holding α = d/n fixed, following lower
bound on the KL divergence between generated and sampling distribution holds KL(ρ||ρG) ≥ KLvar

If further we restrict ourselves to small noise scale λ = λ̂σ2e−2T , λ̂ ≪ 1, then an explicit expression
for the statistical expectation value of KLvar can be obtained order by order in λ̂ based on the theory
of deterministic equivalence. More specifically for α < 1 we have

⟨KLvar⟩ =
dαλ̂e−4T

(
e2T − 1

)
2(1− α)

+
dλ̂2e−8T

(
e2T − 1

)2
4(1− α)3

(
α2 + (1− α)3e4T + 4α(1− α)2e2T

)
+O(λ̂3)

(2.7)
and for α > 1

⟨KLvar⟩ =d
α− 1

4α
+

dλ̂e−4T
(
e2T − 1

)
2(α− 1)

+
dλ̂2e−8T

(
e2T − 1

)2
4(α− 1)3α

(α3 + (α− 1)3e4T + 4α(α− 1)2e2T ) +O(λ̂3)

(2.8)

2. A natural generalization of this is to feature kernel regression instead of linear regression.
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Figure 1: In figure (a), we plot various contributions to KL divergence between the generated
data from the linear denoiser based generative model and sampling distribution taken to be an
isotropic Gaussian of mean µ = 10 and diagonal standard deviation σ = 1 of dimension d. We
have fixed the diffusion time cut-off T = 2 and varied the noise scale λ = λ̂e−4. The train
dataset size n = 104 ≫ d. From the plot on left we see there exists a regime of parameters when
KLmean ≪ KLvar. This justifies our assumption of ignoring KLmean in analytic calculation presented
in appendix C. The plot on the right compares the numerical results against the theoretical result
and shows that the minimum KL divergence attainable in d/n → 0 limit scales quadratically with
the noise parameter λ̂ = λe2T /σ2 for small values of the later. In figure (b), we have fixed the
diffusion time to be T = 2 with noise scale λ = 0.8e−4. On the left, we plot KL divergence between
the generated and sampling distribution after truncation to the quadratic order in λ, as given in
(C.10), in the regime of small d/n comparing experimental data (in red) and theoretical result for
the lower bound as given in (2.7) (in black). The numerical results on the right plot shows that KL
divergence between the generated and underlying distribution scales as d times solely a function of
α = d/n without additional n, d dependence as we take n, d large keeping their ratio fixed. This fact
is analytically established in (2.7),(2.8) and the analytical expression is plotted in black for α < 1
and blue α > 1.

Proof See Appendix C.

Lemma 2 For n > d, KLvar is a monotonically decreasing function of n/d.

Proof Derivative of RHS in (2.7) with respect to α is positive.

Lemma 3 In n/d → ∞ limit, KLvar/d scales as λ2e4T (1 − e−2T )2. Hence we conclude we can
recover the underlying sampling distribution in this limit only if λe2T (1− e−2T ) ≪ 1.

Proof Consider α → 0 limit of RHS in (2.7).

Thse are in agreement with the plot in figure 1.

3. Non-linear diffusion model

From figure 2, it is clear that production quality of a realistic diffusion model improves with higher
diffusion steps s. This fact can be explained based on our theoretical analysis as follows. In the
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Figure 2: The plot is based on PyTorch-based implementation of the algorithm in [29]. The denoiser
has the structure of U-Net [51] with additional residual connections consisting of positional encoding
of the image and attention layers [25, 47, 62]. The train dataset is equal weight Gaussian mixture
model (GMM) with C components i = 0, 1, 2, .., C − 1 of dimension d = 64. The i-th component
is an isotropic Gaussian of mean µi = µ0 + (i − (C − 1)/2)σ0, µ0 = 0.5 and standard deviation
σi = 0.1. The number of samples in the original dataset is N = 104. Plot on the left shows how
increasing diffusion steps reduces ÊOG - it is the scaled value of the distance between generated and
original distribution EOG by its value at n = 10 for C = 1. For the plot in the middle the training is
done for 10 epoch with batch size 128. The plot in the middle shows a linear dependence of error
η = − log(1− EOG(d/n → 0)/EOG(d/n → ∞)) on sample complexity C. On the right, we have
generated images from the model with same hyper-parameter configurations on MNIST dataset. We
can clearly see that image quality improves as diffusion steps increase.

diffusion model we start from a clear image x0 and then obtain noisy images for steps t = 1, 2, ..., s
from (equation (2) of [29])

xt =
√
1− βtxt−1 +

√
λ
√

βtZ, Z ∼ N (0, Id) (3.1)

Our observation is that it becomes identical to (2.2) if we choose the noise schedule as follows

βt = 1− e−2βt/s = (2t/s)β +O(β2), β ≪ 1 (3.2)

with the map xt → X,xt−1 → Y, βt/s → T . If instead of using a non-linear neural network we use
the linear denoiser to predict a Gaussian approximation of xt−1 from xt we can use lemma 3 and find
that KLvar(t)/d scales as λ2β2

t = 4λ2β2(t/s)2. This shows that performance of the final denoising
step is improved by a factor of s2 compared to single step diffusion. In fact, performance of each step
improves except the first one between xs, xs−1 which remain the same. This suggests as we increase
s overall production quality of the model will improve in agreement with the findings in figure 2.3

This argument also predicts that we need to have λβ ≪ 1 for good quality generated images.

3. For this purpose, the distance between original and generated distribution is calculated using

EOG =

d∑
i=1

∫
dx (ρO,i(x)− ρG,i(x))

2, ρO/G,i(x) ≡
1

|SO/G|

|SO/G|∑
k=1

N (x|xi
k, ϵ

2
O,i), ϵ2O,i =

Σ̂O,i

|SO/G|2
(3.3)

Here Σ̂O,i is the empirical variance obtained from the original dataset SO .
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Appendix A. Foundations of diffusion-driven generative models

In this Appendix we review the connection between stochastic interpolant and stochastic differential
equation based generative models [3, 31, 36, 60, 67]. Given two probability density functions ρ0, ρ1,
one can construct a stochastic interpolant between ρ0 and ρ1 as follows

x(t) = X(t, x0, x1) + λ0(t)z, t ∈ [0, 1] (A.1)

where the function X,λ0 satisfies

X(0, x0, x1) = x0, X(1, x0, x1) = x1, ||∂tX(t, x0, x1)|| ≤ C||x0 − x1||
λ0(0) = 0, λ0(1) = 0, λ0(t) ≥ 0

(A.2)

for some positive constant C. Here x0, x1, z are drawn independently from a probability measure ρ0,
ρ1 and standard normal distribution N (0, I). The probability distribution ρ(t, x) of the process x(t)
satisfies the transport equation4

∂tρ+∇ · (bρ) = 0, ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x), (A.3)

where we defined the velocity5

b(t, x) = E[ẋ(t)|x(t) = x] = E[∂tX(t, x0, x1) + λ̇0(t)z|x(t) = x]. (A.4)

One can estimate the velocity field by minimizing

Lb[b̂] =

∫ 1

0
E
(
1

2
||b̂(t, x(t))||2 −

(
∂tX(t, x0, x1) + λ̇0(t)z

)
· b̂(t, x(t))

)
dt (A.5)

It’s useful to introduce the score function s(t, x) for the probability distribution for making the
connection to the stochastic differential equation

s(t, x) = ∇ log ρ(t, x) = −λ−1
0 (t)E(z|x(t) = x) (A.6)

It can be estimated by minimizing

Ls[ŝ] =

∫ 1

0
E
(
1

2
||ŝ(t, x(t))||2 + λ−1

0 (t)z · ŝ(t, x(t))
)
dt (A.7)

The score function also can be obtained by minimizing the following alternative objective function
known as the Fisher divergence

LF [ŝ] =
1
2

∫ 1

0
E
(
||ŝ(t, x(t))−∇ log ρ(t, x)||2

)
dt

=

∫ 1

0
E
(
1

2
||ŝ(t, x(t))||2 +∇ · ŝ(t, x(t)) + 1

2
||∇ log ρ(t, x))||2

)
dt

(A.8)

4. Here we are using the notation ∇ = ∇x.
5. The expectation is taken independently over x0 ∼ ρ0, x1 ∼ ρ1 and z ∼ N (0, I). Here N (0, I) is normalized

Gaussian distribution of appropriate dimension with vanishing mean and variance.
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To obtain the second line we have ignored the boundary term. Note that for the purpose of minimiza-
tion the last term is a constant and hence it plays no role hence Fisher divergence can be minimized
from a set of samples drawn from ρ easily even if the explicit form of ρ is not known [32]. However,
the estimation of ∇ · ŝ(t, x(t)) is computationally expensive and in practice one uses denoising score
matching for estimating the score function [63].

It is easy to put eq. (A.3) into Fokker-Planck-Kolmogorov form

∂tρ+∇ · (bFρ) = +λ(t)∆ρ, bF (t, x) = b(t, x) + λ(t)s(t, x)

∂tρ+∇ · (bBρ) = −λ(t)∆ρ, bB(t, x) = b(t, x)− λ(t)s(t, x)
(A.9)

For an arbitrary function λ(t) ≥ 0. From this, we can read off the Itô SDE as follows6

dXF
t = bF (t,X

F
t )dt+

√
2λ(t) dWt

dXB
t = bB(t,X

B
t )dt−

√
2λ(t) dW1−t

(A.10)

The first equation is solved forward in time from the initial data XF
t=0 ∼ ρ0 and the second one is

solved backward in time from the final data XB
t=1 ∼ ρ1. One can recover the probability distribution

ρ from the SDE using Feynman–Kac formulae7

ρ(t, x) = E
(
e
∫ 0
t ∇·bF (t,Y B

t )dtρ0(Y
B
t=0)|Y B

t = x
)

= E
(
e
∫ 1
t ∇·bB(t,Y F

t )dtρ1(Y
F
t=1)|Y F

t = x
) (A.12)

In the domain of image generation, we don’t know the exact functional form of the sampling
distribution ρ(x). However we have access to a finite number of samples from it and the goal is
to generate more data points from the unknown probability density ρ(x). Traditional likelihood
maximization techniques would assume a trial density function ρθ and try to adjust θ so that likelihood
for obtaining known samples is maximized. In this process determination of the normalization of ρθ
is computationally expensive as it requires multi-dimensional integration (typically it is required for
each step of the optimization procedure for θ). Diffusion based generative models are an alternative
[29, 55, 59]. In this section, we review basic notions of these stochastic differential equation based
models. In particular, we examine an exactly solvable stochastic differential equation (SDE). The Itô
SDE under consideration is known as the Ornstein-Uhlenbeck Langevin dynamics and is expressed
by:

dXF
t = −XF

t dt+
√
2dWt, XF

t ∼ ρ(t). (A.13)

The score function associated with the stochastic process will be denoted as

s(t, x) = ∇x log ρ(t, x) =
1

ρ(t, x)
∇xρ(t, x) (A.14)

6. Here Wt represents a standard Wiener process, i.e., Wt − tW1 = Nt is a zero-mean Gaussian stochastic process that
satisfies E[NtN

T
t ] = t(1− t)I .

7. A class of exactly solvable models are given by (Ornstein-Uhlenbeck dynamics discussed in the main text is a special
case of this equation)

dXF
t = XF

t
d

dt
(log η(t))dt+

√
η(t)2

d

dt

(
σ(t)2

η(t)2

)
dWt, XF

t ∼ N (η(t)XF
0 , σ(t)2) (A.11)

Where η, σ are two positive functions satisfying η(0) = 1, σ(0) = 0.
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The probability density ρ satisfies the transport equation (see (A.3))

∂tρ(t, x) = ∇ · ((x+ s(t, x))ρ(t, x))

= ∇2ρ(t, x) + x.∇ρ(t, x) + dρ(t, x).
(A.15)

The dimension of the data is defined to be given by d = dim(x). The time evolution of the probability
distribution is exactly solvable and given by

ρ(t,XF
t ) =

∫
dXF

0 ρ(0, XF
0 ) N (XF

t |XF
0 e−t, 1− e−2t). (A.16)

Suppose we know the probability density ρ(0, x) exactly. One way to sample from it would be to use
the knowledge of the exact score function s(t, x) in the reverse diffusion process (see (A.10)), i.e,

dXB
t = (−XB

t − 2s(t,XB
t ))dt−

√
2 dW1−t (A.17)

starting from a late time distribution ρ(T, x) (it is assumed that we know how to sample from
ρ(T, x)).

Appendix B. Principle of deterministic equivalence

In this appendix we review the theory of large random matrices leading to the principle of deter-
ministic equivalence. A d× d Hermitian random matrix A with measure dµA is called an invariant
random matrix if the measure satisfies

dµA(A) = dµA(U
†AU) (B.1)

for any unitary matrix U . In the limit of d → ∞, the theory is conveniently described in terms of the
single eigenvalue density ρA (normalized to unity) that can be obtained from the resolvent or the
Stieltjes transform

GA(z) = ⟨1
d

Tr
(

1

z −A

)
⟩ =

∫
ρA(λ)dλ

z − λ
=⇒ ρA(λ) = − 1

π
lim
ϵ→0+

ℑ(GA(λ+ iϵ)) (B.2)

The moment generating function is given by

MA(z) =
1

z
GA

(
1

z

)
− 1 = ⟨1

d
Tr

∞∑
i=1

Aizi⟩ (B.3)

R, S transformation of the eigenvalue density are defined by

RA(z) = Ginv
A (z)− 1

z
, Ginv

A (GA(z)) = z

SA(z) =
z + 1

z
M inv

A (z), M inv
A (MA(z)) = z

(B.4)

R, S transformations are useful when we study the matrix model to the leading order in large d limit
as we explain next. Two invariant random matrices A,B are called free to the leading order in large
d limit if they are independent. Free sum and free product of A,B are defined as follows

A⊞B = U †AU + V †BV

A ⋆ B =
√
AB

√
A

(B.5)
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Here U, V are are sampled independently from uniform measure on the unitary group, i.e., Haar
random unitary. It can be shown that for two invariant, independent random matrices A,B the
moment generating function of A⊞B and A+B coincides, similarly moment generating function
of A ⋆ B and AB coincides (to the leading order in large d, i.e., when they are free). Furthermore
following identity holds to the leading order in large d limit for two free matrices A,B

RA⊞B(z) = RA(z) +RB(z), SA⋆B(z) = SA(z)SB(z) (B.6)

Now we turn to application of these ideas. Consider d× d matrix Σ̂ = xTx/n where each row
of x (there are n rows) is drawn from N (0,Σ). Then it can be written as a free product of Σ and
a white Wishart matrix W (corresponds to xTx/n where each row of x is drawn from N (0, Id)):
Σ̂ = Σ ⋆ W . From the definition of S transformation it follows that

MΣ̂(z) =
1

SΣ̂(MΣ̂(z))

z − 1
=

1
SΣ(MΣ̂(z))SW (MΣ̂(z))

z − 1
= MΣ

(
z

SW (MΣ̂(z))

)
(B.7)

To obtain the final equality we used self-consistency of the equation itself. To recast this equation
in a compact way we define df1A(z) = −MA(−1/z) = ⟨TrΣ̂(Σ̂ + R̂)−1⟩/d. In terms of this new
quantity we have

df1
Σ̂
(R̂) = df1Σ(R), R̂ = R(1− α df1Σ(R)) (B.8)

To obtain this equation we used knowledge of S transformation of white Wishart matrices SW (z) =
1/(1 + αz), α = d/n. This equation is valid only leading order in large d, n limit with fixed α. It
is known as the principle of deterministic equivalence. See [5] and references therein for a recent
discussion of it.

Appendix C. Generalization error from deterministic equivalence

In this appendix, we provide proof of the main theorem in the paper (2.7), (2.8). Consider the
scenario when the underlying sampling distribution is an isotropic Gaussian ρ = N (µ, σ2Id). The
linear diffusion model Y = θ0 + θ1X is trained to solve the following linear regression problem

Yk = eTXk + Zk, Xk ∼ N (µX ,Σ = σ2
XId), Zk ∼ N (0,∆T Id), k = 1, . . . , n

µX = e−Tµ, σ2
X = e−2Tσ2 +∆T , ∆T = λ(1− e−2T )

(C.1)

The optimal value of the weights θ̂0, θ̂1 that minimizes the standard square loss are given by

θ̂T1 = (xTx+ nR̂)−1xT y, θ̂0 = Ŷ − θ̂1X̂ X̂ =
1

n

n∑
k=1

Xk, Ŷ =
1

n

n∑
k=1

Yk (C.2)

Here x, y are n× d dimensional matrices whose k-th row is (Xk − X̂)T , (Yk − Ŷ )T respectively
(e.g. xiA = (Xi − X̂)A etc.) and R̂ is a scalar ridge parameter. Once trained the diffusion model
generates data from ρG = N (µ̂G, Σ̂G), µ̂G = θ̂0 + θ̂1µX , Σ̂G = σ2

X θ̂T1 θ̂1.
KL divergence between two PDF ρ1 = N (µ1,Σ1), ρ2 = N (µ2,Σ2) is given by

KL(ρ1|ρ2) =
∫

ρ1(x) log
ρ1(x)

ρ2(x)
dx

=
Tr(Σ−1

2 Σ1)− Tr(I)
2

− 1

2
log |Σ−1

2 Σ1|+
1

2
(µ1 − µ2)

TΣ−1
2 (µ1 − µ2)

(C.3)
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We choose µ2 = µ,Σ2 = σ2Id to correspond to the underlying distribution and µ1 = µ̂G,Σ1 = Σ̂G

corresponds to the generated distribution. This simplifies the formula above to

KL(ρG|ρ) =
1

2
(Tr
(
Σ̂G

σ2

)
− Tr(I))− 1

2
Tr log

(
Σ̂G

σ2

)
+

1

2σ2
(µ− µ̂G)

T (µ− µ̂G)

≥1

2
(Tr
(
Σ̂G

σ2

)
− Tr(I))− 1

2
Tr log

(
Σ̂G

σ2

) (C.4)

To go to the second line we have ignored the positive semi-definite term related to difference in mean
between generated and underlying distribution. We proceed to calculate the variance term in KL
divergence above. It follows that

θ̂T1 = (xTx+ nR̂)−1xT y

= (xTx+ nR̂)−1xT (xθ̄T1 + z)

= eT (1− R̂(Σ̂ + R̂)−1) + (Σ̂ + R̂)−1x
T z

n

(C.5)

We have defined θ̄1 = eT Id, Σ̂ = xTx/n for later convenience. Next we calculate

θ̂T1 θ̂1 =θ̄T1 θ̄1 + Σ̂θ1

Σ̂θ1 =(Σ̂ + R̂)−1x
T z

n

zTx

n
(Σ̂ + R̂)−1 + e2T R̂2(Σ̂ + R̂)−2 − 2e2T R̂(Σ̂ + R̂)−1

+ eT
(
zTx

n
(Σ̂ + R̂)−1 + (Σ̂ + R̂)−1x

T z

n

)
− eT R̂ (Σ̂ + R̂)−1

(
zTx

n
+

xT z

n

)
(Σ̂ + R̂)−1

(C.6)
Plugging this back in the expression of Σ̂G we get

Σ̂G

σ2
=(1 + σ−2e2T∆T )(I + e−2T Σ̂θ1) = I + σ̂G

σ̂G =(e−2T + σ−2∆T )Σ̂θ1 + e2Tσ−2∆T I

(C.7)

Appearance of logarithm in the KL divergence makes it difficult to calculate its statistical expectation
value. In next sub-section we develop a controlled expansion for this purpose.

Analytic tractability and various approximations

From (C.7) we see that the generated distribution remains close to the original underlying distribution
if both ∆T and σ̂G remain small. To this end, we focus on the following limit:

λ = λ̂σ2e−2T , R̂ = λr̂. In this regime σ̂G ∼ λ̂. Further taking λ̂ ≪ 1 makes σ̂G small and we
can approximate

log

(
Σ̂G

σ2

)
= log(I + σ̂G) = σ̂G − 1

2
σ̂2
G +O(σ̂3

G) (C.8)

Plugging this back into the expression of KL divergence (C.4) we get KL(ρ||ρG) = KLmean + KLvar,
where

KLmean(ρG|ρ) =
1

2σ2
(µ− µ̂G)

T (µ− µ̂G), KLvar(ρG|ρ) =
1

4
Tr
((

Σ̂G

σ2
− I

)2)
(C.9)
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A SOLVABLE GENERATIVE MODEL WITH A LINEAR, ONE-STEP DENOISE

We focus on the variance term. Plugging back expressions from previous analysis

KL(ρG|ρ)var =
1

4
Tr
(
Σ̂G

σ2
− I

)2

=
1

4
Tr(σ̂2

G)

=
1

4
Tr(((e−2T + σ−2∆T )Σ̂θ1 + σ−2e2T∆T )

2)

=
1

4
(e−2T + σ−2∆T )

2TrΣ̂2
θ1

+
1

2
(e−2T + σ−2∆T )σ

−2e2T∆TTrΣ̂θ1 +
d

4
(σ−2e2T∆T )

2

(C.10)

We are interested in statistical average of the expression above. We consider the following higher
dimensional statistics limit: n → ∞, d → ∞ keeping α = d/n fixed. In this limit, we can take
advantage of principle of deterministic equivalence discussed in previous appendix:

df1
Σ̂
(R̂) = df1Σ(R), dfn

Σ̂
(R̂) =

1

d
⟨TrΣ̂n(Σ̂ + R̂)−n⟩, R̂ = R(1− α df1Σ(R)) (C.11)

Since x, z are statistically independent and z has zero mean, we get

Tr⟨Σ̂θ1⟩ =Tr⟨(Σ̂ + R̂)−1x
T z

n

zTx

n
(Σ̂ + R̂)−1 + e2T R̂2(Σ̂ + R̂)−2 − 2e2T R̂(Σ̂ + R̂)−1⟩ (C.12)

The first term is simplified after performing statistical average over z

(xT zzTx)AB = xTAiziCzjCxjB → nd∆T Σ̂AB (C.13)

The factor of d came from sum over C (we are using the convention of repeated index implies sum).
The first term becomes α∆T times

Tr⟨(Σ̂ + R̂)−1Σ̂(Σ̂ + R̂)−1⟩ = Tr⟨Σ̂(Σ̂ + R̂)−2⟩ = −∂R̂⟨TrΣ̂(Σ̂ + R̂)−1⟩ = −d∂R̂⟨df1Σ(R)⟩
(C.14)

For the case we are considering,

df1Σ=σ2
XId

(R) = df1Σ=Id
(σ−2

X R) =
1

1 + σ−2
X R

(C.15)

Putting these expressions together the first term becomes

αd∆T
σ−2
X

(1 + σ−2
X R)2

∂R̂R = αd∆Tσ
−2
X

(df1Σ(R))2

1− αdf2Σ(R)
(C.16)

To obtain the second line we have used the following identity

dfn+1
Σ (R) =

(
1 +

R

n
∂R

)
dfnΣ(R), ∂R̂R =

1

1− αdf2Σ(R)
(C.17)

The third term is −2e2T times

Tr⟨R̂(Σ̂ + R̂)−1⟩ = d(1− df1Σ(R)) (C.18)
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A SOLVABLE GENERATIVE MODEL WITH A LINEAR, ONE-STEP DENOISE

The second term is e2T times

Tr⟨(R̂(Σ̂ + R̂)−1)2⟩ = Tr⟨1− 2Σ̂(Σ̂ + R̂)−1 + Σ̂2(Σ̂ + R̂)−2⟩
= d− 2d df1Σ(R) + d df2

Σ̂
(R̂)

= d− 2d df1Σ(R) + d(1 +
R̂

1− αdf2Σ(R)
∂Rdf1Σ(R))

(C.19)

Combining all these we get

Tr⟨Σ̂θ1⟩ =αd∆Tσ
−2
X

(df1Σ(R))2

1− αdf2Σ(R)
− 2e2Td(1− df1Σ(R))

+ e2Td

(
2− 2 df1Σ(R) +

R̂

1− αdf2Σ(R)
∂Rdf1Σ(R)

) (C.20)

Now we turn to evaluate Tr⟨Σ̂2
θ1
⟩. We want to keep track of terms that are order d and ignore

sub-leading terms. This restricts possible contractions of z, zT . We get a factor of d only from
contractions that happen next to each other. Keeping only those terms

Tr⟨Σ̂2
θ1⟩ ≈⟨α2∆2

TTr(Σ̂2(Σ̂ + R̂)−4) + e4T R̂4Tr(Σ̂ + R̂)−4 + 4e4T R̂2Tr(Σ̂ + R̂)−2

+ 2α∆T e
2T R̂2Tr(Σ̂(Σ̂ + R̂)−4)− 4α∆T e

2T R̂TrΣ̂(Σ̂ + R̂)−3 − 4e4T R̂3Tr(Σ̂ + R̂)−3

+ 2α∆T e
2TTr(Σ̂(Σ̂ + R̂)−2)⟩

(C.21)
All these expectation values can be calculated from a generic term of the form for integer a > 0, b ≥ 0

Ca,b = ⟨Tr(Σ̂a(Σ̂ + R̂)−(a+b))⟩ = (−1)b

a(a+ 1) . . . (a+ b− 1)
∂b
R̂
⟨Tr(Σ̂a(Σ̂ + R̂)−a)⟩

= d
Γ(a)

Γ(a+ b)
(−∂R̂)

bdfa
Σ̂
(R̂)

(C.22)

Another identity that is useful is the following

Ba = ⟨TrR̂a(Σ̂ + R̂)−a⟩
= ⟨Tr(R̂a−1(Σ̂ + R̂)−(a−1) − R̂a−1Σ̂(Σ̂ + R̂)−a)⟩

= ⟨Tr(1−
a∑

i=1

R̂a−iΣ̂(Σ̂ + R̂)−(a−i+1))⟩

= d−
a∑

i=1

R̂a−iC1,a−i

(C.23)

Now we turn to calculate expression for the symbols defined above. To get an explicit formula for
Ca,b first we replace the derivative with respect to R̂ by a derivative with respect to R with the chain
rule given in the second equation on (C.17). Next we use the recursion relation in the first equation
on (C.17) to express everything in terms of df1

Σ̂
(R̂) ≃ df1Σ(R). Finally to perform the derivatives

we use the self-consistency equation of the ridge parameter given in the last equation on (C.11).
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A SOLVABLE GENERATIVE MODEL WITH A LINEAR, ONE-STEP DENOISE

Finally we use (C.15). Once Ca,bs are computed we use the recursion relation to compute Bas. The
expression for these quantities for α > 1 are complicated. They are given as follows

C1,1 =
2dσ2

X

(
R+ σ2

X

)
2∣∣− ((α− 1)σ4

X

)
+ 2Rσ2

X +R2
∣∣ (∣∣− ((α− 1)σ4

X

)
+ 2Rσ2

X +R2
∣∣+R2 + 2Rσ2

X + (α+ 1)σ4
X

)
C1,2 =

dσ2
X

(
R+ σ2

X

)
3∣∣−ασ4

X + σ4
X + 2Rσ2

X +R2
∣∣ 3

C1,3 =
dσ2

X

(
R+ σ2

X

)
4
(
R2 + 2Rσ2

X + (α+ 1)σ4
X

)
sgn
(
−
(
(α− 1)σ4

X

)
+ 2Rσ2

X +R2
)(

R2 + 2Rσ2
X −

(
(α− 1)σ4

X

))
5

C2,1 =

{ d(R+σ2
X)

3(3R2σ2
X+R3−3(α−1)Rσ4

X+(α−1)2σ6
X)

ασ2
X(−R2−2Rσ2

X+(α−1)σ4
X)3

When R
(
R+ 2σ2

X

)
< (α− 1)σ4

X

dσ4
X((α+1)R3+3R2σ2

X−3(α−1)Rσ4
X+(α−1)2σ6

X)
(R2+2Rσ2

X−((α−1)σ4
X))3

Otherwise

C2,2 =
dσ4

X

(
R+ σ2

X

)
4
(
(α+ 1)R2 − 2(α− 1)Rσ2

X + (α− 1)2σ4
X

)
sgn
(
−
(
(α− 1)σ4

X

)
+ 2Rσ2

X +R2
)(

R2 + 2Rσ2
X −

(
(α− 1)σ4

X

))
5

C2,3 =
1(

R2 + 2Rσ2
X −

(
(α− 1)σ4

X

))
7
(dσ4

X

(
R+ σ2

X

)
5((α+ 1)R4 + 3((α− 2)α+ 2)R2σ4

X − (α− 4)R3σ2
X

+ (α− 4)(α− 1)Rσ6
X + (α− 1)2(α+ 1)σ8

X)sgn
(
−
(
(α− 1)σ4

X

)
+ 2Rσ2

X +R2
)
)

C3,1 =

{
1

ασ2
X(−R2−2Rσ2

X+(α−1)σ4
X)5

(d
(
R+ σ2

X

)
4((α− 1)2(α+ 15)R2σ8

X − 20(α− 1)R3σ6
X

−5(α− 3)R4σ4
X + 6R5σ2

X +R6 − 6(α− 1)3Rσ10
X

+(α− 1)4σ12
X )) When R

(
R+ 2σ2

X

)
< (α− 1)σ4

X
1

(R2+2Rσ2
X−((α−1)σ4

X))5
(dσ6

X((α(α+ 3) + 1)R6 + (α− 1)2(α+ 15)R2σ8
X

+4(α− 1)((α− 1)α− 5)R3σ6
X

+(α((α− 12)α+ 6) + 15)R4σ4
X − 2((α− 5)α− 3)R5σ2

X − 6(α− 1)3Rσ10
X + (α− 1)4σ12

X )) Otherwise

C3,2 =
1(

R2 + 2Rσ2
X −

(
(α− 1)σ4

X

))
7
(dσ6

X

(
R+ σ2

X

)
5((α(α+ 3) + 1)R4 + 3

(
α3 − 3α+ 2

)
R2σ4

X

+ 2
(
−3α2 + α+ 2

)
R3σ2

X − 4(α− 1)3Rσ6
X + (α− 1)4σ8

X)sgn
(
−ασ4

X + σ4
X + 2Rσ2

X +R2
)
)

C3,3 =
1(

R2 + 2Rσ2
X −

(
(α− 1)σ4

X

))
9
(dσ6

X

(
R+ σ2

X

)
6((α(α+ 3) + 1)R6 + 6

(
−α2 + α+ 1

)
R5σ2

X

+ 3(α− 1)2(α(2α− 3) + 5)R2σ8
X − 4(α− 1)(2(α− 2)α+ 5)R3σ6

X + 3(α(2(α− 1)α− 3) + 5)R4σ4
X

− 6(α− 1)3Rσ10
X + (α− 1)4(α+ 1)σ12

X )sgn
(
−ασ4

X + σ4
X + 2Rσ2

X +R2
)
)

(C.24)
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B1 =

{ dR
R+σ2

X
When R

(
R+ 2σ2

X

)
≥ (α− 1)σ4

X

d−
d

(
R

σ2
X

+1

)
α Otherwise

B2 =

{ dR2

R2+2Rσ2
X−ασ4

X+σ4
X

When R
(
R+ 2σ2

X

)
≥ (α− 1)σ4

X

d
(
− 1

α − R2

R2+2Rσ2
X−ασ4

X+σ4
X
+ 1
)

Otherwise

B3 =

{ dR3(3R2σ2
X+R3+3Rσ4

X−((α2−1)σ6
X))

(R2+2Rσ2
X−((α−1)σ4

X))3
When R

(
R+ 2σ2

X

)
≥ (α− 1)σ4

X

d(R−(α−1)σ2
X)

3(3R2σ2
X+R3+3Rσ4

X−((α−1)σ6
X))

α(−R2−2Rσ2
X+(α−1)σ4

X)3
Otherwise

B4 =

{ 1

(R2+2Rσ2
X−((α−1)σ4

X))5
(dR4(4

(
−α2 + α+ 5

)
R3σ6

X + (α((α− 12)α+ 6) + 15)R2σ8
X

+(α+ 15)R4σ4
X + 6R5σ2

X +R6 + 2(α((α− 6)α+ 2) + 3)Rσ10
X

+(α− 1)2(α(α+ 3) + 1)σ12
X )) When R

(
R+ 2σ2

X

)
≥ (α− 1)σ4

X
d(R−(α−1)σ2

X)
4(−5(α−3)R2σ8

X+(α+15)R4σ4
X+20R3σ6

X+6R5σ2
X+R6−6(α−1)Rσ10

X +(α−1)2σ12
X )

α(−R2−2Rσ2
X+(α−1)σ4

X)5
Otherwise

(C.25)
Explicit expression of some of these symbols that will be required later is given below for α < 1.

B1 =
dR

R+ σ2
X

B2 =
dR2

R2 + 2Rσ2
X − ασ4

X + σ4
X

B3 =
dR3

(
3R2σ2

X +R3 + 3Rσ4
X −

((
α2 − 1

)
σ6
X

))(
R2 + 2Rσ2

X −
(
(α− 1)σ4

X

))
3

B4 =
1(

R2 + 2Rσ2
X −

(
(α− 1)σ4

X

))
5
(dR4(4

(
−α2 + α+ 5

)
R3σ6

X + (α((α− 12)α+ 6) + 15)R2σ8
X

+ (α+ 15)R4σ4
X + 6R5σ2

X +R6 + 2(α((α− 6)α+ 2) + 3)Rσ10
X + (α− 1)2(α(α+ 3) + 1)σ12

X ))
(C.26)

C1,1 =
dσ2

X

R2 + 2Rσ2
X − ασ4

X + σ4
X

C1,2 =
dσ2

X

(
R+ σ2

X

)
3(

R2 + 2Rσ2
X −

(
(α− 1)σ4

X

))
3

C1,3 =
dσ2

X

(
R+ σ2

X

)
4
(
R2 + 2Rσ2

X + (α+ 1)σ4
X

)(
R2 + 2Rσ2

X −
(
(α− 1)σ4

X

))
5

C2,1 =
dσ4

X

(
(α+ 1)R3 + 3R2σ2

X − 3(α− 1)Rσ4
X + (α− 1)2σ6

X

)(
R2 + 2Rσ2

X −
(
(α− 1)σ4

X

))
3

C2,2 =
dσ4

X

(
R+ σ2

X

)
4
(
(α+ 1)R2 − 2(α− 1)Rσ2

X + (α− 1)2σ4
X

)(
R2 + 2Rσ2

X −
(
(α− 1)σ4

X

))
5

(C.27)
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C2,3 =
1(

R2 + 2Rσ2
X −

(
(α− 1)σ4

X

))
7
dσ4

X

(
R+ σ2

X

)
5((α+ 1)R4 + 3((α− 2)α+ 2)R2σ4

X

− (α− 4)R3σ2
X + (α− 4)(α− 1)Rσ6

X + (α− 1)2(α+ 1)σ8
X)

C3,1 =
1(

R2 + 2Rσ2
X −

(
(α− 1)σ4

X

))
5
(dσ6

X((α(α+ 3) + 1)R6 + (α− 1)2(α+ 15)R2σ8
X

+ 4(α− 1)((α− 1)α− 5)R3σ6
X + (α((α− 12)α+ 6) + 15)R4σ4

X − 2((α− 5)α− 3)R5σ2
X

− 6(α− 1)3Rσ10
X + (α− 1)4σ12

X ))

C3,2 =
1(

R2 + 2Rσ2
X −

(
(α− 1)σ4

X

))
7
dσ6

X

(
R+ σ2

X

)
5((α(α+ 3) + 1)R4 + 3

(
α3 − 3α+ 2

)
R2σ4

X

+ 2
(
−3α2 + α+ 2

)
R3σ2

X − 4(α− 1)3Rσ6
X + (α− 1)4σ8

X)

C3,3 =
1(

R2 + 2Rσ2
X −

(
(α− 1)σ4

X

))
9
(dσ6

X

(
R+ σ2

X

)
6((α(α+ 3) + 1)R6 + 6

(
−α2 + α+ 1

)
R5σ2

X

+ 3(α− 1)2(α(2α− 3) + 5)R2σ8
X − 4(α− 1)(2(α− 2)α+ 5)R3σ6

X

+ 3(α(2(α− 1)α− 3) + 5)R4σ4
X − 6(α− 1)3Rσ10

X + (α− 1)4(α+ 1)σ12
X ))

(C.28)
In terms of these symbols we have the following explicit formula

Tr⟨Σ̂θ1⟩ =α∆TC1,1 + e2T (B2 − 2B1)

Tr⟨Σ̂2
θ1⟩ =α2∆2

TC2,2 + e4TB4 + 4e4TB2

+ 2α∆T e
2T R̂2C1,3 − 4α∆T e

2T R̂C1,2 − 4e4TB3 + 2α∆T e
2TC1,1

(C.29)

As a summary our final expression for variance term in KL divergence is given by (C.10) along with
(C.17),(C.22),(C.23) and (C.29). Since the expression is fairly complicated we won’t present explicit
formula for it. To understand the implications of the formula we look at ridgeless limit R̂ → 0.

Putting all the results together, for α < 1, the ridgeless formula takes the following form

⟨KL(ρG|ρ)var⟩ =
1

4
(e−2T + σ−2∆T )

2(2e2T
α

1− α
∆Td σ−2

X +
α2

(1− α)3
∆2

Td σ−4
X )

+
1

2
(e−2T + σ−2∆T )(σ

−2∆T e
2T )(

α

1− α
∆Td σ−2

X ) +
d

4
(σ−2e2T∆T )

2

=
dαλ̂e−4T

(
e2T − 1

)
2(1− α)

+
dλ̂2e−8T

(
e2T − 1

)2 (
α2 + (1− α)3e4T + 4α(1− α)2e2T

)
4(1− α)3

(C.30)
If we further consider the late time approximation we see that ⟨KL(ρG|ρ)var⟩ ∝ dλ2 to the leading
order. Also note that ⟨KL(ρG|ρ)var⟩/d is an increasing function of α in this regime.
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A SOLVABLE GENERATIVE MODEL WITH A LINEAR, ONE-STEP DENOISE

Ridgeless limit for α > 1 is more involved and it is given by

⟨KL(ρG|ρ)var⟩ =
1

4
(e−2T + σ−2∆T )

2(2e2T
1

(α− 1)
∆Td σ−2

X +
α2

(α− 1)3
∆2

Td σ−4
X + e4Td

(
1− 1

α

)
)

+
1

2
(e−2T + σ−2∆T )(σ

−2∆T e
2T )(

1

α− 1
∆Td σ−2

X − e2Td

(
1− 1

α

)
) +

d

4
(σ−2e2T∆T )

2

=d
α− 1

4α
+

dλ̂e−4T
(
e2T − 1

)
2(α− 1)

+
dλ̂2e−8T

(
e2T − 1

)2 (
α3 + (α− 1)3e4T + 4α(α− 1)2e2T

)
4(α− 1)3α

(C.31)
In this domain ⟨KL(ρG|ρ)var⟩/d is no longer a monotonic function of α. It is easy to see from
the expression above that as α → 1 both from α > 1 and α < 1 side, KL divergence becomes
unbounded.

Our analytical calculation can be generalized to the study a (stack of) wide neural network in the
kernel approximation regime [4, 12, 14, 20, 33, 34, 39, 49] or in mean field regime [9, 10, 44, 65]
instead of a linear diffusion model.
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