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Abstract
The training and inference efficiency of ever-
larger deep neural networks highly rely on the
performance of tensor operators on specific
hardware platforms. Therefore, a compilation-
based optimization flow with automatic ten-
sor generation and parameter tuning is neces-
sary for efficient model deployment. While
compilation-based methods with performance
models can provide dynamic and suitable code
optimization, they suffer from a large design
space exploration with rough measurement ac-
curacy and poor transferability among differ-
ent hardware platforms. This paper presents
ATFormer, a simple yet efficient design with
attention-inspired modules to accurately pre-
dict the performance of optimized operators
by capturing global and long-range dependen-
cies within a complete scheduling space. Com-
pared with state-of-the-arts, ATFormer can
predict the optimal implementation of tensor
operators to reduce inference time with mini-
mal effort on modern DNN benchmarks. Fur-
thermore, ATFormer with pre-trained parame-
ters can quickly adapt to different workloads
and hardware via transfer learning.

1 Introduction

Recently, there has been a significant improvement
in model performance for deep neural networks
(DNNs) (He et al., 2016; Sandler et al., 2018; Shan
et al., 2021; Devlin et al., 2019; Wu et al., 2019;
Biten et al., 2019; Bello et al., 2019). However,
this progress has been accompanied by a signifi-
cant increase in the number of operators and, con-
sequently, the computational complexity of DNNs.
As a result, it has become increasingly challeng-
ing to efficiently deploy DNNs with optimized ten-
sor programs on certain hardware accelerators like
CPUs, GPUs and TPUs (Jouppi et al., 2017).

To overcome the limitations, mainstream search-
based tensor compilers (Chen et al., 2018a; Zheng
et al., 2020; Bai et al., 2021; Li et al., 2020; Fe-
gade et al., 2021) are developed. These compilers
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Figure 1: The overview of a search-based framework
with computation graph, cost model, and search space.

automatically search for the optimal deployment
configuration of each operator on increasingly het-
erogeneous platforms. Conducting on-device mea-
surements is extremely time-consuming, making
it impossible to place all the generated tensor pro-
grams on the target platform for measurement dur-
ing the compilation process. Therefore, the pre-
diction via an optimal cost model is crucial in re-
ducing the time-consuming measurements during
the compilation which can significantly improve
search efficiency and quality.

Nevertheless, the existing cost models are ca-
pable of selecting nearly optimal configurations
but suffer from excessively long optimization time.
These long optimization times not only impede the
deployment period but also raise concerns about
the practicality of search-based compilers. Further-
more, statistic cost models trained on one hardware
platform exhibit significant performance degrada-
tion on different hardware, making them unusable
across different platforms. It is noteworthy that the
execution times of tensor programs can vary signif-



icantly on different platforms due to domain gaps,
making it challenging to deploy optimized models
on multiple platforms. This is further compounded
by the significant differences in the features ex-
tracted from various platforms. Even when ex-
tracted on GPUs, the feature’s stability and perfor-
mance cannot be guaranteed across different GPU
architectures such as Volta, Turing, and Ampere.
Therefore, additional engineering efforts are nec-
essary to account for the differences in hardware
architectures, resulting in a laborious and cumber-
some feature extraction process.

To address these challenges, we propose a power-
ful yet simple approach that uses attention-inspired
blocks to enhance the performance of cost models.
These blocks can capture global and long-range
dependencies among tensor program statements.
Additionally, transferable features with pre-trained
parameters are used to expedite search convergence
across different hardware platforms. These tech-
niques can be easily incorporated into existing
search algorithms and improve efficiency in an end-
to-end fashion. Our design, ATFormer, consistently
outperforms popular DNN benchmarks, including
small and large-scale models. Furthermore, our
techniques enable cross-platform transfer learning,
resulting in more efficient deployment.

The main contributions of this paper are the fol-
lowing: (i) We highlight the limitations of current
auto-tuning frameworks. Existing tree-based per-
formance models are insufficient for evaluating in-
ference in a large search space and transferable
knowledge is difficult to acquire across different
platforms. (ii) A simple yet efficient design that
utilizes attention-based blocks to explore the corre-
lation between all innermost non-loop statements
in a full tensor program, resulting in accurate pre-
diction. (iii) Our approach enables rapid adapta-
tion of performance tuning across various GPU
platforms using pre-trained parameters on static
datasets, not only in cross-operator but also cross-
platform scenarios. Comprehensive experiments
on modern DNN benchmarks and the large-scale
TenSet (Zheng et al., 2021) demonstrate the consis-
tent and superior performance of our method.

2 Background and Related Work

Deep Learning Compiler. Recently, the devel-
opment of compiler-based optimization frame-
works, such as Halide (Adams et al., 2019),
TVM (Chen et al., 2018b), XLA (Sabne, 2020),

and TACO (Kjolstad et al., 2017), has progressed
rapidly. These optimization schemes typically con-
sist of two parts: DL framework frontends and code
generation backends, as illustrated in Figure 1. The
frontend converts an input model into a high-level
graph-based intermediate representation (IR) and
applies target-independent optimizations, such as
operator fusion and data layout transformation. In
the backend, target-dependent optimization passes,
along with hardware features, further optimize the
final performance. TVM (Chen et al., 2018a) is a
state-of-the-art search-based tensor compiler that
is widely used in academia and industry. Its auto-
tuning aims to achieve performance comparable
to hand-tailored libraries and has achieved promis-
ing results. TVM has two versions of auto-tuning:
AutoTVM (Chen et al., 2018c) and Ansor (Zheng
et al., 2020). While AutoTVM is a semi-automated
framework that requires pre-defined manual tem-
plates, Ansor is more advanced and fully auto-
mated. However, both frameworks need to collect
data on-the-fly during the search, resulting in an
extremely long compilation time.

Tree-based Performance Model. Decision trees
are frequently used in classification and regression
problems. To enhance their performance, an en-
semble learning approach is typically employed
to reduce variance. XGBoost (Chen and Guestrin,
2016a) and LightGBM are powerful feature models
in sequence modeling tasks. To achieve accurate
prediction, a number of works, including (Chen
et al., 2018c; Zheng et al., 2020; Ahn et al., 2020;
Gao et al., 2021; Bai et al., 2021, 2023; Huang
et al., 2023; Zhao et al., 2023), use XGBoost as the
performance model during the tuning. AutoTVM
extracts domain-specific features from a provided
low-level abstract syntax tree (AST). During opti-
mization, these features, which include loop struc-
ture information and generic annotations, are ex-
plored. Moreover, TreeGRU (Tai et al., 2015) recur-
sively encodes a low-level AST into an embedding
vector, which is mapped to a final predicted score
within a fully-connected layer to enhance perfor-
mance. Halide (Adams et al., 2019) builds regres-
sion models with hardware-specific features for
auto-scheduling. TabNet (Arık and Pfister, 2020)
uses sequential attention to select the most salient
features to reason at each decision via a deep tabu-
lar architecture.

DNN-based Performance Model. In contrast,
some recent approaches aim to reduce the impact of



search algorithms on final performance by utilizing
more robust and powerful cost models. (Kaufman
et al., 2020) and (Sun et al., 2022) employ graph
neural networks to predict the latency of DNNs on
TPUs. (Steiner et al., 2021) formulates the tuning
process as a deterministic Markov Decision Pro-
cess (Xiang et al., 2015) and solves it by learning
an approximation of the value function. Tiramisu
(Baghdadi et al., 2019) manually extracts 2534 fea-
tures from the structure of AST, and forwards the
AST as a computation stream to propagate features
during the training. These models are trained effec-
tively on a dataset with only a few thousand sched-
ules using the hardware-dependent features crafted
by heavy feature engineering techniques. However,
complex feature engineering can become problem-
atic in such cases. As hardware-specific features
are difficult to transfer to a new platform, a learned
performance model trained on one hardware plat-
form typically performs poorly on another. This
leads to an issue we call cross-hardware unavail-
ability. Additionally, this approach cannot keep
pace with the rapid development of new hardware,
which further exacerbates the problem.

3 Methodology

3.1 Problem Formulation

We describe a DNN model as a computation graph
and then define some important terminologies.

Definition 1 (Subgraph). Computation Graph G
is partitioned into a set of subgraphs S based on
the graph-level optimizer (Roesch et al., 2018).

Each search task is extracted from an indepen-
dent subgraph Si on a specific hardware platform
H. Thus, we define search task Q as follows:

QH(S|G) =
{
Q1

(S1|G), Q
2
(S2|G), . . . , Q

n
(Sn|G)

}
,

(1)
where n is the number of subgraphs inG. Note that
each subgraph Si contains a computation-intensive
operator σ and σ ∈ Si. Therefore, we use Qi(Si|G)
to represent the i−th search task in G. Each sub-
graph Si has its own search space, which is deter-
mined by the input and output shapes, data preci-
sions, memory layout, and the hardware platform.
The search space is usually large enough to cover
almost all kinds of tensor candidates.

Definition 2 (Hierarchical Search Space). A tensor
program, denoted by p, represents an implementa-
tion of the subgraph using low-level primitives that

Algorithm 1 Search-based Framework
Input: Search space φ1, φ2 with operator σ and setting k.
Output: Tensor program p∗ with best configuration c∗.
1: while nTrials < eachSubgraphTrials do
2: GS1 ← GenerateHighSketch(φ1,σ,k);
3: GS2 ← Sampling(GS1,φ2,σ,k);
4: P← EvolutionSearch(GS1, GS2);
5: for p ∈ P do
6: c← f(ð(φ1, φ2|σ, k));
7: end for
8: nTrials← nTrials + batchSize;
9: end while

10: c∗ ← best tensor program configurations;

are dependent on the hardware platform. Each ten-
sor program can be considered as a candidate in
the search space. We define the hierarchical search
space φ1,2, which decouples high-level structures
φ1 from low-level details φ2, allowing for the ef-
ficient exploration of potential tensor candidates
during the tuning process.

Here, we can transform a tuning problem into
an optimization problem that explores the potential
tensor programs in a hierarchical search space.

Problem 1. Given code generation function ð,
high-level structure generation parameters φ1, low-
level detail sampling parameters φ2, computation-
intensive operator σ and operator setting k (e.g.,
kernel size), our goal is to use φ1,2 to build a hier-
archical search space and generate tensor program
p to achieve the optimal prediction score y∗ on a
specific hardware platform H.

φ∗1,2 = argmax
φ

y,

y = fH(ð(φ1, φ2|σ, k)).
(2)

The cost model f predicts score y of the tensor
program p. The accuracy of the cost model f is
crucial in finding ideal optimization configuration.

3.2 Performance Model

The process of optimization using our design is
outlined in Algorithm 1. The input is a set of to-
be-optimized operators or subgraphs with different
configurations. To implement our workflow, three
functions are defined: GenerateHighSketch(),
Sampling(), and EvolutionSearch(), as shown
in Algorithm 1. GenerateHighSketch() takes
φ1, σ, and k as input and returns the high-level
generation sketch GS1 as output. Sampling()
takes GS1, φ2, σ, and k as input and returns
the low-level annotation samples GS2 as output.
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Figure 2: Hierarchical features of Conv2D with a full
tensor program representation in the search space.

EvolutionSearch() takes the high-level genera-
tion sketch GS1 and the low-level annotation sam-
ples GS2 as input and returns a group of tensor
candidates for the cost model training. Next, an
evolutionary search strategy is used along with a
learned cost model to fine-tune the performance of
the generated tensor programs. By iteratively mu-
tating high-quality tensor programs, it can generate
new programs with potentially higher quality. Af-
ter a number of measurement trials, the best tensor
program configurations can be identified.
Hierarchical Feature Generation. The input of
ATFormer is a series of mix-grained feature vec-
tors extracted from pσ, where pσ is the full tensor
program to implement operator σ. Each vector
represents a single computation statement within
pσ. These mix-grained feature vectors are com-
posed of two important components: (i) Coarse-
Grained operator embedding features that capture
the high-level structure of the operator σ and (ii)
Fine-Grained statement features that capture the
low-level details of each statement within program
pσ. Each operator in the subgraph S can be classi-
fied into a few categories, and we represent each
operator with a one-hot embedding feature vector
that covers all possible operator types. In practice,
we use feature vectors of length 10 for the oper-
ator embedding and length 164 for the statement
features, consistent with the approach used in An-
sor (Zheng et al., 2020). The prediction score for
a subgraph is computed as the sum of the predic-
tion scores for each innermost non-loop statement
within the loop nests of the full tensor program.
More details can be found in Figure 2.
Model Architecture Our proposed ATFormer
model consists of three layers: (i) a kernel em-
bedding layer, which extracts a compact feature
representation; (ii) a computation processing layer,
which captures essential information from the in-
nermost non-loop computation statements in the
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Figure 3: The performance model’s architecture in-
cludes two attention blocks that extract coarse and fine-
grained features of the tensor program, as well as a
lightweight MLP layer for directly predicting the score.

neighborhood; and (iii) a simple regression layer
for making the final prediction. ATFormer can be
easily integrated into existing search algorithms
and consistently improve the efficiency of auto-
tuning. We believe that the simplicity of our
method will attract more research attention to the
field of tensor operator optimization, further en-
hancing training and inference efficiency. The fea-
ture processing of computation and regression in
ATFormer is illustrated in Figure 3. The kernel em-
bedding layer is composed of two fully connected
layers with ReLU activation. The function of the
kernel embedding layer is to project the features
from low dimension space to a new embedding
space for similarity measurement. Starting from
the batched tensor programs I ∈ RL×Din repre-
senting a specific type of operator σ, where L is
the accumulated number of the feature statements
within I . A kernel embedding layer then gener-
ates a set of feature statements E ∈ RL×Dout in
embedding space. Typically, we use Dout = 512.
The value L is determined by the parameters of
high-level structures φ1 and the low-level details
sampling φ2 for each subgraph S.

As for the computation layer, a set of feature
statements E ∈ RL×Dout should be split into M
stacks of feature statements Z ∈ RM×N×Dout

firstly. Each stack contains N feature statements
of innermost non-loop computation within a full
tensor program p. We adopt the self-attention mech-
anism for feature statements aggregation. With the
parameter tensors written as WQ,WK ,W V , a
full tensor program with a set of innermost non-
loop feature statements Z is first encoded into
query Q, key K, and value V by three identical
linear transformations: Q,K,V = Z>W . Then
it will be further calculated by the self-attention
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layer as:

Attention(Q,K,V ) = Softmax
(
Q>K√
dk

)
V .

(3)
The final prediction of these M tensor programs

is computed by a regression layer with a dimension
from 512 to 1. The predicted score is y ∈ RM×1.
Loss Function The model ranks the performance
of potential candidates in a large search space.
Therefore, the model can be trained with ranking
losses or regression losses to predict relative or
absolute scores. To explore the loss function to
train ATFormer, a common choice is to use the
squared error function as a regressor which can
mostly care about identifying the well-performing
tensor programs. The loss function of the model
f on a full tensor program p with throughput h is
MSELoss(f, p, h) = (

∑
s∈S(p) f̂(s)− y)2, where

S(p) is the set of innermost non-loop computation
statements in tensor program p. We train ATFormer
as the performance model f . However, we only
care about the relative order of tensor program run-
time rather than their absolute values during the
compilation. We instead use the following Ran-
kLoss (Cao et al., 2007) to rank the performance
of candidates in the large design space. This can
fully exploit the optimal candidates to reduce the
impact of the search algorithm on final prediction
results. The loss function is defined as follows:

RankLoss =
∑

s(i),s(j)∈S(p)

log(1 + ef(i,j)); (4)

f(i, j) =−sign(yi − yj)(f̂(si)− f̂(sj)).
(5)

We can use the prediction f̂(x) to select the top-
performing implementations of a full tensor pro-
gram p. The computation graph G is trained for
tensor programs extracted from all subgraphs. The
throughput of all tensor programs is normalized to
be in the range of [0, 1].
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3.3 Transfer Learning

The trade-off between search time and performance
improvement is interesting to explore and exploit,
as long search times may not always be acceptable.
Our current focus is on developing a cost model
for optimizing tensor operators on a specific hard-
ware platform. However, in practical settings, we
require a cost model that can be used across various
hardware platforms. This would allow us to reuse a
single-cost model for multiple platforms by provid-
ing it with new online data during auto-tuning. To
achieve this, we pre-train the cost model with an of-
fline static dataset and exploit transferable features
that are invariant to both source and target domains
to speed up the optimization process, as depicted
in Figure 4. The use of transferable features greatly
contributes to the success of transfer learning, as
different designs may have varying degrees of in-
variance. By training the cost model offline using a
dataset, we can significantly reduce the frequency
of on-device measurements and use the pre-trained
parameters as a starting point for new search tasks
via transfer learning.

4 Experiments

4.1 End-to-End Execution Evaluations

Workloads. We evaluate the performance of AT-
Former on various DNNs, including small and
large-scale models. For small-scale models, we use
AlexNet, VGG-16, MobileNet-V2, ResNet-18/50
and Bert-Tiny to evaluate the design. As for the
large-scale models, we use BERT and GPT-3 mod-
els, specifically BERTbase, BERTlarge, GPT-2large
and GPT-3350M . We report the the end-to-end in-
ference latency with batch size 1 on RTX 2080Ti.
Baselines and Settings. For statistic model, we
use XGBoost as a baseline which has proven to be a
state-of-the-art feature-based model in auto-tuning
framework (Zheng et al., 2020). For DNN-based
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Figure 6: End-to-end performance comparison of cost
models across DNNs and normalized by the XGBoost.

learning, we use LSTM with eight heads and 1024
hidden dimensions, and TabNet is implemented in
TenSet as another baseline. Note that the search
algorithm uses the default configurations, and the
search terminates when it runs out of allowed mea-
surement trials. We keep the rest of the factors the
same for a fair comparison.
Main Results. Figure 6 shows the final optimized
total latency results on the RTX2080Ti GPU. Over-
all, the ATFormer-series model performs the best
in all cases. Compared with the tree-based model
XGBoost, ATFormer outperforms them in all cases
with 1.15 − 1.61× speedup. Compared with the
DNN-based model TabNet, ATFormer outperforms
them in all cases with 1.14−2.14× speedup. Com-
pared with LSTM, ATFormer performs equally the
best and achieves 0.96−1.48× speedup. Although
LSTM surpasses ATFormer a little in finding the
best configuration on Bert-Tiny and VGG-16, the
amount of computation that can be parallelized in
ATFormer leads to a shorter used time. Overall, the
experiment results from the GeoMean verify the
effectiveness of the attention-based modules over
the tree- and DNN-based performance models.

4.2 Transfer Learning Evaluations

As mentioned in Section 3.3, we use RTX 2080Ti
and 3090 GPUs as different platforms to verify our
design by two typical metrics: i) Fix the measure-
ment trails and compare the total latency and ii) Fix
a converged latency, and then compare the search
time to reach it. To explore transferable features
and fast adaptation of auto-tuning between different
hardware platforms, ATFormer is pre-trained with
a number of samples from TenSet and then fine-
tuned using online datasets on different platforms.
Therefore, we divide our experiment settings into
“traditional learning” and “transfer learning” parts.

Traditional Learning. In Table 1, ATFormer
achieves the best total latency on RTX 2080Ti, and
it performs almost equally best with ATFormer-1L
about total latency with a fixed measurement trail
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Figure 7: Transfer learning performance on TenSet.

on 3090 GPU. The results show that self-attention
based models perform best in the final performance
compared with the tree-based and DNN-based cost
models on different types of GPUs.
Transfer Learning. In Table 1, experiment re-
sults on RTX 2080Ti and 3090 show that the pre-
trained parameters make the search convergence
much faster. With the increasing number of training
tasks in the offline dataset from 50 to 500, the learn-
ing ability of cost models with self-attention blocks,
including MHA, ATFormer-1L, and ATFormer-
Mask, become more stable, and they can adapt
to the new tasks via transfer learning. ATFormer-
series model performs better than the statistic and
DNN-based model XGBoost, LSTM in optimized
total latency with the parameters trained from
TenSet-100 to TenSet-500. All large-scale mod-
els are exported from Hugging Face, with a batch
size of 1 and a maximum input sequence length of
512. As shown in Table 2, ATFormer achieves
latency speedups of 1.39×, 1.11×, 1.10×, and
1.16× on the 3090 GPU compared to PyTorch
runtime. In terms of end-to-end tuning time, AT-
Former achieves speedups of 4.97×, 5.10×, 5.69×,
and 6.08× compared to traditional learning.

The performance of our efficient transfer learn-
ing on NVIDIA RTX 3090 GPU can be found
in Figure 7. As for the TenSet-50 datasets, curves
start from different points at the beginning, and we
can find that XGBoost performs best. It means
that the transferable features in the ATFormer-
series models are not fully exploited on the limited
dataset (task#50) during the training. Obviously,
the adaptation skills amplify rapidly with the in-
creasing number of tasks on the offline dataset.
From TenSet-100 to TenSet-500, we can find that
ATFormer-series models show fast adaptation and
generalization ability across hardware platforms
and operators compared with XGBoost and LSTM
models.

In Table 3, we make the traditional learning and



cost model XGBoost LightGBM LSTM TabNet MHA ATFormer-1L ATFormer ATFormer-M
(ms/s) latency time latency time latency time latency time latency time latency time latency time latency time

ResNet-18-2080Ti 1.47 573 1.58 770 1.29 604 1.52 748 1.32 687 1.25 706 1.04 787 1.23 762
R

T
X

20
80

Ti

Tr
an

sf
er

TenSet-50 0.86 535 0.98 527 1.02 614 1.13 583 1.01 595 1.00 602 0.97 600 1.00 611
TenSet-100 0.96 533 0.98 526 1.07 615 0.82 596 0.87 602 1.00 602 0.85 594 0.84 611
TenSet-200 0.99 536 0.86 525 1.07 611 0.88 582 0.83 602 0.82 612 0.82 604 0.82 632
TenSet-300 0.89 538 0.85 526 1.02 622 0.83 583 0.85 600 0.81 609 0.89 612 0.87 607
TenSet-500 0.96 530 0.81 529 1.03 622 0.82 574 0.83 593 0.87 598 0.84 612 0.79 615

ResNet-18-3090 1.07 589 1.11 676 1.24 762 1.64 741 1.11 658 0.97 661 1.02 677 3.01 665

R
T

X
30

90

Tr
an

sf
er

TenSet-50 0.70 537 0.74 524 0.88 593 0.75 581 0.75 610 0.77 605 0.78 599 0.79 604
TenSet-100 0.71 540 0.73 526 0.83 599 0.67 620 0.65 607 0.68 601 0.66 606 0.69 614
TenSet-200 0.78 534 0.68 526 0.87 582 0.70 589 0.65 612 0.73 599 0.64 596 0.66 611
TenSet-300 0.70 536 0.68 531 0.83 616 0.66 585 0.64 617 0.67 595 0.71 607 0.66 613
TenSet-500 0.72 535 0.67 540 0.85 618 0.69 587 0.67 591 0.68 581 0.67 607 0.63 609

Table 1: Transferable adaptation evaluation between different GPU platforms on ResNet-18.

cost model XGBoost LSTM MHA ATFormer-1L ATFormer Speed up
performance (ms / s) latency time latency time latency time latency time latency time latency time

BERTbase
Traditional Learning 24.51 3028 32.89 3246 19.13 2890 18.77 2996 17.56 2874

1.39× 4.97×
Transfer Learning 23.82 654 33.35 880 19.98 602 19.51 648 18.72 578

BERTlarge
Traditional Learning 51.63 5016 59.81 5540 53.21 5218 54.32 5312 46.54 5232

1.11× 5.10×
Transfer Learning 52.49 1098 60.33 1302 55.88 1084 56.58 1192 47.76 1026

GPT-2large
Traditional Learning 489.12 6240 502.22 6531 467.22 6311 452.56 6380 445.52 6268

1.10× 5.69×
Transfer Learning 491.24 1392 503.52 1594 468.29 1375 454.18 1272 447.31 1102

GPT-3350M
Traditional Learning 513.61 7789 542.23 8582 479.42 8082 468.59 7982 442.02 7891

1.16× 6.08×
Transfer Learning 514.42 1857 543.59 2302 480.12 1890 470.52 1920 443.62 1296

Table 2: The performance of large-scale Transformer models on TenSet-500 with transfer learning.

cost model XGBoost LSTM MHA ATFormer-1L ATFormer ATFormer-M
performance (ms / s) latency time latency time latency time latency time latency time latency time

RTX 2080Ti
Traditional Learning 1.26 1026 1.02 1487 1.03 1172 1.20 1269 1.02 1382 1.71 1124

Transfer Learning 1.23 281 1.05 348 0.99 261 1.15 264 0.99 271 0.93 266

RTX 3090
Traditional Learning 0.96 1004 1.03 1235 0.79 1125 0.87 1141 0.74 2054 0.94 2018

Transfer Learning 0.98 287 1.02 270 0.77 261 0.83 269 0.76 267 0.65 264

Table 3: Pre-trained models on TenSet-500 via transfer learning with converged latency on GPU platforms.

Methods
ResNet-18 MobileNet-V2 Bert-Tiny

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

mask? X X X X X X
pre-trained? X X X X X X
RMSE Loss? X X X
Rank Loss? X X X X X X X X X X X X X X X
AutoTVM? X X X

total latency (ms) 1.42 1.04 1.23 0.81 0.83 1.92 0.53 0.51 0.76 0.39 0.40 1.29 4.18 3.41 3.97 2.32 2.46 5.07
search time (s) 781 787 762 620 611 3274 962 1000 958 617 604 2996 1127 1141 1150 818 816 3826

Table 4: Total latency and tuning time of different methods, using ResNet-18, MobileNet-V2 and Bert-Tiny net-
works for end-to-end evaluation. The relative gains obtain for batch size = 1 with 300 measurement trials.

transfer learning on different hardware platforms
for ResNet-18 have an approximate converged la-
tency. ATFormer reduces the search time by up to
5.1× while maintaining the same search quality on
RTX 2080Ti. This is the best speedup compared
with 3.6× by XGBoost, 4.2× by LSTM, 4.8× by
ATFormer-1L, and 2.2×MHA, respectively. Un-
der the same conditions, ATFormer also performs
the best with reducing the search time by up to
7.7× on RTX 3090 compared with 3.4× by XG-
Boost, 4.5× by LSTM, 4.2× by ATFormer-1L, re-
spectively. Traditional learning with a mask-guided
training scheme degrades the performance on total
latency and search time. However, transfer learning

with a mask-guided training scheme for ATFormer-
Mask performs best in most cases. Comprehen-
sive experiments show that it is not easy to make
ATFormer-Mask have the approximate converged
latency on RTX 2080Ti and 3090 compared with
traditional learning and transfer learning. It means
that ATFormer-Mask with pre-trained parameters
has better task generation for tensor programs and
achieves better performance during tuning. Trans-
fer learning across different types of CPUs can be
found in Appendix A.6.

Overall, ATFormer takes full advantage of trans-
ferable features learned from the source domain
Tesla T4 GPU and transfers the knowledge to the



architecture n_head hidden_dim latency (ms) search time (s)

MHA

2 512 3.71 652
4 256 1.58 647
4 512 1.24 641
4 1024 1.29 652
6 768 1.48 658
8 512 1.19 658

ATFormer-1L 4 512 1.25 706
ATFormer 4 512 1.04 777

ATFormer-3L 4 512 1.23 788

Table 5: Different architecture design about ATFormer.

different target domains RTX 2080Ti and RTX
3090 to accelerate the convergence speed with a
fixed number of measurement trails. Fast conver-
gence is desirable for many users of auto-tuning
to have better control of the optimization cost and
good performance. For instance, deployment en-
gineers may want to obtain an optimized model
as soon as possible or quickly get an upper-bound
estimation of total inference latency in real-world
production. They can use the cost model like AT-
Former with strong generalization as decent pre-
trained parameters to accelerate not only the conver-
gence speed but also the total execution inference
time. Finally, comprehensive experiments with pre-
trained parameters on different sizes of the TenSet
dataset show that ATFormer-series models enable
fast adaptation in not only cross-operator but also
cross-platform scenarios.

Methods
ResNet-18

(a) (b) (c) (d) (e) (f)

Hierarchical features? X X X
XGBoost? X X

LSTM? X X
ATFormer? X X

w/o Transfer total lantency (ms) 1.47 1.63 1.29 1.58 1.04 1.18
w/o Transfer search time (s) 573 618 604 648 787 796

w/ Transfer total latency (ms) 0.96 0.98 1.03 1.12 0.84 0.91
w/ Transfer search time (s) 530 599 622 689 612 632

Table 6: Hierarchical features and performance model
architecture improvements for end-to-end evaluation.

4.3 Ablation Study

Various designs are evaluated in this section. We
report the performance about total latency, search
time on ResNet-18 and MobileNet-V2 and accu-
racy on the static datasets.
Loss Functions. Table 4 shows two different loss
functions in our experiments. Method (a) is AT-
Former with Root Mean Square Error (RMSE) loss
function while method (b) is with lambdaRank
loss function. Compared with method (a) and
method (b), we find that lambdaRank loss al-
ways outperforms RMSE in our design for different

workloads of DNNs. It shows that the goal of a
decent cost model is to rank the performance of
different tensor programs by relative scores in a
given search space.

Convergence Speed. In Table 4, method (d) is the
proposed ATFormer, which adapts the pre-trained
parameters to the new task via transfer learning
into method (c). Note that ATFormer with the pre-
trained parameters minimizes the total latency of
all subgraphs in three DNNs as much as possible
and the search time as quickly as possible. The
proposed ATFormer improves the total latency by
4.66× speedup and convergence speed by 1.55×
speedup. Method (f) is the AutoTVM with lamb-
daRank loss function. The performance is inferior
to the baseline configuration.

Training Schemes. In Table 4, method (c) incor-
porates the mask module into method (b) during
traditional learning. Method (d) imports the mask
module into method (e) during transfer learning,
resulting in a notable increase in convergence speed.
It’s worth noting that adding a mask scheme during
traditional learning is not very helpful and can even
cause a decrease in the total latency. However, for
transfer learning with pre-trained parameters, incor-
porating the mask module is crucial for achieving
faster convergence speed. The introduced tech-
niques do not require expensive training resources
in terms of both time and computation power.

Model Architectures. Table 5 lists ATFormer
with various architectures. To achieve high accu-
racy while minimizing the model parameters, we
find that the self-attention block, which contains
four heads with 512 hidden dimensions, performs
the best on the total latency and search time. Note
that ATFormer does not benefit from deeper en-
coder layers in the Transformer model. Thanks to
its simple and efficient architecture, the inference
latency of ATFormer is consistently lower than that
of the DNNs it optimizes. Thus, we set the two en-
coder layers as the final decision. Table 6 shows the
relationship between the hierarchical-level features
and different architectures to affect total latency
and search time on ResNet-18.

Accuracy. Table 7 presents the pairwise compari-
son accuracy of ATFormer and XGBoost on various
scales of static datasets. The findings indicate that
ATFormer outperforms XGBoost, demonstrating
the highest measurement accuracy and providing
optimal search quality during the tuning. We suc-
cessfully conduct the training process on a server



Architecture XGBoost ATFormer-1L ATFormer ATFormer-M
TenSet-50 91.31 85.98 93.48 93.28
TenSet-300 92.24 90.41 93.82 93.33
TenSet-500 93.08 91.98 94.06 93.71

Table 7: Accuracy of the cost models on TenSet.

Cost Model TenSet-50 TenSet-100 TenSet-200 TenSet-300 TenSet-500
ATFormer-1L 258 362 549 685 916

ATFormer 299 384 588 712 951
ATFormer-M 324 416 605 749 972

Table 8: The training time of the ATFormer series cost
models during the offline optimization.

Model XGBoost LSTM TableNet MHA ATFormer-1L ATFormer-2L
ResNet-18 3.04 3.35 2.88 2.79 2.51 2.39
Bert-Tiny 17.42 14.83 16.98 15.32 15.49 14.37

Table 9: Traditional learning with different cost models
for batch size 8 on the NVIDIA RTX 3090 GPU.

equipped with an Intel Core i9-12900K CPU, a
NVIDIA GeForce RTX 3090 GPU, and a 2TB hard
disk. Table 8 presents the specific training times (in
seconds) of the ATFormer series models on static
datasets. Note that our approach is also suitable
for scenarios involving large batch sizes. Table 9
lists experimental results using batch size 8 on the
NVIDIA 3090 GPU via traditional learning.

5 Conclusion

This paper introduces ATFormer, a novel and ef-
fective design for optimizing tensor programs. AT-
Former employs hierarchical features with vary-
ing levels of granularity to model the end-to-end
compilation. Moreover, self-attention blocks are
utilized to explore global dependencies of a com-
plete tensor program for high-quality evaluation.
Through transfer learning, ATFormer achieves
faster-converged latency and superior transferabil-
ity across different hardware platforms, outperform-
ing previous state-of-the-art benchmarks.
Limitations. We plan to do the transfer learning
from GPUs to CPUs and explore the potential of
combining with post-training quantization or prun-
ing to efficiently deploy models. Additionally, we
will explore more universal and efficient methods
for optimizing tensor programs with ATFormer.
This includes leveraging hardware features to opti-
mize performance on domain-specific accelerators,
such as NVIDIA’s Tensor Cores.
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A Appendix

A.1 Feature Extraction Details
The feature before ATFormer training can be rep-
resented as two different granularities: coarse-
grained and fine-grained levels. The coarse-grained
level feature can describe each search task in
the computation graph. It has 10 elements with
the one-hot encoding pattern. In our specific
code implementation, the coarse-grained vector
contains these operators:“max”, “min”, “add”,
“Conv2dOutput”, “Conv2d_winograd”, “Depth-
wiseConv2d”, “dense”, “softmax”, “compute(b, i,
j)”. The “max” and “min” can represent some acti-
vation functions in deep learning. “dense” means
the fully connected layer in computation graph and
“compute(b, i, j)” is a very important function to
implement each tensor operation in deep learning.
If the intermediate representation about some op-
erators are fused into the same “compute(b, i, j)”
primitive, it means these operators are fused to-
gether and can run very efficiently on the specific
hardware platforms. As for the fine-grained vec-
tor, the length of it including all the listed features
for one statement is 164. We use the same set of
features for both Turing 2080Ti and Ampere 3090
GPUs. It can be summarized as follows:

• Number of float operations: The number of
addition, subtraction, division, modulo oper-
ation, less-than, greater-than, intrinsic math
function such as exp, sqrt.

• Number of integer operations: Similar to
the number of float
operations, but for the operations with inte-
ger operations.

• Vectorization related features: The number
of the innermost vectorized loop statements
in a full tensor program.

• Unrolling related features: The number of
the innermost unrolling loop statements in a
full tensor program.

• Parallelization related feature: The num-
ber of the innermost parallelization loop state-
ments in a full tensor program.

• GPU thread binding related features: The
lengths of blockIdx.x, blockIdx.y, blockIdx.z,
threadIdx.x, threadIdx.y, threadIdx.z and vir-
tual threads which can avoid bank conflict
problem in shared memory.

• Arithmetic intensity curve: We only sam-
ple 10 points from a curve which is defined
as FLOPs

Bytes which is similar to the roof-line
model used in computer architecture. It can
help us to recognize the type of the search
task or operator in computation graph such as
compute-intensive or memory-intensive oper-
ator on a specific hardware platform.

• Buffer Access Feature: We perform fea-
ture extraction for at most five buffers. It
includes “Access type”, “Bytes”, “Unique
bytes”, “Lines”, “Unique Lines”, “Reuse
type”, “Reuse distance”, “Reuse counter”,
“Stride”, “Accessed bytes divided by reuse”.

• Allocation related features: The size of the
allocated buffer for the output results of each
statement in a full tensor program.

With the combination of coarse-grained and fine-
grained feature vectors, we can construct them into
a hierarchical feature vector to take full advantage
of each statements in a full tensor program.

A.2 Implementation Details
ATFormer is implemented on the top of Ansor and
evaluated from two aspects: end-to-end search ef-
ficiency and quality, as well as performance porta-
bility. We compare ATFormer against the state-of-
the-art methods, including both the statistic and
DNN-based cost models. The items labeled with
XGBoost represent the Ansor default configura-
tion. We also provide a detailed ablation study
of the model architecture, accuracy, loss function,
convergence speed, and training scheme, with in-
sights and qualitative results. The generated ten-
sor programs are evaluated on two different GPU
architectures: Turing RTX 2080Ti and Ampere
RTX 3090, with float32 data types used for all
evaluations. We train the cost model using the
Adam optimizer for 50 epochs, with a starting learn-
ing rate of 7e−4 that decays to 1e−6, and a train-
ing batch size set to 512. We use TVM v0.8dev
in TenSet (Zheng et al., 2021), LLVM 11.0, and
CUDA 11.0 for compilation, while XGBoost 1.5.0
and PyTorch 1.7.1 are used for training models.
The use of a “mask” is a widely adopted technique
for training transformers. In Figure 5, each tensor
program is transformed into a sequence of vectors,
with each vector representing a tensor computa-
tion statement. During training, all sequences are
of the same length, and any shorter sequences are



padded with zeros at the end. The padded items
are masked out and excluded from the loss com-
putation. Our ablative models, including MHA,
ATFormer-1L, ATFormer, and ATFormer-M, were
also experimented with. MHA is the basic Multi-
Head Attention layer, ATFormer-1L only has one
encoder layer, ATFormer has two encoder layers,
and ATFormer-M uses the "mask" scheme during
training.

A.3 Dataset Details

We evaluated our design using TenSet, a large-scale
and challenging dataset for search-based tensor
compilers. TenSet comprises 52 million perfor-
mance records of tensor programs obtained from
real measurements on different hardware platforms.
Various randomly generated tensor programs for
popular workloads are compiled via the TVM com-
piler and executed on the target hardware platforms.
To ensure the inclusion of diverse workloads essen-
tial for generalization ability, we collected tensor
programs from 120 networks with 13,848 tasks on
the NVIDIA Tesla T4 GPU. This dataset serves as
a series of static offline datasets.

A.4 Benchmark Details

We evaluate the performance of generated pro-
grams by ATFormer on two levels: end-to-end
network evaluations and performance portability
via transfer learning. For each level of evaluation,
we compare ATFormer against the state-of-the-art
methods, including the statistic models:

• XGBoost (Chen and Guestrin, 2016b)

• LightGBM (Ke et al., 2017)

and DNN-based models:

• LSTM (Hochreiter and Schmidhuber, 1997)

• Multi-Head Attention (Vaswani et al., 2017)

• TabNet (Arik and Pfister, 2021)

The generated tensor programs are benchmarked
on two different architecture GPU platforms:

• NVIDIA 2080Ti GPU with Turing architec-
ture (Jia et al., 2019)

• NVIDIA 3090 GPU with Ampere architec-
ture (Choquette et al., 2021)

Figure 8: Convergence analysis on ResNet-18.

We use float32 as the data type for all evalua-
tions. We train our model with the Adam optimizer
for 50 epochs with a starting learning rate of 7e−4,
the learning rate decays to 1e−6, and the training
batch size is set to 512. We use TVM v0.8dev
in TenSet, LLVM 11.0 and CUDA 11.0 for com-
pilation. Meanwhile, we use XGBoost 1.5.0 and
PyTorch 1.7.1 for training models.

To explore transferable features and fast adap-
tation of ATFormer between different hardware
platforms, ATFormer is pre-trained using offline
learning with a number of samples from TenSet,
and then fine-tuned using online learning on dif-
ferent platforms. For the offline learning, we ran-
domly sample 50, 100, 200, 300, 500 search tasks
from TenSet NVIDIA Tesla T4 GPU.

We train 40 models including XGBoost, Light-
GBM, LSTM, TabNet, Multi-head attention,
ATFormer-1L, ATFormer, ATFormer-Mask for all
of experiment evaluation in this paper. Due to the
limitation of maximum file size (100MB) in supple-
mentary material, we release the pre-trained model
offline learning by Tenset-500 for AFTormer-1L,
ATFormer, ATFormer-Mask, Multi-head attention
and TabNet. All of the pre-trained models for XG-
Boost. And we release running scripts in the supple-
mentary material to reproduce the results in Section
5 Table 1. More details about the hyperparameters
of each cost model in our experiments can be found
in Table 12, Table 13, Table 14, Table 15, Table 16,
Table 17, and Table 18.

A.5 Convergence Analysis.

In Figure 8, we present the tuning trials-latency
curves that illustrate various stages of auto-tuning
with different configurations on ResNet-18. We
performed four types of experiments on ResNet us-
ing two settings: with transfer learning and without
transfer learning. The blue line indicates ATFormer
with transfer learning to expedite the tuning pro-



cost model XGBoost LSTM MHA ATFormer-1L ATFormer
performance (ms / s) latency time latency time latency time latency time latency time

ResNet-18
Traditional Learning 6.13 658 6.16 731 6.12 642 6.22 633 6.15 661

Transfer Learning 6.16 334 6.25 451 6.19 346 6.29 419 6.18 304

ResNet-50
Traditional Learning 19.59 652 21.23 697 17.50 630 17.52 614 16.90 643

Transfer Learning 20.01 342 21.99 461 18.11 338 17.91 362 17.02 318

VGG-16
Traditional Learning 36.92 891 39.85 1004 35.69 839 34.51 826 30.01 840

Transfer Learning 37.51 395 40.17 422 36.79 326 34.87 318 34.88 270

BERT-Tiny
Traditional Learning 17.98 1012 19.22 1433 17.55 1126 16.09 1168 15.11 1232

Transfer Learning 18.05 396 19.57 498 17.91 401 16.41 416 15.16 388

Table 10: Pre-trained models with the converged latency on the CPU platforms.

cost model XGBoost LSTM MHA ATFormer-1L ATFormer
performance (ms / s) latency time latency time latency time latency time latency time

ResNet-18
Traditional Learning 5.28 634s 5.91 702 5.17 611 5.32 602 4.75 628

Transfer Learning 5.21 314 5.88 432 5.16 326 5.19 384 4.74 254

ResNet-50
Traditional Learning 16.42 621 18.23 632 13.51 608 12.51 584 11.62 602

Transfer Learning 20.01 342 21.99 461 18.11 338 17.91 362 17.02 318

VGG-16
Traditional Learning 29.52 845 31.54 967 28.55 799 28.71 796 25.49 812

Transfer Learning 29.41 352 31.47 378 28.46 299 28.69 278 25.46 216

BERT-Tiny
Traditional Learning 13.88 862 15.22 1138 13.55 986 14.41 942 11.55 998

Transfer Learning 13.76 339 15.47 438 13.91 345 14.39 377 11.58 320

Table 11: Pre-trained models with the converged latency on the Tensor Cores.

cess. We observe that the converged latency is the
best among the four configurations. The orange
line represents the same tuning process with the
XGBoost cost model, and we note that the con-
verged latency is inferior to the one with ATFormer.
The green line shows ATFormer without transfer
learning, and we can observe that the convergence
speed is exceptionally fast. The red line represents
the Ansor optimization, and we observe that the
convergence speed and the final converged latency
are both less than the ones achieved by the green
line with ATFormer. Therefore, we can infer that
ATFormer can expedite the tuning process com-
pared to traditional learning methods through trans-
fer learning and outperforms the state-of-the-art
tensor compiler Ansor.

The main components in ATFormer model archi-
tecture can be categorized into three layers:

• Kernel embedding layer: The function of
kernel embedding layer is to change the 164+
10 dimensions into 512 dimensions.

• Computation layer: The function of compu-
tation layer is to obtain the relationship be-
tween each innermost non-loop statement in
loop nests of a full tensor program.

• Regression layer: The function of regression
layer is to project the final prediction about
each innermost non-loop statement in an one

dimension scalar.

Model Name Parameter Value

XGBoost

max_depth 6
gamma 0.003
min_child_weight 2
eta 0.2

Table 12: Hyperparameters of XGBoost.

Model Name Parameter Value

LightGBM

num_leaves 72
boosting_type gbdt
lr 0.16
bagging_freq 4
min_sum_leaf 4
fraction_f 0.84
fraction_b 0.89

Table 13: Hyperparameters of LightGBM.

A.6 Other Platforms: Intel CPUs

We use the dataset from Intel Platinum-8272 to
verify transferability on Intel E5-2698 CPU with
a fixed converged latency (6.13ms) by the same
measurement trials for ResNet-18. More details
can be found in Table 10. Therefore, ATFormer
also works well for CPU with lots of different DNN



Model Name Parameter Value

TabNet

in_dim 164 + 10
hidden 256
out_dim 1
n_d 1
n_a 8
n_steps 3
gamma 1.3
lr 7e−4

Table 14: Hyperparameters of TabNet.

Model Name Parameter Value

LSTM

in_dim 164 + 10
hidden_dim 1024
out_dim 1

Table 15: Hyperparameters of LSTM.

Model Name Parameter Value

MHA

in_dim 164 + 10
num_heads 4
hidden_dim 512
out_dim 1

Table 16: Hyperparameters of Multi-head Attention.

Model Name Parameter Value

ATFormer

in_dim 164 + 10
num_heads 4
hidden_dim 512
num_layers 2
out_dim 1
padding_mask False

Table 17: Hyperparameters of ATFormer.

Model Name Parameter Value

ATFormer-M

in_dim 164 + 10
num_heads 4
hidden_dim 512
num_layers 2
out_dim 1
padding_mask True

Table 18: Hyperparameters of ATFormer.

benchmarks including ResNet-50, VGG-16, BERT-
Tiny with batch size 1. As for the ResNet-18, we fix
the converged latency to 19.59ms, the traditional
learning will cost 658s to search the optimal config-
uration with XGBoost performance model. But the
ATFormer can search the optimal implementation
of ResNet-50 with 643s by the same measurement
trials under the 16.90ms converged latency. We can
get the same conclusions from the VGG-16 and
BERT-Tiny neural networks.

A.7 Performance on Tensor Cores
The recent advancements of GPU hardware tech-
nology have resulted in a significant increase in
computing power, particularly with the introduc-
tion of the Tensor Cores on NVIDIA GPUs. Unlike
the scalar-to-scalar primitives found in CPUs or
the general CUDA Cores in GPUs, Tensor Cores
provide specialized tensor computation capacities,
which can deliver over 10× higher throughput. No-
tably, the initial version of Tensor Core is designed
for handling the GEMM with half-precision input
and full-precision output. Recently, new features
supporting different datatypes such as int8, int4
and int1 input variables have been introduced
in the latest architecture (Truing and Ampere).
The collection process takes 5 days with a server
equipped with an Intel Core i9-12900K CPU and
NVIDIA GeForce RTX 3090 GPU. The sampling
selection process for the operator is conducted
in a manner similar to that on the GPU’s CUDA
cores. We use the floating point 16 (fp16) as the
experiemnt datatype and additional experimental
results on transfer learning are presented in Ta-
ble 11.


