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Abstract

Analogy making has been claimed to be at001
the core of cognition and be intimately related002
with abstraction and categorization. Despite its003
importance, analogies have only been scantily004
studied in Natural Language Processing (NLP)005
with most work being limited to word analogies.006
Most extant approaches view analogy making007
as the identification of the fact that pairs (A,B)008
and (C,D) share the same latent relation with-009
out necessarily naming that relation. In this010
paper we adapt this framework in the context011
of frame semantics, focusing on the problem012
of semantic role labeling. For a given target013
sentence and a predicate we are able to identify014
all semantic roles, casting the problem as an015
analogy with a previously annotated sentence016
of the same frame, but not necessarily of the017
same predicate. We show that careful selection018
of the source sentence has the potential to sur-019
pass state of the art results while at the same020
time using a computationally lean model.021

1 Introduction022

It has been claimed that analogies play a crucial023

role for human cognition (cf Hofstadter, 2001; Hof-024

stadter and Sander, 2013, inter alia). Analogies can025

be viewed as the abstraction mechanism that iden-026

tifies common salient features between two objects.027

They are usually represented as a relation between028

two pairs A : B :: C : D (usually read A is to B029

as C is to D). A common assumption that existing030

approaches on analogies in NLP make is that pairs031

(A,B) and (C,D) share the same latent relation.032

The underlying elements A,B,C,D of the anal-033

ogy can be words (Turney, 2008), their vectorial034

representations (Mikolov et al., 2013b,a) or larger035

chunks of text such as sentences (Zhu and de Melo,036

2020; Afantenos et al., 2021, 2022).037

In this paper our goal is to introduce a new frame-038

work leveraging analogies in order to identify la-039

tent relations between elements in a sentence. We040

use FrameNet 1.7 (FN1.7, Baker et al., 1998) as041

our testbed which essentially provides a lexicon of 042

semantic frames as well as a set of annotated sen- 043

tences with frames from this resource. Each frame 044

represents an event or state which is triggered by a 045

specific word or expression in the sentence. Each 046

frame contains a set of semantic roles (SR, or frame 047

elements) which can be mandatory (core semantic 048

roles) or not (peripheral or extra-thematic semantic 049

roles). 050

Frame-semantic parsing is a series of three se- 051

quential tasks: identification of all words or ex- 052

pressions that trigger a frame (also known as pred- 053

icates, identification of the frame or frames that 054

are triggered, and finally for each frame f and the 055

set Rf all possible semantic roles as defined in 056

that frame associate a text span of the sentence 057

with each role, if such an association exists. The 058

last task is known as argument identification and 059

classification or Frame-Semantic Role Labeling 060

(FSRL). Current state of the art approaches use so- 061

phisticated encoding (graph neural representations, 062

Lin et al., 2021) or decoding mechanisms (semi- 063

Markov CRFs, Swayamdipta et al., 2017) in order 064

to perform full semantic parsing. 065

In this paper we concentrate solely the task of 066

FSRL and we cast it as an analogy solving problem. 067

More specifically, given a source sentence and a 068

pair (A,B) representing the predicate triggering 069

frame f and argument evoking a specific semantic 070

role in that sentence, as well as a target sentence 071

and its predicate C that triggers the same role f 072

we seek to identify D in the target sentence such 073

that B and D evoke the same semantic role. We 074

show that by using analogies we can obtain results 075

that outperform state of the art under some circum- 076

stances without having recourse to sophisticated 077

encoding or decoding mechanisms. 078

Our main contributions in this paper are: 079

• a new task for studying analogical proportions 080

between groups of words from different sen- 081

tences, at the frame semantics level, moving 082
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towards better understating of analogies be-083

tween sentences;084

• a dataset of semantic analogies that comple-085

ments the traditional datasets of analogies be-086

tween words on factual and lexical semantics087

(Drozd et al., 2016);088

• we show that a simple model based on seman-089

tic embeddings is enough to solve analogies090

with a high performance;091

• we demonstrate how a computationally inex-092

pensive model can exploit analogies in order093

to achieve results that can outperform the state094

of the art to tackling FSLR.095

2 Related work096

Turney (2008) introduced Latent Relational Analy-097

sis (LRA) in order to identify such analogies which098

he tested in 20 scientific and metaphorical exam-099

ples . Later Mikolov et al. (2013b,a) used analogies100

in order to evaluate the quality of the word embed-101

dings produced with word2vec. Since then word102

analogies have been widely used to evaluate the103

intrinsic qualities of word embeddings, although104

it has been shown that this is not sufficient since105

most models appear to take shortcuts instead of106

learning abstraction and analogical mapping. In107

particular, Gladkova et al. (2016) that not-well bal-108

anced datasets, such as the Google analogy test109

set (Mikolov et al., 2013b,a), do not permit us to110

safely conclude that underlying embeddings com-111

bined with the vector offset approach are able to112

capture analogies. They introduce the Bigger Anal-113

ogy Test Set (BATS) showing that derivational and114

lexicographic relations remain a challenge. Rogers115

et al. (2017) show that the vector offset approach as116

well as 3CosAdd (Levy and Goldberg, 2014) suf-117

fer from dependence on vector similarity arguing118

against the use of such datasets in order to evaluate119

the intrinsic values of word embeddings.120

Sultan and Shahaf (2022) adapt the framework of121

the Structure Mapping Theory (Gentner, 1983) on122

procedural texts, extracting entities and their rela-123

tionships finding a mapping between two different124

domains based on relational similarity. Relation-125

ships are sets of ordered verbs and between entities,126

which are extracted based on question/answer pairs.127

Similarity measures the fact that two sets share128

more relations. Mappings are identified heuristi-129

cally based on the cosine similarity of the Bert130

vectors representing the questions that provided131

the entities. Their approach successfully extracts 132

mappings in two different datasets. 133

To the best of our knowledge analogies have not 134

been used in the context of FSRL Swayamdipta 135

et al. (2017) present a softmax-margin semi- 136

Markov model. The authors use a bidirectional- 137

RNN with a semi-Markov CRF without initially us- 138

ing any syntactic features. They then use multi-task 139

learning and syntactic scaffolding obtaining state 140

of the art results at the time of publication. More 141

recently, Lin et al. (2021) use Graph Neural Net- 142

works based on Bert embeddings and BiHLSTMs 143

(Srivastava et al., 2015) for the full frame semantics 144

task obtaining also state of the art results. 145

3 Methodology 146

In this section, we formulate our analogy solving 147

problem on the identification of semantic roles 148

(SRs) and describe the model used to tackle it. Con- 149

textual information is necessary to understand the 150

semantic role of a group of words, as it is defined in 151

relation to a semantic frame. Accordingly, we de- 152

cided to focus on contextualized word embedding 153

models, in particular mBert (Devlin et al., 2019) 154

as we intend to expand our application to other 155

languages in further work. 156

3.1 Problem formulation 157

As mentioned in the introduction, we focus solely 158

on the task of FSRL. Given a target sentence and 159

a predicate of that sentence as well as the frame 160

f that is evoked from that predicate we seek to 161

identify all spans of text in the sentence that are 162

associated with role r ∈ Rf . In order to do so, we 163

select another source sentence with a predicate (not 164

necessarily the same) that triggers the same frame 165

and has already been annotated with all its seman- 166

tic roles and cast the problem as an analogy solving 167

one. More specifically, given a source sentence 168

s = {ws
1, . . . , w

s
n} and a distinct target sentence 169

t = {wt
1, . . . , w

t
m} each represented by their se- 170

quence of tokens, we will consider three substrings 171

of consecutive tokens in s and t respectively 172

A = {ws
iA
, . . . , ws

iA+|A|−1}, 173

B = {ws
iB
, . . . , ws

iB+|B|−1}, 174

C = {wt
iC
, . . . , wt

iC+|C|−1}, 175

with iA, iB, iC representing the index of the start- 176

ing word position for A,B,C respectively. A and 177

B belong to s while C belongs to t. A and C rep- 178

resent the predicates that trigger the same frame f 179
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in s and t. We seek to identify D = {wt
i , . . . , w

t
j}180

with i, j ∈ [1,m] and i ≤ j such that B,D activate181

the same semantic role r ∈ Rf . In other words,182

A,B,C,D form a valid analogy A : B :: C : D,183

and we are looking to solve the analogical equation184

A : B :: C : x (Prade and Richard, 2021).185

3.2 Model formalization186

We define two probability distributions pb, pe over
the tokens of t, respectively the likelihood of a
token being the first token of the answer (the
beginning) and the last token of the answer (the
end). The two probability distributions are condi-
tioned by s, t as well as by the analogy A : B ::
C : x we want to solve. Then, the analogy solving
problem can be formulated as follows, with i ≤ j:

(1)
argmax
i,j ∈[0,m]

{pb(wt
i |s, t, A,B,C)

+ pe(w
t
j |s, t, A,B,C)}.

Conditional probabilities for each word being the187

start or end of fourth element of an analogy given188

the two sentences and the first three elements of189

the analogy, are obtained using the pretrained trans-190

former architecture mBert (Devlin et al., 2019, cf.191

also Appendix D.1) fine tuned using the proposed192

extractive question answering (Ex-QA) model for193

solving SQuAD1 (Rajpurkar et al., 2016).194

For each word2 wi ∈ t we obtain contextual195

embeddings196

wi = mBert(wi|s, t, A,B,C)197

which we then feed to two single layer neural net-198

works learning whether a token constitutes the199

beginning or end of a segment which is a solu-200

tion to an analogy. More specifically, we estimate201

zb(i) = WT
b wi + bb and ze(i) = WT

e wi + be202

where Wb,We,bb,be are learned matrices. Con-203

ditional probabilities are obtained for each token204

given the context using a softmax function:205

pb(w
t
i |s, t, A,B,C) =

ezb(i)∑
j∈t e

zb(j)
,206

pe(w
t
i |s, t, A,B,C) =

eze(i)∑
j∈t e

ze(j)
.207

1https://huggingface.com
2The Bert architecture considers tokens which are different

from words in the linguistic meaning, as for instance a word
may be split in multiple tokens and tokens can be punctuation
marks. Still, we prefer to use word in this paper to facilitate
reading.

During decoding we require i ≤ j but no further 208

constraints are imposed. 209

Notice that in Eq. 1 it is possible to have i, j = 0. 210

Inspired by (Devlin et al., 2019) we consider a 211

special token wt
0 which helps us handle instances 212

in which no analogy exists. This is the case when 213

the optimal solution for Eq. 1 yields i = j = 214

0, denoting a negative instance, detailed in §4.1. 215

Otherwise, we consider only 0 < i ≤ j during 216

decoding. 217

4 Experiments 218

We perform two kinds of experiments. In §4.1 we 219

analyze the performance of the analogy solving 220

model we developed in different settings, and ex- 221

plore the sensitivity of our model to perturbations 222

on key aspects of the approach. These experiments 223

allow us to confirm the soundness of the approach 224

with regards to the analogy solving process. Then, 225

in § 4.2, we apply our analogy solving model to 226

FSRL, and show the potential of our approach to 227

outperform state of the art model, with the added 228

benefit of a relative simplicity of our approach com- 229

pared to the complex architecture of the state of the 230

art models. 231

4.1 Analogy solving performance 232

Following the formulation introduced in §3.1, we 233

train an analogy solving model on the training data 234

described hereafter. We determine the limitations 235

of our model with regards to the analogical setting, 236

and conclusions drawn here can be transferred to 237

the FSRL setting. Indeed, the analogies used for 238

FSRL in §4.2 are a special case of the ones used 239

here by considering only A,C as frame predicates. 240

Dataset. To train our model and explore its anal- 241

ogy solving performance, we use a dataset built 242

upon FN1.7 containing analogies involving in- 243

stances of core SRs and, in some cases, the frame 244

predicate. The dataset is detailed in Appendix C.1, 245

including key aspect of dataset construction. 246

As mentioned in §3.2, it is possible that some 247

SRs of a given frame are not instantiated in a given 248

sentence. To account for this, we consider positive 249

instances of analogical equation that can be solved 250

because rD is instantiated in t as D, and negative 251

instances where the rD is not instantiated in t and 252

the equation cannot be solved. 253

Training hyperparameters. The model is 254

trained for at most 1 epoch, and early stopping 255
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is decided on the development set, using an approx-256

imation of the Word Error Rate (WER) using the257

token positions, coined Token Position Error Rate258

(TPER) and detailed in Appendix C.2. Batch size259

is automatically found by the Huggingface library260

to maximize GPU usage.261

Evaluation method. For all instance classes, we262

report the accuracy of the model, which is the per-263

centage of instances where the model returns the ex-264

pected output (the gold SR for positive instances, or265

the wCD
0 token for negative instances). If the model266

does not return the expected output, we speak of267

model failure and consider 3 possibilities: “wrong268

SR” if the model returns a instance of an SR that269

is different from the gold SR; “SR not found” if270

the model outputs wt
0 even if the analogy could271

be solved (i.e., positive instances); any other case272

corresponds to outputs that do not exactly match an273

SR nor the wt
0 span, that we call “not an SR”. Note274

that wrong SR, SR not found, and not an SR cover275

all the possible cases of model failure, so accuracy276

+ wrong SR + SR not found + not an SR = 100%.277

Instances Accuracy Wrong SR Not an SR SR not found

Analogical model (using A,B,C)
Positive 72.31% 0.28% 11.24% 16.17%

Negative 72.09% 0.52% 27.38% –
All 72.21% 0.39% 18.43% 8.97%

rA ̸= rC 70.75%* 0.31% 11.59% 17.36%*

Non-analogical model (using only B)
Positive 53.46%* 0.10% 16.59% 29.85%*

Negative 75.32% 0.39% 24.30% -
All 63.19% 0.23% 20.02% 16.56%

Table 1: Analogy solving results (in % of all instances)
for the analogical and non-analogical models. Instances
where rA ̸= rC are not counted in the overall perfor-
mance (All).

Overall performance. We report in Table 1 the278

performance of our model on positive instances279

(solvable analogies) and negative instances (unsolv-280

able analogies due to missing SR instance), as well281

as the average performance over those two classes282

of instances. SR not found is not given for negative283

instances, as it is the expected output.284

Firstly, there is no significant difference between285

the accuracy on positive and negative instances,286

with a high level of performance (above 72% ac-287

curacy) in both cases. For reference, Djemaa et al.288

(2016) report 77% inter annotator agreement for289

roles of matching frames. With positive instances,290

the model wrongly determines that the SR is not291

instantiated in only about 16% of cases. However, 292

for negative instances the model errors are almost 293

exclusively not an SR. As missing annotations and 294

errors are present in the part of FN1.7 we use, it is 295

likely that some of our instances are solvable but 296

the instance for rD is not labeled, so the instances 297

are counted as negative ones. Similarly, it is possi- 298

ble that some measured errors are better than the 299

recorded annotation, but checking this hypothesis 300

requires manually checking samples for annota- 301

tion errors which is beyond the scope of the article. 302

Overall, our model has a high accuracy, despite 303

the punitive way we determine failures: in the case 304

of multi-token words, the models fails if a token 305

part of a word is omitted while the other tokens of 306

the word is correctly predicted, and conversely for 307

tokens that are wrongly predicted. 308

Secondly, to obtain a deeper understanding of 309

the errors made by the model we consider the Safe 310

Word Error Rate (SafeWER), a slight modification 311

of the WER to handle the empty targets we have for 312

our negative instances. In Appendix C.3, we pro- 313

vide the formula of SafeWER, provide intuitions 314

about its meaning, and report the results for our 315

analogy solving models. When the model does 316

not correctly predict the solution of the analogy, 317

the SafeWER is significant, with in average 0.96 318

for positive instances (in average, about as many 319

mistakes as the number of expected words) and 320

2.53 for negative instances (in average 2.5 words 321

predicted when failing to identify a non solvable 322

analogy). The SafeWER we obtain and the not 323

an SR instances indicate that a significant part of 324

our model mistakes is due to few extra tokens or 325

forgotten tokens. In particular, it is interesting that 326

a significant part of mistakes are not an SR while 327

wrong SR is very rare, as it indicates that in many 328

cases the issue comes from the identification of the 329

boundaries of the SR and not from the identification 330

of the fitting SR itself. Adding span identification 331

into our model, as is done in multiple FSRL sys- 332

tems (Lin et al., 2021; Zheng et al., 2022), should 333

significantly improve performance in that area. 334

Impact of A,C. We study the sensibility of the 335

model to several perturbations regarding the SRs 336

A,C for two purposes: we measure the impact of 337

A,C on the performance of the model from the 338

analogical point of view, and, by extension, the 339

impact of errors in identifying the frame predicate 340

on the FSRL performance. To do so, we generate 341

analogies such that rA ̸= rC but rB = rD, which 342
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means that while the analogy is erroneous, it is still343

possible to solve it. Additionally, while rA ̸= rC ,344

rA, rC are kept as instances of the same frame as345

rB, rD. The generation process is described in346

Appendix C.1.347

Results are shown in the rA ̸= rC column of348

Table 1, with the points of interest marked with “*”.349

First, while there is a drop in accuracy, the perfor-350

mance remains very high, with only a 2% decrease.351

Additionally, it is interesting to see that the new352

errors mostly belong to the “SR not found”. While353

the difference might not be significant enough to354

draw conclusions, we propose the following hy-355

pothesis: by introducing a mismatch rA ̸= rC356

in the starting point of the relation, the model de-357

termines that there is no instance that fit closely358

enough the erroneous relation rA to rB when start-359

ing from C. However, we argue that using A,C360

can help the model better identify the meaning of361

the frame in t. To confirm the benefit of A,C on the362

performance, we define a new model in all points363

identical to the one defined in §3.1, except A,C364

do not appear in the input: we obtain fb(wi|s, t, B)365

and fe(wi|s, t, B). This new model can be seen366

as a simple transfer of rB from s to t, instead of367

the analogical transfer we perform with the main368

model. The performance of this new model on the369

test data used for the analogical models is reported370

in the last three columns of Table 1. We observe a371

very significant drop in performance, with close to372

19% for positive instances, with most of this gap373

transferred to “SR not found”.374

Using different frames for s and t. In this sec-375

tion we study the applicability of our method when376

the frames containing the SRs in sentences s and377

t are different, in contrast to § 4.2 were we con-378

strained our approach to same semantic frames.379

Our starting intuition is that, as our model relies380

on semantic relations, if the frames of s, t are dif-381

ferent but semantically related, we should maintain382

high analogy solving performance. More specif-383

ically, the semantically closer the frames are, the384

higher the performance we should obtain.385

The relations between frames indicated in386

FN1.7 (Baker et al., 1998; Baker, 2017) do not387

cover many frames, with a relation density3 of the388

order of magnitude of 10−5 for all relations, except389

for inheritance which is closer to 10−4. To mitigate390

3The density of a relation between frames is number of
pairs of frames that are related divided by the total number of
frame pairs.

this effect and make manipulation more concise, 391

we group the relations by meaning (we specify the 392

FN1.7 relation and its inverse when relevant) and 393

create denser, undirected relations: 394

• Inheritance: Inherits from / Is Inherited by; 395

• Subframe: Subframe of / Has Subframe(s); 396

• Causal and Temporal (C&T): Precedes / 397

Is Preceded by, Is Inchoative of, and Is 398

Causative of ; 399

• Other: See also, Uses / Is Used By, and Per- 400

spective on / Is Perspectivized in. 401

To compute how related two frames are, we com- 402

pute the smallest number of steps to reach one from 403

the other following the relation4. If no path exists 404

between two frames, we use the value “not related”. 405

We use 100 pairs of frames such that the two frames 406

are different and neither appear in the training nor 407

development data, which may overlap with the ones 408

of the test sets of previous experiments. For each 409

frame pair, we consider only SRs that are labeled 410

the same in the two frames and generate up to 100 411

(positive) instances, for a total of 9834 instances. 412

We compute the Spearman correlation between 413

the distance and the model accuracy, by consid- 414

ering each possible distance value as a class. We 415

consider the case where no path exists between 416

two frames (the vast majority of cases) as a sepa- 417

rate class. The results are reported in Table 4, and 418

the detailed accuracy and number of samples for 419

each distance value for each relation is reported 420

in Appendix C.4. There is however several limi- 421

tations in our test method: firstly, if we exclude 422

“No path”, the test data contains only 1 distance 423

value for C&T and 2 for Subframe, and each of 424

these distance values is represented by only 100 425

instances; secondly, for C&T, Subframe, and Other, 426

the correlation is much less significant than for In- 427

heritance; and thirdly, we suspect that the relations 428

we gathered in Other are too miscellaneous and 429

not related enough to obtain meaningful relations 430

between frames. All these limitations lead us to 431

draw no conclusion with regard to the correlation 432

between the performance and the relatedness in 433

terms of the C&T, Subframe, and Other relations. 434

Nonetheless, for Inheritance, analysis of the 435

Spearman’s ρ coefficient and the accuracy for each 436

distance value (see Appendix C.4) indicates that 437

4This corresponds exactly to the node distance in the undi-
rected graph of each relation.
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the performance of the model increases for more438

closely related frames in terms of inheritance. In439

particular, for frames that are closely related, the440

performance is almost the same as when the sen-441

tences that activate the same frame (71.22% for442

distance of 2 against 72.21% when the frame is the443

same, and 49.49% for unrelated frames). These444

results indicate a certain flexibility of our approach445

with regards to the frame instantiated in the source446

sentence, which can help mitigate the scarcity of447

some frames.448

4.2 Frame-semantic role labeling (FSRL)449

Our analogical model can be used to propose frame450

annotations of unseen sentences. We assume a451

state of the art predicate identification and frame452

annotation method has been applied on the target453

sentence t we want to annotate, providing us with454

the frame and the frame predicate. Relying on these455

first annotations, we create analogical equations to456

predict each of the remaining SRs. The difference457

with our general analogy solving setting in §3.2458

is that A,C are the frame predicates of s, t. The459

source sentence s is taken from our case base, i.e.,460

our training set. Our approach focuses on labeling461

SRs one by one, independently from each other.462

Repeating this operation for each SR of F and463

solving the equation with our model allows us to464

get predictions for each SR of the frame in t. To465

demonstrate the feasibility of this approach, we466

apply our method on the test set of FN1.7, using467

source sentences from the corresponding training468

set. Note that our approach could be extended by469

using, the prediction of each SRs to improve and470

cross-check the predictions on the other SRs, as471

discussed in §5.472

Model variants. When implementing the ap-473

proach, a key concern is the selection of the source474

sentence. We use two settings: (1) we use po-475

tentially different sources for each SR, or (2) we476

use the same source sentence for all the SR of the477

frame. As mentioned above, the basic use case for478

our approach is to label SRs one by one and inde-479

pendently. Setting (1) corresponds to this approach,480

where we are able to use the most fitting source481

for each SR. In this case our model achieves ex-482

cellent results, outperforming the best state of the483

art model from (Lin et al., 2021) by a little under484

4% under the best conditions (see Table 2). With485

setting (2) we want to see what happens when we486

present only one sentence to the system and get all487

the semantic roles out of this sentence using ana- 488

logical transfer, with the advantage of reducing the 489

number of sources to retrieve from the case base. 490

Comparing the performance in (1) and (2) offers 491

us bounds on the model performance with regards 492

to the number of sentences used to label the SRs of 493

a frame. Note that settings (1) and (2) do not cover 494

all the SRs in the test set, as detailed further below. 495

This is taken into account in the way we compute 496

the F1, see Appendix D.2. 497

We determine additional bounds for the perfor- 498

mance of the model by using several source selec- 499

tion algorithms. All our source selection algorithms 500

are applied a posteriori, as we need to know the 501

performance associated with each possible sources 502

(a bit under a million analogies in total). To obtain 503

the upper and lower limits of the performance of 504

the model, we select the best and worst possible 505

source in each setting. For the best source, we take 506

any sentence that allows to successfully predict et 507

setting (1), while we take the sentence with the 508

highest accuracy on the current frame in setting 509

(2). We use a similar process for the worst source 510

by obtaining the worst performance in each set- 511

ting. To simulate the performance of the model in 512

a realistic setting, we experiment with two a pri- 513

ori source selection algorithms: a naive random 514

selection and a more involved selection based on 515

sentence similarity. We approximate the random al- 516

gorithm by averaging the accuracy over all possible 517

sources for each SR. Our source selection based on 518

sentence similarity is a proof of concept using the 519

MiniLM5 model (Wang et al., 2020) to obtain sen- 520

tence embedding. We the apply the recommended 521

dot score6 to find the source most similar to the 522

target among all possible sources. This sentence 523

similarity model has two key limitations for our 524

approach: it is not the state of the art model in term 525

of semantic similarity, and it was not fine-tuned 526

for its intended purpose of finding the most suited 527

source. Its main purpose is to check the potential 528

of such a source selection algorithm. 529

FSRL performance. The average performance 530

over all the covered roles for the best and random 531

selection is reported in Table 2, for settings (1) 532

5all-MiniLM-L6-v2, provided in the Sentence Transform-
ers library (https://www.sbert.net/docs/pretrained_
models.html) and recommended for its execution speed.

6For two embeddings emb1, emb2 and ϑ the an-
gle between them, the dot score is the dot product
|emb1||emb2|cos(ϑ). The more similar two embeddings are,
the higher the dot score.
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and (2). The worst and sentence similarity is re-533

ported in Appendix D.3. To compare the result of534

our approach and the state of the art we consider535

only the performance of the models when given536

the gold predicate and frame labels. For all mod-537

els, an SR is correctly predicted if and only if the538

prediction is exactly the expected span. Our model539

has the potential to outperform the state of the art540

performance by at least 4%, if we manage to select541

the best possible source. Additionally, we expect542

our approach to be less sensible to failures in ear-543

lier stages of the frame semantic labeling process,544

as the performance of our approach does not de-545

grade much when presented with mismatched but546

strongly related frames.547

As mentioned above, the best performance ob-548

tained with our analogical approach is higher than549

the state of the art from (Lin et al., 2021) by close550

to 4% in setting (1). However, in setting (2) the551

F1 is 2.5% lower than the state of the art, despite552

the very close accuracy between (1) and (2) when553

only covered analogies are considered, as reported554

Appendix D.3. From these two results, the num-555

ber of instances that are not covered by using a556

single source is a major limitation, while the per-557

formance on covered sentences does not degrade558

by a large margin. For instance, with setting (1)559

95.25% of all SRs are covered7, and 93.13% of560

frames have all their SRs covered. With setting (2)561

however, 84.78% of all SRs and 91.27% of frames562

are covered. The proof of concept sentence simi-563

larity selection achieves around 50% accuracy and564

does not bring significant improvements on ran-565

domly selecting a source. However, when studying566

the distribution of the highest sentence similarity567

for each source-target pair, only a small portion of568

target sentences have a very similar source avail-569

able (1.34% of SRs above 0.7, see appendix Fig. 2).570

If we limit the study to these highly similar sources,571

we reach 70.45% of accuracy, only 2% under the572

best model from (Lin et al., 2021). We also found573

a significant correlation between the sentence simi-574

larity and the FSRL accuracy, with a Pearson-r co-575

efficient of 0.8997 (p-value of 6.73−5) with slices576

of 0.1 on the similarity (see also appendix Fig. 3).577

The gap between the best and worst performance578

further highlights the importance of a sound source579

selection process.580

7An SR of the test set is not covered none of the sentences
in the training set activate the corresponding frame or if the SR
is never instantiated for this frame in the training sentences.

Source for the SRs Different (1) Same (2)

Random source 47.32% 45.18%
Best source 76.08% 69.72%

Best from Lin et al. (2021) 72.22%

Table 2: FSRL F1 (given the gold frame and predicate)
on the FN1.7 test dataset for our approach when the
same and different sources are used for a frame, as well
as the best model from Lin et al. (2021).

Performance for core and non-core SRs. Our 581

analogical training set (directly built from the 582

FN1.7 ontology) covers only core SRs of a sub- 583

set of all frames (22.38% of the frames of the test 584

set). In Appendix D.5, we report the performance 585

and the number of SRs depending on whether the 586

corresponding frame is in the analogical training 587

data and whether it is a core SRs. We notice a 588

significant difference in performance between core 589

and non-core SRs which can be expected as only 590

core SRs were seen in training, however we sus- 591

pect that part of this difference is due to the more 592

subtle semantic link between non-core SRs and the 593

predicate. We also notice that performance does 594

not differ significantly between frames seen during 595

training and unseen ones, highlighting the ability 596

of our approach to generalize to unseen frames. 597

5 Discussion and perspectives 598

We propose an analogy dataset based on FN1.7 that 599

complements the traditional datasets of analogies 600

between words on factual and lexical semantics. 601

Indeed, to study the SR of a group of words we 602

need to consider contextual information, which is 603

not that important a concern for factual or lexical 604

semantics. By providing a clear definition of the 605

underlying relation manipulated in the analogies, 606

we also provide new insights on the study of se- 607

mantic analogies between and within sentences. 608

Building upon this dataset and using a very sim- 609

ple methodology, we propose an analogy solving 610

approach that achieves high performance and is 611

able to identify many unsolvable analogies. This 612

approach also displays what can be seen as a tol- 613

erance with regards to mistakes in the analogical 614

equation. Firstly, while ideally the sentences ac- 615

tivate the same frame, the model maintains high 616

performance for related but distinct frames. Sec- 617

ondly, the formulation of our model requires the 618

first and third SR to be identical, but we show close 619

performance when this rule is not respected. In 620

7



further work, we will explore how this tolerance621

improves performance with regards to mistakes in622

predicate and frame identification.623

Sentence selection. Our experiments on FSRL624

provide us with bounds on the performance of our625

model with regards to the choice of the source sen-626

tence. Considering that the upper bound of our627

approach is, to the best of our knowledge, signifi-628

cantly higher than the state of the art, there is sub-629

stantial potential in our analogy-based approach.630

This is especially true given that our approach is631

derived from a simple Ex-QA model, that we will632

improve in further work, for example by using a633

more involved architecture based on the principles634

of analogy. However, our experiments also show635

the importance of the selection of the source to636

achieve the best model performance, which will be637

the focus of further research.638

In particular, with our experiments with enforc-639

ing a single source sentence for the SR of a frame,640

we identify that the main challenge in using the641

same source for all SR. Consequently, in further642

work we will explore a compromise approach, us-643

ing a few sources prototypical sentences of each644

frame in order to cover as many SR of the frame645

as possible. This would allow to use a few care-646

fully annotated sentences for each frame and sig-647

nificantly reduce the number of possible sources.648

Additionally, it is likely that using an ensemble649

of sources for each prediction would improve our650

model performance, but this involves significant ex-651

ploration on the selection of sources and the aggre-652

gation of the predictions, so we prefer to dedicate653

future work to this specific extension.654

Our proof of concept model for sentence selec-655

tion does not achieve significantly better perfor-656

mance than randomly selecting the source. How-657

ever, we observed that using highly similar sen-658

tences to use as sources was promising, but the659

number of targets that have similar sources is much660

to low to achieve the upper bound of the perfor-661

mance we can obtain. Consequently, a short term662

direction to improve the performance of our ap-663

proach is to improve on the sentence similarity664

approach. Indeed, the sentence embedding model665

used is not the state of the art in term of semantic666

similarity, so selecting a different model might im-667

prove the results. Additionally, we will explore the668

possibility of fine-tuning the model for finding the669

most suited source or using metric learning to learn670

a sentence similarity model dedicated for our task.671

Labeling the SRs independently. Our current 672

FSRL approach labels each SR independently. We 673

envision an extension of our framework in that 674

regard, to match the state of the art FSRL sys- 675

tems (Lin et al., 2021; Zheng et al., 2022) and 676

make full use of our analogy solving model. In- 677

deed, we could, for each SR, use the prediction for 678

the other SRs in addition to the frame predicate 679

to create analogies, and use those new analogies 680

to cross-check the predictions. In particular, we 681

propose a two step procedure: (i) apply the current 682

version of the approach to get a first prediction for 683

each SR, and (ii) compute analogies between each 684

pair of SRs to get an extra level of prediction for 685

each SR taking into account the other SRs. The 686

second step could be applied optionally to measure 687

consistency and improve prediction quality. 688

Generalizing the approach. In this paper we fo- 689

cus exclusively on FN1.7, and we will extend the 690

scope of application to FN1.5 if possible and to 691

other similar dataset, such as PropBank (Pradhan 692

et al., 2022). Also, as mentioned in §3, we intend 693

to extend our approach to other languages. Indeed, 694

in the past decade there has been a focus on provid- 695

ing labled resources for languages beyond English, 696

with among other the French (Djemaa et al., 2016) 697

and Swedish (Dannélls et al., 2021) FrameNets. 698

However, this effort is for the most part limited 699

to languages with many speakers, and frame an- 700

notation remains difficult and costly, limiting the 701

amount and variety of annotation. To tackle this 702

issue, further work will be done to offer a tool for 703

FrameNet-style annotation in languages for which 704

few or no labeled data is available, by leveraging 705

analogical transfer and the multilingual embedding 706

model mBert. 707

6 Conclusions 708

In this article, we provide a new task for study- 709

ing analogical proportions at the frame semantic 710

level, manipulating groups of words from different 711

sentences. Our experiments show that a simple 712

model based on semantic embeddings is enough to 713

solve frame-semantic level analogies with a high 714

performance. We also demonstrate the potential 715

of our analogy solving approach to tackling FSLR. 716

The main limitation of our FSLR approach is find- 717

ing a fitting source sentence to perform analogical 718

transfer, which will be the focus of future work as 719

discussed below. 720
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Ethics statement721

To the best of our knowledge, the dataset that we722

use (FN1.7) does not contain any sensitive infor-723

mation. Refer to (Baker et al., 1998; Baker, 2017)724

for further information.725

In its current state, our approach does not offer726

significant improvements regarding fairness con-727

cerns, mostly due to the nature of the data manip-728

ulated and the annotation performed. However,729

applying our approach on other types of seman-730

tic annotations carries the potential of predictions731

explainable using the source used.732

To the best of our knowledge, our use of mBert733

and MiniLM match their intended use (see the734

model cards linked in Appendix B).735

Limitations736

Our approach suffers from the same limitation as737

other approaches using Bert models. For instance,738

it is difficult to analyze the involvement of each739

element of the input text in the result, and it is diffi-740

cult to know what information is contained in each741

element of the output. If possible, we will explore742

in future work methods to better separate the input,743

effectively reducing this issue. Additionally, large744

pre-trained transformer models are known to be745

sensitive to small details in the formatting of the746

input and output, Additionally, the quality of se-747

mantic information in large pre-trained transformer748

models is known to depend on which transformer749

layers are used (van Aken et al., 2019), and this750

kind of model is very sensitive to input encoding751

(Zervakis et al., 2022). We do not perform any752

ablation study in that regard.753

While we limit ourselves to the best quality an-754

notations from FN1.7, the SR annotations are pro-755

duced by human annotators which, by definition,756

may make errors. Any faulty or missing annotation757

may negatively influence our model. For instance,758

is an SR is present but not annotated, the model will759

learn to ignore the SR. Also, we limit ourselves to760

the core FEs and the frame predicates for training761

the model, and using peripheral and extra thematic762

FEs may improve performance.763

We only perform a single run of our model, so764

all results should be confirmed by additional trials.765

Our approach has been only tested on a single766

dataset written in the English language. As we use767

a multilingual pre-trained embedding model, our768

approach should work on all languages covered by769

the embedding model. However, the performance770

of our approach is expected to scale with the perfor- 771

mance of the pre-trained models on each language, 772

meaning a lower performance on less represented 773

languages. In the future we plan to expand our 774

approach to more datasets and languages. 775

Our approach does not take into account split 776

predicates (only takes the first part) as opposed 777

to the most recent approaches to FSRL. However, 778

this can be achieved by concatenating the bits of 779

predicates when specifying A,B,C in the model 780

input, eventual adding a special ellipsis token to 781

mark the concatenation. 782
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A Training setup958

The models were trained on Intel® Xeon(R) W-959

11955M CPU @ 2.60GHz × 16, 32 GiB RAM,960

NVIDIA RTX A5000 Mobile.961

Training took around 1h30 on those setting, with-962

out using more than 4GiB RAM.963

B Code, data, and models964

Once the anonymity period is over, the implementa-965

tion of the model and the data preparation process966

will be made available on GitHub and, as much967

as possible, the trained model and evaluation re-968

sults will be made available through an open data969

repository.970

Our code relies on Python 3.9, as well as the971

following libraries: PyTorch, Huggingface (Trans-972

formers and Datasets), Sentence Transformers (also973

called SBert), Scipy, and Pandas.974

The pretrained models we use are975

the mBert model (Devlin et al., 2019)976

called bert-base-multilingual-cased977

(https://huggingface.co/978

bert-base-multilingual-cased) and979

the MiniLM (Wang et al., 2020) model980

all-MiniLM-L6-v2 (https://huggingface.co/981

sentence-transformers/all-MiniLM-L6-v2).982

The whole analogy solving model contains983

177 269 762 parameters (177 268 224 for mBert984

model itself, 1 538 for the single layer neural net-985

works used to predict the start and end token of the986

span).987

C Details on the analogies between988

semantic roles989

C.1 Dataset of analogies between semantic990

roles991

To train our model and explore its analogy solving992

performance, we extract sentence examples from993

the FN1.7 ontology to build analogies A : B ::994

C : D, where A,B,C,D are either instances of995

core SRs or the frame predicate. For each frame,996

we gather up to 1000 sentences with the annota-997

tion status of either FN1_Sent, Finished_Initial, or998

Finished_Checked (the 3 annotation status of the999

highest quality according to the documentation of1000

FN1.7).1001

Data augmentation. To integrate analogical1002

knowledge in our model, we use a data augmen-1003

tation process based on the symmetry and central1004

permutation axioms of analogical proportions (Lep- 1005

age, 2003), following previous work on data aug- 1006

mentation for analogy solving (Marquer et al., 1007

2022; Marquer and Couceiro, 2023). For each pair 1008

of semantic role and each pair of sentences of a 1009

frame, we generate 8 analogies: A : B :: C : D, 1010

A : C :: B : D, D : B :: C : A, C : A :: D : B, 1011

C : D :: A : B, B : A :: D : C, D : C :: B : A, 1012

B : D :: A : C. We exclude from our study 1013

analogies where A = B and C = D. Indeed, 1014

the corresponding analogical equation would be- 1015

come A : A :: C : x and the solution x = C can 1016

be found without needing to explore the semantic 1017

relations between the elements of the analogical 1018

equation, which could degrade the quality of the 1019

training of the model. 1020

Different kinds of instance. As mentioned in 1021

§3.2, it is possible that some SRs of a given frame 1022

are not instantiated in a given sentence. To account 1023

for this, we consider positive instances with analo- 1024

gies that can be solved because rD is instantiated 1025

in t as D, and negative instances where the rD 1026

is not instantiated in t and the analogy cannot be 1027

solved. 1028

We create analogies such that: 1029

• for positive instances: we create one analogy 1030

for a pair of distinct SRs such that both SRs 1031

are instantiated in both sentences; 1032

• for negative instances: we create one anal- 1033

ogy for a pair of distinct SRs such that one SR 1034

is instantiated in both sentences (rA, rC) and 1035

the second is instantiated in only one of them 1036

(rC); 1037

• for instances with rA ̸= rC: we create 1038

one analogy for a triplet of distinct SRs such 1039

that one SR is instantiated in both sentences 1040

(rB, rD), the second is instantiated at least in 1041

the first sentence (rA), and the third is instan- 1042

tiated at least in the second sentence (rC). 1043

Balancing the SRs. To maintain a good balance 1044

in the SRs presented, we randomly select analogies 1045

using the following process: 1046

1. for i SR tuple (pairs for positive and negative 1047

instances, triplets for rA ̸= rC) 1048

2. for j1, . . . , ji sentence pairs per SR tuple; 1049

3. you randomly take (without putting back) one 1050

pair of sentences from each SR tuple and gen- 1051

erate the corresponding analogy; 1052
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4. once a SR tuple does not have any remaining1053

sentence pair, we exclude it;1054

5. we repeat steps 3-4 until we reach the num-1055

ber of analogies we want or no sentence pair1056

remains.1057

An amusing analogy to this process is to consider1058

the histogram of the number of pairs of sentences1059

for each SR tuple. Now, consider that the histogram1060

is an empty water tank, that we want to fill with1061

the a volume of water corresponding to the number1062

of analogies we want. If we pour the volume of1063

water in the tank, it will fill the tank in a balanced1064

manner. If an area of the tank is not high enough1065

to accommodate as much water as the other areas,1066

it will be filled to the brim and the remaining water1067

will spread in the other parts of the tank.1068

Amount of data in each part of the dataset. To1069

make our training and development set, we select1070

randomly 250 frames from the leaf frames (i.e.,1071

not having any frame inheriting from them in the1072

FN1.7 ontology). Similarly, we select 100 leaf1073

frames used in both the analogical test set and the1074

rA ̸= rC set. For our training and development set,1075

we first take up to 1000 positive and 1000 negative1076

instances per frame. Then, to make the develop-1077

ment set, we randomly take out 1000 positive and1078

1000 negative instances without considering which1079

frame they are from. For the test set and the set1080

with rA ̸= rC , we take 100 instances of each class1081

for each frame.1082

In total, the training set contains 249000 positive1083

and 199816 negative instances, and the develop-1084

ment set contains 1000 positive and 1000 negative1085

instances. The test set contains 10000 positive and1086

8030 negative instances. Finally, the rA ̸= rC set1087

contains 7760 instances.1088

C.2 Token Position Error Rate (TPER)1089

TPER is an approximation of the Word Error Rate1090

(WER) using the token positions. Let bx, ex be the1091

expected start and end token position of x in the1092

answer, b̂x, êx the model predictions. The TPER1093

is as follows, where X∆Y is the symmetric differ-1094

ence of the sets X and Y , and [i, j] is the set of all1095

integer values from i to j, both included:1096

TPER(bx, ex, b̂x, êx) =
|[b̂x, êx]∆[bx, ex]|

|[bx, ex]|
.1097

C.3 Safe Word Error Rate (SafeWER) 1098

Word Error Rate (WER) is a measure of the aver- 1099

age number of prediction errors in text, normalized 1100

by the number of expected words. To handle the 1101

empty targets we have for our negative instances, 1102

we add +1 to the denominator and obtain what we 1103

coin SafeWER. It corresponds to the average num- 1104

ber of words to modify (replace, add, or remove) 1105

to obtain the gold SR. The formula of SafeWER is 1106

summarized below, with Add., Supr., and Repl. 1107

the number of additions, suppression, and replace- 1108

ment respectively. Thus, Add. + Supr. + Repl. 1109

is the number of modifications of the words of the 1110

prediction to obtain the gold SR, and Target is the 1111

number of words in the gold SR. 1112

SafeWER =
Add.+ Supr.+Repl.

Target+ 1
. (2) 1113

For an example of the behavior of the SafeWER, 1114

in the sentence “Your photographs have been sub- 1115

stituted by our experts.” with D =“Your pho- 1116

tographs”, the prediction “photographs have been” 1117

would give a SafeWER of 1 and a WER of 1.5. 1118

However, with the target D′ not instantiated, “pho- 1119

tographs have been” would give a SafeWER of 3 1120

and “Your photographs” a SafeWER of 2 while the 1121

WER is undefined. 1122

In Table 3, we report the SafeWER for our anal- 1123

ogy solving model and the non-analogical model. 1124

Failed instances Overall

Analogical model (using A,B,C)
Positive 0.96 0.27

Negative 2.53 0.71
All 1.66 0.46

rA ̸= rC 0.86 0.25

Non-analogical model (using only B)
Positive 0.85 0.40

Negative 2.75 0.68
All 1.42 0.52

Table 3: Analogy solving SafeWER for the analogical
and non-analogical models. Instances where rA ̸= rC
are considered only for the analogical model and are not
counted in the overall performance (All).

C.4 Detailed accuracy and number of 1125

instances using different frames in the 1126

analogy 1127

Here we detail the performance of the model when 1128

using s, t activating different frames. For each 1129

value of the shortest path length (SPL) between 1130

13



the two involved frames, we specify the accuracy1131

(in %) and the number of instances, ordered by in-1132

creasing distance. “No path” is set as the farthest1133

distance possible, as very loosely related frames1134

(high distance value) are more related than unre-1135

lated frames. Table 4 summarizes the correlation1136

of the the relatedness and the performance for all 41137

of our relation groups.1138

Unique
p-value ρ values

Inheritance 5.18e-68 -0.1744 10
C&T 6.97e-03 +0.0272 2

Subframe 2.36e-03 -0.0307 3
Other 3.69e-03 +0.0293 10

Table 4: Correlations (Spearman correlation coefficient
ρ and corresponding p-values) between the success rates
and the distance between frames frames for each relation
in the dataset, in the setting where the two sentences do
not activate. For reference, we also report the number
of unique distance values that appear in the test data
for each relation, including “not related” as a separate
value. Boldface indicates the most significant result.

• Inheritance (Inherits from / Is Inherited by):1139

– 2: 71.22% (900 instances),1140

– 3: 68.88% (1128 instances),1141

– 4: 66.21% (1400 instances),1142

– 5: 63.12% (800 instances),1143

– 6: 58.00% (200 instances),1144

– 7: 56.00% (300 instances),1145

– 9: 66.00% (200 instances),1146

– 10: 54.50% (200 instances),1147

– 12: 53.00% (200 instances),1148

– No path: 49.49% (4506 instances).1149

• Subframe of (Subframe of / Has Subframe(s)):1150

– 2: 73.00% (100 instances),1151

– No path: 57.92% (9734 instances).1152

• Causal and temporal (Precedes / Is Preceded1153

by, Is Inchoative of, and Is Causative of ):1154

– 1: 25.00% (100 instances),1155

– 2: 73.00% (100 instances),1156

– No path: 58.26% (9634 instances).1157

• Other (See also, Uses / Is Used By, and Per-1158

spective on / Is Perspectivized in):1159

– 1: 63.67% (300 instances),1160

– 2: 72.33% (300 instances),1161

– 3: 26.42% (106 instances), 1162

– 4: 51.50% (200 instances), 1163

– 5: 42.50% (200 instances), 1164

– 7: 79.00% (100 instances), 1165

– 8: 70.50% (200 instances), 1166

– 10: 51.00% (100 instances), 1167

– 14: 12.50% (200 instances), 1168

– No path: 58.94% (8128 instances). 1169

D Details on the frame-semantic role 1170

labeling 1171

D.1 Encoding for the embedding model 1172

The contextual embedding of each token from t 1173

is computed by the mBert model accounting for 1174

s, t, A,B,C by using the format shown in Fig. 1. 1175

It extends on the Ex-QA input format implemented 1176

in the HuggingFace library: “[CLS] question 1177

[SEP] context [SEP]”, where [CLS] and [SEP] 1178

are special tokens defined by mBert. To process 1179

multiple inputs of different length at the same time, 1180

a [PAD] padding token is added at the end of each 1181

input so that all the inputs have the same length. We 1182

add our own special tokens to indicate the bound- 1183

aries of each element of our formulation to the 1184

transformer model: [s], [t], [A], [B], and [C]. 1185

The context, which specifies where the answer 1186

should be found, corresponds to t in our task. The 1187

question conditions the (semantic) content of the 1188

answer, and corresponds to s, t, A : B :: C : x in 1189

our case. However, it is not necessary to provide 1190

t in both the context and the question, so we limit 1191

the question to s,A : B :: C : x, resulting in what 1192

is displayed in Fig. 1. 1193

[CLS] [s] ws1 ... w
s
n [A] w

s
i ... w

s
j [B] w

s
k ... w

s
l

[C] wti′ ... w
t
j′ [SEP] [t] w

t
1 ... w

t
m [SEP]

Figure 1: Input format of the embedding model, where
[CLS] and [SEP] are special tokens defined by mBert,
to which we add [s], [t], [A], [B], and [C] to indicate
the boundaries of each element of our formulation to
the transformer model. On the first line we put the name
of the object, for ease of teading, and on the second line
we list the tokens to give a better idea of what the data
looks like.

D.2 Formula of F1 based on coverage 1194

When considering the non-covered SRs as not pre-
dicted by our model, the formula for precision and
recall become:

precision =
#successfully predicted SRs

#covered SRs
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recall =
#successfully predicted SRs

#covered SRs +#not covered SRs

D.3 Extended results for source selection1195

We report in Table 5 the performance of all our1196

sentence selection algorithm, as well as the best1197

model from Lin et al. (2021).

Score Accuracy (covered) F1
Source Same Different Same Different

Best 75.98% 77.98% 69.72% 76.08%
Sentence similarity 53.08% 52.32% 48.71% 51.05%

Random 49.23% 48.50% 45.18% 47.32%
Worst 16.25% 9.83% 14.91% 9.59%

Table 5: FSRL performance (given the gold frame
and predicate) when we consider potentially different
sources for each SR of a frame and when we consider
the same source for all SRs of a frame. We report F1
on the full dataset, while accuracy considers only SRs
covered by each setting for better comparability.

1198

D.4 Source sentence similarity1199

In Fig. 2 we report the distribution of the highest1200

sentence similarity for each source-target pair. We1201

observe that 1.34% of SRs above 0.7. In Fig. 3 we1202

report the performance of the model with regards to1203

highest sentence similarity for each source-target1204

pair.1205

Figure 2: Source sentence similarity, in the setting
where each SR can use different sources.

D.5 Core SRs against non-core SRs1206

In Table 6, we report the performance and the num-1207

ber of SRs depending on whether the corresponding1208

Figure 3: Source sentence similarity against FSRL ac-
curacy, by bins of 0.1, in the setting where each SR can
use different sources.

Frame seen in model training?
No Yes

Non-core SR 65.71% (1630) 66.47% (170)
Core SR 80.22% (6890) 81.12% (2076)

Table 6: FSRL accuracy on covered analogies (given
the gold frame and predicate) in setting (1) using the
best source, depending on whether the frame was seen
in training and whether the SR is a core SR. The number
of SRs in each category is reported in parenthesis.

frame is in the analogical training data and whether 1209

it is a core SRs. 1210
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