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Abstract

Analogy making has been claimed to be at
the core of cognition and be intimately related
with abstraction and categorization. Despite its
importance, analogies have only been scantily
studied in Natural Language Processing (NLP)
with most work being limited to word analogies.
Most extant approaches view analogy making
as the identification of the fact that pairs (4, B)
and (C, D) share the same latent relation with-
out necessarily naming that relation. In this
paper we adapt this framework in the context
of frame semantics, focusing on the problem
of semantic role labeling. For a given target
sentence and a predicate we are able to identify
all semantic roles, casting the problem as an
analogy with a previously annotated sentence
of the same frame, but not necessarily of the
same predicate. We show that careful selection
of the source sentence has the potential to sur-
pass state of the art results while at the same
time using a computationally lean model.

1 Introduction

It has been claimed that analogies play a crucial
role for human cognition (c¢f Hofstadter, 2001; Hof-
stadter and Sander, 2013, inter alia). Analogies can
be viewed as the abstraction mechanism that iden-
tifies common salient features between two objects.
They are usually represented as a relation between
two pairs A : B :: C': D (usually read A is to B
as Cis to D). A common assumption that existing
approaches on analogies in NLP make is that pairs
(A, B) and (C, D) share the same latent relation.
The underlying elements A, B, C, D of the anal-
ogy can be words (Turney, 2008), their vectorial
representations (Mikolov et al., 2013b,a) or larger
chunks of text such as sentences (Zhu and de Melo,
2020; Afantenos et al., 2021, 2022).

In this paper our goal is to introduce a new frame-
work leveraging analogies in order to identify la-
tent relations between elements in a sentence. We
use FrameNet 1.7 (FN1.7, Baker et al., 1998) as

our testbed which essentially provides a lexicon of
semantic frames as well as a set of annotated sen-
tences with frames from this resource. Each frame
represents an event or state which is triggered by a
specific word or expression in the sentence. Each
frame contains a set of semantic roles (SR, or frame
elements) which can be mandatory (core semantic
roles) or not (peripheral or extra-thematic semantic
roles).

Frame-semantic parsing is a series of three se-
quential tasks: identification of all words or ex-
pressions that trigger a frame (also known as pred-
icates, 1dentification of the frame or frames that
are triggered, and finally for each frame f and the
set R all possible semantic roles as defined in
that frame associate a text span of the sentence
with each role, if such an association exists. The
last task is known as argument identification and
classification or Frame-Semantic Role Labeling
(FSRL). Current state of the art approaches use so-
phisticated encoding (graph neural representations,
Lin et al., 2021) or decoding mechanisms (semi-
Markov CRFs, Swayamdipta et al., 2017) in order
to perform full semantic parsing.

In this paper we concentrate solely the task of
FSRL and we cast it as an analogy solving problem.
More specifically, given a source sentence and a
pair (A, B) representing the predicate triggering
frame f and argument evoking a specific semantic
role in that sentence, as well as a target sentence
and its predicate C that triggers the same role f
we seek to identify D in the target sentence such
that B and D evoke the same semantic role. We
show that by using analogies we can obtain results
that outperform state of the art under some circum-
stances without having recourse to sophisticated
encoding or decoding mechanisms.

Our main contributions in this paper are:

* anew task for studying analogical proportions
between groups of words from different sen-
tences, at the frame semantics level, moving



towards better understating of analogies be-
tween sentences;

* a dataset of semantic analogies that comple-
ments the traditional datasets of analogies be-
tween words on factual and lexical semantics
(Drozd et al., 2016);

* we show that a simple model based on seman-
tic embeddings is enough to solve analogies
with a high performance;

* we demonstrate how a computationally inex-
pensive model can exploit analogies in order
to achieve results that can outperform the state
of the art to tackling FSLR.

2 Related work

Turney (2008) introduced Latent Relational Analy-
sis (LRA) in order to identify such analogies which
he tested in 20 scientific and metaphorical exam-
ples . Later Mikolov et al. (2013b,a) used analogies
in order to evaluate the quality of the word embed-
dings produced with word2vec. Since then word
analogies have been widely used to evaluate the
intrinsic qualities of word embeddings, although
it has been shown that this is not sufficient since
most models appear to take shortcuts instead of
learning abstraction and analogical mapping. In
particular, Gladkova et al. (2016) that not-well bal-
anced datasets, such as the Google analogy test
set (Mikolov et al., 2013b,a), do not permit us to
safely conclude that underlying embeddings com-
bined with the vector offset approach are able to
capture analogies. They introduce the Bigger Anal-
ogy Test Set (BATS) showing that derivational and
lexicographic relations remain a challenge. Rogers
et al. (2017) show that the vector offset approach as
well as 3CosAdd (Levy and Goldberg, 2014) suf-
fer from dependence on vector similarity arguing
against the use of such datasets in order to evaluate
the intrinsic values of word embeddings.

Sultan and Shahaf (2022) adapt the framework of
the Structure Mapping Theory (Gentner, 1983) on
procedural texts, extracting entities and their rela-
tionships finding a mapping between two different
domains based on relational similarity. Relation-
ships are sets of ordered verbs and between entities,
which are extracted based on question/answer pairs.
Similarity measures the fact that two sets share
more relations. Mappings are identified heuristi-
cally based on the cosine similarity of the Bert
vectors representing the questions that provided

the entities. Their approach successfully extracts
mappings in two different datasets.

To the best of our knowledge analogies have not
been used in the context of FSRL Swayamdipta
et al. (2017) present a softmax-margin semi-
Markov model. The authors use a bidirectional-
RNN with a semi-Markov CRF without initially us-
ing any syntactic features. They then use multi-task
learning and syntactic scaffolding obtaining state
of the art results at the time of publication. More
recently, Lin et al. (2021) use Graph Neural Net-
works based on Bert embeddings and BiHLSTMs
(Srivastava et al., 2015) for the full frame semantics
task obtaining also state of the art results.

3 Methodology

In this section, we formulate our analogy solving
problem on the identification of semantic roles
(SRs) and describe the model used to tackle it. Con-
textual information is necessary to understand the
semantic role of a group of words, as it is defined in
relation to a semantic frame. Accordingly, we de-
cided to focus on contextualized word embedding
models, in particular mBert (Devlin et al., 2019)
as we intend to expand our application to other
languages in further work.

3.1 Problem formulation

As mentioned in the introduction, we focus solely
on the task of FSRL. Given a target sentence and
a predicate of that sentence as well as the frame
f that is evoked from that predicate we seek to
identify all spans of text in the sentence that are
associated with role r € R . In order to do so, we
select another source sentence with a predicate (not
necessarily the same) that triggers the same frame
and has already been annotated with all its seman-
tic roles and cast the problem as an analogy solving
one. More specifically, given a source sentence
s = {wf,...,ws} and a distinct target sentence
t = {w!},...,w! } each represented by their se-
quence of tokens, we will consider three substrings
of consecutive tokens in s and ¢ respectively

A — {wa, P ,wa+‘AI71}7
B — {wa7 PPN 7wa+|B|*1}’
C = {w;ﬁc, P ”UJ;C_HCI_l}’

with i 4, ¢, ic representing the index of the start-
ing word position for A, B, C respectively. A and
B belong to s while C belongs to t. A and C rep-
resent the predicates that trigger the same frame f



in s and t. We seek to identify D = {w},... w}}
with i, j € [1,m] and ¢ < j such that B, D activate
the same semantic role r € Ry. In other words,
A, B,C, D form a valid analogy A : B :: C : D,
and we are looking to solve the analogical equation
A : B :: C: z (Prade and Richard, 2021).

3.2 Model formalization

We define two probability distributions py, p. over
the tokens of ¢, respectively the likelihood of a
token being the first token of the answer (the
beginning) and the last token of the answer (the
end). The two probability distributions are condi-
tioned by s,t as well as by the analogy A : B ::
C : x we want to solve. Then, the analogy solving
problem can be formulated as follows, with ¢ < j:

argmax{pb(wﬂs, t,A, B,C)
i,5 €[0,m] (nH

+pe(w§|s,t,A,B,C’)}.

Conditional probabilities for each word being the
start or end of fourth element of an analogy given
the two sentences and the first three elements of
the analogy, are obtained using the pretrained trans-
former architecture mBert (Devlin et al., 2019, cf.
also Appendix D.1) fine tuned using the proposed
extractive question answering (Ex-QA) model for
solving SQuUAD' (Rajpurkar et al., 2016).

For each word?> w; € t we obtain contextual
embeddings

w; = mBert(wjl|s,t, A, B,C)

which we then feed to two single layer neural net-
works learning whether a token constitutes the
beginning or end of a segment which is a solu-
tion to an analogy. More specifically, we estimate
zb(i) = W{w; + by, and ze(i) = W w; + b,
where Wy, W, by, b, are learned matrices. Con-
ditional probabilities are obtained for each token
given the context using a softmax function:

. e2b(1)
pp(wils,t, A, B,C) = m;
: eze(i)
pe(wjls,t, A, B,C) = m

"https://huggingface.com

*The Bert architecture considers tokens which are different
from words in the linguistic meaning, as for instance a word
may be split in multiple tokens and tokens can be punctuation
marks. Still, we prefer to use word in this paper to facilitate
reading.

During decoding we require ¢ < j but no further
constraints are imposed.

Notice that in Eq. 1 it is possible to have ¢, j = 0.
Inspired by (Devlin et al., 2019) we consider a
special token w), which helps us handle instances
in which no analogy exists. This is the case when
the optimal solution for Eq. 1 yields ¢ = j =
0, denoting a negative instance, detailed in §4.1.
Otherwise, we consider only 0 < ¢ < j during
decoding.

4 Experiments

We perform two kinds of experiments. In §4.1 we
analyze the performance of the analogy solving
model we developed in different settings, and ex-
plore the sensitivity of our model to perturbations
on key aspects of the approach. These experiments
allow us to confirm the soundness of the approach
with regards to the analogy solving process. Then,
in §4.2, we apply our analogy solving model to
FSRL, and show the potential of our approach to
outperform state of the art model, with the added
benefit of a relative simplicity of our approach com-
pared to the complex architecture of the state of the
art models.

4.1 Analogy solving performance

Following the formulation introduced in §3.1, we
train an analogy solving model on the training data
described hereafter. We determine the limitations
of our model with regards to the analogical setting,
and conclusions drawn here can be transferred to
the FSRL setting. Indeed, the analogies used for
FSRL in §4.2 are a special case of the ones used
here by considering only A, C' as frame predicates.

Dataset. To train our model and explore its anal-
ogy solving performance, we use a dataset built
upon FN1.7 containing analogies involving in-
stances of core SRs and, in some cases, the frame
predicate. The dataset is detailed in Appendix C.1,
including key aspect of dataset construction.

As mentioned in §3.2, it is possible that some
SRs of a given frame are not instantiated in a given
sentence. To account for this, we consider positive
instances of analogical equation that can be solved
because rp is instantiated in ¢ as D, and negative
instances where the rp is not instantiated in ¢ and
the equation cannot be solved.

Training hyperparameters. The model is
trained for at most 1 epoch, and early stopping


https://huggingface.co/docs/transformers/main/en/model_doc/bert#transformers.BertForQuestionAnswering

is decided on the development set, using an approx-
imation of the Word Error Rate (WER) using the
token positions, coined Token Position Error Rate
(TPER) and detailed in Appendix C.2. Batch size
is automatically found by the Huggingface library
to maximize GPU usage.

Evaluation method. For all instance classes, we
report the accuracy of the model, which is the per-
centage of instances where the model returns the ex-
pected output (the gold SR for positive instances, or
the wg D token for negative instances). If the model
does not return the expected output, we speak of
model failure and consider 3 possibilities: “wrong
SR> if the model returns a instance of an SR that
is different from the gold SR; “SR not found” if
the model outputs wf, even if the analogy could
be solved (i.e., positive instances); any other case
corresponds to outputs that do not exactly match an
SR nor the w}, span, that we call “not an SR”. Note
that wrong SR, SR not found, and not an SR cover
all the possible cases of model failure, so accuracy
+ wrong SR + SR not found + not an SR = 100%.

Instances ‘ Accuracy ‘ Wrong SR Notan SR SR not found

Analogical model (using A,B,C)

Positive | 72.31% 0.28% 11.24% 16.17%
Negative | 72.09% 0.52% 27.38% -
All | 7221% 0.39% 18.43% 8.97%
ra#rc | 70.75%%* 0.31% 11.59% 17.36%*
Non-analogical model (using only B)
Positive | 53.46%* 0.10% 16.59% 29.85%*
Negative | 75.32% 0.39% 24.30%
All | 63.19% 0.23% 20.02% 16.56%

Table 1: Analogy solving results (in % of all instances)
for the analogical and non-analogical models. Instances
where 74 # r¢ are not counted in the overall perfor-
mance (All).

Overall performance. We report in Table 1 the
performance of our model on positive instances
(solvable analogies) and negative instances (unsolv-
able analogies due to missing SR instance), as well
as the average performance over those two classes
of instances. SR not found is not given for negative
instances, as it is the expected output.

Firstly, there is no significant difference between
the accuracy on positive and negative instances,
with a high level of performance (above 72% ac-
curacy) in both cases. For reference, Djemaa et al.
(2016) report 77% inter annotator agreement for
roles of matching frames. With positive instances,
the model wrongly determines that the SR is not

instantiated in only about 16% of cases. However,
for negative instances the model errors are almost
exclusively not an SR. As missing annotations and
errors are present in the part of FN1.7 we use, it is
likely that some of our instances are solvable but
the instance for rp is not labeled, so the instances
are counted as negative ones. Similarly, it is possi-
ble that some measured errors are better than the
recorded annotation, but checking this hypothesis
requires manually checking samples for annota-
tion errors which is beyond the scope of the article.
Overall, our model has a high accuracy, despite
the punitive way we determine failures: in the case
of multi-token words, the models fails if a token
part of a word is omitted while the other tokens of
the word is correctly predicted, and conversely for
tokens that are wrongly predicted.

Secondly, to obtain a deeper understanding of
the errors made by the model we consider the Safe
Word Error Rate (SafeWER), a slight modification
of the WER to handle the empty targets we have for
our negative instances. In Appendix C.3, we pro-
vide the formula of SafeWER, provide intuitions
about its meaning, and report the results for our
analogy solving models. When the model does
not correctly predict the solution of the analogy,
the SafeWER is significant, with in average 0.96
for positive instances (in average, about as many
mistakes as the number of expected words) and
2.53 for negative instances (in average 2.5 words
predicted when failing to identify a non solvable
analogy). The SafeWER we obtain and the not
an SR instances indicate that a significant part of
our model mistakes is due to few extra tokens or
forgotten tokens. In particular, it is interesting that
a significant part of mistakes are not an SR while
wrong SR is very rare, as it indicates that in many
cases the issue comes from the identification of the
boundaries of the SR and not from the identification
of the fitting SR itself. Adding span identification
into our model, as is done in multiple FSRL sys-
tems (Lin et al., 2021; Zheng et al., 2022), should
significantly improve performance in that area.

Impact of A, C. We study the sensibility of the
model to several perturbations regarding the SRs
A, C for two purposes: we measure the impact of
A, C on the performance of the model from the
analogical point of view, and, by extension, the
impact of errors in identifying the frame predicate
on the FSRL performance. To do so, we generate
analogies such that r4 # r¢ but rg = rp, which



means that while the analogy is erroneous, it is still
possible to solve it. Additionally, while r4 # r¢,
r4, rc are kept as instances of the same frame as
rg,rp. The generation process is described in
Appendix C.1.

Results are shown in the 74 # r¢ column of
Table 1, with the points of interest marked with “*”.
First, while there is a drop in accuracy, the perfor-
mance remains very high, with only a 2% decrease.
Additionally, it is interesting to see that the new
errors mostly belong to the “SR not found”. While
the difference might not be significant enough to
draw conclusions, we propose the following hy-
pothesis: by introducing a mismatch r4 # r¢
in the starting point of the relation, the model de-
termines that there is no instance that fit closely
enough the erroneous relation 7 4 to rp when start-
ing from C. However, we argue that using A, C
can help the model better identify the meaning of
the frame in ¢. To confirm the benefit of A, C on the
performance, we define a new model in all points
identical to the one defined in §3.1, except A,C'
do not appear in the input: we obtain fj,(w;|s,t, B)
and fe(w;|s,t, B). This new model can be seen
as a simple transfer of rp from s to ¢, instead of
the analogical transfer we perform with the main
model. The performance of this new model on the
test data used for the analogical models is reported
in the last three columns of Table 1. We observe a
very significant drop in performance, with close to
19% for positive instances, with most of this gap
transferred to “SR not found”.

Using different frames for s and ¢. In this sec-
tion we study the applicability of our method when
the frames containing the SRs in sentences s and
t are different, in contrast to §4.2 were we con-
strained our approach to same semantic frames.

Our starting intuition is that, as our model relies
on semantic relations, if the frames of s, ¢ are dif-
ferent but semantically related, we should maintain
high analogy solving performance. More specif-
ically, the semantically closer the frames are, the
higher the performance we should obtain.

The relations between frames indicated in
FN1.7 (Baker et al., 1998; Baker, 2017) do not
cover many frames, with a relation density> of the
order of magnitude of 10~ for all relations, except
for inheritance which is closer to 10~%. To mitigate

3The density of a relation between frames is number of
pairs of frames that are related divided by the total number of
frame pairs.

this effect and make manipulation more concise,
we group the relations by meaning (we specify the
FN1.7 relation and its inverse when relevant) and
create denser, undirected relations:

* Inheritance: Inherits from / Is Inherited by;
* Subframe: Subframe of | Has Subframe(s),

* Causal and Temporal (C&T): Precedes /
Is Preceded by, Is Inchoative of, and Is
Causative of ;

* Other: See also, Uses | Is Used By, and Per-
spective on | Is Perspectivized in.

To compute how related two frames are, we com-
pute the smallest number of steps to reach one from
the other following the relation®. If no path exists
between two frames, we use the value “not related”.
We use 100 pairs of frames such that the two frames
are different and neither appear in the training nor
development data, which may overlap with the ones
of the test sets of previous experiments. For each
frame pair, we consider only SRs that are labeled
the same in the two frames and generate up to 100
(positive) instances, for a total of 9834 instances.
We compute the Spearman correlation between
the distance and the model accuracy, by consid-
ering each possible distance value as a class. We
consider the case where no path exists between
two frames (the vast majority of cases) as a sepa-
rate class. The results are reported in Table 4, and
the detailed accuracy and number of samples for
each distance value for each relation is reported
in Appendix C.4. There is however several limi-
tations in our test method: firstly, if we exclude
“No path”, the test data contains only 1 distance
value for C&T and 2 for Subframe, and each of
these distance values is represented by only 100
instances; secondly, for C&T, Subframe, and Other,
the correlation is much less significant than for In-
heritance; and thirdly, we suspect that the relations
we gathered in Other are too miscellaneous and
not related enough to obtain meaningful relations
between frames. All these limitations lead us to
draw no conclusion with regard to the correlation
between the performance and the relatedness in
terms of the C&T, Subframe, and Other relations.
Nonetheless, for Inheritance, analysis of the
Spearman’s p coefficient and the accuracy for each
distance value (see Appendix C.4) indicates that

*This corresponds exactly to the node distance in the undi-
rected graph of each relation.



the performance of the model increases for more
closely related frames in terms of inheritance. In
particular, for frames that are closely related, the
performance is almost the same as when the sen-
tences that activate the same frame (71.22% for
distance of 2 against 72.21% when the frame is the
same, and 49.49% for unrelated frames). These
results indicate a certain flexibility of our approach
with regards to the frame instantiated in the source
sentence, which can help mitigate the scarcity of
some frames.

4.2 Frame-semantic role labeling (FSRL)

Our analogical model can be used to propose frame
annotations of unseen sentences. We assume a
state of the art predicate identification and frame
annotation method has been applied on the target
sentence ¢ we want to annotate, providing us with
the frame and the frame predicate. Relying on these
first annotations, we create analogical equations to
predict each of the remaining SRs. The difference
with our general analogy solving setting in § 3.2
is that A, C are the frame predicates of s,¢. The
source sentence s is taken from our case base, i.e.,
our training set. Our approach focuses on labeling
SRs one by one, independently from each other.
Repeating this operation for each SR of F' and
solving the equation with our model allows us to
get predictions for each SR of the frame in ¢. To
demonstrate the feasibility of this approach, we
apply our method on the test set of FN1.7, using
source sentences from the corresponding training
set. Note that our approach could be extended by
using, the prediction of each SRs to improve and
cross-check the predictions on the other SRs, as
discussed in §5.

Model variants. When implementing the ap-
proach, a key concern is the selection of the source
sentence. We use two settings: (1) we use po-
tentially different sources for each SR, or (2) we
use the same source sentence for all the SR of the
frame. As mentioned above, the basic use case for
our approach is to label SRs one by one and inde-
pendently. Setting (1) corresponds to this approach,
where we are able to use the most fitting source
for each SR. In this case our model achieves ex-
cellent results, outperforming the best state of the
art model from (Lin et al., 2021) by a little under
4% under the best conditions (see Table 2). With
setting (2) we want to see what happens when we
present only one sentence to the system and get all

the semantic roles out of this sentence using ana-
logical transfer, with the advantage of reducing the
number of sources to retrieve from the case base.
Comparing the performance in (1) and (2) offers
us bounds on the model performance with regards
to the number of sentences used to label the SRs of
a frame. Note that settings (1) and (2) do not cover
all the SRs in the test set, as detailed further below.
This is taken into account in the way we compute
the F1, see Appendix D.2.

We determine additional bounds for the perfor-
mance of the model by using several source selec-
tion algorithms. All our source selection algorithms
are applied a posteriori, as we need to know the
performance associated with each possible sources
(a bit under a million analogies in total). To obtain
the upper and lower limits of the performance of
the model, we select the best and worst possible
source in each setting. For the best source, we take
any sentence that allows to successfully predict e,
setting (1), while we take the sentence with the
highest accuracy on the current frame in setting
(2). We use a similar process for the worst source
by obtaining the worst performance in each set-
ting. To simulate the performance of the model in
a realistic setting, we experiment with two a pri-
ori source selection algorithms: a naive random
selection and a more involved selection based on
sentence similarity. We approximate the random al-
gorithm by averaging the accuracy over all possible
sources for each SR. Our source selection based on
sentence similarity is a proof of concept using the
MiniLM> model (Wang et al., 2020) to obtain sen-
tence embedding. We the apply the recommended
dot score® to find the source most similar to the
target among all possible sources. This sentence
similarity model has two key limitations for our
approach: it is not the state of the art model in term
of semantic similarity, and it was not fine-tuned
for its intended purpose of finding the most suited
source. Its main purpose is to check the potential
of such a source selection algorithm.

FSRL performance. The average performance
over all the covered roles for the best and random
selection is reported in Table 2, for settings (1)

5all-MinilM-L6-v2, provided in the Sentence Transform-
ers library (https://www.sbert.net/docs/pretrained_
models.html) and recommended for its execution speed.

*For two embeddings emb;,emby and ¢ the an-
gle between them, the dot score is the dot product
|emb1 ||embz|cos(1?). The more similar two embeddings are,
the higher the dot score.
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and (2). The worst and sentence similarity is re-
ported in Appendix D.3. To compare the result of
our approach and the state of the art we consider
only the performance of the models when given
the gold predicate and frame labels. For all mod-
els, an SR is correctly predicted if and only if the
prediction is exactly the expected span. Our model
has the potential to outperform the state of the art
performance by at least 4%, if we manage to select
the best possible source. Additionally, we expect
our approach to be less sensible to failures in ear-
lier stages of the frame semantic labeling process,
as the performance of our approach does not de-
grade much when presented with mismatched but
strongly related frames.

As mentioned above, the best performance ob-
tained with our analogical approach is higher than
the state of the art from (Lin et al., 2021) by close
to 4% in setting (1). However, in setting (2) the
F1 is 2.5% lower than the state of the art, despite
the very close accuracy between (1) and (2) when
only covered analogies are considered, as reported
Appendix D.3. From these two results, the num-
ber of instances that are not covered by using a
single source is a major limitation, while the per-
formance on covered sentences does not degrade
by a large margin. For instance, with setting (1)
95.25% of all SRs are covered’, and 93.13% of
frames have all their SRs covered. With setting (2)
however, 84.78% of all SRs and 91.27% of frames
are covered. The proof of concept sentence simi-
larity selection achieves around 50% accuracy and
does not bring significant improvements on ran-
domly selecting a source. However, when studying
the distribution of the highest sentence similarity
for each source-target pair, only a small portion of
target sentences have a very similar source avail-
able (1.34% of SRs above 0.7, see appendix Fig. 2).
If we limit the study to these highly similar sources,
we reach 70.45% of accuracy, only 2% under the
best model from (Lin et al., 2021). We also found
a significant correlation between the sentence simi-
larity and the FSRL accuracy, with a Pearson-r co-
efficient of 0.8997 (p-value of 6.73~°) with slices
of 0.1 on the similarity (see also appendix Fig. 3).
The gap between the best and worst performance
further highlights the importance of a sound source
selection process.

7An SR of the test set is not covered none of the sentences
in the training set activate the corresponding frame or if the SR
is never instantiated for this frame in the training sentences.

Source for the SRs | Different (1) ~ Same (2)
Random source 47.32% 45.18%
Best source 76.08 % 69.72%

Best from Lin et al. (2021) \ 72.22%

Table 2: FSRL F1 (given the gold frame and predicate)
on the FN1.7 test dataset for our approach when the
same and different sources are used for a frame, as well
as the best model from Lin et al. (2021).

Performance for core and non-core SRs. Our
analogical training set (directly built from the
FN1.7 ontology) covers only core SRs of a sub-
set of all frames (22.38% of the frames of the test
set). In Appendix D.5, we report the performance
and the number of SRs depending on whether the
corresponding frame is in the analogical training
data and whether it is a core SRs. We notice a
significant difference in performance between core
and non-core SRs which can be expected as only
core SRs were seen in training, however we sus-
pect that part of this difference is due to the more
subtle semantic link between non-core SRs and the
predicate. We also notice that performance does
not differ significantly between frames seen during
training and unseen ones, highlighting the ability
of our approach to generalize to unseen frames.

5 Discussion and perspectives

We propose an analogy dataset based on FN1.7 that
complements the traditional datasets of analogies
between words on factual and lexical semantics.
Indeed, to study the SR of a group of words we
need to consider contextual information, which is
not that important a concern for factual or lexical
semantics. By providing a clear definition of the
underlying relation manipulated in the analogies,
we also provide new insights on the study of se-
mantic analogies between and within sentences.
Building upon this dataset and using a very sim-
ple methodology, we propose an analogy solving
approach that achieves high performance and is
able to identify many unsolvable analogies. This
approach also displays what can be seen as a tol-
erance with regards to mistakes in the analogical
equation. Firstly, while ideally the sentences ac-
tivate the same frame, the model maintains high
performance for related but distinct frames. Sec-
ondly, the formulation of our model requires the
first and third SR to be identical, but we show close
performance when this rule is not respected. In



further work, we will explore how this tolerance
improves performance with regards to mistakes in
predicate and frame identification.

Sentence selection. Our experiments on FSRL
provide us with bounds on the performance of our
model with regards to the choice of the source sen-
tence. Considering that the upper bound of our
approach is, to the best of our knowledge, signifi-
cantly higher than the state of the art, there is sub-
stantial potential in our analogy-based approach.
This is especially true given that our approach is
derived from a simple Ex-QA model, that we will
improve in further work, for example by using a
more involved architecture based on the principles
of analogy. However, our experiments also show
the importance of the selection of the source to
achieve the best model performance, which will be
the focus of further research.

In particular, with our experiments with enforc-
ing a single source sentence for the SR of a frame,
we identify that the main challenge in using the
same source for all SR. Consequently, in further
work we will explore a compromise approach, us-
ing a few sources prototypical sentences of each
frame in order to cover as many SR of the frame
as possible. This would allow to use a few care-
fully annotated sentences for each frame and sig-
nificantly reduce the number of possible sources.
Additionally, it is likely that using an ensemble
of sources for each prediction would improve our
model performance, but this involves significant ex-
ploration on the selection of sources and the aggre-
gation of the predictions, so we prefer to dedicate
future work to this specific extension.

Our proof of concept model for sentence selec-
tion does not achieve significantly better perfor-
mance than randomly selecting the source. How-
ever, we observed that using highly similar sen-
tences to use as sources was promising, but the
number of targets that have similar sources is much
to low to achieve the upper bound of the perfor-
mance we can obtain. Consequently, a short term
direction to improve the performance of our ap-
proach is to improve on the sentence similarity
approach. Indeed, the sentence embedding model
used is not the state of the art in term of semantic
similarity, so selecting a different model might im-
prove the results. Additionally, we will explore the
possibility of fine-tuning the model for finding the
most suited source or using metric learning to learn
a sentence similarity model dedicated for our task.

Labeling the SRs independently. Our current
FSRL approach labels each SR independently. We
envision an extension of our framework in that
regard, to match the state of the art FSRL sys-
tems (Lin et al., 2021; Zheng et al., 2022) and
make full use of our analogy solving model. In-
deed, we could, for each SR, use the prediction for
the other SRs in addition to the frame predicate
to create analogies, and use those new analogies
to cross-check the predictions. In particular, we
propose a two step procedure: (i) apply the current
version of the approach to get a first prediction for
each SR, and (ii) compute analogies between each
pair of SRs to get an extra level of prediction for
each SR taking into account the other SRs. The
second step could be applied optionally to measure
consistency and improve prediction quality.

Generalizing the approach. In this paper we fo-
cus exclusively on FN1.7, and we will extend the
scope of application to FN1.5 if possible and to
other similar dataset, such as PropBank (Pradhan
et al., 2022). Also, as mentioned in §3, we intend
to extend our approach to other languages. Indeed,
in the past decade there has been a focus on provid-
ing labled resources for languages beyond English,
with among other the French (Djemaa et al., 2016)
and Swedish (Dannélls et al., 2021) FrameNets.
However, this effort is for the most part limited
to languages with many speakers, and frame an-
notation remains difficult and costly, limiting the
amount and variety of annotation. To tackle this
issue, further work will be done to offer a tool for
FrameNet-style annotation in languages for which
few or no labeled data is available, by leveraging
analogical transfer and the multilingual embedding
model mBert.

6 Conclusions

In this article, we provide a new task for study-
ing analogical proportions at the frame semantic
level, manipulating groups of words from different
sentences. Our experiments show that a simple
model based on semantic embeddings is enough to
solve frame-semantic level analogies with a high
performance. We also demonstrate the potential
of our analogy solving approach to tackling FSLR.
The main limitation of our FSLR approach is find-
ing a fitting source sentence to perform analogical
transfer, which will be the focus of future work as
discussed below.



Ethics statement

To the best of our knowledge, the dataset that we
use (FN1.7) does not contain any sensitive infor-
mation. Refer to (Baker et al., 1998; Baker, 2017)
for further information.

In its current state, our approach does not offer
significant improvements regarding fairness con-
cerns, mostly due to the nature of the data manip-
ulated and the annotation performed. However,
applying our approach on other types of seman-
tic annotations carries the potential of predictions
explainable using the source used.

To the best of our knowledge, our use of mBert
and MiniLM match their intended use (see the
model cards linked in Appendix B).

Limitations

Our approach suffers from the same limitation as
other approaches using Bert models. For instance,
it is difficult to analyze the involvement of each
element of the input text in the result, and it is diffi-
cult to know what information is contained in each
element of the output. If possible, we will explore
in future work methods to better separate the input,
effectively reducing this issue. Additionally, large
pre-trained transformer models are known to be
sensitive to small details in the formatting of the
input and output, Additionally, the quality of se-
mantic information in large pre-trained transformer
models is known to depend on which transformer
layers are used (van Aken et al., 2019), and this
kind of model is very sensitive to input encoding
(Zervakis et al., 2022). We do not perform any
ablation study in that regard.

While we limit ourselves to the best quality an-
notations from FN1.7, the SR annotations are pro-
duced by human annotators which, by definition,
may make errors. Any faulty or missing annotation
may negatively influence our model. For instance,
is an SR is present but not annotated, the model will
learn to ignore the SR. Also, we limit ourselves to
the core FEs and the frame predicates for training
the model, and using peripheral and extra thematic
FEs may improve performance.

We only perform a single run of our model, so
all results should be confirmed by additional trials.

Our approach has been only tested on a single
dataset written in the English language. As we use
a multilingual pre-trained embedding model, our
approach should work on all languages covered by
the embedding model. However, the performance

of our approach is expected to scale with the perfor-
mance of the pre-trained models on each language,
meaning a lower performance on less represented
languages. In the future we plan to expand our
approach to more datasets and languages.

Our approach does not take into account split
predicates (only takes the first part) as opposed
to the most recent approaches to FSRL. However,
this can be achieved by concatenating the bits of
predicates when specifying A, B, C' in the model
input, eventual adding a special ellipsis token to
mark the concatenation.
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A Training setup

The models were trained on Intel® Xeon(R) W-
11955M CPU @ 2.60GHz x 16, 32 GiB RAM,
NVIDIA RTX A5000 Mobile.

Training took around 1h30 on those setting, with-
out using more than 4GiB RAM.

B Code, data, and models

Once the anonymity period is over, the implementa-
tion of the model and the data preparation process
will be made available on GitHub and, as much
as possible, the trained model and evaluation re-
sults will be made available through an open data
repository.

Our code relies on Python 3.9, as well as the
following libraries: PyTorch, Huggingface (Trans-
formers and Datasets), Sentence Transformers (also
called SBert), Scipy, and Pandas.

The pretrained models we wuse are
the mBert model (Devlin et al.,, 2019)
called bert-base-multilingual-cased

(https://huggingface.co/
bert-base-multilingual-cased) and
the MiniLM (Wang et al.,, 2020) model
all-MinilM-L6-v2 (https://huggingface.co/
sentence-transformers/all-MinilLM-L6-v2).

The whole analogy solving model contains
177 269 762 parameters (177 268 224 for mBert
model itself, 1 538 for the single layer neural net-
works used to predict the start and end token of the
span).

C Details on the analogies between
semantic roles

C.1 Dataset of analogies between semantic
roles

To train our model and explore its analogy solving
performance, we extract sentence examples from
the FN1.7 ontology to build analogies A : B ::
C : D, where A, B,C, D are either instances of
core SRs or the frame predicate. For each frame,
we gather up to 1000 sentences with the annota-
tion status of either FN1_Sent, Finished_Initial, or
Finished_Checked (the 3 annotation status of the
highest quality according to the documentation of
FN1.7).

Data augmentation. To integrate analogical
knowledge in our model, we use a data augmen-
tation process based on the symmetry and central

permutation axioms of analogical proportions (Lep-
age, 2003), following previous work on data aug-
mentation for analogy solving (Marquer et al.,
2022; Marquer and Couceiro, 2023). For each pair
of semantic role and each pair of sentences of a
frame, we generate 8 analogies: A : B :: C' : D,
A:C:B:D,D:B:C:A,C:A:D:B,
C:D:2:A:B,B:A:D:C,D:C:B:A,
B : D : A: C. We exclude from our study
analogies where A = B and C = D. Indeed,
the corresponding analogical equation would be-
come A : A :: C: x and the solution x = C' can
be found without needing to explore the semantic
relations between the elements of the analogical
equation, which could degrade the quality of the
training of the model.

Different kinds of instance. As mentioned in
§3.2, it is possible that some SRs of a given frame
are not instantiated in a given sentence. To account
for this, we consider positive instances with analo-
gies that can be solved because rp is instantiated
in t as D, and negative instances where the rp
is not instantiated in ¢ and the analogy cannot be
solved.
We create analogies such that:

» for positive instances: we create one analogy
for a pair of distinct SRs such that both SRs
are instantiated in both sentences;

* for negative instances: we create one anal-
ogy for a pair of distinct SRs such that one SR
is instantiated in both sentences (7 4, r¢) and
the second is instantiated in only one of them

(re);

* for instances with r4 # rco: we create
one analogy for a triplet of distinct SRs such
that one SR is instantiated in both sentences
(rB, D), the second is instantiated at least in
the first sentence (r 4), and the third is instan-
tiated at least in the second sentence (r¢).

Balancing the SRs. To maintain a good balance
in the SRs presented, we randomly select analogies
using the following process:

1. for 7 SR tuple (pairs for positive and negative
instances, triplets for r 4 # r¢)

2. for j1, ..., j; sentence pairs per SR tuple;

3. you randomly take (without putting back) one
pair of sentences from each SR tuple and gen-
erate the corresponding analogy;
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4. once a SR tuple does not have any remaining
sentence pair, we exclude it;

5. we repeat steps 3-4 until we reach the num-
ber of analogies we want or no sentence pair
remains.

An amusing analogy to this process is to consider
the histogram of the number of pairs of sentences
for each SR tuple. Now, consider that the histogram
is an empty water tank, that we want to fill with
the a volume of water corresponding to the number
of analogies we want. If we pour the volume of
water in the tank, it will fill the tank in a balanced
manner. If an area of the tank is not high enough
to accommodate as much water as the other areas,
it will be filled to the brim and the remaining water
will spread in the other parts of the tank.

Amount of data in each part of the dataset. To
make our training and development set, we select
randomly 250 frames from the leaf frames (i.e.,
not having any frame inheriting from them in the
FN1.7 ontology). Similarly, we select 100 leaf
frames used in both the analogical test set and the
r A # r¢ set. For our training and development set,
we first take up to 1000 positive and 1000 negative
instances per frame. Then, to make the develop-
ment set, we randomly take out 1000 positive and
1000 negative instances without considering which
frame they are from. For the test set and the set
with r 4 # ro, we take 100 instances of each class
for each frame.

In total, the training set contains 249000 positive
and 199816 negative instances, and the develop-
ment set contains 1000 positive and 1000 negative
instances. The test set contains 10000 positive and
8030 negative instances. Finally, the r4 # r¢ set
contains 7760 instances.

C.2 Token Position Error Rate (TPER)

TPER is an approximation of the Word Error Rate
(WER) using the token positions. Let b, e, be the
expected start and end token position of z in the
answer, Bz, é, the model predictions. The TPER
is as follows, where X AY is the symmetric differ-
ence of the sets X and Y, and [4, j] is the set of all
integer values from ¢ to j, both included:

ng,éw]A[bxaew”

TPER(by, €, by, é) = el
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C.3 Safe Word Error Rate (SafeWER)

Word Error Rate (WER) is a measure of the aver-
age number of prediction errors in text, normalized
by the number of expected words. To handle the
empty targets we have for our negative instances,
we add +1 to the denominator and obtain what we
coin SafeWER. It corresponds to the average num-
ber of words to modify (replace, add, or remove)
to obtain the gold SR. The formula of SafeWER is
summarized below, with Add., Supr., and Repl.
the number of additions, suppression, and replace-
ment respectively. Thus, Add. + Supr. + Repl.
is the number of modifications of the words of the
prediction to obtain the gold SR, and T'arget is the
number of words in the gold SR.

Add. + Supr. + Repl.

SafeWER =
afe Target + 1

2

For an example of the behavior of the SafeWER,
in the sentence “Your photographs have been sub-
stituted by our experts.” with D =*“Your pho-
tographs”, the prediction “photographs have been”
would give a SafeWER of 1 and a WER of 1.5.
However, with the target D’ not instantiated, “pho-
tographs have been” would give a SafeWER of 3
and “Your photographs” a SafeWER of 2 while the
WER is undefined.

In Table 3, we report the SafeWER for our anal-
ogy solving model and the non-analogical model.

\ Failed instances  Overall

Analogical model (using A,B,C)

Positive 0.96 0.27
Negative 2.53 0.71
All 1.66 0.46

rA £ e 0.86 0.25
Non-analogical model (using only B)
Positive 0.85 0.40
Negative 2.75 0.68
All 1.42 0.52

Table 3: Analogy solving SafeWER for the analogical
and non-analogical models. Instances where 74 # r¢
are considered only for the analogical model and are not
counted in the overall performance (All).

C.4 Detailed accuracy and number of
instances using different frames in the
analogy

Here we detail the performance of the model when
using s, t activating different frames. For each
value of the shortest path length (SPL) between



the two involved frames, we specify the accuracy
(in %) and the number of instances, ordered by in-
creasing distance. “No path” is set as the farthest
distance possible, as very loosely related frames
(high distance value) are more related than unre-
lated frames. Table 4 summarizes the correlation
of the the relatedness and the performance for all 4
of our relation groups.

Unique
p-value p values
Inheritance | 5.18e-68  -0.1744 10
C&T | 6.97e-03 +0.0272 2
Subframe | 2.36e-03  -0.0307 3
Other | 3.69¢-03  +0.0293 10

Table 4: Correlations (Spearman correlation coefficient
p and corresponding p-values) between the success rates
and the distance between frames frames for each relation
in the dataset, in the setting where the two sentences do
not activate. For reference, we also report the number
of unique distance values that appear in the test data
for each relation, including “not related” as a separate
value. Boldface indicates the most significant result.

e Inheritance (Inherits from / Is Inherited by):

71.22% (900 instances),
68.88% (1128 instances),
66.21% (1400 instances),
63.12% (800 instances),
58.00% (200 instances),

— 7: 56.00% (300 instances),

- 9: 66.00% (200 instances),

— 10: 54.50% (200 instances),

- 12: 53.00% (200 instances),

— No path: 49.49% (4506 instances).

-2
-3
-4
-5
- 6:

* Subframe of (Subframe of | Has Subframe(s)):

— 2:73.00% (100 instances),
— No path: 57.92% (9734 instances).

* Causal and temporal (Precedes / Is Preceded
by, Is Inchoative of, and Is Causative of):

— 1: 25.00% (100 instances),
— 2:73.00% (100 instances),
— No path: 58.26% (9634 instances).

e Other (See also, Uses | Is Used By, and Per-
spective on [ Is Perspectivized in):

- 1: 63.67% (300 instances),
— 2:72.33% (300 instances),
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— 3:26.42% (106 instances),

— 4: 51.50% (200 instances),

— 5:42.50% (200 instances),

— 7:79.00% (100 instances),

— 8: 70.50% (200 instances),

— 10: 51.00% (100 instances),

— 14: 12.50% (200 instances),

— No path: 58.94% (8128 instances).

D Details on the frame-semantic role
labeling

D.1 Encoding for the embedding model

The contextual embedding of each token from ¢
is computed by the mBert model accounting for
s,t, A, B, C by using the format shown in Fig. 1.
It extends on the Ex-QA input format implemented
in the HuggingFace library: “[CLS] question
[SEP] context [SEP]”, where [CLS] and [SEP]
are special tokens defined by mBert. To process
multiple inputs of different length at the same time,
a [PAD] padding token is added at the end of each
input so that all the inputs have the same length. We
add our own special tokens to indicate the bound-
aries of each element of our formulation to the
transformer model: [s], [t], [A], [B], and [C].

The context, which specifies where the answer
should be found, corresponds to ¢ in our task. The
question conditions the (semantic) content of the
answer, and corresponds to s,t, A : B :: C : x in
our case. However, it is not necessary to provide
t in both the context and the question, so we limit
the question to s, A : B :: C': x, resulting in what
is displayed in Fig. 1.

S

[CLS] [s] w§ LW

(€] Wty ...,

1

[A] w$ ... w§ [B] wy

S
n
SEP] [t] wt ... w} [SEP]

W

H
Figure 1: Input format of the embedding model, where
[CLS] and [SEP] are special tokens defined by mBert,
to which we add [s], [t], [A], [B], and [C] to indicate
the boundaries of each element of our formulation to
the transformer model. On the first line we put the name
of the object, for ease of teading, and on the second line
we list the tokens to give a better idea of what the data
looks like.

D.2 Formula of F1 based on coverage

When considering the non-covered SRs as not pre-

dicted by our model, the formula for precision and

recall become:

#successfully predicted SRs
F#covered SRs

precision =



#successfully predicted SRs

Il =
reca #covered SRs + #not covered SRs

D.3 Extended results for source selection

We report in Table 5 the performance of all our
sentence selection algorithm, as well as the best
model from Lin et al. (2021).

Score | Accuracy (covered) F1
Source | Same  Different | Same  Different
Best | 75.98%  77.98% | 69.72% 76.08%
Sentence similarity | 53.08%  52.32% | 48.71% 51.05%
Random | 49.23%  48.50% | 45.18%  47.32%
Worst | 16.25%  9.83% | 1491%  9.59%

Table 5: FSRL performance (given the gold frame
and predicate) when we consider potentially different
sources for each SR of a frame and when we consider
the same source for all SRs of a frame. We report F1
on the full dataset, while accuracy considers only SRs
covered by each setting for better comparability.

D.4 Source sentence similarity

In Fig. 2 we report the distribution of the highest
sentence similarity for each source-target pair. We
observe that 1.34% of SRs above 0.7. In Fig. 3 we
report the performance of the model with regards to
highest sentence similarity for each source-target
pair.

400 1

300 1

Count

200 4

100 A

0.2
Most similar source similarity (dot score)

0.4 0.6

Figure 2: Source sentence similarity, in the setting
where each SR can use different sources.

D.5 Core SRs against non-core SRs

In Table 6, we report the performance and the num-
ber of SRs depending on whether the corresponding
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100

—— Random sentence choice

80 4

Accuracy (%)

0.0
Most similar source similarity (dot score)

0.2 0.4 0.6 0.8 10

Figure 3: Source sentence similarity against FSRL ac-
curacy, by bins of 0.1, in the setting where each SR can
use different sources.

‘ Frame seen in model training?

No Yes
Non-core SR | 65.71% (1630)  66.47% (170)
Core SR 80.22% (6890) 81.12% (2076)

Table 6: FSRL accuracy on covered analogies (given
the gold frame and predicate) in setting (1) using the
best source, depending on whether the frame was seen
in training and whether the SR is a core SR. The number
of SRs in each category is reported in parenthesis.

frame is in the analogical training data and whether
it is a core SRs.
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