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Abstract
Zero-shot image classification is a challenging task aim-

ing to classify real images without real training examples.
Recent research has employed synthetic training images
generated by text-to-image models to address the challenge.
However, existing approaches heavily rely on simplistic
prompt strategies, which limit the diversity of the synthetic
images. In this paper, we propose AttrSyn, which leverages
large language models to obtain attributed prompts. These
prompts allow for the generation of more diverse attributed
images (e.g., specifying attributes such as style and back-
ground). By conducting experiments on two fine-grained
datasets, we demonstrate that AttrSyn significantly outper-
forms simple base prompts, regardless of the visual encoder
and classifier settings.

1. Introduction
Data scarcity poses a significant challenge in the field of
image classification [3, 8, 14, 17], as the scarcity of labeled
data hinders the development of robust image classification
systems. Zero-shot image classification [7, 9, 13, 21], which
refers to classifying real images without having access to
real training examples, emerges as a crucial technique to
this dilemma.

Since breakthroughs in text-to-image models, especially
diffusion models [22], have enabled the generation of a vast
number of high-quality synthetic images, recent works [4–
6] are exploring the potential of employing synthetic im-
ages to tackle the challenges associated with zero-shot im-
age classification. However, the majority of these efforts
primarily focus on how synthetic images are utilized during
the training stage, with relatively less attention paid to ex-
ploring the generation stage of synthetic images. Most rel-
evant research [1, 2, 11, 16, 23] relies on employing simple
class-conditional prompts for text-to-image models to gen-
erate synthetic images, which inherently limits the diversity
of the synthetic images produced.
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Diversity is critical to reducing the gap between syn-
thetic and real images when used as training data. [4, 18].
Inspired by [25], which introduces an attribute-based text
generation approach to enhance text classification, we pro-
pose AttrSyn, designed to generate synthetic images that
encompass a greater degree of diversity. Specifically, with
the assistance of large language models (LLMs), we obtain
the attribute dimensions and their corresponding candidate
values for a given dataset in an interactive semi-automatic
manner. Following this, we randomly combine these at-
tributes with the associated class name to create attributed
prompts. These prompts are then fed into a text-to-image
model, such as Stable Diffusion [15], to generate attributed
synthetic images that boast a high level of diversity.

To evaluate the effectiveness of our AttrSyn method, we
train classifiers with synthetic images and test their perfor-
mances on two fine-grained image classification datasets.
These datasets are particularly challenging for zero-shot
classification. To further demonstrate the robustness of our
method, we conduct a series of experiments under various
vision encoder and classifier settings. The experimental re-
sults show that AttrSyn consistently outperforms the simple
base prompt across all settings, yielding performance en-
hancements ranging up to a maximum of 9.33.

We summarize our contributions as follows:
• We propose AttrSyn, a novel attributed synthetic image

generation method to facilitate zero-shot image classifi-
cation tasks.

• We highlight the significance of focusing on the upstream
generation process of synthetic images.

• We demonstrate the superiority of AttrSyn over simple
base prompts through experiments on two fine-grained
datasets, highlighting its potential for improving zero-
shot image classification performance.

2. Method
In this section, we present the details of AttrSyn, which
leverages attribute-based synthetic data generation to
achieve zero-shot image classification. Specifically, At-
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Figure 1. Overall workflow of AttrSyn.

trSyn employs Large Language Models (LLMs) to produce
various and plausible attributes that enhance the prompts
fed to the text-to-image model. These enhanced prompts
enable more effective synthetic data for zero-shot image
classification. The overall workflow is shown in Figure 1.

2.1. Attribute Generation

To obtain high-quality and diverse prompts, we adopt
a semi-automated human-machine collaborative attribute
generation approach inspired by [25]. The method ini-
tiates by defining several attribute dimensions for a given
dataset. Since the process demands comprehensive knowl-
edge of the dataset, we employ LLM to assist in initially
determining these attribute dimensions. A human expert
then interactively chooses the high-quality attribute dimen-
sions that are suitable for the dataset. For example, in the
case of CUB-200-Painting [20], a dataset comprising 200
distinct bird paintings, we employ “Which important at-
tributes would you consider to distinguish a painting of a
bird?” to query LLM and obtain “background environ-
ments, behavior, shape, plumage, painting style, bill and
beak” as the response. The human expert then interac-
tively selects “background environments, behavior, painting
style” as the final attributes. To further query fine-grained
diverse attributes, we query LLM to get diverse attribute
values for each attribute dimension. We categorize at-
tribute dimensions into class-dependent attributes and class-
independent attributes and apply different query strategies.

Class-dependent attributes exhibit diverse attribute values
among different classes, such as the “background environ-
ment” attribute for CUB-200-Painting. Class-independent
attributes, such as “painting style” for CUB-200-Painting,
can share the same values across all classes.

Class-Dependent Attributes. To prevent generating im-
ages that deviate from reality, it is crucial to ensure a
strong correlation between class-dependent attribute val-
ues and their corresponding classes. For class-dependent
attributes, we employ prompts, including the class name,
to query LLM. Specifically, for the black-footed albatross
class in CUB-200-Painting, we query LLM with the prompt
“Please list some common background environments re-
lated to black-footed albatross” to get appropriate back-
ground environment values.

Class-Independent Attributes. To acquire class-
independent attribute values applicable across various
classes, we use a generic prompt to query LLM. For
example, we use “Please list some common painting styles”
as the prompt to get various potential painting styles.

2.2. Attributed Image Generation

After obtaining the attributes, it is important to prompt a
text-to-image generative model efficiently to get attributed
images that exhibit diversity across multiple attribute di-
mensions. Therefore we randomly sample values from each



Dataset Domain Task # Train # Test Class
CUB-200-2011 Photo Multi-class 5,994 5,794 200

CUB-200-Painting Painting Multi-class — 3,047 200

Table 1. Statistics of datasets.

Dataset # configurations / class Attribute # attribute value / class

CUB-200-2011 125
behavior 5

background environment 5
photo style 5

CUB-200-Painting 125
behavior 5

background environment 5
painting style 5

Table 2. Attribute dimensions for two datasets.

attribute dimension and concatenate them with the class
name into attributed prompts. We then feed these prompts
to the text-to-image model like Stable Diffusion to obtain
fine-grained attributed images. For example, for the black-
footed albatross class in the CUB-200-Painting dataset,
one of its random attribute configurations is { “behav-
ior”=“soaring”, “background environment”=“open ocean”,
“painting style”=“oil painting” }. We concatenate the class
name and attribute values and use them to query the LLM.
Subsequently, we use these attributed synthetic images to
train an image classifier. AttrSyn greatly promotes the di-
versity of synthetic images, thereby achieving better zero-
shot classification performance without real-world images
available during the training stage.

3. Experiment

3.1. Dataset

The challenge posed by fine-grained image classification
within the zero-shot setting is notably difficult. To verify
the effect of AttrSyn, we consider the following two fine-
grained image classification datasets.

• CUB-200-2011 [19]: The CUB-200-2011 dataset con-
tains 200 different categories of bird photos, capturing
variations in appearance, pose, and background. Each im-
age is associated with a corresponding class label.

• CUB-200-Photo [20]: The CUB-200-Painting dataset
contains 200 different categories of bird paintings, and
these categories are consistent with CUB-200-2011.

We summarize the statistics of used datasets in Table 1,
from which we can see that the train set size of CUB-200-
2011 is nearly 6,000 and CUB-200-Painting doesn’t split
the train set. Thus we generate 6,000 training images for
both datasets.

3.2. Images Generation

Text-to-Image Model. Considering the quality of syn-
thetic images and the alignment with prompts, we choose

(a) Synthetic photos of base prompt.

(b) Synthetic photos of AttrSyn.

(c) Synthetic paintings of base prompt.

(d) Synthetic paintings of AttrSyn.

Figure 2. Visualization for the black-footed albatross class.

stable-diffusion-xl-base-1.0 [12] as the text-to-image model
to generate images.

Base Prompt. [18] introduced a bag of tricks aimed at
enhancing the diversity of synthetic images. In practice, we
adopt the core tricks of their method as our baseline, which
includes the domain and class name into the prompt, called
the base prompt. Specifically, for CUB-200-2011, our base
prompt template is “a {class name} bird, photo”, and we
use “a {class name} bird, painting” as the base prompt for
CUB-200-Painting.

AttrSyn. We employ LLM to produce the correspond-
ing attribute dimensions and attribute values for the two
datasets, then filter them with human-machine collabora-
tive strategies. The high-quality attribute dimensions that
we obtained are shown in Table 2, from which we can see
that each class of these two datasets has 125 different at-
tribute prompt configurations.



Classifier Method
CUB-Photo CUB-Painting

CoCa DINOv2 CoCa DINOv2

LR
Base Prompt 69.68 40.08 58.42 27.24

AttrSyn 70.56 ↑0.88 43.75 ↑3.67 61.34 ↑2.92 32.10 ↑4.86

SVM
Base Prompt 67.81 27.99 53.27 16.48

AttrSyn 69.85 ↑2.04 29.01 ↑1.02 56.06 ↑2.79 18.21 ↑1.73

MLP
Base Prompt 68.88 39.11 59.14 23.33

AttrSyn 69.58 ↑0.70 41.30 ↑2.19 61.04 ↑1.90 32.66 ↑9.33

Table 3. Performances of classifiers trained with the synthetic
datasets. We present the performance gain compared to the base
prompt set in green.

(a) CUB-Photo Scale (b) CUB-Painting Scale

Figure 3. Comparisons on scales of synthetic images.

Synthetic Images. To match the scale of the original
training setting and maintain class balance, we generate 30
images per class for both datasets. To qualitatively compare
the performance of AttrSyn and the base prompt, we sample
images of black-footed albatross from the two datasets un-
der the two methods, respectively. The visualization results
are in Figure 2, from which we can see that our AttrSyn
method shows significantly higher diversity than the base
prompt for both two datasets.

3.3. Training with Synthetic Images

To quantitatively evaluate the effect of synthetic images on
zero-shot image classification, we test the model perfor-
mance trained with them. Specifically, we use a vision en-
coder pre-trained on extensive images to extract the vision
embeddings. Subsequently, we train a classifier based on
these embeddings to test.

Vision Encoder. To evaluate the effect of our proposed
method across various vision encoders, we conducted
experiments utilizing two cutting-edge vision encoders:
CoCa [24] and DinoV2 [10].1

Classifier. To demonstrate the robustness of our method,
we use three different classifiers: Logistic Regression (LR),
SVM, and MLP in the experiments and compare their ef-
fects. For MLP, when we use CoCa as the vision encoder,
we use a 3-layer MLP with an input dimension of 768, an

1The specific checkpoint is CoCa-ViT-L-14-laion2B-s13B-b90k and
DinoV2-gaint.

output dimension of 200, and a hidden layer dimension of
512. When employing DinoV2 as the vision encoder, we
use a 4-layer MLP with an input dimension of 1,536, an
output dimension of 200, and hidden layer dimensions of
768 and 512. We train the MLP with a constant learning
rate of 5 × 10−4 for up to 400 epochs with an early stop-
ping strategy and split the synthetic images in an 8:2 ratio
for training and validation.

3.4. Experimental Results

Main Results. The performances of classifiers trained on
synthetic images generated by the base prompt and AttrSyn
are shown in Table 3, from which we can see that for both
datasets, AttrSyn outperforms the base prompt under any vi-
sion encoder and classifier settings, yielding a performance
increment ranging from 0.70 to 9.33.

Impact of Different Vision Encoders. It can be seen
from Table 3 that in our experiments, employing CoCa as
the vision encoder has higher performance than DinoV2.
We hypothesize that the CoCa checkpoint pre-trained on a
larger image dataset enables more generalized vision fea-
tures, and can perform better on synthetic images.

Impact of Synthetic Data Scales. To evaluate the impact
of varying scales of synthetic training data on test perfor-
mance, we generated synthetic images in quantities of 200,
2k, 4k, 6k, and 25k for both CUB-200-2011 and CUB-
200-Painting datasets. Subsequently, we evaluate the per-
formance of logistic regression using CoCa and DINOv2
as encoders, respectively. The experimental result curve
is shown in Figure 3, from which we can see that as the
scale of synthetic training images increases, the test per-
formances improve but eventually reach a plateau. In the
future, we consider it significant to investigate efficient se-
lection strategies of synthetic training images that can ef-
fectively complement the AttrSyn.

4. Conclusion
In conclusion, we explore the generation of synthetic im-
ages that are more effective during the training stage to fa-
cilitate zero-shot image classification. We underscore the
importance of focusing on the data generation stage and in-
troduce AttrSyn, a novel synthetic image generation method
that leverages large language models to generate attributed
prompts. These prompts enable the generation of attributed
images with greater diversity. The experiments conducted
on two fine-grained image classification datasets demon-
strate the effectiveness of our method across various con-
figurations of vision encoders and classifiers, highlighting
its potential in zero-shot image classification tasks. Further-
more, experiments on the scaling of synthetic images reveal
the significance of exploring strategies for synthetic image
selection that complement AttrSyn effectively.
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