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Abstract

The ability to train Deep Neural Networks (DNNs) with constraints is instru-1

mental in improving the fairness of modern machine-learning models. Many2

algorithms have been analysed in recent years, and yet there is no standard, widely3

accepted method for the constrained training of DNNs. In this paper, we provide4

a challenging benchmark of real-world large-scale fairness-constrained learning5

tasks, built on top of the US Census (Folktables, [22]). We point out the the-6

oretical challenges of such tasks and review the main approaches in stochastic7

approximation algorithms. Finally, we demonstrate the use of the benchmark8

by implementing and comparing three recently proposed, but as-of-yet unim-9

plemented, algorithms both in terms of optimization performance, and fairness10

improvement. We release the code of the benchmark as a Python package at11

https://github.com/humancompatible/train.12

1 Introduction13

There has been a considerable interest in detecting and mitigating bias in artificial intelligence (AI)14

systems, recently. Multiple legislative frameworks, including the AI Act in the European Union,15

require the bias to be removed, but there is no agreement on what the correct definition of bias is or16

how to remove it. A natural translation of the requirement of removing bias into the formulation17

of training of deep neural network (DNN) utilizes constraints bounding the difference in empirical18

risk across multiple subgroups [13, 42, 48]. Over the past five years, there have been numerous19

algorithms ([29, 5, 17, 43, 6, 40, 41, 10, 18, 49, 27, 32, 33]) proposed to solve convex and non-convex20

empirical-risk minimization (ERM) problems subject to constraints bounding the absolute value of21

empirical risk. Numerous other algorithms of this kind could be construed, based on a number of22

design choices, including:23

• sampling techniques for the ERM objective and the constraints, either the same or different;24

• use of first-order or higher-order derivatives, possibly in quasi-Newton methods;25

• use of globalization strategies such as filters or line search;26

• use of “true” globalization strategies including random initial points and random restarts in order27

to reach global minimizers.28

Nevertheless, there is no single toolkit implementing the algorithms, which would allow for their29

easy comparison, and there is no benchmark to test the combinations of design choices on.30

In this paper, we consider the constrained ERM problem:31

min
x∈Rn

E[f(x, ξ)] s.t. E[c(x, ζ)] ≤ 0, (1)
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Table 1: Particular formulations of the constraint function c to enforce fairness.
Model Our formulation

Demographic Parity [24] |ED[groupA][ℓ(fθ(X), Y )]− ED[groupB][ℓ(fθ(X), Y )]| ≤ δ
Equal opportunity [31] |ED[groupA,Y =+][ℓ(fθ(X), Y )]− ED[groupB,Y =+][ℓ(fθ(X), Y )]| ≤ δ
Equalized odds [31]

∑
v∈{+,−} |ED[groupA,Y =v][ℓ(fθ(X), Y )]− ED[groupB,Y =v][ℓ(fθ(X), Y )]| ≤ δ

where ξ and ζ are random variables. Further, we provide an automated way of constructing the ERM32

formulations out of a computation graph of a neural network defined by PyTorch or TensorFlow,33

the choice of the constraints (see Table 1), and a definition of the protected subgroups to apply34

the constraints to. Specifically, we provide means of utilizing the US Census data via the Python35

package Folktables, together with definitions of up to 5.7 billion protected subgroups. This presents36

a challenging benchmark in stochastic approximation for the constrained training of deep neural37

networks.38

Our contributions. The contributions of this paper are:39

• a literature review of algorithms subject to handling (1);40

• a toolbox that (i) implements four algorithms applicable in real-world situations, and (ii)41

provides an easy-to-use benchmark on real-world fairness problems;42

• numerical experiments that compare these algorithms on a real-world dataset, and a compar-43

ison with alternative approaches to fairness.44

Paper structure. The rest of the paper is organized as follows. Section 2 reviews related works and45

presents the relevant notions of fairness. Section 3 introduces the algorithms. Section 4 reports on46

our experiments. Section 5 concludes.47

2 Related work, and background in fairness48

In the literature on fairness, one distinguishes among pre-processing, in-processing, and post-49

processing. Pre-processing methods focus on modifying the training data to mitigate biases [50, 23].50

In-processing methods enforce fairness during the training process by modifying the learning algo-51

rithm itself [53]. Post-processing methods adjust the model’s predictions after training [35]. The52

constrained ERM approach (1) belongs to the class of in-processing methods.53

In-processing methods include several approaches. One trend consists in jointly learning a predictor54

function and an adversarial agent that aims to reconstitute the subgroups from the predictor [1,55

38, 39, 25]. Another approach consists in adding “penalization” terms to the empirical risk term.56

These additional penalization terms, commonly referred to as regularizers, promote models that are57

a compromise between fitting the training data, and optimizing a fairness metric. Differentiable58

regularizers include, among others, HSIC [37], Fairret [11], or Prejudice Remover [34].59

Closer to our setting, [16] considers minimizing the empirical risk subject to the so-called rate60

constraints based on the model’s prediction rates on different datasets. These rates, derived from61

a dataset, give rise to non-convex, non-smooth, and large-scale inequality constraints akin to (1). The62

authors of [16] argue that hard constraints, although leading to a more difficult optimization problem,63

offer advantages over using a weighted sum of multiple penalization terms. Indeed, while the choice64

of weights for the penalization terms may depend on the dataset, specifying one constraint for each65

goal is easier for practitioners. In addition, a penalization-based model provides a predictor that66

balances minimizing the data-fit term and penalties in an opaque way, whereas a constraint-based67

model allows for a clearer understanding of the model design: minimizing the data-fit term subject to68

“hard” fairness constraints. Rate constraints differ from those in (1) in that they are piecewise-constant,69

rendering first-order methods unsuitable for solving them.70

Major toolboxes for evaluating the fairness of models or for training models with fairness guarantees71

include AIF360 [4] and FairLearn [8]. Other libraries include [21], which computes the Pareto front72

of accuracy and fairness metrics for high-capacity models, and [11], which provides differentiable73

fairness-inducing penalization terms.74
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A detailed survey of fairness-oriented datasets is provided in [36], and new datasets are derived75

in [22]. The benchmark [30] provides a review of the existence of biases in prominent datasets,76

finding that “not all widely used fairness datasets stably exhibit fairness issues”, and assesses the77

performance of a wide range of in-processing fairness methods in addressing biases, focusing on78

differentiable minimization only. Other benchmarks of fairness methods include [20, 26, 46, 15]. The79

statistical aspects of the fairness-constrained Empirical Risk Minimization have only been considered80

recently; see e.g. [12].81

The template problem (1) encompasses fairness-enforcing approaches that find applications in high-82

risk domains, such as credit scoring, hiring processes, medicine and healthcare [14], ranking and83

recommendation [47], but also in forecasting the observations of linear dynamical systems [55], or84

in two-sided economic markets [54]. In addition, solving (1) is of interest in other fields, such as85

compression of neural networks [13], improving statistical performance of neural networks [42, 48],86

or the training of neural networks with constraints on the Lipschitz bound [45]. We note that the87

presence of large-scale constraints is a common feature to all the aforementioned methodologies.88

Deep neural networks (DNNs). Consider a dataset of N observations D = {(Xi, Yi), i =89

1, ..., N}. We seek some function fθ such that fθ(Xi) ≈ Yi. A typical formulation of this task is the90

following regression problem:91

min
θ∈Rn

1

N

N∑
i=1

ℓ(fθ(Xi), Yi) +R(θ). (2)

Here, ℓ : R× R → R is a loss function, such as the logistic loss ℓ(y; z) = log(1 + e−yz), the hinge92

loss ℓ(y; z) = max{0, 1 − yz}, the absolute deviation loss ℓ(y; z) = |y − z|, or the square loss93

ℓ(y; z) = 1
2 (y − z)2. The term R is a regularizer, and fθ is a deep neural network (DNN) of depth L94

with parameters θ. The DNN fθ is defined recursively, for some input X , as95

a0 = X, ai = ρi(Vi(θ)ai−1), for every i = 1, . . . , L, fθ(X) = aL, (3)

where Vi(·) are linear maps into the space of matrices, and ρi are activation functions applied96

coordinate-wise, such as ReLU max(0, t), quadratics t2, hinge losses max{0, t}, and SoftPlus97

log(1 + et). A dataset D is described by attributes (or features), such as age, income, gender, etc.98

The attribute which the DNN is trained to predict is called the class attribute. We denote the class99

attribute by Y , whereas the predicted value given by the DNN is denoted by Ŷ . Both Y and Ŷ are100

binary and take values in {+,−}.101

Fairness-aware learning applied to DNNs. The goal of this approach is to reduce discriminatory102

behavior in the predictions of a DNN across different demographic groups (e.g., male vs. female).103

The demographic groups are also reffered to as subgroups. The attributes such as race or gender which104

must be handled cautiously are called protected. We denote by S the protected attribute S ∈ {s, s̄}105

where s denotes the protected group and s̄ denotes the non-protected group. Denote by D[s] and106

D[s̄] the observations in D such that S = s and S = s̄, respectively. A way to impose fairness on the107

learned predictor is to equip (2) with suitable constraints. Some possible constraint choices are shown108

in Table 1. Choosing loss difference bound as the constraint and setting δ > 0 yields formulation:109

min
θ∈Rn

1

N

N∑
i=1

ℓ(fθ(Xi), Yi) +R(θ)

s.t. − δ ≤ 1

|D[s]|
∑

Xi,Yi∈D[s]

ℓ(fθ(Xi), Yi)−
1

|D[s̄]|
∑

Xi,Yi∈D[s̄]

ℓ(fθ(Xi), Yi) ≤ δ.

(4)

Fairness metrics. There exist tens of fairness metrics [51], however, it was pointed out in [3, Ch. 3]110

that most fairness metrics may be seen as combinations of independence, separation, and sufficiency.111

These baseline fairness criteria cannot be attained simultaneously. Moreover, there is a trade-off112

between attaining the baseline fairness metrics and the prediction accuracy, i.e., the probability that113

the predicted value is equal to the actual value. As a result, we seek an optimal trade-off between114

attaining the fairness metrics and minimizing the prediction inaccuracy. We follow the definitions in115

[3] of the baseline fairness metrics applied to a binary classification task.116
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Independence (Ind) This fairness criterion requires the prediction Ŷ to be statistically independent117

of the protected attribute S. Equivalent definitions of independence for a binary classifier Ŷ are118

referred to as statistical parity (SP), demographic parity, and group fairness. Independence is the119

simplest criterion to work with, both mathematically and algorithmically. In a binary classification120

task, independence implies the equality of P (Ŷ = + | S = s) and P (Ŷ = + | S = s̄) and the121

fairness gap is computed as122

|P (Ŷ = + | S = s)− P (Ŷ = + | S = s̄)|.

Separation (Sp) Unlike independence, the separation criterion requires the prediction Ŷ to be123

statistically independent of the protected attribute S, given the true label Y . The separation criterion124

also appears under the name Equalized odds (EO). In a binary classification task, the separation125

criterion requires that all groups experience the same true negative rate and the same true positive rate.126

Formally, we require the equality of P (Ŷ = + | S = s, Y = v) and P (Ŷ = + | S = s̄, Y = v), for127

every v ∈ {+,−}. The fairness gap may be computed as128 ∑
v∈{+,−}

|P (Ŷ = + | S = s, Y = v)− P (Ŷ = + | S = s̄, Y = v)|.

Sufficiency (Sf) The sufficiency criterion is satisfied if the true label Y is statistically independent129

of the protected attribute S, given the prediction Ŷ . In a binary classification task, the sufficiency130

criterion requires a parity of positive and negative predictive values across the groups. Formally,131

we require the equality of P (Y = + | Ŷ = v, S = s) and P (Y = + | Ŷ = v, S = s̄), for every132

v ∈ {+,−}, and the fairness gap may be computed as133 ∑
v∈{+,−}

|P (Y = + | S = s, Ŷ = v)− P (Y = + | S = s̄, Ŷ = v)|.

3 Algorithms134

We recall that we consider the optimization problem135

min
x∈Rn

F (x) s.t. C(x) ≤ 0, (5)

where the functions F : Rn → R and C : Rn → Rm are defined as expectations of functions f and136

c, which depend on random variables ξ and ζ, respectively. Solving (5) has the following challenges:137

• large-scale objective and constraint functions, which require sampling schemes,138

• the necessity of incorporating inequality constraints, not merely equality constraints (see fairness139

formulations in Table 1),140

• the necessity to cope with the nonconvexity and nonsmoothness of F and C, due to the presence141

of neural networks.142

In this section, we identify the algorithms that address these challenges most precisely. However, we143

note that there exists currently no algorithm with guarantees for such a general setting.144

Recalls and notation. We denote the projection of a point x onto a set X by projX (x) =145

argminv∈X ∥x− v∥2. We denote by N ∼ G(p0) sampling a random variable from the geometric146

distribution with a parameter p0, i.e., the probability that N = n equals (1− p0)
np0 for n ≥ 0. We147

distinguish between the random variable ξ associated with the objective function and the random148

variable ζ associated with the constraint function. Their probability distributions are denoted by149

Pξ and Pζ . For an integer J ∈ N, a set {ξj}Jj=1 of independent and identically distributed random150

variables ξ1, . . . , ξJ
iid∼ Pξ is called a mini-batch. Inspired by [40], we use the following notation for151

the stochastic estimates computed from a mini-batch of size J :152

∇J
f(x) = 1

J

J∑
j=1

∇f(x, ξj), c
J
(x) = 1

J

J∑
j=1

c(x, ζj), ∇J
c(x) = 1

J

J∑
j=1

∇c(x, ζj). (6)
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Table 2: Assumptions on objective and constraint functions, F and C, which allow for theoretical
convergence proofs.

Objective function F Constraint function C

Algorithm st
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w
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C
(x
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(x
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w
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L
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∇
C
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m

e
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c.
L

ip
sc

hi
tz

SGD ✓ (✓) (✓) ✓

[6] [29] [17] ✓ – ✓ – – ✓ – – – ✓ –
[40] ✓ – ✓(C3) – – ✓ – – – ✓(C3) –
[49] [18] ✓ – ✓ – – (✓) ✓ – – ✓ –
[41] ✓ – ✓(C2) – – (✓) ✓ – – ✓(C2) –
[10] ✓ – ✓(+ cvx) – – ✓ – ✓ – – –
[43] ✓ – ✓ – ✓ ✓ – – – ✓ –
SSL-ALM [32] ✓ – ✓ – ✓ (✓) ✓ ✓ – – –
Stoch. Ghost [27] ✓ – ✓ – ✓ (✓) ✓ – – ✓ –
Stoch. Switch. Subg. [33] ✓ ✓ – – ✓ (✓) ✓ – ✓ – –

3.1 Review of methods for constrained ERM153

We compare recent constrained optimization algorithms considering a stochastic objective function in154

Table 2. We note that most of them do not consider the case of stochastic constraints. Among those155

which do consider stochastic constraints, only three admit inequality constraints. Moreover, with the156

exception of [33], all the algorithms in Table 2 assume F to be at least C1, which makes addressing157

the challenge of nonsmoothness of F infeasible. The recent paper [19] leads us to the conclusion158

that assuming the objective and constraint functions to be tame and locally Lipschitz is a suitable159

requirement for solving (5) with theoretical guarantees of convergence. At this point, however, no160

such algorithm exists, to the best of our knowledge.161

Consequently, we consider the practical performance of the algorithms that address the challenges of162

solving (5) most closely: Stoch. Ghost [27], SSL-ALM [32], and Stoch. Switching Subgradient [33].163

3.2 Stochastic Ghost Method (StGh)164

The Stochastic Ghost method was described in [27] where a method for solving (1) in the non-165

stochastic setting [28] was combined with the stochastic sampling inspired by an unbiased Monte166

Carlo method [9]. The method [28] for the non-stochastic setting is based on solving subproblem167

(7) to obtain a direction d to preform the classical line search. Here, e ∈ Rm is a vector with all168

elements equal to one, τ and β > 0 are user-prescribed constants and κk is defined as a certain169

convex combination of optimization subproblems related to C and ∇C. The definition of κk enables170

to expand the feasibility region so that (7) is always feasible. As the problem (1) is stochastic, the171

subproblem (7) is modified to a stochastic version (8), using the notation in (6):172

mind ∇F (xk)
⊤d+ τ

2∥d∥
2,

s.t. C(xk) +∇C(xk)
⊤d ≤ κke,

∥d∥∞ ≤ β,
(7)

mind ∇J
f(xk)

⊤d+ τ
2∥d∥

2,

s.t. c
J
(xk) +∇J

c(xk)
⊤d ≤ κk

J
e,

∥d∥∞ ≤ β.

(8)173

In the stochastic setting, an unbiased estimate d(xk) of the line search direction d is needed174

and it is computed using four particular mini-batches as follows. To facilitate comprehen-175

sion, we denote XJ
k = {Xk,j}Jj=1 a mini-batch of size J with the j-th element Xk,j =176

(∇f(xk, ξk,j), c(xk, ζk,j),∇c(xk, ζk,j)). First, we sample a random variable N ∼ G(p0) from177

the geometric distribution. Then we sample the mini-batches X1
k and X2N+1

k and we partition the178

mini-batch X2N+1

k of size 2N+1 into two mini-batches odd(X2N+1

k ) and even(X2N+1

k ) of size 2N .179

Finally, we solve (8) for each of the four mini-batches, denoting by d(xk;X
J
k ) the solution of (8) for180
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the corresponding mini-batch XJ
k . We obtain181

d(xk) =
d(xk;X

2N+1

k )− 1
2

(
d(xk; odd(X

2N+1

k )) + d(xk; even(X
2N+1

k ))
)

(1− p0)Np0
+ d(xk;X

1
k). (9)

An update between the iterations xk and xk+1 is computed as182

xk+1 = xk + αkd(xk),

where the deterministic stepsize αk fulfills the classical requirement to be square-summable183 ∑∞
k=1 (αk)

2
< ∞ but not summable

∑∞
k=1 αk = ∞. For more details, see Algorithm 1.184

3.3 Stochastic Smoothed and Linearized AL Method (SSL-ALM)185

The Stochastic Smoothed and Linearized AL Method (SSL-ALM) was described in [32] for op-186

timization problems with stochastic linear constraints. Although problem (1) has non-linear in-187

equality constraints, we use the SSL-ALM due to the lack of algorithms in the literature dealing188

with stochastic non-linear constraints; see Table 2. The transition between equality and inequality189

constraints is handled with slack variables. Following the structure of [32], we minimize over190

the set X = Rn × Rm
≥0. The method is based on the augmented Lagrangian (AL) function191

Lρ(x, y) = F (x) + y⊤C(x) + ρ
2∥C(x)∥2, which is a result of merging the Lagrange function192

with the penalty methods [7]. Adding a smoothing term yields the proximal AL function193

Kρ,µ(x, y, z) = Lρ(x, y) +
µ

2
∥x− z∥2.

The SSL-ALM method was originally proposed in [32] where it is interpreted as an inexact gradient194

descent step on the Moreau envelope. An important property of the Moreau envelope is that its195

stationary points coincide with those of the original function.196

The strength of this method is that, as opposed to the Stochastic Ghost method, it does not use large197

mini-batch sizes. In each iteration, we sample ξ
iid∼ Pξ to evaluate the objective and ζ1, ζ2

iid∼ Pζ to198

evaluate the constraint function and its Jacobian matrix, respectively. The function199

G(x, y, z; ξ, ζ1, ζ2) = ∇f(x, ξ) +∇c(x, ζ1)
⊤y + ρ∇c(x, ζ1)

⊤c(x, ζ2) + µ(x− z) (10)

is defined so that, in iteration k, Eξ,ζ1,ζ2 [G(xk, yk+1, zk; ξ, ζ1, ζ2)] = ∇Kρ,µ(xk, yk+1, zk). Omit-200

ting some details, the updates are performed using some parameters η, τ , and β as follows:201

yk+1 = yk + ηc(x, ζ1),

xk+1 = projX (xk − τG(xk, yk+1, zk; ξ, ζ1, ζ2)),

zk+1 = zk + β(xk − zk).

(11)

For more details, see Algorithm 2.202

3.4 Stochastic Switching Subgradient Method (SSw)203

The Stochastic Switching Subgradient method was described in [33] for optimization problems204

over a closed convex set X ⊂ Rd which is easy to project on and for weakly convex objective and205

constraint functions F and C which may be non-smooth. This is why the notion of gradient of F and206

C is replaced by a more general notion of subgradient, which is an element of a subdifferential.207

The algorithm requires as input a prescribed sequence of infeasibility tolerances ϵk and sequences of208

stepsizes ηfk and ηck. In iteration k, we sample ζ1, . . . , ζJ
iid∼ Pζ to compute an estimate c

J
(xk). If209

c
J
(xk) is smaller than ϵk, we sample ξ iid∼ Pξ and an update between xk and xk+1 is computed using210

a stochastic estimate Sf (xk, ξ) of an element of the subdifferential ∂F (xk) of the objective function:211

xk+1 = projX (xk − ηfkS
f (xk, ξ)).

Otherwise, we sample ζ
iid∼ Pζ and the update is computed using a stochastic estimate Sc(xk, ζ) of212

an element of the subdifferential ∂C(xk) of the constraint function:213

xk+1 = projX (xk − ηckS
c(xk, ζ)).

6



In either case, the updates are only saved starting from a prescribed index k0 and the final output214

is sampled randomly from the saved updates. For more details, see Algorithm 3. The algorithm215

presented here is slightly more general than the one presented in [33]: we allow for the possibility216

of different stepsizes for the objective update, ηfk , and the constraint update ηck, while the original217

method employs equal stepsizes ηfk = ηck.218

4 Experimental evaluation219

In this section, we illustrate the presented algorithms on a real-world instance of the ACS dataset,220

comparing how they fare with optimization and fairness metrics.221

4.1 Dataset for fair ML222

[22] proposed a large-scale dataset for fair Machine Learning, based on the ACS PUMS data sample223

(American Community Survey Public Use Microdata Sample). The ACS survey is sent annually224

to approximately 3.5 million US households in order to gather information on features such as225

ancestry, citizenship, education, employment, or income. Therefore, it has the potential to give rise to226

large-scale learning and optimization problems.227

We use the ACSIncome dataset over the state of Oklahoma, and choose the binary classification task228

of predicting whether an individual’s income is over $50,000. The dataset contains 9 features and229

17,917 data points, and may be accessed via the Python package Folktables. We choose race (RAC1P)230

as the protected attribute. In the original dataset, it is a categorical variable with 9 values. For the231

purposes of this experiment, we binarize it to obtain the non-protected group of “white” people and232

the protected group of “non-white” people. The dataset is split randomly into train (80%, 14,333233

points) and test (20%, 3,584 points) subsets and it is stratified with respect to the protected attribute,234

i.e., the proportion of “white” and “non-white” samples in the training and test sets is equivalent to235

that in the full dataset (30.8% of positive labels in group “white”, 20.7% in the group “non-white”).236

The protected attributes are then removed from the data so that the model cannot learn from them237

directly. The data is normalized using Scikit-Learn StandardScaler.238

Note that ACSIncome is a real-world dataset for which ERM-based predictors without fairness239

safeguards are known to learn biases [30]. Accordingly, Table 3 (line 1) shows that an ERM predictor240

without fairness safeguards has poor fairness metrics; see also Figure 4.241

4.2 Experiments242

Numerical setup. Experiments are conducted on an Asus Zenbook UX535 laptop with AMD243

Ryzen 7 5800H CPU, and 16GB RAM. The code is written in Python with the PyTorch package [44].244

Problems. We consider the constrained ERM problem (4) – R = 0, and, as baselines, the ERM245

problem (2) without any regularization, R = 0, and with a fairness inducing regularizer R that246

promotes small difference in accuracy between groups, provided by the Fairret library [11]. In all247

problems, we take as loss function the Binary Cross Entropy with Logits Loss248

ℓ(fθ(Xi), Yi) = −Yi · log σ(fθ(Xi))− (1− Yi) · log(1− σ(fθ(Xi))), (12)

where σ(z) = 1
1+e−z is the sigmoid function, and the prediction function fθ is a neural network with249

2 interconnected hidden layers of sizes 64 and 32 and ReLU activation, with a total of 194 parameters.250

Algorithms and parameters. We assess the performance of four algorithms for solving the251

constrained problem (4): (1) Stochastic Ghost (StGh) (Sec. 3.2 - parameters p0 = 0.4, α0 = 0.05,252

ρ = 0.8, τ = 1, β = 10, λ = 0.5, α̂ = 0.05), (2) SSL-ALM (Sec. 3.3 - parameters µ = 2.0,253

ρ = 1.0, τ = 0.01, η = 0.05, β = 0.5, My = 10), (3) plain Augmented Lagrangian Method254

ALM (Sec. 3.3, smoothing term removed µ = 0, otherwise the same setting as SSL-ALM), and (4)255

Stochastic Switching Subgradient (SSw) (Sec. 3.4 - ηfk = 0.5, ηck = 0.05, ϵk = 10−4 if k < 500,256

ϵk = 0.97ϵk−1 for every k ≥ 500 at each epoch). We also provide the behavior of SGD for solving257

the ERM problem, both with no fairness safeguards (SGD), and with fairness regularization provided258

by the Fairret library [11] (SGD-Fairret). These methods serve as baselines. When estimating the259

constraints, we sample an equal number of data points for every subgroup.260
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Figure 1: Train loss and constraint values (first and second row) over time (s) on the ACS Income
dataset for each algorithm. From left to right: StGh, SSL-ALM, ALM, SSw, SGD, SGD-Fairret.

Figure 2: Test loss and constraint (first and second row) values over time (s) on the ACS Income
dataset for each algorithm. From left to right: StGh, SSL-ALM, ALM, SSw, SGD, SGD-Fairret.

Optimization performance. Figures 1 and 2 present the evolution of loss and constraint values over261

the train and test datasets for the four algorithms addressing the constrained problem (columns 1–4),262

as well as for the two baselines: SGD without fairness (col. 5), and SGD with fairness regularization263

(col. 6). Each algorithm is run 10 times, and the plots display the mean, median, and quartiles values.264

To a certain extent, the four algorithms (col. 1–4) succeed in minimizing the loss and satisfying the265

constraints on the train set. The AL-based methods (col. 2 and 3) demonstrate a better behavior266

compared to StGh and SSw; indeed, StGh exhibits higher variability in both loss and constraint values267

(col. 1), while SSw fails to satisfy the constraints within the required bounds (col. 4). We were unable268

to identify parameter settings for SSw that simultaneously satisfy the constraints and minimize the269

objective function. Appendix B provides the behavior of SSw with equal objective and constraint and270

stepsizes; the constraints are satisfied well, but the objective function is barely minimized. The ERM271

baselines (col. 5 and 6) exhibit lower variability in the trajectories, and minimize the loss in less time,272

but as expected, they do not satisfy the constraints.273

The ALM and SSL-ALM schemes are the closest to satisfying the constraints on the train set. On the274

test set, however, they are slightly biased towards negative values. Such bias is expected on unseen275

data and reflects the generalization behavior of fairness-constrained estimators. This is beyond the276

scope of the current work; see e.g. [12].277

Fairness performance. Figure 3 presents the distribution of predictions over both groups. The278

distribution of prediction without fairness guarantees (col. 5) clearly does not meet the group279

fairness standard. Indeed, the “non-white” group has a significantly higher likelihood than the280

“white” group of receiving small predicted values, and the converse holds for large predicted values.281

The SGD-Fairret model (col. 6) lies between the four constrained models and SGD. Among the282

fairness-constrained models, the ALM and SSL-ALM distributions are the closest to the distributions283

of SGD without fairness, which is consistent with retaining good prediction information. The four284

models that approximately solve the fairness formulation (col. 1–4) all have closer distributions285

across groups. Numerically, this is expressed in Table 3 (col. Wd), which reports the value of the286

Wasserstein distance between group distributions for each model.287

Table 3 displays the fairness metrics presented in Section 2: independence (Ind), separation (Sp), and288

sufficiency (Sf), along with inaccuracy (Ina). The mean value and standard deviation over 10 runs are289

presented for the four fairness-constrained models and the two baselines, both on train and test sets.290

Figure 4 presents the mean values as spider plots. For all metrics, smaller is better.291
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Figure 3: Distribution of predictions for each algorithm. Left to right: StGh, SSL-ALM, ALM, SSw,
SGD, SGD-Fairret. Blue and red denote “white” and “non-white” groups.

(a) Train set (b) Test set

Figure 4: Average value of the three fairness metrics (independence (Ind), separation (Sp), and
sufficiency (Sf)), along with inaccuracy (Ina). For all metrics, smaller values are better.

Table 3: Fairness metrics (independence, separation, sufficiency), inaccuracy, and Wasserstein
distances between groups (Wd) for the four constrained estimators and the two baselines.

Train Test

Algname Ind Sp Ina Sf Wd Ind Sp Ina Sf Wd

SGD 0,094±0,004 0,132±0,007 0,201±0,001 0,115±0,006 0,008±0,000 0,097±0,006 0,176±0,016 0,215±0,002 0,171±0,009 0,008±0,000

StGh 0,048±0,026 0,049±0,028 0,273±0,024 0,200±0,038 0,002±0,001 0,049±0,029 0,096±0,039 0,276±0,022 0,211±0,033 0,003±0,002

ALM 0,058±0,007 0,061±0,016 0,240±0,012 0,197±0,011 0,003±0,000 0,058±0,012 0,114±0,014 0,244±0,007 0,221±0,017 0,003±0,001

SSL-ALM 0,066±0,009 0,071±0,015 0,233±0,017 0,186±0,013 0,003±0,001 0,066±0,011 0,117±0,023 0,240±0,012 0,215±0,022 0,004±0,001

SSw 0,077±0,029 0,115±0,029 0,224±0,017 0,133±0,015 0,001±0,001 0,080±0,029 0,144±0,050 0,229±0,013 0,175±0,031 0,002±0,001

SGD-Fairret 0,091±0,012 0,121±0,017 0,201±0,002 0,106±0,010 0,005±0,001 0,094±0,010 0,174±0,019 0,213±0,002 0,180±0,022 0,006±0,001

Among the four fairness-constrained models, StGh performs best in terms of independence and292

separation, but worst in terms of accuracy. SSw achieves fairness and accuracy metrics that have293

intermediate values relative to those of the unconstrained SGD model, and those of the other294

constrained models. This is consistent with the observation that the optimization method, with295

our choice of parameters, favored minimizing the objective over satisfying the constraints. The ALM296

and SSL-ALM methods provide the best compromise: they improve independence and separation297

relative to the SGD model, while moderately degrading accuracy. SGD-Fairret slightly improves298

sufficiency relative to the SGD model. The four models constrained in the difference of loss between299

subgroups have higher values of sufficiency. Similar observations hold for metrics on the test set.300

5 Conclusion301

To the best of our knowledge, this paper provides the first benchmark for assessing the performance302

of optimization methods on real-world instances of fairness constrained training of models. We303

highlight the challenges of this approach, namely that objective and constraints are non-convex,304

non-smooth, and large-scale, and review the performance of four practical algorithms.305

Limitations Our work identifies that there is currently no algorithm with guarantees for solving306

the fairness constrained problem. Above all, we hope that this work, along with the Python toolbox307

for easy benchmarking of new optimization methods, will stimulate further interest in this topic.308

Also, we caution readers that the method present here is not a silver-bullet that handles all biases309

and ethical issues of training ML models. In particular, care must be taken that fair ML is part of a310

interdisciplinary pipeline that integrates the specifics of the use-case, and that it does not serve as an311

excuse for pursuing Business-As-Usual policies that fail to tackle ethical issues [2, 52].312
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A Algorithms in more detail470

In this section, we provide the pseudocodes of algorithms presented in Section 3 as Algorithms 1 to 3.471

Recall that we denote by XJ
k = {Xk,j}Jj=1 a mini-batch of size J with the j-th element472

Xk,j = (∇f(xk, ξk,j), c(xk, ζk,j),∇c(xk, ζk,j)). (13)

B Additional experiments on SSw473

This Section provides additional information on the behavior of SSw. Figure 5 shows the evolution474

of the objective value and constraints for 10 runs of the SSw algorithm, over train and test, with equal475

objective and constraint stepsizes ηfk = ηck = 0.02. In that case, the constraints are satisfied well, but476

the objective function is barely minimized.477

13



Algorithm 1 Stochastic Ghost algorithm

Require: Training dataset D, constraint dataset C, initial neural network weights x0

Require: Parameters p0 ∈ (0, 1), α0, α̂, ρ, τ , β
1: for Iteration k = 0 to K − 1 do
2: Sample ξ

iid∼ Pξ and ζ
iid∼ Pζ

3: Sample N ∼ G(p0)
4: Set J = 2N+1

5: Sample a mini-batch {ζj}Jj=1 so that ζ1, . . . , ζJ
iid∼ Pζ

6: Sample a mini-batch {ξj}Jj=1 so that ξ1, . . . , ξJ
iid∼ Pξ

7: Set X1
k and X2N+1

k using (13)
8: Compute d(xk) from (9)
9: Set αk = αk−1(1− α̂αk−1)

10: Update xk+1 = xk + αkd(xk)
11: end for

Algorithm 2 Stochastic Smoothed and Linearized AL Method for solving (1)

Require: Training dataset D, constraint dataset C, initial neural network weights x0

Require: Parameters µ, η, My > 0, τ , β, ρ ≥ 0
1: for Iteration k = 0 to K − 1 do
2: Sample ξ

iid∼ Pξ and ζ1, ζ2
iid∼ Pζ

3: yk+1 = yk + ηc(x, ζ1)
4: if ||yk+1|| ≥ My then
5: yk+1 = 0
6: end if
7: xk+1 = projX (xk − τG(xk, yk+1, zk; ξ, ζ1, ζ2)), where G is defined in (10)
8: zk+1 = zk + β(xk − zk)
9: end for

Algorithm 3 Stochastic Switching Subgradient Method

Require: Training dataset D, constraint dataset C, initial neural network weights x0 ∈ X
Require: Total number of iterations K, sequence of tolerances of infeasibility ϵk ≥ 0, sequences of

stepsizes ηfk and ηck, mini-batch size J , starting index k0 for recording outputs, I = ∅
1: for Iteration k = 0 to K − 1 do
2: Sample a mini-batch {ζj}Jj=1 so that ζ1, . . . , ζJ

iid∼ Pζ

3: Set cJ(xk) =
1
J

∑J
j=1 c(xk, ζj)

4: if cJ(xk) ≤ ϵk then
5: Sample ξ

iid∼ Pξ and generate Sf (xk, ξ)

6: Set xk+1 = projX (xk − ηfkS
f (xk, ξ)) and, if k ≥ k0, I = I ∪ {k}

7: else
8: Sample ζ

iid∼ Pζ and generate Sc(xk, ζ)
9: Set xk+1 = projX (xk − ηckS

c(xk, ζ)) and, if k ≥ k0, I = I ∪ {k}
10: end if
11: end for
12: Output: xτ with τ randomly sampled from I using P (τ = k) = ηk∑

s∈I ηs
.
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Figure 5: Loss and constraint values over time (s) on the train and test set (first and second row) on
the ACS Income dataset for the SSw algorithm.
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• The authors should provide scripts to reproduce all experimental results for the new608
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versions (if applicable).612

• Providing as much information as possible in supplemental material (appended to the613

paper) is recommended, but including URLs to data and code is permitted.614

6. Experimental setting/details615

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-616

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the617

results?618

Answer: [Yes]619

Justification: A description of the setup used to produce experiments is provided at the top620

of Section 4.2. The same applies for the figures of the Appendix.621

Guidelines:622

• The answer NA means that the paper does not include experiments.623

• The experimental setting should be presented in the core of the paper to a level of detail624

that is necessary to appreciate the results and make sense of them.625

• The full details can be provided either with the code, in appendix, or as supplemental626

material.627

7. Experiment statistical significance628

Question: Does the paper report error bars suitably and correctly defined or other appropriate629

information about the statistical significance of the experiments?630

Answer: [Yes]631

Justification: All the plots, except the spider plots (Fig. 4), show mean, median, first and632

third quartiles. All the tables report mean and standard deviation. The spider plots (Fig.633

4) provide a visual representation of the mean data in Table 3. Standard deviation are not634

displayed in Fig. 4, but they are reported in Table 3.635

Guidelines:636

• The answer NA means that the paper does not include experiments.637

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-638

dence intervals, or statistical significance tests, at least for the experiments that support639

the main claims of the paper.640

• The factors of variability that the error bars are capturing should be clearly stated (for641

example, train/test split, initialization, random drawing of some parameter, or overall642

run with given experimental conditions).643

• The method for calculating the error bars should be explained (closed form formula,644

call to a library function, bootstrap, etc.)645

• The assumptions made should be given (e.g., Normally distributed errors).646

• It should be clear whether the error bar is the standard deviation or the standard error647

of the mean.648

• It is OK to report 1-sigma error bars, but one should state it. The authors should649

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis650

of Normality of errors is not verified.651

• For asymmetric distributions, the authors should be careful not to show in tables or652

figures symmetric error bars that would yield results that are out of range (e.g. negative653

error rates).654

• If error bars are reported in tables or plots, The authors should explain in the text how655

they were calculated and reference the corresponding figures or tables in the text.656

8. Experiments compute resources657

Question: For each experiment, does the paper provide sufficient information on the com-658

puter resources (type of compute workers, memory, time of execution) needed to reproduce659

the experiments?660

18



Answer: [Yes]661
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details) at the top of Section 4.2. Time to run the experiments is reported directly in the663
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