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Abstract

The ability to train Deep Neural Networks (DNNs) with constraints is instru-
mental in improving the fairness of modern machine-learning models. Many
algorithms have been analysed in recent years, and yet there is no standard, widely
accepted method for the constrained training of DNNs. In this paper, we provide
a challenging benchmark of real-world large-scale fairness-constrained learning
tasks, built on top of the US Census (Folktables, [22]). We point out the the-
oretical challenges of such tasks and review the main approaches in stochastic
approximation algorithms. Finally, we demonstrate the use of the benchmark
by implementing and comparing three recently proposed, but as-of-yet unim-
plemented, algorithms both in terms of optimization performance, and fairness
improvement. We release the code of the benchmark as a Python package at
https://github.com/humancompatible/train.

1 Introduction

There has been a considerable interest in detecting and mitigating bias in artificial intelligence (AI)
systems, recently. Multiple legislative frameworks, including the Al Act in the European Union,
require the bias to be removed, but there is no agreement on what the correct definition of bias is or
how to remove it. A natural translation of the requirement of removing bias into the formulation
of training of deep neural network (DNN) utilizes constraints bounding the difference in empirical
risk across multiple subgroups [13, 42, 48]. Over the past five years, there have been numerous
algorithms ([29, 5, 17, 43, 6, 40, 41, 10, 18, 49, 27, 32, 33]) proposed to solve convex and non-convex
empirical-risk minimization (ERM) problems subject to constraints bounding the absolute value of
empirical risk. Numerous other algorithms of this kind could be construed, based on a number of
design choices, including:

» sampling techniques for the ERM objective and the constraints, either the same or different;

* use of first-order or higher-order derivatives, possibly in quasi-Newton methods;

* use of globalization strategies such as filters or line search;

* use of “true” globalization strategies including random initial points and random restarts in order
to reach global minimizers.

Nevertheless, there is no single toolkit implementing the algorithms, which would allow for their
easy comparison, and there is no benchmark to test the combinations of design choices on.

In this paper, we consider the constrained ERM problem:
m]iRn E[f(z,&)] st Ele(x, )] <0, (1
reR™
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Table 1: Particular formulations of the constraint function ¢ to enforce fairness.

Model Our formulation

Demographic Parity [24] [Ep(eroup 4] [(fo(X), Y)] = Eppgroup 51 [€(fo(X), V)| < &

Equal opportunity [31] [Enigroup 4,y =41 [€(fo(X), V)] = Epfgroup 5,y =4][((fo(X), Y)][ < §
Equahzed odds [31] Z’UE{+,—} ‘ED[group A)Y =v] [e(fa (X)7 Y)] - IE’D[group B,Y =v] [Z(fQ(X)y Y)]l S 0

where ¢ and ¢ are random variables. Further, we provide an automated way of constructing the ERM
formulations out of a computation graph of a neural network defined by PyTorch or TensorFlow,
the choice of the constraints (see Table 1), and a definition of the protected subgroups to apply
the constraints to. Specifically, we provide means of utilizing the US Census data via the Python
package Folktables, together with definitions of up to 5.7 billion protected subgroups. This presents
a challenging benchmark in stochastic approximation for the constrained training of deep neural
networks.

Our contributions. The contributions of this paper are:

* aliterature review of algorithms subject to handling (1);

* atoolbox that (i) implements four algorithms applicable in real-world situations, and (i)
provides an easy-to-use benchmark on real-world fairness problems;

* numerical experiments that compare these algorithms on a real-world dataset, and a compar-
ison with alternative approaches to fairness.

Paper structure. The rest of the paper is organized as follows. Section 2 reviews related works and
presents the relevant notions of fairness. Section 3 introduces the algorithms. Section 4 reports on
our experiments. Section 5 concludes.

2 Related work, and background in fairness

In the literature on fairness, one distinguishes among pre-processing, in-processing, and post-
processing. Pre-processing methods focus on modifying the training data to mitigate biases [50, 23].
In-processing methods enforce fairness during the training process by modifying the learning algo-
rithm itself [53]. Post-processing methods adjust the model’s predictions after training [35]. The
constrained ERM approach (1) belongs to the class of in-processing methods.

In-processing methods include several approaches. One trend consists in jointly learning a predictor
function and an adversarial agent that aims to reconstitute the subgroups from the predictor [1,
38, 39, 25]. Another approach consists in adding “penalization” terms to the empirical risk term.
These additional penalization terms, commonly referred to as regularizers, promote models that are
a compromise between fitting the training data, and optimizing a fairness metric. Differentiable
regularizers include, among others, HSIC [37], Fairret [11], or Prejudice Remover [34].

Closer to our setting, [16] considers minimizing the empirical risk subject to the so-called rate
constraints based on the model’s prediction rates on different datasets. These rates, derived from
a dataset, give rise to non-convex, non-smooth, and large-scale inequality constraints akin to (1). The
authors of [16] argue that hard constraints, although leading to a more difficult optimization problem,
offer advantages over using a weighted sum of multiple penalization terms. Indeed, while the choice
of weights for the penalization terms may depend on the dataset, specifying one constraint for each
goal is easier for practitioners. In addition, a penalization-based model provides a predictor that
balances minimizing the data-fit term and penalties in an opaque way, whereas a constraint-based
model allows for a clearer understanding of the model design: minimizing the data-fit term subject to
“hard” fairness constraints. Rate constraints differ from those in (1) in that they are piecewise-constant,
rendering first-order methods unsuitable for solving them.

Major toolboxes for evaluating the fairness of models or for training models with fairness guarantees
include AIF360 [4] and FairLearn [8]. Other libraries include [21], which computes the Pareto front
of accuracy and fairness metrics for high-capacity models, and [11], which provides differentiable
fairness-inducing penalization terms.
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A detailed survey of fairness-oriented datasets is provided in [36], and new datasets are derived
in [22]. The benchmark [30] provides a review of the existence of biases in prominent datasets,
finding that “not all widely used fairness datasets stably exhibit fairness issues”, and assesses the
performance of a wide range of in-processing fairness methods in addressing biases, focusing on
differentiable minimization only. Other benchmarks of fairness methods include [20, 26, 46, 15]. The
statistical aspects of the fairness-constrained Empirical Risk Minimization have only been considered
recently; see e.g. [12].

The template problem (1) encompasses fairness-enforcing approaches that find applications in high-
risk domains, such as credit scoring, hiring processes, medicine and healthcare [14], ranking and
recommendation [47], but also in forecasting the observations of linear dynamical systems [55], or
in two-sided economic markets [54]. In addition, solving (1) is of interest in other fields, such as
compression of neural networks [13], improving statistical performance of neural networks [42, 48],
or the training of neural networks with constraints on the Lipschitz bound [45]. We note that the
presence of large-scale constraints is a common feature to all the aforementioned methodologies.

Deep neural networks (DNNs). Consider a dataset of N observations D = {(X;,Y;),i =
1,..., N'}. We seek some function fy such that fp(X;) = Y;. A typical formulation of this task is the
following regression problem:

1

N
&%{N;afe()@),ﬁ) + R(6). @)

Here, ¢ : R x R — Ris a loss function, such as the logistic loss £(y; z) = log(1 + e~¥#), the hinge
loss ¢(y; z) = max{0,1 — yz}, the absolute deviation loss £(y; z) = |y — z|, or the square loss
i

(y; z) = 5(y — 2)*. The term R is a regularizer, and fy is a deep neural network (DNN) of depth L

with parameters . The DNN fy is defined recursively, for some input X, as
CLQ:X, ai:pi(Vi(G)ai_l), foreveryi: 1,...,L, fg(X) =ay, (3)

where V;(-) are linear maps into the space of matrices, and p; are activation functions applied
coordinate-wise, such as ReLU max(0,t), quadratics 2, hinge losses max{0,¢}, and SoftPlus
log(1 + et). A dataset D is described by attributes (or features), such as age, income, gender, etc.
The attribute which the DNN is trained to predict is called the class attribute. We denote the class
attribute by Y, whereas the predicted value given by the DNN is denoted by Y. Both Y and Y are
binary and take values in {4, —}.

Fairness-aware learning applied to DNNs. The goal of this approach is to reduce discriminatory
behavior in the predictions of a DNN across different demographic groups (e.g., male vs. female).
The demographic groups are also reffered to as subgroups. The attributes such as race or gender which
must be handled cautiously are called protected. We denote by S the protected attribute S € {s, 5}
where s denotes the protected group and 5 denotes the non-protected group. Denote by D[s] and
D[] the observations in D such that S = s and S = 5, respectively. A way to impose fairness on the
learned predictor is to equip (2) with suitable constraints. Some possible constraint choices are shown
in Table 1. Choosing loss difference bound as the constraint and setting 6 > 0 yields formulation:

R
min N;afe()(i)%)JrR(@)

4)
SRS D “fe(X”’Y”wl[(s]lxi,mzems]é(fg(mmﬁ

X,;,Y;€D[s]

Fairness metrics. There exist tens of fairness metrics [51], however, it was pointed out in [3, Ch. 3]
that most fairness metrics may be seen as combinations of independence, separation, and sufficiency.
These baseline fairness criteria cannot be attained simultaneously. Moreover, there is a trade-off
between attaining the baseline fairness metrics and the prediction accuracy, i.e., the probability that
the predicted value is equal to the actual value. As a result, we seek an optimal trade-off between
attaining the fairness metrics and minimizing the prediction inaccuracy. We follow the definitions in
[3] of the baseline fairness metrics applied to a binary classification task.
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Independence (Ind) This fairness criterion requires the prediction Y to be statistically independent
of the protected attribute S. Equivalent definitions of independence for a binary classifier Y are
referred to as statistical parity (SP), demographic parity, and group fairness. Independence is the
simplest criterion to work with, both mathematically and algorithmically. In a binary classification
task, independence implies the equality of P(Y = + | S = s) and P(Y = + | S = 5) and the
fairness gap is computed as

IP(Y =+|S=s)—P(Y =45 =5)|.

Separation (Sp) Unlike independence, the separation criterion requires the prediction Y to be
statistically independent of the protected attribute S, given the true label Y. The separation criterion
also appears under the name Equalized odds (EO). In a binary classification task, the separation
criterion requires that all groups experience the same true negative rate and the same true positive rate.

Formally, we require the equality of P(Y = + | S =s,Y =v)and P(Y =+ | S =5, Y = v), for
every v € {+, —}. The fairness gap may be computed as

Y PV =+|S=sY=0)-PY =+|S=5Y =)
ve{+,—}

Sufficiency (Sf) The sufficiency criterion is satisfied if the true label Y is statistically independent

of the protected attribute .S, given the prediction Y.Ina binary classification task, the sufficiency
criterion requires a parity of positive and negative predictive values across the groups. Formally,

we require the equality of P(Y = + |V = 0,8 = s) and P(Y = 4 | Y = 0,5 = 5), for every
v € {+, —}, and the fairness gap may be computed as

Y P =+|S=sY=0)-PY =+|S=5Y =v)|.
ve{+,—}

3 Algorithms

We recall that we consider the optimization problem

m]iRn F(z) st C(z) <0, (%)
EE n

where the functions F' : R™ — R and C' : R — R™ are defined as expectations of functions f and
¢, which depend on random variables ¢ and , respectively. Solving (5) has the following challenges:

* large-scale objective and constraint functions, which require sampling schemes,

* the necessity of incorporating inequality constraints, not merely equality constraints (see fairness
formulations in Table 1),

* the necessity to cope with the nonconvexity and nonsmoothness of F' and C, due to the presence
of neural networks.

In this section, we identify the algorithms that address these challenges most precisely. However, we
note that there exists currently no algorithm with guarantees for such a general setting.

Recalls and notation. We denote the projection of a point = onto a set X' by projy(z) =
arg min,ey ||z — v||?. We denote by N ~ G(po) sampling a random variable from the geometric
distribution with a parameter po, i.e., the probability that N = n equals (1 — pg)™po for n > 0. We
distinguish between the random variable ¢ associated with the objective function and the random
variable ¢ associated with the constraint function. Their probability distributions are denoted by
Pe and P. For an integer J € N, aset {{;} 'j]:1 of independent and identically distributed random

variables &1, ...,&; g P¢ is called a mini-batch. Inspired by [40], we use the following notation for
the stochastic estimates computed from a mini-batch of size J:

J J
ﬁJf(x):§ZVf(z,gj), @) =3 ez, ), Vi) =1 Ve, ). (©)

Jj=1 Jj=1
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Table 2: Assumptions on objective and constraint functions, F' and C, which allow for theoretical
convergence proofs.

Objective function F' Constraint function C'
[e=}

&, V! &)
> E = > S
= £ ) = =
5 5 2 = 505 2
> 2 & g 4 2 &
g k=) s} s g & =3
g2 8 4 ;12 22 g < ;
Z2 =z = glg o > £ 2
Algorithm z 5 O S| O UI|E 5 T =

SGD W) W) 2 \

[6][29] [17] 4 v/ -l- v - v -
[40] VA (o)) -l- v |- - vy -
(491 (18] o -/ -l- v v - v -
[41] VA (o) -l- v V|- - v -
[10] v - V(+cevx) - | — v - vy - = -
[43] - 7 v v |- - v -
SSL-ALM [32] v -/ -|lv v v |v - - -
Stoch. Ghost [27] v - v -V ) V|- - -
Stoch. Switch. Subg. [33] v vV - -V ) V|- v - -

3.1 Review of methods for constrained ERM

We compare recent constrained optimization algorithms considering a stochastic objective function in
Table 2. We note that most of them do not consider the case of stochastic constraints. Among those
which do consider stochastic constraints, only three admit inequality constraints. Moreover, with the
exception of [33], all the algorithms in Table 2 assume F' to be at least C*, which makes addressing
the challenge of nonsmoothness of F' infeasible. The recent paper [19] leads us to the conclusion
that assuming the objective and constraint functions to be tame and locally Lipschitz is a suitable
requirement for solving (5) with theoretical guarantees of convergence. At this point, however, no
such algorithm exists, to the best of our knowledge.

Consequently, we consider the practical performance of the algorithms that address the challenges of
solving (5) most closely: Stoch. Ghost [27], SSL-ALM [32], and Stoch. Switching Subgradient [33].

3.2 Stochastic Ghost Method (StGh)

The Stochastic Ghost method was described in [27] where a method for solving (1) in the non-
stochastic setting [28] was combined with the stochastic sampling inspired by an unbiased Monte
Carlo method [9]. The method [28] for the non-stochastic setting is based on solving subproblem
(7) to obtain a direction d to preform the classical line search. Here, e € R™ is a vector with all
elements equal to one, 7 and 5 > 0 are user-prescribed constants and rj, is defined as a certain
convex combination of optimization subproblems related to C' and VC. The definition of «;, enables
to expand the feasibility region so that (7) is always feasible. As the problem (1) is stochastic, the
subproblem (7) is modified to a stochastic version (8), using the notation in (6):

ming  VF(zg)"d+ Z|d||?, ming V' f(2r)Td + 5||d|?,
st Clxg) + VC(x) T d < ke, (7 s.t. E‘](xk) +§Jc(xk)Td <7wi'e, 8
]l < B, Id]|oo < B.

In the stochastic setting, an unbiased estimate d(xj) of the line search direction d is needed
and it is computed using four particular mini-batches as follows. To facilitate comprehen-
sion, we denote X k’ = {Xk,j}‘jlzl a mini-batch of size J with the j-th element X ; =

(Vf(xr, &k i) (@, C i), Ve(xk, Gk 5)). First, we sample a random variable N ~ G(po) from
the geometric distribution. Then we sample the mini-batches X} and X %NH and we partition the
mini-batch X2 of size 2V ! into two mini-batches odd(X2" ) and even(X2" ) of size 2.
Finally, we solve (8) for each of the four mini-batches, denoting by d(xy; X ,;] ) the solution of (8) for
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the corresponding mini-batch X ;. We obtain
d(zp; X271 — i (d(a:kgodd(X,fN+l)) + d(xk;even(X,fN“)))

(1 =p0)"po
An update between the iterations zj, and x4 is computed as

d(zy) = +d(zi; X))

Ti41 = Tk + akd(xk),

where the deterministic stepsize oy fulfills the classical requirement to be square-summable
Sy (ax)® < oo but not summable > e, ai = oo. For more details, see Algorithm 1.

3.3 Stochastic Smoothed and Linearized AL Method (SSL-ALM)

The Stochastic Smoothed and Linearized AL Method (SSL-ALM) was described in [32] for op-
timization problems with stochastic linear constraints. Although problem (1) has non-linear in-
equality constraints, we use the SSL-ALM due to the lack of algorithms in the literature dealing
with stochastic non-linear constraints; see Table 2. The transition between equality and inequality
constraints is handled with slack variables. Following the structure of [32], we minimize over
the set X = R™ x RZY,. The method is based on the augmented Lagrangian (AL) function

Ly(z,y) = F(z) + y"C(z) + £||C(z)||?, which is a result of merging the Lagrange function
with the penalty methods [7]. Adding a smoothing term yields the proximal AL function

I
Ky u(@,y,2) = Ly(z,y) + 5w = 2[*

The SSL-ALM method was originally proposed in [32] where it is interpreted as an inexact gradient
descent step on the Moreau envelope. An important property of the Moreau envelope is that its
stationary points coincide with those of the original function.

The strength of this method is that, as opposed to the Stochastic Ghost method, it does not use large

. . . . jid L jid
mini-batch sizes. In each iteration, we sample & P¢ to evaluate the objective and (5, (2 ~ Pe to
evaluate the constraint function and its Jacobian matrix, respectively. The function

G(x,y,2:€,C1,G2) = Vf(2,€) + Ve(w, ) "y + pVe(a, G1) Te(w,G) + p(z — 2)  (10)

is defined so that, in iteration k, E¢ ¢, ¢, [G(r, Yk+1, 215 €, €1, C2)] = VK, 0 (Th, Yrt1, 25). Omit-
ting some details, the updates are performed using some parameters 7, 7, and 3 as follows:

Yk+1 = Yr +ne(z, (1),
i1 = projy(xr — TG(2k, Yr+1, 23 €, C1, (2)), (11)
Zhy1 = 2k + Blxr — 21).

For more details, see Algorithm 2.

3.4 Stochastic Switching Subgradient Method (SSw)

The Stochastic Switching Subgradient method was described in [33] for optimization problems
over a closed convex set X C R? which is easy to project on and for weakly convex objective and
constraint functions /" and C' which may be non-smooth. This is why the notion of gradient of /' and
C is replaced by a more general notion of subgradient, which is an element of a subdifferential.

The algorithm requires as input a prescribed sequence of infeasibility tolerances € and sequences of
. : . . jid . _
stepsizes 17}; and ;. In iteration k, we sample (1,...,(s ~ P¢ to compute an estimate c‘](xk). If
_ . jid . .
c‘](xk) is smaller than e, we sample & ‘P and an update between x;, and 1,41 is computed using
a stochastic estimate S/ (zy,, €) of an element of the subdifferential OF (x,) of the objective function:

Tha1 = projy(zx — ni ST (a1, €)).

Otherwise, we sample ¢ %1734 and the update is computed using a stochastic estimate S¢(x, ) of
an element of the subdifferential 0C'(xy,) of the constraint function:

Tpt1 = projy(xr — NS (zk, ).
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In either case, the updates are only saved starting from a prescribed index ko and the final output
is sampled randomly from the saved updates. For more details, see Algorithm 3. The algorithm
presented here is slightly more general than the one presented in [33]: we allow for the possibility
of different stepsizes for the objective update, n,{ , and the constraint update 7, while the original

method employs equal stepsizes n,{ =N

4 Experimental evaluation

In this section, we illustrate the presented algorithms on a real-world instance of the ACS dataset,
comparing how they fare with optimization and fairness metrics.

4.1 Dataset for fair ML

[22] proposed a large-scale dataset for fair Machine Learning, based on the ACS PUMS data sample
(American Community Survey Public Use Microdata Sample). The ACS survey is sent annually
to approximately 3.5 million US households in order to gather information on features such as
ancestry, citizenship, education, employment, or income. Therefore, it has the potential to give rise to
large-scale learning and optimization problems.

We use the ACSIncome dataset over the state of Oklahoma, and choose the binary classification task
of predicting whether an individual’s income is over $50,000. The dataset contains 9 features and
17,917 data points, and may be accessed via the Python package Folktables. We choose race (RAC1P)
as the protected attribute. In the original dataset, it is a categorical variable with 9 values. For the
purposes of this experiment, we binarize it to obtain the non-protected group of “white” people and
the protected group of “non-white” people. The dataset is split randomly into train (80%, 14,333
points) and test (20%, 3,584 points) subsets and it is stratified with respect to the protected attribute,
i.e., the proportion of “white” and “non-white” samples in the training and test sets is equivalent to
that in the full dataset (30.8% of positive labels in group “white”, 20.7% in the group “non-white”).
The protected attributes are then removed from the data so that the model cannot learn from them
directly. The data is normalized using Scikit-Learn StandardScaler.

Note that ACSIncome is a real-world dataset for which ERM-based predictors without fairness
safeguards are known to learn biases [30]. Accordingly, Table 3 (line 1) shows that an ERM predictor
without fairness safeguards has poor fairness metrics; see also Figure 4.

4.2 Experiments

Numerical setup. Experiments are conducted on an Asus Zenbook UXS535 laptop with AMD
Ryzen 7 5800H CPU, and 16GB RAM. The code is written in Python with the PyTorch package [44].

Problems. We consider the constrained ERM problem (4) — R = 0, and, as baselines, the ERM
problem (2) without any regularization, 'R = 0, and with a fairness inducing regularizer R that
promotes small difference in accuracy between groups, provided by the Fairret library [11]. In all
problems, we take as loss function the Binary Cross Entropy with Logits Loss

((fo(X:),Yi) = =Yi -logo(fo(Xi)) — (1 = Yi) - log(1 — o (fo (X)), (12)

where o(z2) = H% is the sigmoid function, and the prediction function fy is a neural network with
2 interconnected hidden layers of sizes 64 and 32 and ReLLU activation, with a total of 194 parameters.

Algorithms and parameters. We assess the performance of four algorithms for solving the
constrained problem (4): (/) Stochastic Ghost (StGh) (Sec. 3.2 - parameters py = 0.4, ap = 0.05,
p=087=10=10, A = 0.5, @ = 0.05), (2) SSL-ALM (Sec. 3.3 - parameters y = 2.0,
p=10,7=0.01,7=0.05 58 = 0.5, M, = 10), (3) plain Augmented Lagrangian Method
ALM (Sec. 3.3, smoothing term removed p = 0, otherwise the same setting as SSL-ALM), and (4)
Stochastic Switching Subgradient (SSw) (Sec. 3.4 - 77,{ = 0.5, n% = 0.05, ¢ = 107* if k < 500,
€ = 0.97¢;,_; for every £ > 500 at each epoch). We also provide the behavior of SGD for solving
the ERM problem, both with no fairness safeguards (SGD), and with fairness regularization provided
by the Fairret library [11] (SGD-Fairret). These methods serve as baselines. When estimating the
constraints, we sample an equal number of data points for every subgroup.
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Figure 1: Train loss and constraint values (first and second row) over time (s) on the ACS Income
dataset for each algorithm. From left to right: StGh, SSL-ALM, ALM, SSw, SGD, SGD-Fairret.

Figure 2: Test loss and constraint (first and second row) values over time (s) on the ACS Income
dataset for each algorithm. From left to right: StGh, SSL-ALM, ALM, SSw, SGD, SGD-Fairret.

Optimization performance. Figures | and 2 present the evolution of loss and constraint values over
the train and test datasets for the four algorithms addressing the constrained problem (columns 1-4),
as well as for the two baselines: SGD without fairness (col. 5), and SGD with fairness regularization
(col. 6). Each algorithm is run 10 times, and the plots display the mean, median, and quartiles values.

To a certain extent, the four algorithms (col. 1-4) succeed in minimizing the loss and satisfying the
constraints on the train set. The AL-based methods (col. 2 and 3) demonstrate a better behavior
compared to StGh and SSw; indeed, StGh exhibits higher variability in both loss and constraint values
(col. 1), while SSw fails to satisfy the constraints within the required bounds (col. 4). We were unable
to identify parameter settings for SSw that simultaneously satisfy the constraints and minimize the
objective function. Appendix B provides the behavior of SSw with equal objective and constraint and
stepsizes; the constraints are satisfied well, but the objective function is barely minimized. The ERM
baselines (col. 5 and 6) exhibit lower variability in the trajectories, and minimize the loss in less time,
but as expected, they do not satisfy the constraints.

The ALM and SSL-ALM schemes are the closest to satisfying the constraints on the train set. On the
test set, however, they are slightly biased towards negative values. Such bias is expected on unseen
data and reflects the generalization behavior of fairness-constrained estimators. This is beyond the
scope of the current work; see e.g. [12].

Fairness performance. Figure 3 presents the distribution of predictions over both groups. The
distribution of prediction without fairness guarantees (col. 5) clearly does not meet the group
fairness standard. Indeed, the “non-white” group has a significantly higher likelihood than the
“white” group of receiving small predicted values, and the converse holds for large predicted values.
The SGD-Fairret model (col. 6) lies between the four constrained models and SGD. Among the
fairness-constrained models, the ALM and SSL-ALM distributions are the closest to the distributions
of SGD without fairness, which is consistent with retaining good prediction information. The four
models that approximately solve the fairness formulation (col. 1-4) all have closer distributions
across groups. Numerically, this is expressed in Table 3 (col. Wd), which reports the value of the
Wasserstein distance between group distributions for each model.

Table 3 displays the fairness metrics presented in Section 2: independence (Ind), separation (Sp), and
sufficiency (Sf), along with inaccuracy (Ina). The mean value and standard deviation over 10 runs are
presented for the four fairness-constrained models and the two baselines, both on train and test sets.
Figure 4 presents the mean values as spider plots. For all metrics, smaller is better.
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Table 3: Fairness metrics (independence, separation, sufficiency), inaccuracy, and Wasserstein
distances between groups (Wd) for the four constrained estimators and the two baselines.

Train Test
Algname Ind Sp Ina Sf Wwd ‘ Ind Sp Ina Sf Wwd
SGD 0,094+0,004 0,132-+0,007 0,201+0,001 0,115+0,006 0,008+0,000 ‘ 0,097+0,006 0,176+0,016 0,215+0,002 0,171+0,009 0,008-+0,000
StGh 0,048+0.026 0,049+0.028  0,273+0,024 0,200-+0,038 0,002:0,001 0,049+0,020 0,096+0,030  0,276+0,022 0,211:+0,033 0,003=0,002
ALM 0,058-+0,007 0,061+0,016 0,240=+0,012 0,197+0,011 0,003-+0,000 0,058-+0,012 0,114+0,014 0,244 +0,007 0,221+0,017 0,003-+0,001
SSL-ALM 0,066-£0,000 0,071+0,015 0,233+0,017 0,186:+0,013 0,003:£0,001 0,066-£0,011 0,117+0,023 0,240+0,012 0,215:0,022 0,004:0,001
SSw 0,077+0,020  0,115%0,029  0,224z0,007  0,133%0,015  0,001x0,001 | 0,080+0,020  0,144x0050  0,229+0,013  0,175+0,031  0,002:0,001

SGD-Fairret ~ 0,091+0,012 0,121+0,007  0,201+0,002 0,106+0,010  0,005:+0,001 ‘ 0,094:0,010 0,174+0,019  0,213+0,002  0,180-+0,022 0,006-£0,001

Among the four fairness-constrained models, StGh performs best in terms of independence and
separation, but worst in terms of accuracy. SSw achieves fairness and accuracy metrics that have
intermediate values relative to those of the unconstrained SGD model, and those of the other
constrained models. This is consistent with the observation that the optimization method, with
our choice of parameters, favored minimizing the objective over satisfying the constraints. The ALM
and SSL-ALM methods provide the best compromise: they improve independence and separation
relative to the SGD model, while moderately degrading accuracy. SGD-Fairret slightly improves
sufficiency relative to the SGD model. The four models constrained in the difference of loss between
subgroups have higher values of sufficiency. Similar observations hold for metrics on the test set.

5 Conclusion

To the best of our knowledge, this paper provides the first benchmark for assessing the performance
of optimization methods on real-world instances of fairness constrained training of models. We
highlight the challenges of this approach, namely that objective and constraints are non-convex,
non-smooth, and large-scale, and review the performance of four practical algorithms.

Limitations Our work identifies that there is currently no algorithm with guarantees for solving
the fairness constrained problem. Above all, we hope that this work, along with the Python toolbox
for easy benchmarking of new optimization methods, will stimulate further interest in this topic.
Also, we caution readers that the method present here is not a silver-bullet that handles all biases
and ethical issues of training ML models. In particular, care must be taken that fair ML is part of a
interdisciplinary pipeline that integrates the specifics of the use-case, and that it does not serve as an
excuse for pursuing Business-As-Usual policies that fail to tackle ethical issues [2, 52].
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A Algorithms in more detail

In this section, we provide the pseudocodes of algorithms presented in Section 3 as Algorithms 1 to 3.
Recall that we denote by X}/ = { X} ;};_, a mini-batch of size .J with the j-th element

Xij = (Vf(@r,&r,j)s c(Tr, Cr5), Ve(or, G j))- (13)

B Additional experiments on SSw

This Section provides additional information on the behavior of SSw. Figure 5 shows the evolution
of the objective value and constraints for 10 runs of the SSw algorithm, over train and test, with equal

objective and constraint stepsizes 77}; = n;, = 0.02. In that case, the constraints are satisfied well, but
the objective function is barely minimized.
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Algorithm 1 Stochastic Ghost algorithm

Require: Training dataset D, constraint dataset C, initial neural network weights xg
Require: Parameters pg € (0, 1), ag, &, p, 7, 8
1: for Iteration kK = 0to K — 1 do

2: Sample ¢ “d Pe and ¢ i Pe

3: Sample N ~ G(po)

4: Set J = 2N +1 -

5 Sample a mini-batch {¢;}/_, sothat (..., (s p,
6: Sample a mini-batch {¢; (‘7»]:1 sothat&y,...,&; -~ P
7: Set X} and X%NH using (13)

8: Compute d(xy) from (9)

9: Set o, = Oék_l(l — dak_1)
10: Update z; 1 =z, + akd(xk)
11: end for

Algorithm 2 Stochastic Smoothed and Linearized AL Method for solving (1)

Require: Training dataset D, constraint dataset C, initial neural network weights xg
Require: Parameters p, 7, M, > 0,7,58,p >0
1: for Iteration lg: Oto K —1 dp
2: Sample 5%1775 and (1, (o %177(
3 Yktr =Yk +0e(x,G1)
4 if ||yp+1]| > M, then
5 Yr+1 =10
6: end if
7. g1 = projy vk — TG(Tk, Yr+1, 285 €, €1, C2) ), Where G is defined in (10)
8: Zk+1 = 2k + ﬁ(xk — Zk)
9: end for

Algorithm 3 Stochastic Switching Subgradient Method

Require: Training dataset D, constraint dataset C, initial neural network weights ¢ € X
Require: Total number of iterations K, sequence of tolerances of infeasibility €, > 0, sequences of
stepsizes n,{ and 7§, mini-batch size J, starting index ko for recording outputs, I = ()

1: for Iteration k = 0to K — 1 do
1id

2: Sample a mini-batch {¢;}/_; so that (1,..., (s ~ P¢

3: Set EJ(xk) = %Zj:l C(Wij)

4 if e’ (z1) < ¢ then

5: Sample & u P¢ and generate S7 (zy;, &)

6: Set 11 = projx (zx, — 1).S7 (a1, €)) and, if k > ko, [ = T U {k}
7: else -

8: Sample ¢ i P and generate S°(x, ()

9: Set 241 = projy(xr — ngS°(zk, ) and, if k > ko, I = T U {k}
10: end if
11: end for

12: Output: x. with 7 randomly sampled from [ using P(7 = k) = 5 e e
sel ’ls
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Figure 5: Loss and constraint values over time (s) on the train and test set (first and second row) on
the ACS Income dataset for the SSw algorithm.

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims of the paper are summarized in the “contributions” section of
the introduction; the Section “paper organization” points to which Section supports which
claim in the paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations of this work in a dedicated paragraph of the Conclusion
section.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ”Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper contains no theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Code to reproduce the experiments is available at githum.com/
humancompatible/train. This repository includes a readme file with instructions to
reproduce experiments in the exact same software environment. In addition, the Experimen-
tal Section 4 details hardware specifications, explains the details of the implementation, and
the instructions to obtain and run the code.
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Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As mentioned in the abstract and the Numerical Section 4, the code and
instructions to reproduce the experiments are available on Github athttps://github. com/
humancompatible/train We use the publicly available dataset Folktables; the dataset is
fetched automatically as part of our code.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: A description of the setup used to produce experiments is provided at the top
of Section 4.2. The same applies for the figures of the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the plots, except the spider plots (Fig. 4), show mean, median, first and
third quartiles. All the tables report mean and standard deviation. The spider plots (Fig.
4) provide a visual representation of the mean data in Table 3. Standard deviation are not
displayed in Fig. 4, but they are reported in Table 3.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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10.

Answer: [Yes]

Justification: Again, we detail the hardware specifications (laptop model, CPU and RAM
details) at the top of Section 4.2. Time to run the experiments is reported directly in the
Figures.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics, and found that none of the problem-
atic cases in it conform with the numerical experiments.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We mention broader impacts in the limitations paragraph of the Conclusion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not release any data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses the ACS dataset, and the torch library; both are cited in the
paper. The README of the code also provides a link to the license of the dataset.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces code. Details on how to use and extend the code are
provided in the readme.md file, and each code file is commented.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not conduct crowdsourcing and research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Again, the paper does not conduct research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs, nor
does the writing of the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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